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• Cellular automata models large-scale 
forest resources and predict future 
scenarios

• The first principal component captures 
the primary trend describing forest 
dynamics

• Indicators reflect landscape structure, 
fragmentation, connectivity and 
complexity

• Fragmentation leads to more patches, 
smaller patch sizes, and reduced 
connectivity

• Findings have implications for land-
scape development and resource 
management
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A B S T R A C T

Globally, land use change has consistently resulted in greater losses than gains in aboveground biomass (AGB). 
Forest fragmentation is a primary driver of biodiversity loss and the depletion of natural capital. Measuring 
landscape characteristics and analyzing changes in forest landscape patterns are essential for accounting for the 
contributions of forest ecosystems to the economy and human well-being. This study predicts national forest 
distribution for 2036 and 2054 using a Cellular Automata (CA) system and assesses ecosystem conditions through 
landscape metrics at the patch, class, and landscape levels. We calculated 130 metrics and applied a Variance 
Threshold method to remove features with low variance, testing different thresholds. The first filtered-out 
metrics were further analysed through Principal Component Analysis combined with a Feature Importance 
technique to select and rank the top 10 indicators: effective mesh size, splitting index, mean radius of gyration, 
largest patch index, mean core area, core area percentage, Simpson's evenness index, mutual information, 
Simpson's diversity index, and mean contiguity index. The eleventh selected indicator is the AGB density, a 
structural measurement for ecosystem condition and a proxy for forest carbon storage and sequestration as-
sessments. From 2000 to 2018, the national AGB forest carbon stock decreased from 131.5 to 91.3 Megatons (Mt) 
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with expected values for 2036 and 2054 being 71.8 and 55.3 Mt., respectively. Landscape measurements 
quantitatively describe forest dynamics, providing insights into the structure, configuration, and changes char-
acterizing landscape evolution. This research underscores the capability of CA models to map large-scale forest 
resources and predict future development scenarios, offering useful information for conservation and environ-
mental management decisions. Additionally, it provides measurements to support Ecosystem Accounting by 
assessing forest extent and indicators of its conditions.

1. Introduction

Growing concerns about the degradation of natural capital, coupled 
with the increasing demand for ecosystem services (ES) underscore its 
importance in policy and governance frameworks (Farrell et al., 2021). 
Natural capital accounting stands out as a potential key tool to facilitate 
a shared understanding among stakeholders regarding resource man-
agement, environmental impacts, and the sustainability of land use 
decisions (Fleming et al., 2022). The adoption of the System of 
Environmental-Economic Accounting-Ecosystem Accounting (SEEA-EA) 
by the United Nations Statistical Commission in March 2021, marked a 
significant milestone in explicitly acknowledging how natural resources 
are accessed, utilized, and protected (Edens et al., 2022). This system 
moves beyond traditional Gross Domestic Product (GDP) accounting by 
integrating biodiversity and ecosystems into national economic plan-
ning and governance structures (Bateman and Mace, 2020). The SEEA- 
EA has the potential to strengthen laws, regulations, and policies, 
thereby promoting sustainable management of natural resources and 
balancing ecological integrity with human needs (King et al., 2024). To 
achieve this, the accounts involve (i) identifying ecosystem assets, (ii) 
measuring physical ecosystem accounts, such as the extent and in-
dicators of its condition, and (iii) constructing monetary accounts 
including the valuation of ES (Bordt, 2018; Hein et al., 2020). Assessing 
ecosystems' capacity to provide goods and services in biophysical units is 
therefore central and is typically conducted using spatial models (Rijal 
et al., 2021).

Despite current ongoing efforts fostered by the United Nations 
Kunming-Montreal Global Biodiversity Framework, whose targets were 
recently adopted at the COP 15 to the Convention on Biological Di-
versity (CBD-UN) and are directly linked to the ES accounting concepts 
of the SEEA-EA, natural capital stocks and biodiversity have been 
deteriorated worldwide at unprecedented rates, demanding more 
effective actions (King et al., 2024). Thus, one of the goals agreed among 
the parties was to maintain, enhance, or restore the integrity, connec-
tivity, and resilience by increasing the area of natural ecosystems by 
2050. Regarding forest ecosystems, the extent area is a headline indi-
cator, combined with complementary measures such as forest distribu-
tion, tree cover loss, forest fragmentation index, forest landscape 
integrity index, and biomass density (CBD-UN, 2022). The SEEA-EA 
suggests a wide range of biophysical indicators to determine forest 
ecosystem conditions (United Nations et al., 2021). For instance, the 
structural status is defined by Aboveground biomass (AGB) density and 
tree cover density (TCD); the functional status can be represented by net 
primary productivity (NPP) and dry matter productivity (DMP); the 
compositional state indicators capture ecosystem diversity, species and 
abundance; and connectivity and fragmentation indicators measured 
through landscape characteristics, such as number and size of patches, 
and other several shape and edge indices. AGB, TCD, NPP, and DMP are 
assessed via ground measurements, although these are expensive and 
challenging to deploy, especially across large areas (Paul et al., 2022). 
Remote sensing data and technologies strengthen ecosystem condition 
mapping, providing continuous observation at a large scale with rela-
tively low costs (Rapinel et al., 2015). The advancement of Geographical 
Information Systems (GIS) and power computation has provided a 
wealth of analytical tools for comprehensively analyzing landscape 
characteristics and the relationship between the environment and soci-
ety (Mengist et al., 2021).

Landscape metrics offer a means to depict the composition and or-
ganization of a landscape, providing insights into the arrangement and 
diversity of its elements (Haines-Young et al., 2012). These quantitative 
measures capture the landscape's spatial structure, distribution patterns, 
dynamics, and overall evolution (Holzwarth et al., 2020). Recent im-
provements and innovations in predictive land-use models have led to 
significant advances in spatial modelling, capturing complexities of 
land-use systems, analyzing drivers of changes and patterns, and simu-
lating future scenarios (Roodposhti et al., 2020). Predicting future dy-
namics using historical land use data has proven to be a valuable 
mechanism, not only for anticipating future trends but also for 
enhancing and deepening the understanding of past dynamics 
(Anselmetto et al., 2022). Dynamic modelling based on cellular 
automata (CA) is one of the methods developed for forecasting envi-
ronmental patterns and changes (Moreno et al., 2010) providing po-
tential outcomes for land-use policy scenarios (de Brito et al., 2021). CA 
models functioning basis on a discrete dynamic system that divides 
space into regular spatial cells and moves time in discrete increments 
according to predefined rules (Hewitt et al., 2019).

Forests have been widely studied on a global scale, yet there remains 
a need for advanced methods able to provide consistent data to better 
understand the interactions between forest resources and human activ-
ities (Cunha et al., 2021; Holzwarth et al., 2020; Zarandian et al., 2018). 
For instance, research has focused on various aspects of forest dynamics, 
such as estimating the risk of forest-to-non-forest conversions (Fitts 
et al., 2021; Thanh Noi and Kappas, 2017) and vulnerabilities due to 
fire, logging, climate change, and pests (Chave, 1999; Franklin et al., 
2002; Houghton et al., 2009). In addition to building knowledge 
regarding the consequences of urban sprawl on forest ecosystems and 
biodiversity (Mengist et al., 2021; Mulatu et al., 2017; Paul et al., 2022), 
the fragmentation effects due to changes in the structure of the 
ecological landscape (Bossel and Krieger, 1991; Dou et al., 2023; Hoff-
mann et al., 2022; Madrigal-González et al., 2023) and the negative 
impacts on natural capital and ES (Golub et al., 2009; Holzwarth et al., 
2020). Despite, the numerous studies mapping forest dynamics, there is 
still insufficient research about present and future forest fragmentation 
impacts, and acknowledging the most relevant indicators of forest 
condition. Thus, the objective of this study is to provide a list of relevant 
measurements that can be systematically acquired, combining satellite- 
derived data and computational modelling, serving as complement in-
dicators to decision support frameworks such as the SEEA-EA and the 
CBD-UN. In this scope, the article focuses on forest ecosystems including 
coniferous, broad-leaved forests and mixed forests, occurring at the 
country level of Mainland Portugal. The methodology includes reclas-
sifying the Corine Land Cover maps of years 1990, 2000, 2006, 2012, 
and 2018, used as reference data to predict national forest distribution 
for five decades utilizing a CA algorithm through the SIMLANDER 
software (Hewitt et al., 2019). A total of 130 landscape metrics (LM) is 
calculated using the landscape metrics package (Hesselbarth et al., 
2019), filtered out through a variance threshold method and the top 10 
indicators were selected and ranked using dimensionality reduction and 
feature importance techniques from scikit-learn modules (Pedregosa 
et al., 2011). The overall outcome of this study will deepen the knowl-
edge of the spatial influence of forest configuration and how future 
scenarios could be modelled considering anthropogenic and environ-
mental pressures. Additionally, recognizing the most effective LM-based 
indicators of forest condition helps to more accurately monitor ES, plan 
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landscape development and resource management, prevent impacts on 
biodiversity and natural capital, and track progress towards sustainable 
development.

2. Materials and methods

2.1. Study area

Portugal is set in the Mediterranean Basin, one of the five regions of 
the world characterized by Mediterranean-type ecosystems. This 
biogeographic region is known for its climatic regimes of mild and wet 
winters and warm and dry summers (Marques et al., 2019). The annual 
precipitation averages roughly 3000 mm in the north and 500 mm in the 
south, with substantial seasonality (de Lima et al., 2015). Spring (March 
through May) accounts for 24 % of annual precipitation, summer (June 
through August) accounts for 6 %, fall (September through November) 
accounts for 28 %, and winter (December through February) accounts 
for 42 % (Coelho et al., 2013).

The low precipitation occurring in the summer favours forest fires as 
vegetation becomes quickly dry and flammable but also increases 
drought severity, deforestation, rural abandonment, and water scarcity 
(Chrysafis et al., 2020). Seasonal fluctuations alter the production of 
vegetation that depends on the presence of freshwater or subterranean 
water (Wang et al., 2023). Due to restricted water and nutrient avail-
ability, it often peaks during the wet season and declines during the dry 
season (Mpakairi et al., 2022). The combination of higher latitude and 
altitude and the annual rainfall pattern in the Northern region create 
better environmental conditions for forest ecosystems than in the 
Southern region (Belo-Pereira et al., 2011). Due to low rainfall, the south 
of Portugal is known as a water-scarce region potentially exposed to 
climate change and its environmental, social, and economic conse-
quences (Almeida and Cabral, 2021). Forests near lakes, springs, and 
perennial streams take advantage of water availability during the 
reproductive period, which matches with the hottest season of the year 
(Harris, 1984), and large trees can store significant amounts of intra- and 
intercellular water during the winter which can be used for growth the 
following summer (Wilcox and Murphy, 1985). Forest and semi-natural 
areas and croplands are the most represented land use classes at the 

national level (Copernicus Programme, 2023). The flat terrain of the 
southern regions is dominated by extensive agriculture and pastures 
integrated into agro-forestry systems, where low-density evergreen oak 
trees like Cork oak and Holm oak are prevalent (Santos et al., 2023). In 
contrast, the higher elevations in the central and northern regions are 
marked by small landholdings, family-run farms, and forests primarily 
composed of pine and eucalyptus (Fonseca et al., 2019). Fig. 1A) dis-
plays an overview of the study area within Europe and B) the Land Use 
and Land Cover Map of the year 2018 (Copernicus Programme, 2023).

2.2. Methods

The methodology was structured in three main parts: 1) predicting 
forest dynamics and evaluating models' accuracy through quantity and 
allocation disagreements; 2) calculating 130 LM, filtering them out, 
selecting and ranking the top 10 indicators; and 3) assessing forest 
ecosystem conditions for Mainland Portugal. Fig. 2 summarizes the 
methodological steps, specifying the software utilized, implemented 
tasks, input datasets and outcomes.

2.2.1. Modelling forest dynamics
The process starts by mapping the presence/absence of forests at the 

national level by reclassifying the CORINE land cover maps of 1990, 
2000, 2006, 2012, and 2018. Land use and land cover (LULC) datasets 
were obtained from the Copernicus Land Monitoring Services 
(Copernicus Programme, 2023). Each raster was reclassified as a binary 
map of forest/non-forest in ArcGIS Pro version 3.3 (ESRI, 2023). The 
forest class comprises broad-leaved, coniferous, and mixed forests, with 
a vegetation pattern composed of native or alien coniferous and/or 
broad-leaved trees capable of producing timber or other forest products. 
The forest trees should be able to reach a minimum height of 5 m, 
canopy closure is greater than 30 %, and the minimum threshold for 
young plantations is 500 trees ha− 1 (European Environment Agency, 
2023).

Spatial predictions can be modelled through open-source software 
such as the SIMLANDER (Hewitt et al., 2022), a constrained cellular 
automata (CA) system that simulates future scenarios of land use based 
on land claims (Hewitt et al., 2019). CA models are discrete dynamical 

Fig. 1. Study area: A. Location of Mainland Portugal in Europe; B. Corine Land Use and Land Cover Map – Portugal 2018 (Copernicus Programme, 2023).
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systems (in space and time) whose behaviour is specified in terms of a 
local relation defined by rules (Jokar Arsanjani et al., 2013). The tran-
sition rules are fundamental in such models as they are responsible for 
the state of the cell, at each time step; they quantify the spatial effect that 
the forecast cells contain in the LULC changes (Ozturk, 2015). SIM-
LANDER version 2.0.0 can take two land use maps on different dates as 
input with the rationale that the future cell state will be defined by the 

state of the same cell and immediate neighbouring cells at the present 
cell state (Moreno et al., 2010). Table 1 lists datasets, respective sources, 
and specifications of use and application for the SIMLANDER software.

The simulation approach also considers other drivers known to in-
fluence LULC change, such as the degree of attraction of a particular 
land use to others in its neighbourhood (N) and the distance at which 
they are attractive, the proximity to infrastructure networks, known as 
accessibility (A), the underlying land suitability for development (S) and 
a random factor (v) to account for unknown or undetermined factors 
that influence real-world outcomes (Hewitt et al., 2020). The national 
infrastructure networks were obtained from the OpenStreetMap project 
(OpenStreetMap, 2023), and the topography from the National Aero-
nautics and Space Administration (NASA) (NASA, 2023) through the 
Shuttle Radar Topography Mission (SRTM). The elevation dataset was 
used to calculate the slope, and the infrastructure networks were used to 
calculate the Euclidian distance of forests to highways and railways. The 
accessibility map referred to the distance (Euclidian) of forests to 
highways and railways, and the suitability map associated with the 
capability of forests to be developed in specific locations based on the 
characteristics of the terrain, were processed and resampled through 
interpolation (nearest neighbour assignment) using the Resample tool of 
the ArcGIS Pro. Both rasters were upscaled to the same spatial resolution 
of the reference land-use maps (100 m).

The number of runs was set to 50, and the option for a new random 
seed factor was selected to be generated each time. The number of cells 
allocated in the model is controlled by the cell demand, which is 
determined by dividing the number of new cells of non-forest land that 
have emerged between the start and end dates and the number of years 
between them (Hewitt et al., 2022). We have estimated the demand 
values for scenarios 2036 and 2054 through linear interpolation, and the 

Fig. 2. Summary of methodological steps, specifying the software utilized, implemented tasks, input data and outcomes. The methodology is organized into three 
main tasks: 1) predict forest dynamics; 2) select the top 10 indicators; and 3) assess forest ecosystem conditions for Mainland Portugal.

Table 1 
Description of the datasets used as input in the SIMLANDER software version 
2.0.0 (Hewitt et al., 2022), including their source, parametrization, and 
application.

Dataset Source Model 
parameter

Application

CORINE Land 
use land cover 
maps (100 m)

Copernicus Land 
Monitoring Services 
(https://land.coper 
nicus.eu/)

Initial and 
final maps

Used as reference 
maps and for the 
assessment of 
models' 
performance

Topography (30 
m)

National Aeronautics 
and Space 
Administration 
(NASA) - Shuttle 
Radar Topography 
Mission (htt 
ps://www.earthdata. 
nasa.gov/)

Suitability 
map

Used to characterize 
morphological 
aspects of the terrain

Infrastructure 
networks (50 
m)

OpenStreetMap 
project (https://www 
.openstreetmap.org/)

Accessibility 
map

Used to calculate the 
Euclidian distance 
within forests to 
highways and 
railways
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models' parameters were tested and analysed to calibrate the predictions 
and select the best models. Table S1 in the Supplementary Materials lists 
simulations by year, describing input data and the model's parameters 
for the best-selected model.

Measuring prediction quality and accuracy is one of the most critical 
steps in geospatial modelling (Mengist et al., 2021). The accuracy and 
reliability of predictions from CA models depend on model design, 
appropriate parameterization, validation against empirical data, and 
consideration of uncertainties, due to data limitations, model assump-
tions, and spatial and temporal resolution (Roodposhti et al., 2020). The 
CA predictions were assessed by accuracy functions including overall 
accuracy (OA), user's accuracy (UA), producer's accuracy (PA), recall, 
precision, and F1-score. The accuracy assessment workflow in ArcGIS 
Pro version 3.3 respectively employs the following tools: Create Accu-
racy Assessment Points, Update Accuracy Assessment Points, and 
Compute Confusion Matrix. The first tool creates a set of random points 
and assigns a class to them based on the reference data (reclassified 
Corine LULC maps – forest/non-forest classes). The second tool updates 
the target field in the attribute table to compare reference points to the 
CA prediction maps. In both tools, the total number of random points 
generated equals 500,000, and the sampling strategy was the Stratified 
Random option (points randomly distributed within each class propor-
tional to its relative area). Both tools ensure that each point will have 
valid class values for the predictions and reference fields enabling the 
third tool to compute the confusion matrix. The recall and precision 
were further manually calculated based on the results of UA, PA, OA, 
and F1-scores. This workflow had as input the observed and predicted 
maps of the years 2000, 2006, 2012, and 2018.

The UA function is related to false positives (FP), or errors of com-
mission, where pixels incorrectly classified as forest are not forest. UA is 
calculated by dividing the number of correctly predicted forest points by 
the total number of points predicted as forest. PA deals with false neg-
atives (FN), or errors of omission, indicating how well the prediction 
results align with the reference data, and it is calculated by dividing the 
number of correctly predicted points by the total number of reference 
points for that class. OA represents the proportion of reference points 
that were correctly classified out of the total number of reference points. 
Recall is the ratio of true positives (TP) to the sum of TP and FN. It re-
flects the model's ability to identify all forest samples. Precision is the 
ratio of TP to the sum of TP and FP. It measures the model's ability to 
avoid incorrectly labelling non-forest samples as forest. The F1-score is 
the harmonic mean of precision and recall, providing a balanced mea-
sure of the model's accuracy. All these functions follow the convention of 
higher values and better predictions.

While these functions provide useful information on model quantity 
disagreements, they do not explicitly address the magnitude to which 
simulations match the spatial arrangement of observed landscape, such 
as patterns of fragmentation, clustering, or connectivity within patches 
(Pickard and Meentemeyer, 2019). Analyzing the spatial pattern 
matching through assessing the betweenness, degree and closeness of 
forest patches goes beyond quantifying disagreements (Foody, 2020), as 
they measure the importance, influence, and accessibility of a node (the 
centroid of each forest patch) within a network (landscape) (Gabriel, 
1969). The betweenness measures how often a node lies on the shortest 
path between other nodes in the network (Matula and Sokal, 2010). The 
range of values depends on the structure of the network, the minimum 
value is 0, occurring when a node does not lie on any shortest paths 
between other nodes (Savary et al., 2021). The maximum possible value 
depends on the network size and topology, and it occurs when a node 
lies on all shortest paths between every pair of other nodes (Matula and 
Sokal, 1980). The degree tells us about the immediate connectivity of a 
patch and how many direct connections it has (Csardi and Nepusz, 
2006). It gives a quick sense of the local importance of a node, as it 
reflects how well-connected a node is within its immediate network 
(Freeman, 1978). The minimum value is 0, occurring when a node is 
isolated, meaning it has no connections to any other nodes; and the 

maximum possible value occurs when a node is connected to all other 
nodes in the network (Marchette, 2004). Closeness measures how close a 
node is to all other nodes in the network, in terms of the shortest path 
distance (Gabriel, 1969). The smallest value occurs when a node is far 
from all other nodes. For an unconnected or highly distant node, the 
closeness approaches 0; and the maximum value is 1, which occurs when 
the node is directly connected to every other node (Brandes, 2001). The 
landscape graphs construction and analyses were conducted through the 
graph4lg v. 1.8.0 package in R (Savary et al., 2021).

The assessment of forest ecosystem conditions followed the SEEA-EA 
guidelines on Biophysical Modelling for Ecosystem Accounting (Edens 
et al., 2022), which includes the AGB of forests as an indicator of 
ecosystem condition, and a proxy for productivity, and carbon stock and 
sequestration (King et al., 2024). The mean AGB density (110.50 tons 
ha− 1) value for mainland Portugal was provided by the Institute for 
Nature Conservation and Forests, I.P. (ICNF, 2023) and converted into 
carbon stock assuming that 50 % of the dry AGB of forest corresponds to 
carbon (Chave, 1999; Goetz et al., 2009; Hojo et al., 2023). To predict 
the national carbon stock for the studied years we multiplied these 
values by the estimated forest extents.

2.2.2. Landscape analysis
Quantitative grouping of similar landscape change trends is an 

important part of landscape ecology due to the relationship between a 
pattern and an underlying ecological process (Nowosad and Stepinski, 
2019a). Spatial and temporal variations in LULC capture different 
components of landscapes that are considered important for assessing 
biodiversity and ES (Fletcher and Fortin, 2018), describing landscapes at 
the patch, class, and landscape levels. A patch is defined as neighbouring 
cells belonging to the same LULC class. Class-level metrics describe all 
patches belonging to the same class, and lastly, landscape-level metrics 
describe the whole landscape composed of all patches (McGarigal et al., 
2012). For analysis, we used the landscapemetrics package v.2.1.1 
(Hesselbarth et al., 2019) developed through the programming language 
R 3.6.0 (R Core Team, 2021). The package reimplements the most 
common metrics from FRAGSTATS 4.0 (McGarigal and Marks, 1995) 
and new ones that have been further developed, such as the marginal 
entropy, conditional entropy, joint entropy, and mutual information 
included in the information-theoretical framework. The metrics are 
grouped into six different types according to the characteristic of the 
landscape they describe: 1) area and edge metrics describe the size of 
patches and classes and the amount of edge, characterizing the 
composition of the landscape and dominance of classes; 2) shape metrics 
describe the shape of patches, mainly by using its area and perimeter; 3) 
core metrics refers to the portion of a patch that is not part of the edge, 
denoting the area within a patch where the pixels are sufficiently distant 
from the boundary; 4) aggregation metrics not only describe the degree 
of aggregation or separation of patches but also capture patterns of 
interspersion and intermixing, defining the distribution and spatial 
arrangement of patches in relation to their neighbouring patches; 5) 
diversity metrics accounts for both the number of patch types and their 
relative abundance, and how the patches are distributed across different 
land-cover types; and 6) complexity metrics are applied to quantifica-
tion and classification of landscape patterns, reflecting the degree of 
similarity or correlation between different trends. Since there is no 
consensus in the literature on which metrics are the most appropriate for 
this specific problem (Roodposhti et al., 2020), and including those 
highlighted by SEEA-EA, such as the number of patches and mean patch 
size, Simpson's diversity index, shape and edge areas, all metrics avail-
able on the package (a total of 130) were calculated. The metrics are 
grouped at the landscape level (a total of 64); at the class level (54); and 
the patch level (12). Few metrics exist within all levels, except the di-
versity metrics that are only available on the landscape level. The only 
metric that could not be determined was the iji (Interspersion and 
Juxtaposition index - Aggregation metric), which requires a number of 
classes larger than three.

B. Almeida et al.                                                                                                                                                                                                                                Science of the Total Environment 957 (2024) 177527 

5 



The selection process started calculating summary statistics and 
removing features whose variance does not meet a certain threshold 
using the Variance Threshold algorithm, an unsupervised feature se-
lection module from the scikit-learn v.1.5.1 (Pedregosa et al., 2011). The 
threshold setting was tested by analyzing the results of forest variation 
percentage (1) to remove a maximum number of features without losing 
information. 

Forest variation (%) =
metric2018 − metric2000

metric2000
×100 (1) 

The following method was the Principal Component Analysis (PCA) 
from the decomposition module, combined with an unsupervised 
Feature Importance algorithm from the feature selection module. The 
PCA function looks for a combination of attributes (principal compo-
nents, or directions in the feature space) that account for the most 
variance in the data (Maćkiewicz and Ratajczak, 1993). It reduces the 
number of features while preserving as much of the original information 
as possible, transforming the original variables into a new set of un-
correlated variables called principal components (Elhaik, 2022). After 
calculating the loadings for the first principal component (PC1), the 
features were sorted by their relevance using the Select from Model al-
gorithm. The scripts used for the analysis and selection of LM-based 
indicators are detailed in Table S2 (Supplementary Materials).

3. Results

3.1. Evaluation of forest dynamic predictions

Based on past trends from 1990 to 2018 (Fig. 3A), the predictions 
estimated continued forest loss, even under the most optimistic sce-
narios (Fig. 3B). In the short-term projection (2036), the simulation 
shows moderate changes in forest cover, such as gradual forest loss, 
expansion of non-forest areas, and increased forest fragmentation. For 
2054 the map exhibits more pronounced changes, including larger areas 
of deforestation and shifts in forest distribution.

The accuracy assessment workflow evaluated OA, PA, UA, recall, 
precision, and F1-score (Table 2) for forest maps across four years: 2000, 
2006, 2012, and 2018. All accuracy functions show a significant drop 
from 2000 to 2018. While the decline from 2000 to 2006 is sharp, the 
metrics stabilised somewhat after 2006, suggesting that the forest pre-
dictions did not degrade as drastically in the later years. The OA was 
highest in 2000 (96.6 %) but dropped significantly in 2006 (87.8 %) and 
stabilizes in 2012 and 2018 at around 86–87 %. The decline in PA is 
stark, going from 97.7 % in 2000 to 64 % in 2018. A similar trend is 
observed for UA, recall and precision, with a drop from 93 % in 2000 to 
around 64 % in 2018. The F1-score, which balances precision and recall, 
follows the same trend as the other metrics. It started high in 2000 at 
93.6 % and dropped sharply to around 64 % by 2018.

The number of forest patches on the reference maps increased 19.3 % 
from 2000 to 2018 (Table 3). For predictions, it shows a declining trend 
over time of 42.5 % from 2000 to 2054. The observed mean betweenness 
value increases over time from 1.5*105 in 2000 to 2*105 in 2018, in 
contrast, predicted values decrease from 2*105 in 2000 to 9.3*104 in 
2054. The observed mean degree remains relatively stable over time, 
fluctuating slightly between 7.8 and 8, and for predictions values range 
from 7.7 to 7.9. The observed mean closeness values decreased from 
7.1*10− 2 in 2000 to 6.5*10− 2 in 2018. The predicted values show the 

Fig. 3. Forest distribution in mainland Portugal. A. Reference maps used as input for modelling future projections of forest/non-forest areas; B. Predicted maps of 
forest obtained from the SIMLANDER model.

Table 2 
Performance evaluation of the SIMLANDER model for forest dynamic pre-
dictions. The accuracy assessment workflow was conducted in ArcGIS Pro v.3.3: 
Overall accuracy (OA), producer's accuracy (PA), user's accuracy (UA), recall, 
precision, and F1-score.

Forest Map 
(year)

OA 
(%)

PA 
(%)

UA 
(%)

Recall 
(%)

Precision 
(%)

F1-score 
(%)

2000 96.6 97.7 93.7 93.7 93.6 93.6
2006 87.8 72.4 72.4 72.4 72.4 72.4
2012 86.4 67.4 67.4 67.4 67.4 67.4
2018 86.7 64 64.2 64.2 64 64.1
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opposite trend, with mean closeness increasing from 6.3*10− 2 in 2000 
to 8.6*10− 2 in 2054. As the future simulations were optimistically 
calibrated, the results showed slightly opposite value patterns. The 
spatial pattern analysis based on forest patch centroids was conducted 
through Gabriel's graphs (Gabriel, 1969) (Fig. 4 - betweenness (A), de-
gree (B), and closeness (C)).

Following the SEEA-EA framework, we quantified the national 
physical ecosystem accounts, by assessing forest extent and indicators of 

its condition considering observations and predictions (Table 4). The 
results evidence decreased forest area between 2000 and 2018, repre-
senting forest area total losses of 30.5 % equivalent to 7.3*105 ha. 
Consequently, the national AGB carbon stock decreased from 131.5 to 
91.3 Megatons (Mt), i.e. a decrease of 31 % for the observed maps, 
against a reduction of 32.8 % for predictions.

Table 3 
Number of forest patches at the national scale, and values of mean betweenness, mean degree, and mean closeness calculated in each patch centroid. These values were 
obtained from the graph4lg v. 1.8.0 package in R (Savary et al., 2021). Legend: obs - observed, pred - predicted. The future projections column highlights estimations 
for 2036 and 2054.

Indicators 2000 2006 2012 2018 2036 2054 Future projections

Number of patches obs 5.4*103 6.3*103 6.4*103 6.7*103

Number of patches pred 6.6*103 6.5*103 4.7*103 4.3*103 3.6*103 3.8*103 x
Mean betweenness obs 1.5*105 1.9*105 1.8*105 2*105

Mean betweenness pred 2*105 1.9*105 1.2*105 1.1*105 8.3*104 9.3*104 x
Mean degree obs 7.8 8 8 7.9
Mean degree pred 7.7 8 7.9 7.8 7.8 7.8 x
Mean closeness obs 7.1*10− 2 6.7*10− 2 6.6*10− 2 6.5*10− 2

Mean closeness pred 6.3*10− 2 6.6*10− 2 7.7*10− 2 8.1*10− 2 8.6*10− 2 8.6*10− 2 x

Fig. 4. Gabriel graphs for the spatial pattern analysis of betweenness (A), degree (B), and closeness (C) in each study year. In (A) the range of values depends on the 
structure of the network, and the minimum value is 0, when a node (forest patch centroid) does not lie on any shortest paths between other nodes, and is maximum 
when a node lies on all shortest paths between every pair of other nodes. For (B) the minimum possible value is 0, occurring when a node is isolated, meaning it has 
no connections to any other nodes; and the maximum possible value occurs when a node is connected to all other nodes in the network. In (C) the smallest value 
occurs when a node is far from all other nodes. For an unconnected or highly distant node, the closeness approaches 0; and the maximum value is 1, which occurs 
when the node is directly connected to every other node. Legend: Obs - observed; Pred - predicted.
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3.2. Landscape metrics analysis

The first step of filtering out features includes testing different 
thresholds of variance, and identifying evolutional trends of forest dy-
namics calculating the mean percentage variation. The variance 
threshold column lists the values used as thresholds in the tests, for 
instance, for threshold values between 0.05 and 0.3, and 0.4 to 0.9, the 
number of features removed and the mean variation percentage within 
these intervals were the same. Considering the variance threshold that 
removed the maximum number of features (values between 0.4 and 0.9) 
we selected the features that were above the highest mean variation (50 
%) within this interval, corresponding to 27 features (Table 5). These 
metrics are presented in detail and grouped by the type of metrics in the 
Supplementary Materials (Table S3).

The selected 27 LM were then analysed through PCA by 10 compo-
nents (Fig.S1 – Supplementary Materials). The explained variance per-
centages for PC1, PC2 and PC3 are respectively 62.5 %, 18.4 % and 16.2 
%. The top 10 loadings for PC1, are the features that contribute the most 
to this principal component and capture the largest variance in the 
dataset. These 10 most important features were selected as LM-based 
indicators of forest condition (Table 6).

The effective mesh size contributes the most to PC1, suggesting a 
strong influence on the main source of variation in the data. It measures 
the degree of landscape fragmentation by considering patch size distri-
bution. A favourable change would be an increase in its measure indi-
cating lower fragmentation and higher landscape connectivity. The 
second most important metric is the splitting index indicating that areas 
with more fragmentation (splitting) heavily contribute to the variation 
captured by PC1. A favourable change would be a decrease in the value, 
indicating less fragmentation and larger patches. The mean radius of 
gyration is the third most representative metric describing the extent to 
which patch areas are spread out from their centroids, reflecting the 
landscape connectivity. A favourable change is an increase in the mea-
surements indicating that patches are more spatially connected. Next, is 
the largest patch index describing the percentage of the total landscape 
area occupied by the largest patch. A favourable change is an increase in 
its measurement suggesting a dominant patch is getting larger. The fifth 
metric most relevant to PC1 is the mean of the core area showing 

favourable changes when its values increase as a result of reduced 
fragmentation and increased patch sizes. A positive loading suggests 
that larger core areas (unfragmented central parts of patches) are 
heavily correlated with PC1, indicating a relationship between core size 
and overall landscape variance. Next is the core area percentage of 
landscape, which a favourable change is an increase in the measure 
indicating a rise in the availability of forest habitat in the landscape. A 
high loading means that PC1 captures variation related to the total area 
covered by forest patches, indicating that areas with more total patch 
area are significant contributors to the variance. The Simpson's evenness 
index is the seventh metric contributing the most to PC1, its positive 
contribution means that more fragmented or isolated patches are 
strongly represented in PC1, evidencing that PC1 is capturing frag-
mentation patterns. The mutual information reflects the degree of sim-
ilarity or correlation between different landscape patterns. A favourable 
change is an increase in its value suggesting greater similarity between 
patterns, implying better structural connectivity and coherence in 
landscape configuration. A strong loading indicates that PC1 is 
capturing landscape complexity. The Simpson's diversity index accounts 
for both the number of patch types and their relative abundance. An 
increase in this index is considered a favourable change, and a high 
positive loading suggests that areas with greater landscape diversity are 
significant contributors to the variance captured by PC1. The tenth 
select metric is the mean of the contiguity index representing patch 
contiguity (how connected patches are) and cohesion within individual 
patches. A high loading means that more contiguous patches, or land-
scapes with higher connectivity, are heavily represented in PC1. A 
favourable change is an increase in the value meaning that patches are 
more compact or contiguous.

These selected indicators were then used to assess the forest 
ecosystem conditions in Mainland Portugal, for both normalized ob-
servations (Fig. 5A) and predictions (Fig. 5B). These results are pre-
sented in detail in the Supplementary Materials (Table S4).

Regarding the observations the mesh value decreases 13 % between 
2000 and 2018, indicating a significant increase in landscape frag-
mentation. For predictions, the results follow a similar pattern. Within 
observed maps, the mean core area decreased by 48.7 % from 2000 to 
2018, while for the predictions it did not fluctuate that much a part for 
the year 2012. The mean radius of gyration decreased within observa-
tions but increased within predictions. The split index for the reference 
maps increased about six times more from 2000 to 2018, and for pre-
dictions, the index shows a similar rising trend. The core area percentage 
decreased from 18.9 % in 2000 to 11.9 % in 2018 in the observed maps, 
while the predictions show a steady similar decline, from 19.5 % in 2000 
to 8.9 % in 2054. The largest patch index decreased from 5.7 % in 2000 
to 1.4 % in 2018, according to the observations, and a similar decline in 
predictions, dropping from 5.6 % in 2000 to 0.9 % in 2054. The shape 
index decreased from 0.8 in 2000 to 0.6 in 2018 in the observations, and 
from 0.8 in 2000 to 0.4 in 2054 for the predictive maps. The mean 
contiguity index remains stable at 0.7 throughout 2000–2018 for the 
observations, and oscillates between 0.6 and 0.7 for the predictions, 
indicating that, while fragmentation increases, the patches that remain 
tend to be relatively compact and contiguous. The mutual information 
index remains stable at 0.5 from 2000 to 2018 in the observations but 

Table 4 
National forest ecosystem extent and AGB carbon (AGB C) stock for observed and predicted maps. The mean forest AGB density at the national scale (110.50 tons ha− 1) 
was provided by the Institute for Nature Conservation and Forests of Portugal (ICNF, 2023). This value was used as a proxy to estimate carbon stock for the studied 
years, based on ecosystem extent and considering that 50 % of the dry AGB of forest corresponds to carbon (Chave, 1999; Goetz et al., 2009; Hojo et al., 2023).Legend: 
obs - observed, pred - predicted. Future projections refer to the calculations that were predicted for 2036 and 2054.

Indicators 2000 2006 2012 2018 2036 2054 Future projections

Extent obs (ha) 2.3*106 1.3*106 1.5*106 1.6*106

Extent pred (ha) 2.3*106 1.4*106 1.5*106 1.6*106 1.3*106 1*106 x
AGB C stock obs (Mt) 131.4 75.5 83 91.3
AGB C stock pred (Mt) 131.5 75.3 82.8 88.4 71.8 55.3 x

Table 5 
Variance threshold tests to filter out features with zero or low variances. The 
variance threshold column lists the values used as thresholds in the tests, and the 
mean variation percentage column depicts the value within the number of fea-
tures remaining in some threshold.

Variance 
threshold

Number of 
features 
removed

Number of 
features 
remained

Mean 
Variation 
%

Number of features 
remained within the 
variance threshold 
and above the mean 
variation

0.01 45 85 13 % 66
0.05; 
0.1; 0.2; 
0.3

51 79 36 % 49

0.4; 0.5; 
0.6; 0.9

53 77 50.3 % 27
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Table 6 
Top 10 LM-based indicators of forest ecosystem condition obtained from Principal Component Analysis (PCA) and unsupervised feature importance evaluation. The 
descriptions include name and unit, type, level, formula, references, range, an indication of what would be a favourable change to forest ecosystem condition and the 
indicators' importance for the first principal component (PC1) of the PCA. In general, favourable changes in these metrics suggest reduced fragmentation, increased 
habitat connectivity, enhanced biodiversity, and better conditions for ecological processes.

Name (unit) Type Level Formula, Range [min, max], Reference Favourable 
change

Importance to 
PC1

Effective mesh size 
(ha)

Aggregation class
mesh =

∑n
j=1 a2

ij

A
×

1
10000 

A is the total landscape area, aij is the patch area 
Range [cell size/A, A]; mesh equals min value whenever the class covers only one cell 
and equals max if only one patch is present. 
(Jaeger, 2000; McGarigal et al., 2012)

Increase 2.5*10− 1

Splitting index (none) Aggregation class
split =

A2
∑n

j=1 a2
ij 

A is the total landscape area, aij is the patch área 
Range [1, number of cells squared]; split equals min value if only one patch is present. It 
reaches the max as the number of patches increases. 
(Jaeger, 2000; McGarigal et al., 2012)

Decrease 2.4*10− 1

Mean radius of 
gyration (m)

Area and 
edge

landscape
gyrate mn = mean

(
∑z

r=1

hijr

z

[
patchij

])

hijr is the distance from each cell to the 
centroid of each patch and z is the number of cells 
Range [0, inf[; gyrate_mn equals min whenever a patch is a unique cell. It reaches the 
max range when only one patch is present. 
(Keitt et al., 1997; McGarigal et al., 2012)

Increase 2.4*10− 1

Largest patch index 
(%)

Area and 
edge

class
lpi =

n
j=1max

(
aij

)
× 100

A 
A is the total landscape area, aij is the patch area 
Range [0,100]; lpi equals min when the largest patch is becoming small and equals max 
when only one patch is present. 
(McGarigal et al., 2012)

Increase 2.4*10− 1

Mean of core area 
(ha)

Core area class core mn = mean
(

acore
ij

[
patchij

] )

acore
ij is the core área 

Range [0, inf[; core_mn equals min if core equals 0 for all patches. It reaches max as the 
core area increases. 
(McGarigal et al., 2012)

Increase 2.4*10− 1

Core area percentage 
of landscape (%)

Core area class
cpland =

(
∑n

j=1

acore
ij

A

)

× 100 

acore
ij is the core area and A is the total landscape área 

Range [0, 100]; core equals 0 for all patches. It reaches max as the amount of core area 
increases. 
(McGarigal et al., 2012)

Increase 2.4*10− 1

Simpson's evenness 
index (none)

Diversity landscape
siei =

1 −
∑m

i=1P2
i

1 −
1
m 

Pi is the proportion of class i and 
m is the number of classes 
Range [0,1]; siei is min when only one patch is present. It reaches max when the number 
of classes increases within equally distributed proportions. 
(May, 1975; McGarigal et al., 2012; Romme, 1982; Simpson, 1949)

Increase 2.4*10− 1

Mutual information 
(none)

Complexity landscape mutinf = I(y,x)
I is the information, y and x are random variables 
Range [0,1[; mutinf increases with landscape diversity. 
(Nowosad and Stepinski, 2019b)

Increase 2.4*10− 1

Simpson's diversity 
index (none)

Diversity landscape sidi = 1 −
∑m

i=1
P2

i 

Pi is the proportion of class i 
Range [0,1[; sidi is min when only one patch is present. The value increases as the 
number of class types increases within equally distributed proportions. 
(May, 1975; McGarigal et al., 2012; Romme, 1982; Simpson, 1949)

Increase 2.4*10− 1

Mean of contiguity 
index (none)

Shape landscape

contig mn = mean

⎛

⎜
⎜
⎜
⎝

([∑z
r=1cijr

aij

])

− 1

v − 1

[
patchij

]

⎞

⎟
⎟
⎟
⎠

cijr is the contiguity value for pixel r in patch ij, 
aij is the area of the respective patch (number 
of cells) and v is the size of the filter matrix 
Range [0,1]; contig_mn equals 0 whenever there are one-pixel patches. It reaches the 
max when patches are fully connected. 
(Lagro, 1991; McGarigal et al., 2012)

Increase 2.3*10− 1
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Fig. 5. National forest ecosystem condition assessment through the top 10 LM-based indicators. A. Normalized feature trends over the years considering obser-
vations; B. Normalized feature trends over the years for predictions. Legend: Obs - Observed maps; Pred – Predicted maps; effective mesh size – class level (mesh_c), 
splitting index – class level (split_c), mean radius of gyration – landscape level (gyrate_mn_l), largest patch index – class level (lpi_c), mean of core area – class level 
(core_mn_c), core area percentage of landscape – class level (cpland_c), Simpson's evenness index – landscape level (siei_l), mutual information – landscape level 
(mutinf_l), Simpson's diversity index – landscape level (sidi_l), and mean of contiguity index – landscape level (contig_mn_l).
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fluctuates slightly from 0.5 to 0.6 overtime for the predictions. The 
Shannon Diversity Index, decreases slightly from 0.4 in 2000 to 0.3 in 
2018, in observations and a similar downward trend, declining to 0.2 by 
2054.

4. Discussion

The findings of this research deepen the knowledge of how forest 
future dynamics could be anticipated considering the spatial influence of 
forest/non-forest configuration, anthropogenic factors, and environ-
mental pressures. Recognizing the most effective LM-based indicators of 
forest condition offers valuable insights into the modifications in forest 
functioning from various spatial perspectives, and impacts on biodi-
versity and natural capital (Skidmore et al., 2015). Additionally, 
developing a list of indicators that could be acquired on a cheaper and 
more systematic ground supports the implementation and monitoring of 
environmental frameworks such as the SEEA-EA and the CBD-UN. Na-
tionally, these results provide consistent information to integrate the 
national ecosystem accounts, deepening the knowledge of the in-
teractions between forest resources and human activities, and support-
ing decision-makers and landscape managers in predicting forest 
dynamics scenarios, AGB carbon stocks, and fragmentation effects.

4.1. Prediction of national forest distribution

Forest development scenarios allow the assessment of the capacity 
provision of ES, their actual and future use and values, support forest 
inventory, map forest habitat, and measure forest fragmentation (Zhang 
et al., 2022). The accuracy and quality of predictions were summarized 
through well-established functions and evaluated through spatial 
pattern analysis of forest patch centroids. Calibration and sensitivity 
analysis helped adjust model outputs to match observed data more 
closely, evaluating how changes in input data or parameter settings 
affected model predictions. Identifying these influential factors helped 
prioritize data processing efforts, refine model structure, improve pre-
diction accuracy, and enhance model outputs' reliability. Furthermore, 
it is worth highlighting that the accuracy of predictions heavily relies on 
how well the CA model captures the essential features and dynamics of 
the system under study (Mengist et al., 2021), which includes the choice 
of cell states, neighbourhood configurations, rule selection, and 
boundary conditions. The choice of transition rules governing cell state 
changes is critical. If the rules are too simplistic or fail to capture rele-
vant dynamics, the model's predictions may be inaccurate. Conversely, 
overly complex rules may lead to computational inefficiency without 
significantly improving predictive accuracy (Roodposhti et al., 2020). 
The spatial and temporal resolution of the CA grid also affects prediction 
accuracy. Coarse grids may overlook fine-scale patterns and in-
teractions, while excessively fine grids may lead to computational 
challenges without significantly improving prediction quality. Turner 
et al. (1993) explored these effects on landscape patterns, revealing that 
as grain size increases, the landscape tends to become more uniform 
with high dispersion and small patch sizes. The prediction quality 
decreased as the difference between the start and end years increased. 
Furthermore, the simulations were conducted conservatively, avoiding 
overestimations on the predictions of forest conditions.

The fragmentation of ecological landscapes leads to more patches, 
smaller patch sizes, and reduced connectivity (Jaeger, 2000). Between 
2000 and 2018, the number of patches increased by 22.5 %, while the 
mean patch area decreased by 10.3 %. However, predictions for 2036 
and 2054 suggest that despite a potential decrease in the number of 
patches, forest connectivity may remain due to enhanced accessibility, 
likely from reforestation, patch consolidation, or better management. 
From 2000 to 2018, observed maps show rising patch numbers and 
mean betweenness and degree values, while mean closeness decreased, 
indicating growing fragmentation, but future projections suggest stable 
or improving connectivity. Furthermore, the connectivity of landscapes 

is highly scale-dependent (Keitt et al., 1997), and the scale of the anal-
ysis can considerably impact the results, as spatial models are known to 
be grain and scale-sensitive (Haines-Young et al., 2012). When spatial 
data is aggregated, the loss of information may lead to increased ho-
mogeneity and reduced variance in coarse-resolution data, thereby 
modifying average values per spatial unit (Grêt-Regamey et al., 2014).

Nevertheless, even anticipating an increase in forest areas influenced 
by initiatives, such as REDD (Reducing Emissions from Deforestation 
and Forest Degradation), subsidies and payment schemes, due to pop-
ulation growth, climate change and increased demand for natural re-
sources including fertile lands, forest fragmentation and biomass losses 
are globally expected (Qasim and Csaplovics, 2023). The comparison of 
predictions with observed data unveiled the potential of CA systems in 
capturing environment-human interactions, understanding both the 
current trends and potential future scenarios. These assessments allow 
for more informed decision-making across diverse contexts, helping to 
maintain ecosystem functioning and resilience in an increasingly frag-
mented world.

4.2. Analysis of forest indicators and ecosystem conditions

A major finding for landscape planning and EA was that, without the 
inclusion of LM as a means to assess ecosystem conditions, the actual 
potential of modelling future landscape scenarios would be poorly 
realistic and expansive. This research contributed to a more systematic 
appraisal of the potential for predictive maps to provide long-term in-
formation to assess forest ES and the effective use of modern technolo-
gies to detect changes and their influence on natural capital and 
biodiversity. The natural capital and the delivery of ES are strongly 
affected by LULC changes, and ecological fragmentation (Jaeger, 2000). 
Measuring landscape characteristics and analyzing changes in the ad-
jacency of forests and the number of patches supports understanding the 
consequences of these land conversions (Osborne and Alvares-Sanches, 
2019). Fragmentation alters the structure of the ecological landscape 
and negatively affects natural capital, devaluing ES (Holzwarth et al., 
2020). The fragmentation of extensive forests into smaller units with 
increasing area perimeter ratios indicated growing exposure to human 
activities (Kundu et al., 2022). Moreover, fragmented habitat reduces 
biodiversity and can bring a greater risk of the disappearance of some 
plant species and animals (Mengist et al., 2021). It can also have 
augmented edge effects, which can adversely influence the survival of 
the native species and enhance the chance of biological invasion by alien 
species with similar ecological niches (Adhya et al., 2022). Disturbance 
conditions give rise to unique landscape dynamics, highlighting their 
scale-dependent nature (Dou et al., 2023). Fragmentation is not only 
about the physical separation of landscapes but also the disruption of 
ecological continuity, connectivity, productivity, functional integrity, 
and ecological diversity (McGarigal et al., 2012).

Understanding the metrics and information that are more useful for 
ecosystem assessment is essential to maintaining viable ES in the long 
term (Meddens et al., 2022). The selected indicators provide systematic 
measurements of forest dynamics, revealing changes in fragmentation, 
connectivity, and patch structure. These indicators are critical in 
tracking ecosystem health, planning conservation efforts, and guiding 
effective forest management strategies across various contexts. Their 
applicability extends beyond forest ecosystems, offering insights into 
urbanization, agricultural expansion, and habitat restoration, where the 
spatial arrangement and connectivity of patches are equally critical 
(Arora et al., 2021). When fragmentation occurs, the edge area ratio of a 
forest's unit area increases, raising the probability of anthropogenic 
interference (Jiang et al., 2022). The largest patch index and the mean 
radius of gyration were the edge and area metrics that demonstrated this 
influence in the results. Between 2000 and 2018 the first metric 
decreased 52.6 %, while the second reduced by 3.6 %. The split and 
mesh metrics characterize the anthropogenic penetration of landscapes 
from a geometric point of view (Jaeger, 2000). Split increased by 28.5 % 
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over the years, meaning the number of forest patches also increased, 
while the mean mesh size decreased by about the same percentage, 
indicating a change in patch structure. Abundance and evenness were 
quantified by diversity measurements of forest/non-forest areas. Both, 
the Simpson's evenness index and Simpson's diversity index decreased 
around 28.2 % over the years. Lower values are an indicator of forest 
extent reduction and homogenization of the landscape. The selected 
metrics allow for a comprehensive understanding of how forest eco-
systems are being modified spatially, which affects biodiversity, habitat 
connectivity, and ES such as carbon storage and sequestration, soil 
erosion control, and water regulation and provision.

Accurate AGB estimations can significantly improve the efficiency of 
forest management, deepen the understanding of the forest carbon 
cycle, quantify and monitor terrestrial carbon stocks, and highlight 
landscape change trends (Han et al., 2022). The mean AGB stock at the 
country level was calculated with the total class area metric, which in 
2000 was 2.3*106 ha against 1.6*106 ha in 2018, representing a loss of 
39.9 % over 18 years. Consequently, the national forest AGB carbon 
stock in 2018 was approximately 40 Mt. lower than in 2000. Carbon 
accounting studies value the amount of sequestered carbon over time, 
which helps assist policymaking regarding human-environment in-
teractions and future adaptive strategies. They also support identifying 
where forests might be preserved to maintain their carbon stores and 
where changes in land use would minimize carbon emissions.

As forest fragmentation poses significant threats to ES and biodi-
versity, it is crucial to anticipate and manage its impacts. By modelling 
interactions between individual cells, CA models can simulate complex 
landscape patterns and predict spatial distribution and fragmentation 
over time, depicting how small-scale interactions (e.g., deforestation in 
one area) lead to large-scale fragmentation patterns over time. For 
instance, CA can predict how urban encroachment, agriculture expan-
sion, or road development might further divide forest landscapes, 
exacerbating fragmentation. Such models offer spatially detailed fore-
casts of future landscape configurations, enabling policymakers to 
visualize potential fragmentation “hot spots” and focus conservation 
efforts where they are most needed. When combined with LM-based 
indicators, CA models can measure forest conditions, track ecosystem 
health over time, and monitor how these metrics might change in 
response to land-use policies or conservation actions.

Landscape development scenarios support analyzing the capacity of 
a landscape to provide ES and to understand the connections between 
natural capital, society, and decision-making processes (Karasov et al., 
2020). Non-forest development is characterized by reduced natural 
forest areas favouring built-up, artificial, and agricultural areas. The 
increased competition for land use driven by the expansion of clean 
energy deployments, such as solar farms and wind energy installations, 
is also becoming a significant factor in forest fragmentation. These 
renewable energy projects require large, often contiguous areas of land, 
which can lead to conflicts with forest conservation efforts. As clean 
energy infrastructure grows in response to global decarbonization goals, 
competition for space between these deployments and natural land-
scapes intensifies. This dynamic presents new challenges, as the need to 
reduce carbon emissions through renewable energy can inadvertently 
contribute to land-use pressures, potentially fragmenting forests and 
other critical ecosystems. Balancing the land demands of clean energy 
with forest conservation goals requires integrated spatial planning and 
innovative land-use strategies. Landscape development scenarios 
through CA models can help simulate these scenarios, providing insights 
into how land competition may evolve, and guiding the identification of 
optimal locations that minimize environmental impacts.

Further studies should expand this approach to test LM-based in-
dicators within forest types and consider other satellite-derived datasets 
with higher spatial and temporal resolution. Also, a deeper under-
standing of land use opportunity cost within forests, agriculture and 
clean energy is needed to explore the possible future development sce-
narios. Additionally, research efforts are required to address the impacts 

on related ecosystems, including freshwater and groundwater, and 
assess the effects on stock and capacity to supply dependent ecosystems.

5. Conclusions

Sustainable development at the country scale is challenging, mainly 
due to land conversions based on poorly informed decision-making 
processes. This study evaluated the contribution of ready-to-use 
Copernicus data and CA models to predict future maps of forest dy-
namics and estimate ecosystem indicators to support national forest 
ecosystem physical accounting. Ten LM-based indicators of forest 
ecosystem condition were statistically determined through PCA and 
selected and ranked through feature importance assessment, plus AGB 
forest carbon stock (the eleventh quantified metric). The identified top 
10+1 measurements deepen the knowledge of the spatial influence of 
forest dynamics, describing landscape heterogeneity based on its 
composition (amount and diversity) and configuration (spatial 
arrangement). Besides, changes between 2000 and 2018 were mapped 
for mainland Portugal, and future scenarios were predicted for 2036 and 
2054. Those estimations are essential for emissions inventories, forest 
management, and a deepened knowledge of the carbon cycle, as well as 
mechanisms responsible for terrestrial sources and sinks of carbon. 
These advancements support more systematic estimations of carbon 
stock accounts by directly detecting changes in biomass.
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