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Spatial decorrelation scales of ocean temperature. In our models, we accounted for spatial autocorrelation of ocean temperature by adding a random intercept for time series that are within a 174 km radius of each other. This number was estimated from Hosoda & Kawamura (2004) (Ref. (1)), whose results show that for SST the zonal scale is between 1.5-3.0 degrees and the meridional scale is between 1.2-2.0 degrees. Each degree of latitude is roughly constant at around 111 km, while the degree of longitude varies based on the location on the Earth; at the equator, it is around 111 km and it decreases to 0 km towards the poles. Since our data spanned between -53 and 55 degrees of latitude (Fig. 1), we can calculate the minimum distance in km between 1 degree of longitude at an average of ± 54 degrees of latitude (65 km; Latitude/Longitude Distance Calculator (noaa.gov)). Thus, we take an average value for the distance between 1 degree of longitude [(111 km + 65 km) / 2], because our data was evenly spread along the latitudinal range (Fig. 1). Taking the average of 111 km (for 1 degree of latitude) and 88 km (for 1 degree of longitude on average) gives 99.5 km. The overlap of zonal and meridional scale is 1.5-2.0 degrees, and taking this average gives 1.75 degrees. Therefore, 1.75 degrees * 99.5 km results in 174 km.
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Fig. S1 | Results of the first sensitivity test showing box plots of the median and the 90th percentile of the temperature range (a-d) and of the range of biological rates (e-h). The different climate classifications are distinguished by colour: blue (temperate), yellow (subtropical) and red (tropical). The 7 temporal windows are shown on the x-axis: quarter-diurnal (QD), semi-diurnal (SD), diurnal (D), weekly (W), bi-weekly (B), monthly (M), and annual. Asterisks indicate that the Bayesian models showed strong evidence (i.e., the 0.95 credible intervals do not include zero) that tropical and/or subtropical regions differed from temperate regions. The results shown here used a subset of the data in Figs. 2 to 5 of the main paper, as a sensitivity test to check the robustness of our results. For each temporal window, the median and 90th percentile were calculated only if the temperature records did not contain more than the following percentage of missing values over the period of the temporal window: i) Quarter-diurnal - 10%, ii) Semi-diurnal - 10%, iii) Diurnal - 10%, iv) Weekly - 30%, v) Bi-weekly - 30%, vi) Monthly - 30%, and vii) Annual - 30%. In addition, for weekly, bi-weekly, monthly and annual, there had to be more than 5, 11, 27 and 330 days in the temporal window respectively.
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Fig. S2 | Results of the second sensitivity test showing box plots of the median and the 90th percentile of the temperature range (a-d) and of the range of biological rates (e-h). The different climate classifications are distinguished by colour: blue (temperate), yellow (subtropical) and red (tropical). The 7 temporal windows are shown on the x-axis: quarter-diurnal (QD), semi-diurnal (SD), diurnal (D), weekly (W), bi-weekly (B), monthly (M), and annual. Asterisks indicate that the Bayesian models showed strong evidence (i.e., the 0.95 credible intervals do not include zero) that tropical and/or subtropical regions differed from temperate regions. The results shown here used a subset of the data in Figs. 2 to 5 of the main paper, as a sensitivity test to check the robustness of our results. Time series that were less than 3 years in duration were removed, such that all temporal windows had the same locations being represented.
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Fig. S3 | Results of the third sensitivity test showing box plots of the median and the 90th percentile of the temperature range (a-d) and of the range of biological rates (e-h). The different climate classifications are distinguished by colour: blue (temperate), yellow (subtropical) and red (tropical). The 7 temporal windows are shown on the x-axis: quarter-diurnal (QD), semi-diurnal (SD), diurnal (D), weekly (W), bi-weekly (B), monthly (M), and annual. Asterisks indicate that the Bayesian models showed strong evidence (i.e., the 0.95 credible intervals do not include zero) that tropical and/or subtropical regions differed from temperate regions. The results shown here used a subset of the data in Figs. 2 to 5 of the main paper, as a sensitivity test to check the robustness of our results. These results met the criteria of the results in both Figs. S1 and S2.
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Fig. S4 | Results of the fourth sensitivity test showing box plots of the median and the 90th percentile of the difference in biological rates using an E value of 0.433 eV (a-d) and an E value of 0.63 (e-h). The different climate classifications are distinguished by colour: blue (temperate), yellow (subtropical) and red (tropical). The 7 temporal windows are shown on the x-axis: quarter-diurnal (QD), semi-diurnal (SD), diurnal (D), weekly (W), bi-weekly (B), monthly (M), and annual. Asterisks indicate that the Bayesian models showed strong evidence (i.e., the 0.95 credible intervals do not include zero) that tropical and/or subtropical regions differed from temperate regions. The results shown here used the same data as in Figs. 4 and 5 of the main paper, but with different E values, as a sensitivity test to check the robustness of our results. 
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Fig. S5 | Results of the fifth sensitivity test showing box plots of the median and the 90th percentile of the temperature range (a-d) and of the range of biological rates (e-h). The different climate classifications are distinguished by colour: blue (temperate), yellow (subtropical) and red (tropical). The 7 temporal windows are shown on the x-axis: quarter-diurnal (QD), semi-diurnal (SD), diurnal (D), weekly (W), bi-weekly (B), monthly (M), and annual. Asterisks indicate that the Bayesian models showed strong evidence (i.e., the 0.95 credible intervals do not include zero) that tropical and/or subtropical regions differed from temperate regions. The results shown here used a subset of the data in Figs. 2 to 5 of the main paper, as a sensitivity test to check the robustness of our results. Data from loggers that were deployed in the open ocean were removed to check whether our results in the tropical oceans could have been biased because of the large number of loggers in the open ocean there. 
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Fig. S6 | Additional examples of time series from tropical regions. This figure is similar to Fig. 1 of the main paper, with additional examples of time series shown from tropical regions. Insets (a-f) correspond to the temperature time series at the locations shown by the respective letters. These sample time series help to visualize the range of temporal variability of tropical locations at the shorter temporal windows. The numbers between brackets in the title of each inset indicate the latitude and the measurement frequency of the respective time series. The median temperature ranges over the diurnal and monthly temporal windows are also shown for each inset. The y-axes of all 6 insets have the same range, for comparability. 
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Fig. S7 | Additional examples of time series from subtropical regions. This figure is similar to Fig. 1 of the main paper, with additional examples of time series shown from subtropical regions. Insets (a-f) correspond to the temperature time series at the locations shown by the respective letters. These sample time series help to visualize the range of temporal variability of subtropical locations at the shorter temporal windows. The numbers between brackets in the title of each inset indicate the latitude and the measurement frequency of the respective time series. The median temperature ranges over the diurnal and monthly temporal windows are also shown for each inset. The y-axes of all 6 insets have the same range, for comparability. 
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Fig. S8 | Additional examples of time series from temperate regions. This figure is similar to Fig. 1 of the main paper, with additional examples of time series shown from temperate regions. Insets (a-f) correspond to the temperature time series at the locations shown by the respective letters. These sample time series help to visualize the range of temporal variability of temperate locations at the shorter temporal windows. The numbers between brackets in the title of each inset indicate the latitude and the measurement frequency of the respective time series. The median temperature ranges over the diurnal and monthly temporal windows are also shown for each inset. The y-axes of all 6 insets have the same range, for comparability. 
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Fig. S9 | Posterior predictive checks for the median of the temperature range, visually checked to ensure there was correspondence between the observed and fitted values. Panels a-g represent the plots for the different temporal windows: quarter-diurnal (a), semi-diurnal (b), diurnal (c), weekly (d), bi-weekly (e), monthly (f), and annual (g). y represents the distribution of the observed value (dark blue), and yrep represents the distributions of 100 of posterior draws from the model (light blue). 
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Fig. S10 | Distributions of the differences of the marginal effect sizes of the median of the temperature range between region pairs. The marginal effect sizes of each climate classification was obtained from the average of the expected values of the posterior predictive distribution of the Bayesian models, holding “depth” constant at its average values, using the “emmeans” package (2). The difference of the marginal effect sizes for each region pair is colour-coded: temperate and subtropical (red), tropical and subtropical (green), and tropical and temperate (blue). Panels a-g represent these distributions for the different temporal windows: quarter-diurnal (a), semi-diurnal (b), diurnal (c), weekly (d), bi-weekly (e), monthly (f), and annual (g). There is strong evidence that the marginal effect sizes of the region pairs are different from one another if the 0.95 credible interval does not include zero. 
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Fig. S11 | Posterior predictive checks for the 90th percentile of the temperature range, visually checked to ensure there was correspondence between the observed and fitted values. Panels a-g represent the plots for the different temporal windows: quarter-diurnal (a), semi-diurnal (b), diurnal (c), weekly (d), bi-weekly (e), monthly (f), and annual (g). y represents the distribution of the observed value (dark blue), and yrep represents the distributions of 100 of posterior draws from the model (light blue). 
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Fig. S12 | Distributions of the differences of the marginal effect sizes of the 90th percentile of the temperature range between region pairs. The marginal effect sizes of each climate classification was obtained from the average of the expected values of the posterior predictive distribution of the Bayesian models, holding “depth” constant at its average values, using the “emmeans” package (2). The difference of the marginal effect sizes for each region pair is colour-coded: temperate and subtropical (red), tropical and subtropical (green), and tropical and temperate (blue). Panels a-g represent these distributions for the different temporal windows: quarter-diurnal (a), semi-diurnal (b), diurnal (c), weekly (d), bi-weekly (e), monthly (f), and annual (g). There is strong evidence that the marginal effect sizes of the region pairs are different from one another if the 0.95 credible interval does not include zero. 
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Fig. S13 | Posterior predictive checks for the median of the difference in biological rates, visually checked to ensure there was correspondence between the observed and fitted values. Panels a-g represent the plots for the different temporal windows: quarter-diurnal (a), semi-diurnal (b), diurnal (c), weekly (d), bi-weekly (e), monthly (f), and annual (g). y represents the distribution of the observed value (dark blue), and yrep represents the distributions of 100 of posterior draws from the model (light blue). 
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Fig. S14 | Distributions of the differences of the marginal effect sizes of the median of the difference in biological rates between region pairs. The marginal effect sizes of each climate classification was obtained from the average of the expected values of the posterior predictive distribution of the Bayesian models, holding “depth” constant at its average values, using the “emmeans” package (2). The difference of the marginal effect sizes for each region pair is colour-coded: temperate and subtropical (red), tropical and subtropical (green), and tropical and temperate (blue). Panels a-g represent these distributions for the different temporal windows: quarter-diurnal (a), semi-diurnal (b), diurnal (c), weekly (d), bi-weekly (e), monthly (f), and annual (g). There is strong evidence that the marginal effect sizes of the region pairs are different from one another if the 0.95 credible interval does not include zero. 
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Fig. S15 | Posterior predictive checks for the 90th percentile of the difference in biological rates, visually checked to ensure there was correspondence between the observed and fitted values. Panels a-g represent the plots for the different temporal windows: quarter-diurnal (a), semi-diurnal (b), diurnal (c), weekly (d), bi-weekly (e), monthly (f), and annual (g). y represents the distribution of the observed value (dark blue), and yrep represents the distributions of 100 of posterior draws from the model (light blue). 
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Fig. S16 | Distributions of the differences of the marginal effect sizes of the 90th percentile of the difference in biological rates between region pairs. The marginal effect sizes of each climate classification was obtained from the average of the expected values of the posterior predictive distribution of the Bayesian models, holding “depth” constant at its average values, using the “emmeans” package (2). The difference of the marginal effect sizes for each region pair is colour-coded: temperate and subtropical (red), tropical and subtropical (green), and tropical and temperate (blue). Panels a-g represent these distributions for the different temporal windows: quarter-diurnal (a), semi-diurnal (b), diurnal (c), weekly (d), bi-weekly (e), monthly (f), and annual (g). There is strong evidence that the marginal effect sizes of the region pairs are different from one another if the 0.95 credible interval does not include zero. 


Table S1 | Summary tables of the Bayesian model for the quarter-diurnal median of temperature range. To test whether the quarter-diurnal medians of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.46
	0.05
	0.36
	0.57
	1.00
	937
	1192

	~spatial_blocks:plot_id (Number of levels: 486)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.43
	0.02
	0.39
	0.46
	1.00
	761
	1362



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-0.98
	0.10
	-1.17
	-0.80
	1.00
	961
	1698

	climate_classificationTemperate
	-0.41
	0.14
	-0.67
	-0.13
	1.00
	1113
	1726

	climate_classificationTropical
	-0.37
	0.11
	-0.59
	-0.15
	1.00
	1162
	1949

	depth_in_m
	-0.05
	0.01
	-0.06
	-0.03
	1.00
	839
	1492



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	13.00
	0.34
	12.35
	13.69
	1.00
	5843
	2821











Table S2 | Summary tables of the Bayesian model for the semi-diurnal median of temperature range. To test whether the semi-diurnal medians of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.42
	0.05
	0.32
	0.52
	1.01
	646 
	1139

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.43
	0.02
	0.40
	0.47
	1.01
	852 
	1853



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-0.39
	0.09
	-0.57
	-0.21
	1.00
	918 
	1346

	climate_classificationTemperate
	-0.43
	0.13
	-0.68
	-0.17
	1.00
	980 
	1532

	climate_classificationTropical
	-0.37
	0.11
	-0.58
	-0.16
	1.01
	1015 
	1458

	depth_in_m
	-0.05
	0.01
	-0.07
	-0.03
	1.00
	798 
	1320



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	12.99
	0.35
	12.31
	13.66
	1.00
	5302 
	3347





      





Table S3 | Summary tables of the Bayesian model for the diurnal median of temperature range. To test whether the diurnal medians of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.41
	0.05
	0.32
	0.52
	1.00
	894 
	1767

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.41
	0.02
	0.38
	0.45
	1.00
	876 
	1742



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	0.06
	0.09
	-0.12
	0.24
	1.00
	1170 
	1823

	climate_classificationTemperate
	-0.41
	0.14
	-0.67
	-0.13
	1.00
	1265 
	1691

	climate_classificationTropical
	-0.43
	0.11
	-0.64
	-0.21
	1.00
	1369 
	1961

	depth_in_m
	-0.05
	0.01
	-0.07
	-0.04
	1.00
	1060 
	1789



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	14.38
	0.38
	13.66
	15.15
	1.00
	5495 
	3407











Table S4 | Summary tables of the Bayesian model for the weekly median of temperature range. To test whether the weekly medians of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.35
	0.04
	0.28
	0.43
	1.00
	1106 
	2018

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.32
	0.01
	0.30
	0.35
	1.00
	1147 
	1857



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	0.86
	0.07
	0.71
	1.00
	1.00
	1518 
	2158

	climate_classificationTemperate
	-0.23
	0.11
	-0.43
	-0.01
	1.00
	1492 
	1972

	climate_classificationTropical
	-0.40
	0.09
	-0.57
	-0.21
	1.00
	1558 
	2046

	depth_in_m
	-0.05
	0.01
	-0.06
	-0.04
	1.00
	1262 
	1962



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	17.72
	0.47
	16.80
	18.65
	1.00
	4918 
	3068











Table S5 | Summary tables of the Bayesian model for the bi-weekly median of temperature range. To test whether the bi-weekly medians of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.33
	0.03
	0.26
	0.40
	1.00
	1128 
	2030

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.29
	0.01
	0.26
	0.31
	1.00
	649 
	1848



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	1.12
	0.07
	0.98
	1.25
	1.00
	1607 
	2155

	climate_classificationTemperate
	-0.18
	0.10
	-0.37
	0.01
	1.00
	1767 
	2163

	climate_classificationTropical
	-0.39
	0.08
	-0.55
	-0.24
	1.00
	1708 
	2474

	depth_in_m
	-0.04
	0.01
	-0.05
	-0.03
	1.00
	1637 
	2059



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	19.34
	0.51
	18.35
	20.38
	1.00
	4773 
	2853











Table S6 | Summary tables of the Bayesian model for the monthly median of temperature range. To test whether the monthly medians of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.31
	0.03
	0.25
	0.37
	1.00
	918 
	1335

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.25
	0.01
	0.23
	0.27
	1.00
	917 
	2312



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	1.37
	0.06
	1.25
	1.50
	1.00
	1026 
	1540

	climate_classificationTemperate
	-0.07
	0.09
	-0.25
	0.11
	1.00
	1147 
	1597

	climate_classificationTropical
	-0.39
	0.08
	-0.54
	-0.24
	1.00
	1022 
	1573

	depth_in_m
	-0.04
	0.00
	-0.05
	-0.03
	1.00
	1474 
	2412



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	20.42
	0.55
	19.39
	21.53
	1.00
	5405 
	2889











Table S7 | Summary tables of the Bayesian model for the annual median of temperature range. To test whether the annual medians of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.29
	0.03
	0.24
	0.35
	1.00
	973 
	1817



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	2.30
	0.06
	2.19
	2.41
	1.00
	1026 
	1863

	climate_classificationTemperate
	0.22
	0.08
	0.06
	0.38
	1.00
	1087 
	1613

	climate_classificationTropical
	-0.46
	0.06
	-0.59
	-0.34
	1.00
	1195 
	1885

	depth_in_m
	-0.02
	0.00
	-0.03
	-0.02
	1.00
	4287 
	3001



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	23.01
	1.69
	19.87
	26.50
	1.00
	3473 
	3323



















Table S8 | Summary tables of the Bayesian model for the quarter-diurnal 90th percentile of temperature range. To test whether the quarter-diurnal 90th percentile of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.42
	0.05
	0.33
	0.52
	1.00
	877 
	1577

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.42
	0.02
	0.38
	0.45
	1.00
	953 
	1510



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-0.03
	0.09
	-0.21
	0.15
	1.00
	1094 
	1762

	climate_classificationTemperate
	-0.14
	0.13
	-0.40
	0.11
	1.00
	1022 
	1595

	climate_classificationTropical
	-0.35
	0.11
	-0.57
	-0.13
	1.00
	1220 
	1933

	depth_in_m
	-0.03
	0.01
	-0.05
	-0.01
	1.00
	850 
	1415



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	14.05
	0.37
	13.33
	14.78
	1.00
	5532 
	3043










Table S9 | Summary tables of the Bayesian model for the semi-diurnal 90th percentile of temperature range. To test whether the semi-diurnal 90th percentile of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.40
	0.04
	0.32
	0.50
	1.00
	837 
	1771

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.40
	0.02
	0.37
	0.44
	1.00
	909 
	1676



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	0.37
	0.09
	0.20
	0.54
	1.00
	1134 
	1710

	climate_classificationTemperate
	-0.10
	0.12
	-0.33
	0.16
	1.00
	1067 
	1616

	climate_classificationTropical
	-0.35
	0.10
	-0.55
	-0.13
	1.00
	1272 
	1950

	depth_in_m
	-0.04
	0.01
	-0.05
	-0.02
	1.00
	905 
	1296



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	14.34
	0.39
	13.59
	15.13
	1.00
	4505 
	2540











Table S10 | Summary tables of the Bayesian model for the diurnal 90th percentile of temperature range. To test whether the diurnal 90th percentile of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.39
	0.04
	0.31
	0.48
	1.00
	933 
	1529

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.39
	0.02
	0.36
	0.42
	1.01
	965 
	1190



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	0.72
	0.08
	0.56
	0.88
	1.00
	1357 
	2160

	climate_classificationTemperate
	-0.07
	0.12
	-0.31
	0.16
	1.00
	1381 
	1961

	climate_classificationTropical
	-0.38
	0.10
	-0.57
	-0.18
	1.00
	1421 
	1996

	depth_in_m
	-0.04
	0.01
	-0.06
	-0.03
	1.00
	1033 
	1730



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	14.99
	0.40
	14.18
	15.79
	1.00
	5776 
	2712










Table S11 | Summary tables of the Bayesian model for the weekly 90th percentile of temperature range. To test whether the weekly 90th percentile of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.38
	0.04
	0.31
	0.46
	1.00
	1208 
	1745

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.29
	0.01
	0.27
	0.32
	1.00
	1099 
	1903



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	1.31
	0.08
	1.16
	1.46
	1.00
	1361 
	1932

	climate_classificationTemperate
	0.04
	0.11
	-0.17
	0.26
	1.00
	1334 
	1935

	climate_classificationTropical
	-0.37
	0.09
	-0.55
	-0.18
	1.00
	1246 
	1679

	depth_in_m
	-0.04
	0.01
	-0.05
	-0.03
	1.00
	1383 
	1972



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	17.85
	0.47
	16.94
	18.80
	1.00
	5897 
	3011










Table S12 | Summary tables of the Bayesian model for the bi-weekly 90th percentile of temperature range. To test whether the bi-weekly 90th percentile of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.36
	0.03
	0.30
	0.42
	1.00
	1313 
	1783

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.26
	0.01
	0.24
	0.28
	1.00
	1248 
	2277



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	1.50
	0.07
	1.36
	1.63
	1.00
	1186 
	1691

	climate_classificationTemperate
	0.07
	0.10
	-0.11
	0.27
	1.00
	1201 
	1788

	climate_classificationTropical
	-0.38
	0.08
	-0.55
	-0.22
	1.00
	1209 
	2016

	depth_in_m
	-0.03
	0.01
	-0.04
	-0.02
	1.00
	1488 
	2115



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	19.03
	0.51
	18.07
	20.06
	1.00
	4663 
	2994











Table S13 | Summary tables of the Bayesian model for the monthly 90th percentile of temperature range. To test whether the monthly 90th percentile of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.33
	0.03
	0.28
	0.40
	1.00
	1597 
	2396

	~spatial_blocks:plot_id (Number of levels: 487) 

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.22
	0.01
	0.20
	0.24
	1.00
	1299 
	1966



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	1.69
	0.06
	1.56
	1.82
	1.00
	1615 
	1982

	climate_classificationTemperate
	0.10
	0.09
	-0.07
	0.28
	1.00
	1485 
	2327

	climate_classificationTropical
	-0.40
	0.08
	-0.55
	-0.25
	1.00
	1886 
	2688

	depth_in_m
	-0.03
	0.00
	-0.04
	-0.02
	1.00
	2309 
	2658



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	19.66 
	0.54
	18.64
	20.73
	1.00
	5544 
	2878











Table S14 | Summary tables of the Bayesian model for the annual 90th percentile of temperature range. To test whether the annual 90th percentile of temperature range vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.30
	0.03
	0.25
	0.35
	1.00
	705 
	1403



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	2.39
	0.05
	2.28
	2.49
	1.01
	990 
	1272

	climate_classificationTemperate
	0.24
	0.08
	0.08
	0.39
	1.00
	849 
	1364

	climate_classificationTropical
	-0.39
	0.06
	-0.51
	-0.27
	1.00
	1059 
	1377

	depth_in_m
	-0.02
	0.00
	-0.03
	-0.01
	1.01
	4562 
	3429



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	27.25
	2.07
	23.36
	31.56
	1.00
	2792 
	2530



















Table S15 | Summary tables of the Bayesian model for the quarter-diurnal median of difference in biological rates. To test whether the quarter-diurnal median of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.50
	0.05
	0.40
	0.61
	1.00
	936 
	1633

	~spatial_blocks:plot_id (Number of levels: 486)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.44
	0.02
	0.40
	0.48
	1.00
	881 
	1489



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-17.90
	0.10
	-18.11
	-17.70
	1.00
	1167 
	1871

	climate_classificationTemperate
	-1.11
	0.15
	-1.40
	-0.82
	1.00
	1058 
	1407

	climate_classificationTropical
	0.06
	0.12
	-0.19
	0.30
	1.00
	1213 
	2115

	depth_in_m
	-0.04
	0.01
	-0.06
	-0.02
	1.00
	799 
	1224



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	10.54
	0.29
	9.98
	11.13
	1.00
	4920 
	2669










Table S16 | Summary tables of the Bayesian model for the semi-diurnal median of difference in biological rates. To test whether the semi-diurnal median of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.46
	0.05
	0.37
	0.57
	1.00
	1324 
	1942

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.44
	0.02
	0.40
	0.48
	1.00
	1178 
	2004



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-17.30
	0.10
	-17.51
	-17.10
	1.00
	2857 
	2629

	climate_classificationTemperate
	-1.11
	0.14
	-1.38
	-0.85
	1.00
	2924
	2694

	climate_classificationTropical
	0.06
	0.12
	-0.17
	0.29
	1.00
	3069 
	2675

	depth_in_m
	-0.05
	0.01
	-0.06
	-0.03
	1.00
	2512 
	2603



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	10.55 
	0.28 
	10.01
	11.08
	1.00
	4058 
	2816










Table S17 | Summary tables of the Bayesian model for the diurnal median of difference in biological rates. To test whether the diurnal median of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.46
	0.05
	0.37
	0.56
	1.00
	1115 
	1876

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.42
	0.02
	0.39
	0.46
	1.00
	980 
	1693



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-16.84
	0.10
	-17.03
	-16.65
	1.01
	1054 
	1721

	climate_classificationTemperate
	-1.10
	0.14
	-1.37
	-0.84
	1.00
	1300 
	1959

	climate_classificationTropical
	-0.01
	0.11
	-0.23
	0.21
	1.00
	1161 
	2009

	depth_in_m
	-0.05
	0.01
	-0.07
	-0.04
	1.00
	974 
	1683



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	11.20
	0.28 
	10.66
	11.74 
	1.00
	5433 
	3195











Table S18 | Summary tables of the Bayesian model for the weekly median of difference in biological rates. To test whether the weekly median of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.39
	0.04
	0.32
	0.48
	1.01
	991 
	1560

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.33
	0.01
	0.30
	0.36
	1.00
	893 
	2420



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-16.04
	0.08
	-16.20
	-15.88
	1.00
	1024 
	1682

	climate_classificationTemperate
	-0.93
	0.12
	-1.15
	-0.71
	1.00
	1214 
	1954

	climate_classificationTropical
	0.03
	0.10
	-0.17
	0.22
	1.00
	1183 
	1534

	depth_in_m
	-0.05
	0.01
	-0.06
	-0.03
	1.00
	987 
	1855



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	12.98
	0.35  
	12.31
	13.69 
	1.00
	5385 
	3020











Table S19 | Summary tables of the Bayesian model for the bi-weekly median of difference in biological rates. To test whether the bi-weekly median of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.38
	0.04
	0.31
	0.46
	1.00
	1363 
	1898

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.29
	0.01
	0.27
	0.32
	1.00
	1182 
	2050



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-15.78
	0.08
	-15.93
	-15.63
	1.00
	1422 
	1840

	climate_classificationTemperate
	-0.87
	0.11
	-1.09
	-0.65
	1.00
	1272 
	1778

	climate_classificationTropical
	0.04
	0.09
	-0.13
	0.22
	1.00
	1579 
	2141

	depth_in_m
	-0.04
	0.01
	-0.06
	-0.03
	1.00
	1240 
	1883



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	13.75
	0.36 
	13.04
	14.47
	1.00
	4696 
	3013











Table S20 | Summary tables of the Bayesian model for the monthly median of difference in biological rates. To test whether the monthly median of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.38
	0.03
	0.32
	0.45
	1.00
	1346 
	2128

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.25
	0.01
	0.23
	0.28
	1.00
	1166 
	2017



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-15.50
	0.07
	-15.65
	-15.36
	1.00
	968 
	1484

	climate_classificationTemperate
	-0.74
	0.11
	-0.94
	-0.54
	1.00
	982 
	1710

	climate_classificationTropical
	0.04
	0.09
	-0.13
	0.21
	1.00
	845 
	1500

	depth_in_m
	-0.04
	0.01
	-0.05
	-0.03
	1.00
	1525 
	2542



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	14.67
	0.40
	13.88
	15.46
	1.00
	5059 
	2963











Table S21 | Summary tables of the Bayesian model for the annual median of difference in biological rates. To test whether the annual median of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.37
	0.03
	0.31
	0.43
	1.00
	801 
	1723



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-14.52
	0.07
	-14.65
	-14.39
	1.00
	698 
	1355

	climate_classificationTemperate
	-0.42
	0.10
	-0.60
	-0.23
	1.00
	651 
	1537

	climate_classificationTropical
	-0.08
	0.08
	-0.24
	0.07
	1.00
	707 
	1139

	depth_in_m
	-0.03
	0.00
	-0.04
	-0.02
	1.00
	3699 
	3248



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	19.36
	1.41
	16.69
	22.25
	1.00
	3433 
	2934



















Table S22 | Summary tables of the Bayesian model for the quarter-diurnal 90th percentile of difference in biological rates. To test whether the quarter-diurnal 90th percentile of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.47
	0.05
	0.37
	0.57
	1.00
	1079 
	1870

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.43
	0.02
	0.40
	0.47
	1.01
	1025 
	1669



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-16.88
	0.10
	-17.07
	-16.69
	1.00
	867 
	1588

	climate_classificationTemperate
	-0.73
	0.14
	-0.99
	-0.45
	1.00
	1139 
	1997

	climate_classificationTropical
	0.07
	0.12
	-0.15
	0.29
	1.00
	981 
	1888

	depth_in_m
	-0.03
	0.01
	-0.05
	-0.01
	1.00
	1053 
	1494



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	10.80
	0.28
	10.25
	11.36
	1.00
	4596 
	3055










Table S23 | Summary tables of the Bayesian model for the semi-diurnal 90th percentile of difference in biological rates. To test whether the semi-diurnal 90th percentile of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.45
	0.05
	0.36
	0.55
	1.00
	1082 
	1935

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.42
	0.02
	0.39
	0.46
	1.00
	1051 
	1928



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-16.45
	0.10
	-16.65
	-16.26
	1.01
	1067 
	1381

	climate_classificationTemperate
	-0.69
	0.14
	-0.97
	-0.42
	1.00
	1120 
	1759

	climate_classificationTropical
	0.05
	0.11
	-0.17
	0.28
	1.00
	1089 
	1286

	depth_in_m
	-0.04
	0.01
	-0.05
	-0.02
	1.00
	1066 
	1786



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	10.86
	0.29
	10.30
	11.44
	1.00
	7159 
	3002










Table S24 | Summary tables of the Bayesian model for the diurnal 90th percentile of difference in biological rates. To test whether the diurnal 90th percentile of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.43
	0.05
	0.34
	0.52
	1.00
	1195 
	2018

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.40
	0.02
	0.37
	0.44
	1.00
	1054 
	1709



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-16.11
	0.09
	-16.29
	-15.92
	1.00
	1624 
	2050

	climate_classificationTemperate
	-0.65
	0.13
	-0.92
	-0.39
	1.00
	1642 
	2027

	climate_classificationTropical
	0.03
	0.11
	-0.19
	0.25
	1.00
	1714 
	2158

	depth_in_m
	-0.04
	0.01
	-0.06
	-0.03
	1.00
	1699 
	2246



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	11.29
	0.31
	10.70
	11.88
	1.00
	5398 
	3134










Table S25 | Summary tables of the Bayesian model for the weekly 90th percentile of difference in biological rates. To test whether the weekly 90th percentile of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.41
	0.04
	0.34
	0.48
	1.00
	1225 
	1478

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.30
	0.01
	0.27
	0.33
	1.00
	1229 
	2112



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-15.50
	0.08
	-15.66
	-15.35
	1.00
	1152 
	1909

	climate_classificationTemperate
	-0.51
	0.12
	-0.74
	-0.28
	1.01
	1190 
	1811

	climate_classificationTropical
	0.03
	0.10
	-0.16
	0.22
	1.00
	1064 
	1668

	depth_in_m
	-0.04
	0.01
	-0.05
	-0.03
	1.00
	1303 
	1667



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	12.83
	0.35
	12.15
	13.50
	1.00
	5408 
	2973










Table S26 | Summary tables of the Bayesian model for the bi-weekly 90th percentile of difference in biological rates. To test whether the bi-weekly 90th percentile of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.39
	0.04
	0.32
	0.46
	1.00
	1143 
	1937

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.27
	0.01
	0.24
	0.30
	1.00
	1202 
	1842



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-15.30
	0.07
	-15.45
	-15.15
	1.01
	1117 
	1674

	climate_classificationTemperate
	-0.49
	0.11
	-0.71
	-0.27
	1.01
	1348 
	1856

	climate_classificationTropical
	-0.00
	0.09
	-0.17
	0.18
	1.00
	1664 
	2370

	depth_in_m
	-0.04
	0.01
	-0.05
	-0.03
	1.00
	1839 
	2522



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	13.64
	0.37
	12.90
	14.38
	1.00
	4297 
	2841










Table S27 | Summary tables of the Bayesian model for the monthly 90th percentile of difference in biological rates. To test whether the monthly 90th percentile of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). We used an additional level (“plot_id”) of random effects in a crossed design because the time series that were longer than 1 year in duration were divided into 1-year subsamples. Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.38
	0.03
	0.32
	0.44
	1.00
	1188 
	2054

	~spatial_blocks:plot_id (Number of levels: 487)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.23
	0.01
	0.21
	0.25
	1.00
	1414 
	2396



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-15.12
	0.07
	-15.25
	-14.98
	1.00
	891 
	1511

	climate_classificationTemperate
	-0.46
	0.10
	-0.67
	-0.26
	1.00
	819 
	1417

	climate_classificationTropical
	-0.01
	0.08
	-0.18
	0.15
	1.00
	1084 
	1669

	depth_in_m
	-0.03
	0.01
	-0.04
	-0.02
	1.00
	1258 
	2036



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	14.06
	0.40
	13.29
	14.85
	1.00
	5050 
	2680










Table S28 | Summary tables of the Bayesian model for the annual 90th percentile of difference in biological rates. To test whether the annual 90th percentile of difference in biological rates vary significantly between regions (tropical, subtropical and temperate), we implemented a hierarchical modelling approach using Bayesian inference with Stan (3) and the “brms” package (4) within the R programming environment (5). We specified models by ascribing variation among the data to “climate_classification” and “depth_in_m”, and grouped variation among geographically proximate locations to account for spatial autocorrelation by including a random intercept (“spatial_blocks”) for sampling sites falling within a 174 km radius of each other (1). Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Group-Level Effects 
	~spatial_blocks (Number of levels: 120)

	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	sd(Intercept)
	0.36
	0.03
	0.30
	0.42
	1.01
	889 
	1494



Population-Level Effects
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	Intercept
	-14.42
	0.06
	-14.54
	-14.29
	1.00
	752 
	1184

	climate_classificationTemperate
	-0.37
	0.10
	-0.57
	-0.19
	1.00
	549 
	1005

	climate_classificationTropical
	-0.03
	0.08
	-0.18
	0.13
	1.00
	803 
	1300

	depth_in_m
	-0.02
	0.00
	-0.03
	-0.02
	1.00
	4292 
	2995



Family Specific Parameters
	 
	Estimate
	Est.Error
	l-95% CI
	u-95% CI
	Rhat
	Bulk_ESS
	Tail_ESS

	shape
	22.13
	1.61
	19.03
	25.39
	1.00
	2780 
	2914








Table S29 | Breakdown of time series from tropical regions. 

	Data source
	Number of time series

	The Australian Institute of Marine Science
	66

	Pacific Marine Environmental Laboratory
	38

	Maria Azeredo de Dornelas
	21

	Brian Helmuth et al.
	19

	Julia Baum
	9

	Sarah Davies
	5

	Guilherme Longo
	4

	Alex S.J. Wyatt
	3

	Hydrographic and Oceanographic Service of the Chilean Navy
	2

	John Bruno
	1

	SiMCosta
	1





Table S30 | Main temperature loggers used by each data provider, with information pertaining to their accuracy and precision, where reported. In cases where multiple loggers were used, only the lowest accuracy and precision are reported (to be conservative). Although information on the accuracy and precision could not be obtained in some cases, we do not expect this to have any significant impact on our overall results (see Results - Potential limitations).

	Data source
	Number of sites
	Accuracy
(°C)
	Precision (°C)
	Loggers used
	Other notes

	The Australian Institute of Marine Science
	109
	0.8
	0.01
	Sensus Ultra loggers (produced by ReefNet Inc., Canada), VEMCO Minilog-II-T loggers
	Sensors were changed over time. The lower accuracy and precision are recorded here.


	Santa Barbara Coastal LTER
	49
	0.21
	0.02
	Hobo UTBI-001
	

	Zachary L. Monteith
	48
	0.53
	0.14
	HOBO Tidbit v2 Temp data loggers and HOBO Pendant Temperature/Light data loggers
	2 different loggers were used. The lower accuracy and precision are recorded here.

	Pacific Marine Environmental Laboratory
	38
	0.03
	0.001
	See:
https://www.pmel.noaa.gov/gtmba/sensor-specifications
	Sensors were changed over time. The lowest accuracy and precision are recorded here. More detail: https://www.pmel.noaa.gov/gtmba/sensor-specifications

	Carlo Caruso
	30
	0.53
	0.14
	HOBO Pendant Temperature/Light 64K Data Logger
	In the metadata file, Elizabeth Madin is listed as data provider, but it was Carlo Caruso who collected the data.

	Hydrographic and Oceanographic Service of the Chilean Navy
	29
	No info
	No info
	No info
	Information on loggers could not be obtained

	COSYNA
	28
	0.3
	0.1
	Seabird SBE37 and Sea and Sun Technology T40 and PT-100
	Different loggers were used. The lowest accuracy and precision are recorded here. 
Data provider noted that due to biofouling, sensor drifts up to 0.03 °C were observed for some of the time series between the two to three weekly instrument cleansings on a pole device with more instrumentation that allowed the quantification of this phenomenon.

	Maria Azeredo de Dornelas
	21
	0.53
	0.14
	HOBO Pendant Temperature/Light 64K Data Logger
	

	Helmuth Brian
	19
	0.2
	0.02
	HOBO Loggers
	

	Garrabou Joaquim
	16
	0.2
	0.02
	HOBO Loggers
	

	Integrated Ocean Observing System
	15
	0.005
	0.001
	Sea-Bird SBE37
	

	IMAS Data Portal
	12
	0.21
	0.02
	HOBO v2 Water Temp Pro sensor, Onset
	

	SiMCosta
	12
	0.002
	0.001
	SeaBird WQMx sensors and SeaBird MicroCAT sensors
	2 different loggers were used. The lower accuracy and precision are recorded here.

	Alberto Lindner
	11
	0.53
	0.14
	HOBO Pendant® Temperature Data Logger UA-002
	

	Julia Baum
	9
	0.002
	0.0001
	Seabird 56s
	

	Centro de Datos Oceanograficos y Meteorologicos
	7
	No info
	No info
	No info
	Information on loggers could not be obtained

	Alex S.J. Wyatt
	6
	0.002
	0.0001
	SeaBird SBE 56
	

	Jennifer Jackson
	6
	0.21
	0.02
	SBE 16plus V2 and HOBO TidbiT v2 Water Temperature Data Logger
	2 different loggers were used. The lower accuracy and precision are recorded here.

	Davies Sarah
	5
	0.21
	0.02
	HOBO v2 Water Temp Pro sensor, Onset
	

	Guilherme Longo
	4
	0.5
	0.04
	HOBO Loggers
	

	Southern African Data Centre for Oceanography
	3
	0.05
	No info
	No info
	Accuracy detail found here (DEA collection): https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081944. 
Precision details cannot be found

	Brazil's Navy
	2
	0.1
	0.01
	Signature500 ADCP
	

	British Oceanographic Data Centre
	2
	0.002
	0.0001
	Sea-Bird SBE 37 MicroCat IMP-CT
	

	David Kushner
	2
	No info
	0.2
	Onset Inc. temperature loggers
	Some uncertainties in the values due to change of loggers over time

	ISRAMAR
	2
	0.005
	0.0001
	SBE 19Plus V2
	

	Bodega Ocean Observing Node
	1
	0.005
	0.0001
	Sea-Bird Electronics SBE 16+ SEACAT
	

	Bruno John
	1
	0.21
	0.02
	HOBO v2 Water Temp Pro sensor, Onset
	

	Chris Neufeld 
	1
	0.2
	0.1
	ENVloggers: https://electricblue.eu/envloggers
	

	Dong Yunwei
	1
	0.002
	0.0001
	HydroCAT-EP v2
	

	Gagnon Patrick
	1
	0.53
	0.14
	HOBO Pendant Temperature/Light 64K Data Logger
	

	Kersting Diego
	1
	0.21
	0.02
	HOBO v2 Water Temp Pro sensor, Onset
	

	Western Channel Observatory
	1
	0.005
	0.0001
	SBE 19Plus V2
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