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Preface 

This volume contains the Proceedings of the 4th Stochastic Transport in Upper 
Ocean Dynamics Annual Workshop held on 25–28 September 2023. The work-
shop is a core part of the Stochastic Transport in Upper Ocean Dynamics (STUOD) 
project, which is supported by a European Research Council (ERC) Synergy Grant 
and is led by four Principal Investigators that bring together three world-class 
institutions: Prof. Bertrand Chapron, French Research Institute for Exploitation 
of the SEA (IFREMER), Prof. Dan Crisan, Imperial College London (ICL), Prof. 
Darryl D. Holm, Imperial College London (ICL) and Prof. Etienne Mémin, National 
Institute for Research in Digital Science and Technology (INRIA). 

The project aims to deliver new capabilities for assessing variability and uncer-
tainty in upper ocean dynamics and provide decision makers a means of quantifying 
the effects of local patterns of sea level rise, heat uptake, carbon storage and 
change of oxygen content and pH in the ocean. The project will make use of 
multimodal data and will enhance the scientific understanding of marine debris 
transport, tracking of oil spills and accumulation of plastic in the sea. 

As in previous years, the 4th STUOD Annual Workshop 2023 focused on a range 
of fundamental topic areas, including: 

1. Observations at high resolution of upper ocean properties such as temperature, 
salinity, topography, wind, waves and velocity 

2. Large-scale numerical simulations 
3. Data-based stochastic equations for upper ocean dynamics that quantify simula-

tion errors 
4. Stochastic data assimilation to reduce uncertainty 

Each chapter in the present volume illustrates one or several of these topic areas. 
Many chapters offer new mathematical frameworks that are intended to enhance 
future research in the STUOD project. The workshop was held in the hybrid mode 
and brought together early-career academics, postgraduate students, senior members 
of the community and other invited guests from across the world that included the 
UK, France, Netherlands, Italy, Germany and the USA.

v
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The scientific programme of the four-day workshop featured an inspirational 
range of talks, theoretical and applied sessions, as well as networking opportunities. 
In particular, it showcased topics on: Data assimilation and stochastic modelling, 
Data models, Data, Numerics for ocean models, Physics models, Theoretical 
analysis as well as covering new and future STUOD developments. Several 
members of the STUOD External Advisory Board gave invited talks: Prof. Sebastian 
Reich (University of Potsdam), Prof. Jeroen Molemaker (UCLA), Prof. Rosemary 
Morrow (Laboratoire d’Études en Géophysique et Océanographie Spatiales), Prof. 
Baylor Fox-Kemper (Brown University) and Prof. Peter Korn (Max Planck Institute 
for Meterology). The programme also included individual presentations by the 
STUOD Principal Investigators and postdoctoral researchers that overall provided 
opportunities for investigators, at both early and established stages of their career, to 
foster future research collaborations and enable the next generation of researchers. 

Workshop attendees on 26 September 2023 

The following is a brief description of the 14 contributions included in the 
proceedings: 

The submitted manuscripts include the chapter by Alexander Lobbe, Dan 
Crisan and Oana Lang entitled “Generative Modelling of Stochastic Rotating 
Shallow Water Noise”. They present their recent work in developing a generic 
methodology for calibrating the noise in fluid dynamics stochastic partial differen-
tial equations where the stochasticity was introduced to parametrize subgrid-scale 
processes. The stochastic parametrization of sub-grid scale processes is required 
in the estimation of uncertainty in weather and climate predictions, to represent 
systematic model errors arising from subgrid-scale fluctuations. The methodology 
uses a principal component analysis (PCA) technique based on the ansatz that 
the increments of the stochastic parametrization are normally distributed. In this 
chapter, the PCA technique is replaced by a generative model technique. This 
enables them to avoid imposing additional constraints on the increments. The
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methodology is tested on a stochastic rotating shallow water model with the 
elevation variable of the model used as input data. The numerical simulations show 
that the noise is indeed non-Gaussian. The generative modelling technology gives 
good RMSE, CRPS score and forecast rank histogram results. 

Albert Dombret, Darryl D. Holm, Ruiao Hu, Oliver D. Street and Hanchun 
Wang in their chapter entitled “Collisions of Burgers Bores with Nonlinear 
Waves” treat nonlinear wave-current interactions in their simplest form—as an 
overtaking collision. In one spatial dimension, the chapter investigates the collision 
interaction formulated as an initial value problem of a Burgers bore overtaking 
solutions of two types of nonlinear wave equations—Korteweg-de Vries (KdV) 
and nonlinear Schrodinger (NLS). The bore-wave state arising after the overtaking 
Burgers-KdV collision in numerical simulations is found to depend qualitatively on 
the balance between nonlinearity and dispersion in the KdV equation. The Burgers-
KdV system is also made stochastic by following the stochastic advection by Lie 
transport approach (SALT). 

The work of Franco Flandoli, Andrea Papini and Marco Rehmeier entitled 
“Average Dissipation for Stochastic Transport Equations with Lévy Noise” 
shows that, in one spatial and arbitrary jump dimension, the averaged solution of 
a Marcus-type SPDE with pure jump Lévy transport noise satisfies a dissipative 
deterministic equation involving a fractional Laplace-type operator. To this end, they 
identify the correct associated Lévy measure for the driving noise. They consider 
this a first step in the direction of a non-local version of enhanced dissipation, 
a phenomenon recently proven to occur for Brownian transport noise and the 
associated local parabolic PDE by the first author. Moreover, they present numerical 
simulations, supporting the fact that dissipation occurs for the averaged solution, 
with a behaviour akin to the diffusion due to a fractional Laplacian, but not in a 
pathwise sense. 

Daniel Goodair demonstrates in his chapter entitled “General Solution Theory 
for the Stochastic Navier-Stokes Equations” how solutions to the incompressible 
Navier-Stokes Equations with transport and advection noise can be recovered 
through recent developments in the solution theory for stochastic partial differ-
ential equations (SPDEs). Local-in-time and global-in-time results are presented. 
Applications to the Stochastic Navier-Stokes Equations posed on the torus and a 
smooth bounded domain are detailed; in the latter case, both the no-slip and Navier 
boundary conditions are considered. Martingale weak solutions in 3D and weak 
solutions in 2D are proven in all cases. In 2D, strong solutions for the torus and 
Navier boundary are shown, whilst local strong solutions on the torus in 3D are also 
retrieved. 

The work of  Darryl D. Holm, Ruiao Hu and Oliver D. Street entitled 
“Geometric Theory of Perturbation Dynamics Around Non-equilibrium Fluid 
Flows” investigates the evolution of linear perturbations of time-dependent ideal 
fluid flows with advected quantities, expressed in terms of the second order 
variations of the action corresponding to a Lagrangian defined on a semidirect 
product space. This approach is related to Jacobi fields along geodesics and several
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examples are given explicitly to elucidate their approach. Numerical simulations of 
the perturbation dynamics are also presented. 

Jin Won Kim and Sebastian Reich in their chapter entitled “On Forward-
Backward SDE Approaches to Conditional Estimation” investigate the represen-
tation of conditional expectation values for partially observed diffusion processes 
in terms of appropriate estimators. They cite the work of Kalman and Bucy 
who have established a duality between filtering and estimation in the context of 
time-continuous linear systems. This duality has recently been extended to time-
continuous nonlinear systems in terms of an optimization problem constrained by 
a backward stochastic partial differential equation. They revisit this problem from 
the perspective of appropriate forward-backward stochastic differential equations. 
Their approach sheds new light on the conditional estimation problem and provides 
a unifying perspective. It is also demonstrated that certain formulations of the 
estimation problem lead to deterministic formulations similar to the linear Gaussian 
case as originally investigated by Kalman and Bucy. Finally, they discuss application 
of the proposed formulation to optimal control problem on partially observed 
diffusion processes. 

The work of  Colin J. Cotter, Dan Crisan and Maneesh Kumar Singh 
entitled “Data Assimilation for the Stochastic Camassa-Holm Equation Using 
Particle Filtering: A Numerical Investigation” explores data assimilation for the 
Stochastic Camassa-Holm equation through the application of the particle filtering 
framework. Specifically, their approach integrates adaptive tempering, jittering and 
nudging techniques to construct an advanced particle filtering system. All filtering 
processes are executed utilizing ensemble parallelism. They conduct extensive 
numerical experiments across various scenarios of the Stochastic Camassa-Holm 
model with transport noise and viscosity to examine the impact of different filtering 
procedures on the performance of the data assimilation process. Their analysis 
focuses on how observational data and the data assimilation step influence the 
stability of the obtained results. 

Arnaud Debussche, Etienne Mémin and Antoine Moneyron in their chapter 
entitled “Some Properties of a Non-hydrostatic Stochastic Oceanic Primitive 
Equations Model” study how relaxing the classical hydrostatic balance hypothesis 
affects theoretical aspects of the LU primitive equations well-posedness. They focus 
on models that sit between incompressible 3D LU Navier-Stokes equations and 
standard LU primitive equations, aiming for numerical manageability while cap-
turing non-hydrostatic phenomena. Their main result concerns the well-posedness 
of a specific stochastic interpretation of the LU primitive equations. This holds with 
rigid-lid type boundary conditions and when the horizontal component of noise is 
independent of depth. These conditions can be related to the dynamical regime 
in which the primitive equations remain valid. Moreover, under these conditions, 
they show that the LU primitive equations solution tends towards the one of the 
deterministic primitive equations for a vanishing noise, thus providing a physical 
coherence to the LU stochastic model. 

The work of Arnaud Debussche, Etienne Mémin and Antoine Moneyron 
entitled “Derivation of Stochastic Models for Coastal Waves” considers a
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stochastic nonlinear formulation of classical coastal waves models under location 
uncertainty (LU). In the formal setting investigated here, stochastic versions of 
the Serre-Green-Naghdi, Boussinesq and classical shallow water wave models are 
obtained through an asymptotic expansion, which is similar to the one operated in 
the deterministic setting. However, modified advection terms emerge, together with 
advection noise terms. These terms are well-known features arising from the LU 
formalism, based on momentum conservation principle. 

Paul Platzer and Bertrand Chapron in their chapter entitled “The Effects of 
Unresolved Scales on Analogue Forecasting Ensembles” apply similar states in 
a database called “catalogue” such as a reanalysis, analogues provide simple yet 
efficient ensemble forecasts in atmospheric and ocean sciences. Typically performed 
on low-resolution images of large-scale atmospheric or ocean circulation, analogue 
forecasting encounters uncertainties due to unresolved small spatial scales, as the 
latter contribute to the time-evolution of the circulation but not to the similarity 
criterion used to search for analogues. Another source of uncertainty are the finite 
distances between the analogues and the initial target large-scale variables. They 
disentangle these two sources of uncertainty using a modified version of the Lorenz 
system, where stochastic terms account for unresolved small spatial scales. For 
large enough catalogue size and forecast horizon, we show that the analogue 
forecasting ensemble spread is dominated by the effect of stochastic terms, with 
only little influence of the initial analogue-to-target distances. Conversely, for short-
term forecast and small catalogue size, the analogue ensemble is mostly influenced 
by initial analogue-to-target distances and not by the effects of unresolved scales. 
This result calls for adjustments of the classical analogue method for small forecast 
horizons. 

The work of Sebastian Reich entitled “Particle-Based Algorithm for Stochas-
tic Optimal Control” posits that the solution to a stochastic optimal control 
problem can be determined by computing the value function from a discretization 
of the associated Hamilton-Jacobi-Bellman equation. Alternatively, the problem 
can be reformulated in terms of a pair of forward-backward SDEs, which makes 
Monte-Carlo techniques applicable. More recently, the problem has also been 
viewed from the perspective of forward and reverse time SDEs and their associated 
Fokker-Planck equations. This approach is closely related to techniques used in 
diffusion-based generative models. Forward and reverse time formulations express 
the value function as the ratio of two probability density functions, one stemming 
from a forward McKean-Vlasov SDE and another one from a reverse McKean-
Vlasov SDE. In this chapter, they extend this approach to a more general class of 
stochastic optimal control problems and combine it with ensemble Kalman filter 
type and diffusion map approximation techniques in order to obtain efficient and 
robust particle-based algorithms. 

Valentin Resseguier presents in his chapter entitled “Maximum Likelihood 
Estimation of Subgrid Flows from Tracer Image Sequences” a sequence of 
tracer satellite images, several methods (e.g. optical flow) that exist to successfully 
estimate the main advecting current. Yet, this estimate is limited in resolution. To 
go beyond, they propose a new parametric estimation method to estimate second-
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order statistics of the residual small-scale velocity. They first express stochastic 
transport in a discrete setting to apply standard MLE techniques. Then they propose 
an efficient method to solve the MLE optimization problem through a fast log-
likelihood gradient evaluation algorithm. 

The work of Francesco L. Tucciarone, Long Li, Etienne Mémin and Louis 
Thiry entitled “Transport Noise Defined from Wavelet Transform for Model-
Based Stochastic Ocean Models” introduces the simulation of planetary flows 
at all the scales that have a significant impact on the climate system, which is 
unachievable with nowadays computational resources. Parametrization of the scales 
smaller than the simulation resolution is thus crucial to correctly resolve the ocean 
dynamics. In this work, a novel parametrization of the subgrid scales by means of 
the wavelet transform is introduced in the shallow water and primitive models within 
the so-called Location Uncertainty framework. 

James Woodfield in his chapter entitled “Stochastic Fluids with Transport 
Noise: Approximating Diffusion from Data Using SVD and Ensemble Forecast 
Back-propagation” introduces and tests methods for the calibration of the diffusion 
term in Stochastic Partial Differential Equations (SPDEs) describing fluids. They 
take two approaches: one uses ideas from the singular value decom-position and 
the Biot-Savart law. The other backpropagates through an ensemble forecast, with 
respect to diffusion parameters, to minimize a probabilistic ensemble forecasting 
metric. They describe the approaches in the specific context of solutions to SPDEs 
describing the evolution of fluid particles, sometimes called inviscid vortex methods. 
The methods are tested in an idealized setting in which the reference data is a known 
realization of the parametrized SPDE, and also using a forecast verification metric 
known as the Continuous Rank Probability Score (CRPS). 

Finally, the STUOD Organizing Committee would again like to acknowledge 
the financial support received from the European Research Council (ERC) under 
the European Union’s Horizon 2020 Research and Innovation Programme (ERC, 
Grant Agreement No 856408) for providing funds to cover the travel expenses of 
the invited speakers, catering costs and administrative support as well as the in-kind 
support from IFREMER for hosting at the Salon de l’Océan in Plouzané, France.
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Generative Modelling of Stochastic 
Rotating Shallow Water Noise 

Alexander Lobbe, Dan Crisan, and Oana Lang 

1 Introduction 

Stochastic parameterizations address the uncertainty stemming from unaccounted 
for or neglected physical effects, as well as inaccurate observational data and 
imperfect theoretical models. Over the past two decades, there has been signifi-
cant research in the area of stochastic parameterizations, largely driven by their 
application in quantifying uncertainty generated by downsampling high-resolution 
solutions to lower resolutions. More recently, numerous stochastic parameterization 
approaches have emerged to tackle such challenges, see for instance [2–4, 11, 15]. 

The accurate calibration of the stochastic model parameters can be used in the 
application of stochastic models, for example, in data assimilation and forecasting 
processes. Recently, several numerical techniques for calibration ([2–4, 17]) have 
been developed to demonstrate the effective integration of data-driven models and 
advanced data assimilation methods. In such studies, the calibration algorithms 
typically involve computing the full trajectories of the corresponding fluid parcels, 
which is often expensive numerically. The approach we introduced in [6] operates 
with entire solution fields instead. The methodology accounts for small-scale effects 
which are unresolved as a result of working with models run at coarse resolution, 
and it uses a principal component analysis (PCA) technique that relies on the ansatz 
that the data is Gaussian. However, the Gaussian assumption may not be exactly 
fulfilled in practice. 

In this chapter, we replace the PCA technique with a generative model one, 
a technical change which allows us to model closer to the data by relaxing 
the Gaussian assumption. As with the previous work, we aim to design data-
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2 A. Lobbe et al.

driven models in which real uncertainty is accounted for, based on input from 
measurements and statistically-informed initial data. 

We give next a brief description of the stochastic parametrization framework and 
the calibration methodology introduced in [6]. We denote by . mf the deterministic 
model state and assume that the evolution of . mf is governed by a partial differential 
equation of the following form 

.
dmf

dt
= A(mf ), t ≥ 0, (1) 

where . A is the model operator. Given that we implement the equation numerically, 
let us assume that the partial differential Eq. (1) is discretised in time and space and 
that the evolution of . mf satisfies 

.m
f
tn+1

= m
f
tn

+ A
(
m

f
tn

)
Δ, (2) 

where .0 ≤ t1 ≤ t2 ≤ . . . is an equidistant time grid with mesh . Δ. Higher order 
numerical schemes are possible: the same procedure will apply to those. We will 
denote by . mc the (discretised) stochastic model thought of as being modelled on a 
coarser spatial grid than that on which . mf is simulated, hence the superscript c. The  
aim of the stochastic parametrization is to compensate for the loss of scales when 
moving from a fine grid to a coarse grid. The effect of the unresolved scales can be 
mathematically modelled by a term of the form 

.

M⎲
i=1

M(mc
tn
)ξi

√
ΔWi

tn
, (3) 

where . M is a suitably chosen operator and M is the number of sources of noise, 
.(ξk)

M
k=1 are (space dependent but time independent) vector fields and .Wtn are 

independent normally distributed random variables .Wk
tn

∼ N (0, 1).1 In other words, 
we have 

.mc
tn+1

= mc
tn

+ A
(
mc

tn

)
Δ +

M⎲
k=1

M(mc
tn
)ξkW

k
tn

√
Δ (4) 

The choice of the stochastic parametrization (3) is such that asymptotically, as . Δ
tends to 0, one deduces that the model run on the coarse grid approximates the 
stochastic partial differential equation (SPDE) 

.dmc = A(mc)dt + M(mc)dWt , t ≥ 0, (5)

1 It is this assumption that will be removed in the current study. 
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where .Wt = W(t, x) is a space-time Brownian motion. We note that, theoretically, 
the solutions of both the deterministic Eq. (1) and its stochastic counter-part (5) live  
on the same physical domain (such as . Rn, the torus, a horizontal strip, etc), however 
their time discretisations (2) and (4) are approximated on different space grids 
and the space discretisation for (2) is finer than the one for (4). Therefore, in the 
numerical resolution for (2) and (4), then we could distinguish between the model 
operator for (2), and call it, say . Af and that for (4), and call it, say, . Ac. 

In [6] we estimated the number of sources of noise M and the space dependent 
vector fields .(ξk)

N
k=1 by using a principal component analysis methodology. Obvi-

ously, this hinged on the assumption that the stochastic parametrization that models 
the small scale dynamics has Gaussian increments. In practice this may not always 
be the case. In this chapter we lift this assumption and assume that effect of the 
unresolved scales is mathematically modelled by a term of the form 

.M(mc
tn
)Nn (6) 

where .(Nn)n≥1 are independent indentically distributed random variables, but not 
necessarily with a Gaussian distribution. Again, just as in [6], we estimate the 
distribution of the independent noises from data and the calibration procedure 
introduced below is agnostic to the source of the input data. The data can be real 
data, such as satellite observations of e.g. ocean sea-surface height, data from re-
analysis such as ERA5 ([9]), or synthetic data from a model run of (3) computed 
on a sufficiently large time window .[0, T ]. The use of a coarser grid computation in 
subsequent data assimilation of model reduction will lead to a significant reduction 
of computational effort. 

Generative models are a class of machine learning models designed to generate 
new data samples from an unknown distribution. They are trained on a given dataset 
of samples from the same distribution. An important class of generative models are 
diffusion models which have gained more attention recently due to their ability to 
generate high-quality and diverse samples. The core idea behind diffusion models 
is to iteratively transform the training data through a diffusion-like mechanism 
into samples from a known distribution (a Gaussian distribution for example). In 
the process, the forward and the backward diffusions are learned using a neural 
network. Once the learning is complete, samples from the unknown distribution 
are obtained by running the backward diffusion initiated from samples from the 
Gaussian distribution. We give details of the methodology we use which is based on 
[7] in Section 3, specifically tailored to calibrate a stochastic rotating shallow water 
model. 

In this chapter we use synthetic data coming from a realization of the (deter-
ministic) rotating shallow water model, for which we keep the same notation . mf

for now. The model run is then mollified using a procedure that will eliminate the 
small/fast scales effects, for example by using a low-pass filter, Gaussian mollifier, 
Helmholtz projection, subsampling, etc, or combinations thereof. We will denote by 
.C(mf ) the resulting mollification of the data. Note that both .mf and .C(mf ) live 
on the same space. We emphasise that .C(mf ) is not the solution of (5) and its time
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discretisation will not satisfy (4). However, we make the ansatz that the difference 
between the two processes .m̂ := mf −C(mf ) has a stochastic representation given 
by (6), in other words, we will have 

.m̂tn+1 − m̂tn ≈ M(mc
tn
)Nn, (7) 

where . Nn has an unknown distribution to be modeled by a certain score-based 
generative model known as a diffusion Schrödinger bridge, following [7]. Details 
of our implementation are included in the Sect. 3. 

In the context of stochastic modeling in fluid dynamics, uncertainty plays a 
significant role, and accurately calibrating these models to real-world scenarios 
is crucial for reliable predictions. In this chapter we show that diffusion models 
can be used to quantify the uncertainty due to unresolved scales. The end result 
is that we can generate ensembles of fluid states. These fluid models can be 
affected by uncertainty coming from other sources not just from unresolved scale, 
see [1] for details. For example, one may want to model fast scales through a 
stochastic parametrization. This is in line with the Hasselmann paradigm (see [5]) 
where a stochastic model of climate variability entails slow changes of climate 
that are explained as the integral response to continuous random excitation by 
short period “weather” disturbances. Therefore the model will incorporate a rapidly 
varying “weather” system (essentially the atmosphere) modelled stochastically, and 
a slowly responding “climate” system (the ocean, cryosphere, land vegetation, etc.) 
modelled deterministically. The essential feature of stochastic climate models is that 
the non-averaged “weather” components are also retained. They appear formally 
as stochastic forcing terms. Calibrating stochasticity that models fast scales is 
different. In this case, the “truth” is already stochastic (the stochasticity is part of the 
model) and the data is made out of increments of the truth - minus the drift term. The 
low pass filter is not used here as the stochasticity is not a result of the coarsening 
procedure. However, we can still apply the generative model approach to infer the 
stochastic terms. In this case, the original model is in fact stochastic: 

.dm = A(m)dt + M(m)dWt , t ≥ 0. (8) 

As a result 

.mtn+1 − mtn − A
(
mtn

)
Δ ≈ M(mtn)Nn. (9) 

In other words, the data consists of the increments .mtn+1 − mtn − A
(
mtn

)
Δ out of 

which we compute the samples from the distribution of . Nn. 
In the following subsection we provide an overview of the contents of the chapter.
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1.1 Outline of the Chapter 

In Sect. 2 we describe the particular fluid dynamics model we will be working with 
throughout the chapter. Specifically this is a rotating shallow water (RSW) model, 
similar to the model used in the earlier works ([6],  . . . ).  The  novelty  here  compared  
to previous works is that we use a non-dimensionalised version of the rotating 
shallow water model, whose derivation is briefly outlined in Sect. 2. We choose 
to use a non-dimnensionalised model in order to be able to change the physical 
properties of the flow based on the selection of the non-dimensional numbers: the 
Rossby and Froude numbers in this case. Given that we are modelling subgrid scale 
effects by noise, it is instrumental that the coarse and fine scale deterministic model 
evolutions are sufficiently different, to ensure that there is a clear target for the noise 
term. 

In Sect. 3 we introduce the generative model used in the numerical studies of 
this chapter. The theoretical framework allows for different types of generative 
models, some of which we mention in the beginning of Sect. 3 below. We choose 
to use the diffusion Schrödinger bridge model because it is a promising candidate 
for the fluid modelling studies we perform for several reasons. Specifically, the 
model is relatively transparent from a mathematical point of view, due to the form 
of the mathematically derived diffusion model. This is very expressive as a machine 
learning model, because of the underlying parametric model which is a neural 
network. Finally, we think that the Schrödinger bridge is useful due to the iterative 
nature that should make the calibration of the number of diffusion steps less critical. 

In Sect. 4 we present the numerical study and results we have obtained based 
on the non-dimensionalised rotating shallow water equations. We verify that the 
evolution of the fluid we simulate indeed exhibits a loss of scales. Next, we show that 
the non-standard dataset we use to train the diffusion Schrödinger bridge is indeed 
representable by the parametric model. Further, the stochastic ensemble run with 
the generative model is shown to have an advantage compared to Gaussian noise 
in terms of different forecast metrics. The RMSE and CRPS scores significantly 
improve when the generative noise is used in the low initial uncertainty setting. 

In Sect. 5 we summarise the conclusions of our study and identify directions for 
future studies. 

2 Rotating Shallow Water Model 

In this chapter, we base our study on a stochastic approximation of the nondimen-
sionalised rotating shallow water model 

.

dtu + (u · ∇)u + f

Ro
ẑ × u + 1

Fr2
∇(η − b) = 0

dt η + ∇(ηu) = 0

(10)
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where 

• .u(x, t) = (u(x, t), v(x, t)) is the horizontal fluid velocity vector field 
• .η(x, t) is the height of the fluid column 
• .f ∈ R is the Coriolis parameter, .f = 2Θ sinϕ where . Θ is the rotation rate of 

the Earth and . ϕ is the latitude; .f ẑ × u = (−f v, f u)T , where . ̂z is a unit vector 
pointing away from the centre of the Earth 

• .Fr = U√
gH

is the Froude number (dimensionless) which is connected to the 
stratification of the fluid flow. Here U is a typical scale for horizontal speed and 
H is the typical vertical scale, while g is the gravitational acceleration. 

• .Ro = U
f0L

is the Rossby number (also dimensionless) which describes the effects 
of rotation on the fluid flow: a small Rossby number (.Ro << 1) suggests that the 
rotation term dominates over the advective terms. 

• .b(x, t) is the bottom topography function. 

The initial condition (Fig. 1) is computed from an initial .η-field from a 
geostrophic balance assumption (see details in Sect. 4.1). We work with the 
corresponding discrete version of (10), that is 

.

un+1 − un + (un · ∇)unΔ + f

Ro
ẑ × unΔ + 1

Fr2
∇(ηn − b)Δ = 0

ηn+1 − ηn + ∇ · (ηnun)Δ = 0

(11) 

Fig. 1 Initial Condition for the non-dimensional height variable on the fine (128 . × 128) and coarse 
(32 . × 32) grids
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In [6] we perturbed the iteration corresponding to (11) with spatial Gaussian 
noise of the form 

.Wn(x) = √
Δ

M⎲
i=1

ξ i (x)Wi
n (12) 

where .(ξ i )i are divergence-free elements of the covariance basis functions of the 
SALT ([11]) noise parametrisation and .Wi

n ∼ N(0, 1) are independent i.i.d. random 
variables. When we do this, we obtain the following recurrence formula 

. 
un+1 − un + (ũn · ∇)un + un · ∇Wn(x) + f

Ro
ẑ × ũn + 1

Fr2
∇(ηn − b)Δ = 0

ηn+1 − ηn + ∇ · (ηnũn) = 0
(13) 

where2 

.ũn = unΔ + Wn(x) (14) 

The choice of the perturbation (14) is such that the iteration (13) is an approximation 
of the stochastic partial differential equation 

. 

du +
[
(u · ∇)u + f

Ro
ẑ × u

]
dt +

⎲
i

[
(ξ i · ∇)u + ∇ξ i · u + f

Ro
ẑ × ξ i

]
◦dWi

t

= − 1

Fr2
∇(η − b) dt

dη + ∇ · (ηu) dt +
⎲

i

∇ · (ηξ i ) ◦dWi
t = 0

(15) 
where . ◦ denotes Stratonovich integration and .Wi are standard i.i.d. Brownian 
motions as before. The Stratonovich stochastic term generates a second order 
correction when writing the system in Itô form, but this is dealt with using the 
intrinsic properties of the numerical scheme. We have explained this part in detail 
in the Appendix of [6]. 

To bring the rotating shallow water example in line with the general notation 
presented in the introduction, observe that . mf is represented here by the pair . (u, η)

which solves the partial differential Eq. (10). Since we will be working only with 
discrete approximations, we can directly identify . mf with the solution of (11). Then 
. mc is the solution of (13). In other words:

2 The term . ̃̃u is a velocity perturbation which is specific for this stochastic version of the RSW 
model. 
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. mc
tn

:=
(

uc
tn

ηc
tn

)

where .(uc
tn
, ηc

tn
) solves (13). Then 

.M(mc
tn
)(ζ ) = M

(
uc

tn

ηtn

)
(ζ ) :=

(
∇uc

tn
· ζ + uc

tn
· ∇ζ

∇ηc
tn

· ζ.

)
(16) 

with . ζ typically corresponding to . ξi ,3 and 

.A(mc
tn
) = A

(
uc

tn

ηc
tn

)
=

(
(uc

tn
· ∇)uc

tn
+ f

Ro ẑ × uc
tn

+ 1
Fr2

∇(ηc
tn

− b)

∇ · (ηc
tn

uc
tn
)

)
. (17) 

Based on [6] we have  

.m̂tn+1 − m̂tn ≈
M⎲
i=1

M(mc
tn
)ξi(x)

√
ΔWi

tn
= M(mc

tn
)Wtn(x) (18) 

with . M given above in (16) and 

.Wtn(x) = √
Δ

M⎲
i=1

ξ i (x)Wi
tn

(19) 

for the particular case of the RSW model. In practice, however, we first generate the 
increments in (18) for . η only and then we use them together with a geostrophic 
balance assumption to compute the corresponding noise increments for the two 
components of . uc

tn
. That is, for the RSW model we work mainly with . M(ηc

tn
)(ζ ) =

(∇ηc
tn

·ζ ) which corresponds to a transport noise. The novelty of the current work is 
that we replace the spatial Gaussian noise .Wtn(x) in (7) with a general noise . Nn(x)

such that 

.m̂tn+1 − m̂tn ≈ M(mc
tn
)Nn (20) 

where .Nn has an unknown distribution which is modelled using a diffusion 
Schrödinger bridge. 

To ensure that the noise . Nn is divergence-free, we generate a scalar random 
field . Ñn such that .Nn = ∇⊥Ñn. In other words, . Ñn sastisfies a hyperbolic partial

3 Here we can observe one more time the challenges posed by transport noise in general (and SALT 
noise in this particular case) as this always involves calculating derivatives corresponding to both 
the model variable m and the (noise) variable . ζ . In other words, the operator . M and the variable . ζ
are inherently intertwined. 
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differential equation 

.m̂tn+1 − m̂tn = −C(m
f
tn
)∇⊥Ñn (21) 

where C is a low-pass filter as defined in [6] Section 3. We refer to Section 3 in [6] 
for the detailed procedure we use to solve this partial differential equation. 

3 Score-Based Generative Models: Diffusion Schrödinger 
Bridge 

Score-based generative models are a recent trend in generative modelling and have 
achieved state-of-the-art results in several benchmark tasks in Machine Learning 
(cite some). In general, generative models are used to generate previously unseen 
samples from an underlying probability distribution which is typically available 
only through a dataset of samples. The generation of new samples is performed 
by a learned model which represents the unknown distribution of the training 
data either implicitly or explicitly. Classical examples of generative models in the 
literature include, among many others, Gaussian Mixture Models (GMMs), Hidden 
Markov Models (HMMs), Autoregressive Models [21], Variational Autoencoders 
(VAEs) [13], Generative Adversarial Networks (GANs) [8], Energy-Based Models 
(EBMs) [14], Normalising Flows [16] and, most recently, Diffusion Generative 
Models [7, 10, 18–20]. A comprehensive review of the field of generative modelling 
with diffusion models is provided in [22]. Note that, since the data distribution is 
typically a distribution over a very high-dimensional state-space, neural networks 
are the standard choice for the underlying parametric model in nearly all generative 
models used nowadays. 

Although there are several different types of diffusion models in the literature, 
they all follow a common principle. That is, the data is being gradually diffused by 
successively adding noise (we call this below a noising process) until it becomes 
essentially a sample from a pure noise distribution, such as a Gaussian with known 
mean and covariance. Then, one can reverse the noising process to generate samples 
from the unknown data distribution by drawing a pure noise sample and running the 
reverse diffusion process. This is called the denoising process. 

In this work, we are focusing on a specific type of score-based diffusion known as 
the Diffusion Schrödinger Bridge (DSB) model, developed in [7]. Broadly speaking, 
the DSB model is an extension of the classical score-based diffusion model by 
an optimal transport procedure known as iterative proportional fitting (IPF) which 
allows to iterate the score-based diffusion training and can work with shorter noising 
and denoising processes as a result. In the following subsection we outline the basics 
of the DSB model following [7].
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3.1 Learning Diffusion Schrödinger Bridge 

The noising process is modelled by a forward Markov Chain .{Xk}Nk=0 on . Rd such 
that 

. Xk+1 = Xk + γk+1f (Xk) + 2γk+1Vk+1, k = 0, . . . , N,

where .{Vk+1}k ∼ N (0, 1) are i.i.d. Gaussian random variables, . f : R
d → R

d

is a drift function and .{γk}k are typically small stepsize parameters. The symbol . 1
denotes the identity matrix. We assume the initial density .X0 ∼ p0 = pdata . The  
joint density p of the Markov Chain .X0:N = (X0, . . . , XN) can be decomposed into 
the corresponding forward transition densities .{pk+1|k}k as follows 

p(x0:N= {xk}N 
k=0 

∈ (Rd )N+1 ) = p0(x0) 
N−1Π
k=0 

pk+1|k(xk+1|xk). 

Similarly we can write down the backward decomposition 

. p(x0:N) = pN(xN)

N−1Π
k=0

pk|k+1(xk|xk+1) = pN(xN)

N−1Π
k=0

pk(xk)pk+1|k(xk+1|xk)

pk+1(xk+1)
,

where .{pk}k are the marginal densities and .{pk|k+1}k are the reverse transition 
densities. The methodology is based on sampling from .pdata using the reverse 
decomposition initialized at .pN = pprior. To achieve this, we need to approximate 
the reverse transition densities. To this end note the earlier assumption that the 
backward transitions are normally distributed as 

. pk+1|k(xk+1|xk) = N (xk+1; xk + γk+1f (xk), 2γk+11)

Then we apply a Taylor approximation (see [7]) to get 

. 

pk|k+1 (xk | xk+1) = pk+1|k (xk+1 | xk) exp
[
logpk (xk) − logpk+1 (xk+1)

]

≈ N (xk; xk+1 − γk+1f (xk+1)

+2γk+1∇ logpk+1 (xk+1) , 2γk+11)

Then, the backward transitions are Gaussian, with a drift depending on the 
parameters f and .{γk}k and on the score functions .{∇ logpk}k . Note that we can 
integrate out the initial density from the marginals such that 

.pk+1(xk+1) =
∫

p0(x0)pk+1|0(xk+1|x0)dx0
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and thus 

. ∇ logpk+1(xk+1) = Ep0|k+1 [∇xk+1 logpk+1|0(xk+1|X0)].

The conditional expectation above is intractable, but the joint distribution is 
available through samples, so we can use regression to find it 

. sk+1 = argmin
s

Ep0,k+1

[IIIIs (Xk+1) − ∇xk+1 logpk+1|0 (Xk+1 | X0)
IIII2] ,

where .|| · || denotes the .L2-norm on . Rd . We can thus learn a parametrised 
approximation of the score (all scores simultaneously) 

. sθ*(k, xk) ≈ ∇ logpk(xk)

via Denoising Score Matching (Vincent 2011) as 

. θ* = argmin
θ

N⎲
k=1

Ep0,k [||sθ (k,Xk) − ∇xk
logpk|0(Xk|X0)||2].

So we estimate the score function and then sample .X0
approx∼ pdata using the 

diffusion started at .pN ≈ pprior such that 

. Xk = Xk+1 − γk+1f (Xk+1) + 2γk+1sθ*(k + 1, Xk+1) + √
2γk+1N (0, 1).

Let .PN+1 be the space of sequences of probability densities of length .N + 1. In  
the Schrödinger Bridge framework, we consider the joint density .p ∈ PN+1 of the 
Markov Chain X and we want to find a density .π* ∈ PN+1 such that 

.π* = argmin
{
KL(π | p) : π ∈ PN+1, π0 = pdata , πN = pprior

}
, (22) 

where for any two probability densities p and q over a space . X , 

. KL(p||q) =
∫

X
p(x) log

(
p(x)

q(x)

)
dx

denotes the Kullback-Leibler divergence4 between probability distributions. 
Assuming . π* is available, a generative model can be obtained by sampling 
.XN ∼ pprior , followed by the reverse-time dynamics . Xk ∼ π*

k|k+1 (· | Xk+1)

for .k ∈ {N − 1, . . . , 0}.

4 Note that the Kullback-Leibler divergence is not a distance in a strict mathematical sense because 
it is not symmetric. Hence the name divergence. 
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A well-known solution method to find a minimum of 22 is iterative proportional 
fitting (IPF). Initialised at .π0 = p(x0:N) this method defines the following iterative 
process 

. 

π2n+1 = argmin
{
KL

(
π | π2n

)
: π ∈ PN+1, πN = pprior

}

π2n+2 = argmin
{
KL

(
π | π2n+1

)
: π ∈ PN+1, π0 = pdata

}

A positive result for the feasibility of IPF in our setting is provided in Proposition 1 
below. 

Proposition 1 (Proposition 2 in [7]) Assume that . KL
(
pdata ⊗ pprior | p0,N

)
<

+∞. Then for any .n ∈ N, π2n and .π2n+1 admit positive densities w.r.t. the Lebesgue 
measure denoted as . pn resp. . qn and for any .x0:N ∈ X , we have . p0 (x0:N) =
p (x0:N) and 

. qn (x0:N) = pprior (xN)

N−1Π
k=0

pn
k|k+1 (xk | xk+1) , pn+1 (x0:N)

= pdata (x0)

N−1Π
k=0

qn
k+1|k (xk+1 | xk)

In practice we have access to .pn
k+1|k and .qn

k|k+1. Hence, to compute .pn
k|k+1 and 

.qn
k+1|k we use 

. pn
k|k+1 (xk | xk+1) = pn

k+1|k (xk+1 | xk) pn
k (xk)

pn
k+1 (xk+1)

, qn
k+1|k (xk+1 | xk)

= qn
k|k+1 (xk | xk+1) qn

k+1 (xk+1)

qn
k (xk)

.

The following Proposition 2 details a possible loss function to use in the training 
of the DSB model, known as Mean Matching. Different variations to be used for 
training can be found in [7]. 

Proposition 2 (Proposition 3 in [7]) Assume that for any .n ∈ N and . k ∈
{0, . . . , N − 1}, 

. qn
k|k+1 (xk | xk+1) = N

(
xk;Bn

k+1 (xk+1) , 2γk+1I
)
, pn

k+1|k (xk+1 | xk)

= N
(
xk+1;Fn

k (xk) , 2γk+1I
)
,

with .Bn
k+1(x) = x + γk+1b

n
k+1(x), F n

k (x) = x + γk+1f
n
k (x) for any .x ∈ R

d . Then 
we have for any .n ∈ N and .k ∈ {0, . . . , N − 1}
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. 

Bn
k+1 = argmin

B∈L2(Rd ,Rd)
Epn

k,k+1

[IIII B (Xk+1) − (
Xk+1 + Fn

k (Xk) − Fn
k (Xk+1)

)IIII2] ,

F n+1
k = argmin

F∈L2(Rd ,Rd)
Eqn

k,k+1

[IIII F (Xk) − (
Xk + Bn

k+1 (Xk+1) − Bn
k+1 (Xk)

)IIII2] .

Note that, here, we use neural networks . Bβn(k, x) ≈ Bn
k (x) and Fαn(k, x) ≈ Fn

k (x)

to parametrise the unknown drifts in the transition densities. We describe the DSB 
training process according to the chapter [7]. For pseudocode of this algorithm, 
the reader may refer to [7]. Roughly speaking, the transition densities (drifts) for 
both the forward and backwards noising and denoising processes are modelled 
by a collection of neural networks. The initial joint density .p(x0:N) is given 
from a random initialisation of the networks. Each DSB iteration consists of a 
forward and backward run. The first step is a forward iteration, where we take 
samples from the dataset and diffuse them according to the dynamics given by the 
noising process with the parameterised forward net. The losses collected during the 
forward iterations are applied to the backward nets. In the inner backward iterations 
we sample from the prespecified prior density (Gaussian) and run the denoising 
process according to the backward net. In the backward iterations we apply the 
gradient descent steps for the forward nets. The inner iterations are each run until 
convergence. In practise, a prespecified number of iterations that we tune. 

4 Numerical Results 

In the following we describe our numerical results using the DSB method on the 
non-dimensionalised rotating shallow water equations. On a general note, we found 
that the method of generating noise from a generative model is generally stable 
and we obtain suitable new noise samples from the trained model. In our setup we 
generate the noise as an integral of the velocity perturbations used in the SPDE 
model, akin to a streamfunction in classical GFD. Therefore, the output from the 
generative model is subject to the application of a gradient. Thus, a small percentage 
of the data produces large gradients which can lead to instabilities in the numerical 
evolution of the SPDE. We mitigate this problem by clipping large gradients. Note 
that this is not expected to be problematic for two reasons. Firstly, the amount of 
clipped data locations is small and secondly, we are interested in the overall spatial 
correlations in the generated noise, which remains intact after clipping the gradients 
because large gradients primarily occur in the boundary regions. 

4.1 Fine vs Coarse Scale 

We use an initial height field for . η given by
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. η0(x, y) = 1 − a

2
atan(

y

Ly

− 1

2
) + a sin

(
2πx

Lx

)
+ a

2
sin

(
2πx

Lx

)
sin

(
πy

Ly

)4

,

where the domain is the rectangle .[0, Lx]×[0, Ly]. We use the domain . [0, 1]×[0, 1]
in our simulations. Moreover, .a ∈ R is a parameter. We chose .a = 0.1. The initial 
condition for the nondimensional simulation is computed from the initial .η-field 
using the geostrophic balance condition. This condition in dimensional form for the 
dimensional velocity component . vd in y-direction reads as 

. f dvd = g
∂ηd

∂xd
,

where .g = 9.81 m
s2

is the gravitational constant and . f d is a parameter associated 
with the Coriolis force. The superscript d indicates dimensional variables through-
out. In non-dimensional form, we have 

. f0f Uv = g
Δη

LΔx
↔ v = 1

f

Ro

Fr2
∂η

∂x

where U is a typical velocity scaling, . f0 is a typical Coriolis scaling and L is a 
typical length scale. Here, . Ro denotes the Rossby number and . Fr denotes the Froude 
number. The simulations are run at .Ro = 0.2 and .Fr = 1.1. Thus also for the non-
dimensional velocity component in x-direction we have the geostrophic balance 
condition 

. u = − 1

f

Ro

Fr2
∂η

∂y
.

The finally used initial condition is scaled so that the initial u and v variables are 
.O(1) on the domain. 

We use the intermediate fields during the spin-up of the system as a qualitative 
sanity check to verify that the solutions on the fine and coarse grids diverge as the 
flow progresses. Specifically, we expect to observe fine-scale features (waves) to 
develop in the fine-grid simulation, which are not resolved in the coarse scale run. 
Indeed, the plot in Fig. 2 shows that this is indeed occurring. 

4.2 Training Data 

We generate the training data as solutions of the hyperbolic calibration equation 
through a forward run of the fine-scale PDE. The collected solutions are thought of 
as stream functions for the velocity perturbations of the SPDE and are assumed to be 
sampled from a fixed (in time) probability distribution that we aim to model through 
the generative model. To ease the training, we perform a nonlinear transformation
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Fig. 2 Snapshot of non-dimensional height variable at fine and coarse run after 4150 fine scale 
timesteps. We can observe the development of fine scale features which are absent (unresolved) in 
the coarse field 

(arcsinh-transform) [12] of the obtained data and normalise the values globally 
to the interval .[0, 1]. This is standard practise in Machine Learning and Statistics. 
Specifically, let .Ψ : Ω → R denote a solution of the calibration equation. Then we 
transform it using 

. Ψ̂ = 1

ϑ
arcsinh(ϑΨ)

with parameter .ϑ = 2e5. The transformed dataset .{Ψ̂i}i is then normalised to the 
range .[0, 1] by 

. ψi = Ψ̂i − mini,x,y Ψ̂i(x, y)

maxi,x,y(Ψ̂i(x, y) − mini,x,y Ψ̂i(x, y))
.

Samples from the training set are displayed in Fig. 3a and the pixel distribution 
across all samples after transformation and normalisation is depicted in the his-
togram in Fig. 4a.
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Fig. 3 Training Samples and Samples from the generative model. Samples of the training data 
after transformation. The fields are outputs of the calibration equation thought of a stream functions 
for the velocity perturbations in the SPDE. The data have been transformed by a arcsinh 
transformation and normalized to the interval .[0, 1]. Samples from the generative model. (a) 
Training samples. (b) Generated samples 

Fig. 4 (a) Distribution of pixelvalues throughout the whole training data set. The data transforma-
tion has been choosen s.th. the pixel values achieve a good coverage of the data range .[0, 1]. This  
way the model can better distinguish between variations in shade.(b) Distribution of pixelvalues in 
central grid locations in the generated dataset, i.e. the output from the generative model 

4.3 Generative Model Output 

Samples from the generative model output after training are shown in Fig. 3b. The 
model has been trained for 5 DSB Iterations using 30 diffusion steps. These samples 
are subsequently reverse-transformed and the gradients are applied to convert the 
stream function information into velocity perturbations. The distribution of velocity
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perturbations (here for the velocity component u) at some central grid locations is 
depicted in the boxplots in Fig. 4b. It shows that the median of the generated noise 
distributions at each of the grid locations is close to zero and their magnitude rarely 
exceeds 1, as we expect in a non-dimensional simulation. The boxplots also reflect 
the fact that we clip the noise data at a magnitude of 3 to avoid instabilities due 
to outliers. The plot shows that the amount of data clipped is negligible as it is 
well within the outlier regime at all gridpoints. Moreover, the generative noise is 
not Gaussian. We perform a one-sample Kolmogorov-Smirnov Test to show that 
the generated noise is not Gaussian. Specifically, we use the velocity perturbations 
computed from the generative model noise to inspect the distribution in different 
spatial locations on the computational grid (.8 × 8 = 64 total locations). For each 
location, we perform independent KS-tests for normality, which show that at none 
of the tested locations could we detect a normal distribution of the generated noise 
(p-value less than 0.05) (Fig. 5). 

4.4 Forecast Studies 

The aim of the generative model is to produce a distribution for the noise in the 
rotating shallow water model that is advantageous for the modelling of the effects 
of unrepresented small scales (see e.g. Fig. 8). To this end, we use the established 
ensemble and forecast metrics root mean square error (RMSE) and continuous 
ranked probability score (CRPS). We also use rank histograms. The forecasts are 
produced from a forward ensemble run of the SPDE with different noises for 
comparison. The first noise is the generative model noise, which we compare to 
two different typed of Gaussian noises. One is a Gaussian with the same overall 
mean and variance as the generative model, i.e. a Gaussian with covariance . σ1, 
where .σ ∈ R is the standard deviation of the dataset obtained as the output from 
the generative model. The second Gaussian noise has a diagonal covariance that is 
varies in space given as .diag(σ ), where .σ ∈ Rmn×mn is the vector of the standard 
deviations of the generated noise at all individual spatial locations. The forecasts are 
run for a lead time of 200 calibration time steps and then reset to the fine PDE value 
from which the ensemble is relaunched launched. Additionally, we apply a normally 
distributed perturbation to each ensemble, to represent initial uncertainty. We chose 
three different scenarios here, one is a scenario of no initial incertainty, then small 
initial uncertainty with variance .0.0012 and a large initial uncertainty scenario with 
variance .0.052. 

The results of the CRPS score are depicted in Fig. 6 below and the results 
of  the RMSE metric are  shown in Fig. 7. Both metrics show better forecasts for 
the generative model in case of no and low initial uncertainty in the ensemble. 
Especially the forecast results for the height variable are significantly better in the 
generative noise setting. The results in the u and v variables are somewhat less 
pronounced (Fig. 8).
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Fig. 5 Distribution of the generated noise values compared to Gaussians at every pixel in a central 
region. A Kolmogorov-Smirnov one-sample test has been performed to check if the data come from 
a normal distribution. The hypothesis was rejected for all locations indicating that the generated 
noise does not come from a simple normal distribution 

The forward run ensembles are also assessed for a longer duration with ensem-
bles of 10 particles for 1000 calibration steps, without resetting to the truth. We 
produce rank histograms from those runs using repetitions with different noise 
samples. Here, we compare the generative model noise to a Gaussian with the same 
overall mean and variance as the generative model. The results are shown in Fig. 9. 
Figure 9a shows the rank histograms for the Gaussian noise which are overall more 
uniform than the clearly overdispersed Gaussian ensembles in Fig. 9b.
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 6 CRPS Scores at forecast times for a lead time of 200 calibration timesteps for all three 
shallow water variables (u,v, and e). We plot them for different initial noise standard deviations: 
no noise (. 0.0), small noise (.0.001) and large noise (.0.05). The graphs show the results for three 
different velocity perturbation distributions. Blue lines show the generative model noise, green 
lines are diagonal gaussian noise with spatially independent variance, and orange is gaussian noise 
with the same variance in all locations. We observe that small initial noise shows an advantage of 
the generative model, which fades away as initial uncertainty becomes large. Also, the generative 
model performs significantly better in the implicit variable e. (a) Variable  u, Std  . 0.0. (b) Variable  
v, Std . 0.0. (c) Variable  e, Std . 0.0. (d) Variable  u, Std .0.001. (e) Variable  v, Std .0.001. (f) Variable  
e, Std .0.001. (g) Variable  u, Std .0.05. (h) Variable  v, Std .0.05. (i) Variable  e, Std . 0.05

5 Conclusions and Future Work 

In this work the feasibility of using modern generative models for the generation 
of appropriate noise distributions in stochastic models for subgridscale effects in 
fluid dynamics has been investigated. To this end we implemented a Diffusion 
Schrödinger Bridge model for the generation of Rotating Shallow Water noise and 
performed a comparative study of the generated ensemble in terms of established 
forecast metrics, RMSE and CRPS. The results show that the generative model 
samples display an advantage over the gaussian noise ensemble in the case of low 
initial uncertainty. This result indicates that the generative model is more effective
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 7 RMSE scores at forecast times for a lead time of 200 calibration timesteps for all three 
shallow water variables (u,v, and e). We plot them for different initial noise standard deviations: 
no noise (. 0.0), small noise (.0.001) and large noise (.0.05). The graphs show the results for three 
different velocity perturbation distributions. Blue lines show the generative model noise, green 
lines are diagonal gaussian noise with spatially independent variance, and orange is gaussian noise 
with the same variance in all locations. We observe that small initial noise shows an advantage of 
the generative model, which fades away as initial uncertainty becomes large. Also, the generative 
model performs significantly better in the implicit variable e. (a) Variable  u, Std  . 0.0. (b) Variable  
v, Std . 0.0. (c) Variable  e, Std . 0.0. (d) Variable  u, Std .0.001. (e) Variable  v, Std .0.001. (f) Variable  
e, Std .0.001. (g) Variable  u, Std .0.05. (h) Variable  v, Std .0.05. (i) Variable  e, Std . 0.05

at capturing the fine scale effects on the coarse dynamics than an Gaussian noise 
ensemble. 

In future work, we will compare the generative model noise against a model 
using a Karhunen-Loeve decomposition of the dataset, according to the previously 
developed method in [6]. Moreover, studies on different underlying fluid models 
need to be performed in addition to this initial study on the rotating shallow water 
equations.
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Fig. 8 Ensemble plot for forward runs of the SPDE with generative model noise. We compare the 
evolution of the fine scale PDE projected onto the coarse grid with the evolution of the PDE run on 
the coarse grid and an ensemble with generative noise at a central grid location. Horizontal axis is 
time 

Fig. 9 Rank histograms. (a) Rank Histograms of the generative noise ensemble with a given 
forecast horizon. (b) Rank Histograms of the Gaussian noise ensemble with a given forecast 
horizon
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Collisions of Burgers Bores with 
Nonlinear Waves 

Albert Dombret, Darryl D. Holm, Ruiao Hu, Oliver D. Street, 
and Hanchun Wang 

1 Introduction 

Our topic is the nonlinear momentum exchange between surface waves and the 
currents which carry them. For example, the wind stress creates waves and swells 
on the sea surface. Those sea surface waves may then exchange momentum with the 
fluid flow at the surface. We model the last step via a composition-of-maps approach 
in which waves are taken as a degree of freedom which exchanges momentum and 
energy with the fluid current that carries them. 

Our composition-of-maps approach models nonlinear surface waves as propagat-
ing in the reference frame of the fluid velocity at the surface. The total momentum 
of the system may be written as the sum of wave momentum and fluid momentum 
in the fixed Eulerian frame. By Newton’s 2nd Law, the time rate of change of this 
total momentum equals the true force acting on the fluid flow in an inertial frame. 
However, the acceleration of the fluid velocity is only part of the rate of change 
of this total force. Thus, the acceleration of the fluid velocity appears to acquire 
an additional fictitious force (such as the Coriolis force, or Craik-Leibovich force) 
when experienced in the non-inertial reference frame of the fluid velocity. 

The non-inertial force in the fluid frame arising from the shift of the fluid 
momentum by the addition of the wave momentum in the Eulerian frame can be 
regarded as an additional source of circulation around a Lagrangian loop carried 
by the fluid velocity. As with the Coriolis force or the Craik-Leibovich vortex 
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force, the difference in fluid velocity circulation dynamics induced by measuring the 
fluid velocity circulation relative to the wave velocity circulation can be exhibited 
by calculating the Kelvin theorem for the full system and subtracting out the 
wave velocity contribution to the circulation integral. To treat this wave-current 
momentum interaction dynamics, a theory based on the composition of the fluid 
flow map and the wave dynamics map has been developed recently in [13, 14]. 

This wave-current momentum interaction dynamics can be illustrated in 1D by 
setting up an initial condition for a wave-current ‘collision’ in which, for example, 
a Burgers ramp/cliff solution (an advancing B-bore velocity profile of the fluid 
current) overtakes a set of KdV nonlinear dispersive wave packets in its path. The 
numerical simulations in the present work show for these initial conditions that 
when the B-bore overtakes the KdV wave packets, the large fluid velocity gradient at 
the leading edge of the B-bore can rapidly feed the amplitude of the KdV waves so 
much that—in the frame of motion of the Burgers leading edge—the KdV solution 
can incorporate part of the Burgers velocity and carry it forward ahead of the new 
Burgers leading edge as a compound wave. 

Physically, though, real bores driven by the tide and advancing up the Severn river 
for example tend not to show this numerically simulated formation of compound 
waves. Instead, they tend to show a train of small amplitude surface waves which 
have been swept up and embedded in the shallow ramp profile behind the advancing 
front of the bore [5]. This qualitative difference in behaviour is found in numerical 
simulations in the present work to depend on the balance between nonlinearity and 
dispersion in the KdV equation. Namely, as the dispersion coefficient is raised 
at fixed nonlinearity coefficient the behaviour of the KdV waves in the B-KdV 
system can switch their behaviour from being passively incorporated into the 
Burgers velocity profile to actively incorporating part of the Burgers momentum 
and breaking away run ahead of the Burgers front as a compound wave. See Fig. 4 
for a comparison of simulation results. 

Thus, from the viewpoint of the present work, this different behaviour in our 
simulations of the B-KdV system arises because of a bifurcation depending on the 
balance between the KdV nonlinearity and the KdV dispersion and perhaps also 
with the Burgers nonlinearity. This type of bifurcation study is in progress also 
for the wave-current interaction of Burgers currents and waves governed by the 
nonlinear Schrodinger (NLS) equation. However, a discussion of the study for B-
NLS collisions will be deferred to future work. For the treatment of wave-current 
interaction between NLS waves carried by Euler fluid motion in two-dimensions, 
see [13, 14]. 

2 Modelling Considerations 

Previous work has shown that in models of wave mean flow interaction (WMFI), 
although the mean flow may not itself create waves, the interaction of the mean 
flow with existing waves can have strong effects both on the mean flow and on
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the waves, [14]. In this chapter, we will exhibit a geometric approach to wave-
current interaction based upon composition of maps introduced in [14], which we 
illustrate by considering two examples of a bore—whose dynamics is governed 
by the Burgers equation—overtaking a set of water waves governed either by the 
Korteweg-de Vries (KdV) equation in one example, or by the nonlinear Schrödinger 
(NLS) equation in the other. The dynamics of all three of these types of water waves 
are well known. However, the application of the method of composition of flow 
maps to the collision interaction of a Burgers bore overtaking a set of nonlinear 
shallow water waves seems to be new. 

The present work aims to investigate nonlinear wave-current interactions in 
their simplest forms, in one dimension (1D) on the real line . R. Even in 1D these 
interactions of different types of waves can be profound. In particular, we investigate 
overtaking interactions of ramps-and-cliffs shaped bore solutions of the inviscid 
Burgers equation,1 

. ut + 3uux = 0 ,

interacting with: 

1. Korteweg-de Vries (KdV) soliton solutions governed by 

. vt + 6vvx + γ vxxx = 0 .

As for the Burgers equation, the KdV equation is Galilean invariant in the sense 
that a given solution .v(x, t) remains a solution when ‘boosted’ into a moving 
frame by replacing x with .x + ct everywhere in .v(x, t) so that 

. v(x, t) I→ v[c](x, t) = v(x + vt, t).

2. The Nonlinear Schrödinger (NLS) 

. ih̄ψt = −1

2
ψxx + κ|ψ |2ψ ,

describes wave packets for a complex variable (wave function) .ψ(x, t). It has 
two types of solution known as focusing .(κ < 0) and de-focusing .(κ > 0). The  
amplitude of the solution is given by .|ψ |2 = ψ∗ψ .

1 The factor of 3 in the PDE form of the inviscid Burgers equation here signals the geometric 
notation to be used later for Lie transport by vector field . u# acting on a 1-form-density, e.g, 
.Lu# (mdx ⊗ dx) ≃ (mux + (mu)x)dx2 with .m = u and . u#. 

In the KdV equation, though, the factor of 6 in the nonlinearity is traditional, following [4, 10, 
22]. The relevance of the ratio of coefficients of the nonlinearity and dispersion in the KdV equation 
for the qualitative result of collisions of the Burgers bore with KdV waves is demonstrated in Fig. 4 
of Sect. 4. 
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The nonlinear Schrödinger equation is Galilean invariant in the sense that a 
given solution .ψ(x, t) remains a solution when ‘boosted’ into a moving frame by 
replacing x with .x + ct everywhere in .ψ(x, t) while also multiplying by a phase 
factor of .e−iv(x+ct/2) so that 

. ψ(x, t) I→ ψ[c](x, t) = ψ(x + ct, t) e−ic(x+ct/2).

Remark 2.1 Although one might expect that the Burgers bores would either 
‘snowplow’ the waves ahead or run them over whenever it encounters them, the 
coupled nonlinear wave equations will tell a different story. In fact, as we shall 
discuss, the interactions of Burgers bores with KdV and NLS solutions can be much 
more profound than a simple ‘snowplow’ effect. 

Approach The equations governing wave-current dynamics in two dimensions 
have been derived and exemplified in [14]. The equations governing the coupling 
dynamics exemplified here between the Burgers ramps-and-cliffs2 and the KdV and 
NLS solitons will be derived following the work of [14]. Namely, the Bore-Soliton 
equations treated here will be derived by Hamilton’s principle in a variational 
framework which couples the sum of two Lagrangians for the separate bore and 
soliton degrees of freedom via insertion of a vector field representing the Burgers 
current velocity into a 1-form density representing the momentum map for each 
type of soliton. A variant of this general approach was introduced by Dirac and 
Frenkel [9] in coupling the Schrödinger equation probability current density J with 
the electromagnetic field vector potential A to study linear nonrelativistic quantum 
electrodynamics (QED). The quantum-classical .(J · A) coupling of Schrödinger 
wave functions and Maxwell fields is known to produce profound cooperative 
effects, such as stimulated emission of radiation. The present work investigates what 
effects may occur when the Burgers current velocity is coupled to the dynamics 
of two well-known nonlinear wave soliton equations KdV and NLS via their 
momentum maps arising in their corresponding phase-space variational principles. 

2.1 Examples 

2.1.1 Burgers-KdV (B-KdV) Dynamics 

For 1D wave-current interaction in the B-KdV case, the approach discussed here 
amounts to the composition of the two smooth invertible maps that govern the 
dynamics of the two continuum variables comprising the respective solutions for the 
bore momentum 1-form density (.u dx2 ∈ Λ1(R) ⊗ Den(R)) and the KdV soliton

2 Although the Euler-Poincaré variational derivation produces the inviscid Burgers equation, both 
global well-posedness of solutions and stability of the numerical simulations of the Burgers ramp-
and-cliff dynamics require viscous regularisation. 
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density (.v dx ∈ Den(R)). The Burgers velocity vector field .u# := u∂x ∈ R is 
tangent to the right action of smooth invertible maps of the real line . R onto itself 
by the diffeomorphism Lie group. The same map governs KdV dynamics, except 
it is augmented by the Gel’fand-Fuchs 2-cocycle, which introduces the third-order 
dispersion term in KdV and which together with the diffeomorphisms comprises 
the Bott-Virasoro Lie group. Thus, the interaction of these two types of coherent 
structures for Burgers ramps-and-cliffs and KdV solitons will be governed by the 
composition of two time-dependent, smooth, Lie-group transformations of the real 
line . R onto itself, in which one of these maps is extended by the Gel’fand-Fuchs 
2-cocycle. 

As discussed below in Sect. 4, Hamilton’s principle for the sum of Lagrangians 
for Burgers and KdV equations coupled via the product of the fluid velocity and 
the wave momentum map yields the Burgers-KdV system of partial differential 
equations,3 

. ∂tu + 3uux = −v ∂x

(
γ vxx + 3v2

)
,

∂tv + ∂x(uv) = − ∂x

(
γ vxx + 3v2

)
. (2.1) 

The right-hand sides of these equations arise represent the coupling between the two 
individual equations. The KdV dynamics for its potential velocity . v dx = φx dx =
dφ can be regarded as being ‘swept’ or ‘advected’ as a density by the velocity vector 
field, . u#, of the Burgers fluid current as, 

. (∂t + Lu#)u dx2 = − d
(
γ vxx + 3v2

) ⊗ v dx ,

(∂t + Lu#)v dx = − d
(
γ vxx + 3v2

)
. (2.2) 

However, this ‘advection’ is not passive. Numerical simulations presented in 
Figs. 1 and 2 demonstrate that the solutions of the B-KdV dynamics in Eq. (2.1), 
and their geometric equivalents in Eq. (2.2), have a significant impact on the Burgers 
velocity vector field . u#, which ‘sweeps’ these solutions. 

The figure below shows the typical Burgers-KdV overtaking collision. 

2.1.2 Burgers-NLS 

The Burgers Ramp/Cliff solution and the NLS solitons interact quite differently 
from the interactions of Burgers Ramp/Cliff solutions and the KdV solitons. The 
Lie-Poisson form and the canonical Hamilton’s canonical equations represented by 

3 The Burgers-KdV system in (2.1) is not in the same category as the Burgers-KdV equation in 
[23].
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Fig. 1 The plots show the evolution of the mean-flow Burgers rightward velocity u and the wave 
parameter v in the coupled Burgers-KdV system of equations in (2.1) from for a small viscosity 
of .ν = 0.01 in the Burgers equation to stabilise the numerical simulation. At time .t = 0, the  
Burgers bore overtakes the KdV soliton. At time .t = 50s the Burgers bore has started transferring 
momentum to the KdV wave and a wave moving rightward in the Burgers frame is developing. At 
time .t = 100s one sees the compound Burgers-KdV wave advancing ahead of the Burgers bore 
and leaving behind a leftward moving KdV wave train as viewed from the leading edge of the 
instantaneous Burgers motion. (a) t = 0s, (b) t = 50s, (c) t = 100s, 

Fig. 2 (a) At time .t = 0, the Burgers bore overtakes the 1st of three identical rightward moving 
KdV waves in the Burgers frame. (b) At time  .t = 3s, the Burgers bore has started transferring 
momentum to the first KdV wave, a KdV wave moving leftward in the frame of the bore is 
developing and the leading 2nd and 3rd KdV waves are beginning to create small Burgers waves. 
(c) At time 6 s, the 1st KdV wave has transferred most of its momentum to the 2nd (middle) 
KdV wave and a KdV wave train is moving leftward. (d) At time 8 s, momentum transfer from 
the bore has restored the amplitude of the 1st KdV wave and the 2nd KdV wave is overtaking 
the 3rd (rightmost) one. (e) At time t=11 s, the 2nd KdV wave has transferred its momentum to 
the rightmost 3rd wave and both of them have entrained part of the bore in becoming compound 
travelling waves. (f) At t=14s, all three KdV waves have become rightward moving compound 
Burgers-KdV travelling waves. The middle wave will eventually overtake and transfer momentum 
to the leading wave, so that the heights of the compound waves will be ordered in velocity 

the polar decomposition .ψ = √
Nexpiφ for the Burgers-NLS interaction are given 

by 

.

(∂t + Lu#)(u − N∂xφ)(dx ⊗ dx) = 0 ,

(∂t + L
u#+φ

#
x
)(N dx) ,

∂tφ + uφx = −1

2
φ2

x − (
√

N)xx

2
√

N
+ F '(N) .

(2.3)
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Fig. 3 This plot illustrates the evolution of the mean-flow velocity u and the wave function 
amplitude .|φ|2 in the coupled Burgers-Nonlinear Schödinger (Burgers-NLS) system of equations 
treated in section 5. The Burgers equation ramp/cliff solution is regularised by viscosity of . ν1 = 0.1
in this case and dissipation .ν2 = 0.1 has been added to the NLS equation to reduce the frequency 
of its phase oscillations. At time .t = 0, figure (a) shows that the Burgers bore starts to overtake 
the NLS Gaussian wave packet. Between .t = 3 and .t = 10, figure (b)-(e) shows the bore is clearly 
transferring momentum to the NLS wave package. At .t = 15, figure (f) shows that a compound 
Burgers-NLS wave advances ahead of the ramp/cliff formation of the bore 

The Fig. 3 shows an solution of the Burgers-NLS interaction Eq. (2.3) which is 
derived and discussed in Sect. 5. 

Plan of the Chapter 

• Section 3 provides the background materials for shallow water waves and in 
one spatial dimensions. The examples of inviscid Burgers’, Korteweg–De Vries 
(KdV) and Camassa Holm (CH) equations are discussed. 

• Section 4 discusses the Burgers-Korteweg-de Vries (B-KdV) results. In partic-
ular, Fig. 4 demonstrates the sensitivity of these results to the balance between 
nonlinearity and dispersion in the KdV nonlinear wave subsystem of the B-KdV 
collision. Additionally, we briefly consider the introduction of stochasticity into 
the B-KdV equations via the approach of Stochastic Advection by Lie Transport 
(SALT). 

• Section 5 derives the one dimensional coupling of Burgers dynamics to the NLS 
equations. Note that this is a 1D analogue of the 2D coupling of Euler to NLS 
considered in [14]. 

• Section 6 provides a brief summary of the results in this chapter and an outlook 
for further developments.
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Fig. 4 These figures represents the wave-current interaction with different dispersion strengths 
.γ = 1, and .γ = 2 at a fixed value of 6 for the KdV nonlinearity coefficient. Figure (a)–(d) shows  
that for .γ = 1 a compound wave is excited and propagates ahead away from the bore. In contrast, 
figure (e)–(h) shows  that  for .γ = 2, the KdV wave moves along with the bore front 

3 EPDiff and Shallow Water Waves 

3.1 Introduction to Wave Equations 

Wave equations are evolutionary equations for time dependent curves in a space of 
smooth maps .C∞(Rn, V ) for solutions, .u ∈ V , taking values in a vector space V . 

.∂tu = f (u) , or ∂tui(x, t) = fi(ui, ui,j , ui,jk, ui,jkl, . . . ) . (3.1) 

Typically, V is . R or . C, .n = 1. We are interested in the Cauchy problem. Namely, 
solve (3.1) for .u(x, t), given the initial condition .u(x, 0) and boundary conditions 
.u(x|∂D, t). 

Travelling Waves The simplest wave solution is called a travelling wave. This 
solution is a function u of the form 

. u(x, t) = F(x − ct) ,

where .F : R → V is a function defining the wave shape, and c is a real number 
defining the propagation speed of the wave. Thus, travelling waves preserve their 
shape and simply translate to the right at a constant speed, c. 

Plane Waves A complex-valued travelling wave, called a plane wave, plays a 
fundamental role in the theory of linear wave equations. The general form of a plane 
wave velocity is 

. u(x, t) = ℜe(Aei(kx−ωt)),

where . |A| is the wave amplitude, k is the wave number, . ω is the wave frequency, 
and .cp = ω/k is the speed along the oscillating waveform.
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3.2 Conservation Laws 

Conservation laws for evolutionary equations of the form .ut = f (u) satisfy 

. 
d

dt

∫
F(u) dx =

∫
δF

δu
ut dx =

∫
δF

δu
f (u) dx =

∫
dG(u) = 0 ,

for some functions F and G of u and its derivatives, and for suitable boundary 
conditions. 

For example, the inviscid Burgers equation 

.ut + uux = 0 , (3.2) 

has an infinite number of conservation laws, given by . Cn = ∫
un

n
dx

. 
dCn

dt
= d

dt

∫
un

n
dx =

∫
un−1ut dx = −

∫
unux dx

= −
∫

1

n + 1
∂xu

n+1 dx = − 1

n + 1

∫
d(un+1) = 0 , (3.3) 

for homogeneous boundary conditions and any integer n. 
Even so, the solutions of the inviscid Burgers equation carry the seeds of their 

own destruction, since they exhibit wave breaking in finite time. That is, without 
dissipation or dispersion their velocity profile would develop a negative vertical 
slope in finite time. This is shown in the proof of the following Lemma. 

Lemma 3.1 (Steepening Lemma for the Inviscid Burgers Equation) Suppose 
the initial profile of velocity .u(0, x) for the inviscid Burgers equation (3.2) has an 
inflection point of negative slope .ux(0, x(0)) < 0 located at .x = x(0) to the right of 
its maximum, and otherwise it decays to zero in each direction sufficiently rapidly 
for all of its conservation laws in Eq. (3.3) to be finite. Then the negative slope at 
the inflection point will become vertical in finite time. 

Proof Consider the evolution of the slope at the inflection point, defined by . s(t) =
ux(x(t), t). Then the inviscid Burgers equation (3.2) yields an evolution equation 
for the slope, . s(t). Namely, using .uxx(x(t), t) = 0 the spatial derivative of Eq. (3.2) 
leads to 

.
ds

dt
= − s2 =⇒ s(t) = s(0)

1 + s(0)t
. (3.4) 

Thus, if .s(0) < 0, the slope at the inflection point .s(t) will become increasingly 
more negative, until it becomes vertical at time .t = −1/s(0). ⨅⨆
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3.3 Survey of Weakly Nonlinear Water Wave Equations: KdV 
and CH 

The derivation of weakly nonlinear water wave equations starts with Laplace’s 
equation for the velocity potential of an inviscid, incompressible, and irrotational 
fluid moving in a vertical plane under gravity with an upper free surface, as, e.g., in 
[24]. 

The equations are then expanded in the small parameters .ϵ1 = a/h and . ϵ2 =
h2/l2. Here  .ϵ1 ≥ ϵ2 > ϵ21 and a, h, and l denote the wave amplitude, the mean 
water depth, and a typical horizontal length scale (e.g., a wavelength), respectively. 
Length is measured in terms of l, height in h and time in . l/c0. The elevation . η is 
scaled with a and fluid velocity u is scaled with .c0a/h. Here, .c0 = √

gh is the 
linear wave speed for undisturbed water at rest at spatial infinity, where u and its 
derivatives . ux and .uxx are taken to vanish. 

The result of the expansion to quadratic order in . ϵ1 and . ϵ2 is the equation for the 
surface elevation . η (see e.g. [24], p. 466), while higher order terms (HOT  ) can be 
found in e.g. [25], 

. 0 = ηt + ηx + 3

2
ϵ1 η ηx + 1

6
ϵ2 ηxxx − 3

8
ϵ21 η2 ηx

+ ϵ1ϵ2

(
23

24
ηx ηxx + 5

12
η ηxxx

)
+ ϵ22

19

360
ηxxxxx + HOT (3.5) 

where partial derivatives are denoted by subscripts. 
Next, following Kodama [17, 18] one applies the near-identity transformation, 

. η = u + ϵ1 f (u) + ϵ2 g(u) ,

to the .η-Eq. (3.5) and seeks functionals .f (u) and .g(u) that consolidate the terms 
of order .O(ϵ21) and .O(ϵ1ϵ2) in (3.5) into one order .O(ϵ22) term under normal form 
transformations. This procedure produces the following 1+1 quadratically nonlinear 
Camassa-Holm (CH) equation for unidirectional water waves with fluid velocity, 
.u (x, t) and momentum .m = u − α2uxx , with constant .α 2 = (19/60)ϵ2, see  [8], 

.mt + c0ux + ϵ1

2
(umx + 2mux) + ϵ2

3

20
uxxx = 0 . (3.6) 

After these normal form transformations, Eq. (3.6) is equivalent to the shallow 
water wave Eq. (3.5) up to, and including, terms of order .O(ϵ22). For  . α

2 positive, 
Eq. (3.6) becomes the Camassa-Holm equation derived and shown to be completely 
integrable in [3]. Hereafter, we will take .α2 = 0 and leave the Burgers-CH 
interaction for later work. 

For .α2 = 0, Eq. (3.6) remains completely integrable, as it restricts to the 
Korteweg-de Vries (KdV) equation,
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.ut + c0ux + 3u ux + γ uxxx = 0 , (3.7) 

which admits the soliton solution .u(x, t) = u0 sech2((x−ct)
√

u0/γ /2), . c = c0+u0
see, e.g., [1]. 

Remark 3.1 (Interacting Solutions at Different Orders) The higher order terms 
in the asymptotic expansion of the nonlinear shallow water wave equations in 
Eq. (3.5) represent degrees of freedom that are not accessed by the lower order 
terms.4 

This observation in combination with the Galilean invariance of the Burgers 
equation and the KdV equation at the next order of the expansion then raises the 
following question: What happens when a KdV solution is boosted into the time-
dependent frame of motion of a Burgers solution? This is the question we address 
in the present work. 

4 Burgers–Korteweg-de Vries (KdV) Collisions 

In 1D, we consider Hamilton’s principle for the formulation of the Burgers-KdV 
equations where the Lagrangian is given by the sum of the kinetic energy of the 
Burgers’ solution and the Whitham Lagrangian for the KdV solution as follows, 

.

0 = δS = δ

∫ T

0
𝓁 (u, φ) dt ,

𝓁 (u, φ) :=
∫

R

1

2
|u|2 + 1

2
φx (φt + uφx) +

(
φ3

x − γ

2
φ2

xx

)
dx .

(4.1) 

In Hamilton’s principle (4.1), the variation in u is constrained to have the form . δu =
∂t ξ − adu ξ obtained from the Euler-Poincaré theory [16]. The arbitrary variation . ξ

and the variation . δφ are assumed to be arbitrary and vanishing at endpoints . t = 0
and .t = T . As we will see, invoking Hamilton’s principle with this Lagrangian 
yields KdV dynamics in the frame of motion of the Burgers equation, and the KdV 
dynamics acts back directly on the Burgers dynamics. 

Computing the variations in u and . φ in (4.1) yields 

.0 = δS =
∫ T

0

〈
u + φ2

x

2
, δu

〉
− (φtx + (uφx)x + γφxxxx + 3φxφxx , δφ) dt

4 This remark also applies to the asymptotic expansion of the corresponding Lagrangian in 
Hamilton’s principle for the underlying fluid theory. See Gjaja and Holm [11] for discussion of 
the further benefits of applying asymptotic expansions of Hamilton’s principle in hierarchies of 
fluid dynamical approximations. 
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=
∫ T 

0

〈
u + 

v2 

2 
, ∂t ξ − adu ξ

〉
− (∂tv + (uv)x + γ vxxx + 3vvx , δφ) dt 

=
∫ T 

0

〈( 
∂t + ad∗

u 
) (

u + 
v2 

2

)
, ξ

〉

− (∂tv + (uv)x + γ vxxx + 3vvx , δφ) dt , (4.2) 

where in the second line we have inserted the constrained variations of u and 
introduced the one-form .v dx = φx dx. In Eq. (4.2), the angle bracket operation 
.( m , ξ ) : (Λ1(R) ⊗ Den(R)) × X(R) → R denotes the . L2 dual pairing

(m ,  ξ ) :=
∫

R 
ξm  dx  :=

∫

R 
(ξ∂x) (mdx)dx , (4.3) 

where (ξ∂x) (mdx)dx denotes insertion of a vector field .ξ∂x into a differential 
1-form density .m dx ⊗ dx, which one may be abbreviated as .m dx2 without 
confusion.5 The arbitrary variation in . φ yields the equation 

.∂tv + ∂x(uv + γ vxx + 3v2) = 0 , (4.4) 

where we see that v, the solution that corresponds to the KdV part of the flow, is 
swept along by the HB u-solution. That is, the one-form .v dx is Lie transported 
by the vector field . u∂x . In terms of the Lie derivative . Lu# , one can write the v-
equation (4.4) in coordinates on the real line as, 

.
(
∂t + Lu#

)
(v dx) = (

∂tv + ∂x(uv)
)
dx = − d(γ vxx + 3v2) , (4.5) 

where the exterior derivative d represents the spatial differential. 
The arbitrary variations in . ξ yields dynamics for the total momentum 1-form 

density m, defined by 

.m := δ𝓁 /δu = u + 1

2
v2 . (4.6) 

Noting that .ad∗
u# m = Lu#m when m is a one-form density, the dynamics of m can 

be written as 

. 
(
∂t + Lu#

)
(m dx2) = (

mt + (∂xm + m∂x)u
)
dx2 = 0 , with m := u + 1

2v
2 ,

(4.7) 

where we have used the coordinate expression of .Lu# on one-form densities. Thus, 
we may collect the Lie derivative forms of the Burgers-KdV equations as

5 For a review of differential form notation and usage in fluid dynamics see [12]. 
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.
(
∂t + Lu#

)
(m dx2) = 0 and

(
∂t + Lu#

)
(v dx) = − d

(
γ vxx + 3v2

)
. (4.8) 

A short calculation to eliminate .m = u + 1
2v

2 in favour of u in (4.7) using the 
v-equation in (4.4) finally shows that the results of Hamilton’s principle in Eq. (4.2) 
yields the system in Eq. (2.1). 

Hence, the velocity equation and the momentum density equation in (4.8) 
together imply via the product rule for the Lie derivative that 

. 

(
∂t + Lu#

)
(u dx2) = − 1

2

(
∂t + Lu#

)
(v2 dx2)

= − (vdx) ⊗ (∂t + Lu#)(v dx) ,

so that (ut + 3uux)dx2 = (vdx) ⊗ d(vxx + 3v2) = (
v ∂x(γ vxx + 3v2)

)
dx2 .

(4.9) 

Thus, Eq. (4.8) provide the geometric forms of the .(u, v) mutual interaction wave-
current system in (4.8). 

.

∂tu + 3uux = − v ∂x

(
γ vxx + 3v2

)
,

∂t v + ∂x(uv) = − ∂x

(
γ vxx + 3v2

)
.

(4.10) 

Remark 4.1 Homogeneous boundary conditions have been enforced for all spatial 
integrations by parts in the previous proof of the Euler-Poincaré equations arising 
from the Lagrangian in Eq. (4.1). The definition .v dx = dφ implies that the quantity 
.v = ∫

R
v(x, t) dx is constant in time for vanishing boundary conditions as . |x| →

∞. 

Remark 4.2 (Hamiltonian Formulation for the Burgers-KdV Interaction) 
Upon writing the KdV velocity as .v := φx and using (4.6) to write the Burgers 
kinetic energy in terms of m and v, the natural Hamiltonian for the combined system 
of KdV ‘waves’ interacting dynamically with the Burgers ‘current’ may be taken as 

.h(m, v) =
∫

R

1

2

(
m − 1

2v
2)2 + γ

2
v2x − v3 dx . (4.11) 

The corresponding variational derivatives are given by 

. δh(m, v) =
∫

R

u δm − (
uv + 3v2 + γ vxx

)
δv dx .

Consequently, one may express Hamilton’s equations for the Burgers-KdV equa-
tions as
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.

∂tm = −(
∂xm + m∂x

) δh

δm
= −(

∂xm + m∂x

)
u ,

∂tv = ∂x

δh

δv
= − ∂x(uv + γ vxx + 3v2) .

(4.12) 

The Hamiltonian equations for the Burgers-KdV dynamics in (4.12) may also be  
written in diagonal matrix Poisson operator form, as 

.∂t

[
m

v

]
= −

[
∂xm + m∂x 0

0 ∂x

] [
δh
δm

= u
δh
δv

= (uv + γ vxx + 3v2)

]
. (4.13) 

Here we see that the Hamiltonian structure of the m-equation in (4.13) is Lie-
Poisson, as expected from the Euler-Poincaré reduction. We also see the second 
Hamiltonian structure for the KdV equation, whose Poisson operator is simply the 
spatial partial derive . ∂x . This Hamiltonian structure does not involve introducing 
the Bott-Virasoro Lie algebra, as needed for the other Hamiltonian structure with 
the Hamiltonian .

1
2

∫
R

v2dx in order to capture the dispersive term .γ vxxx in the KdV 
equation [19]. 

Remark 4.3 (Casimirs for the Diagonal (Untangled) Poisson Operator 
in (4.12)) Casimirs are functionals that Poisson commute with any other functional 
of the Hamiltonian variables, in this case .(m, v). In general, the variational 
derivative of a Casimir functional is a null eigenvector of the Poisson operator. 
In the present case, the Casimirs are 

. Cm =
∫

R

√
m dx and Cv =

∫

R

v dx .

In addition, for the present case, the Poisson brackets among the moments 
.fm(v) = ∫

R
vm dx commute among themselves, 

. {fm, fn} = 0 .

Remark 4.4 (The Tangled Poisson Operator (4.12)) Transforming variables in 
the Hamiltonian in (4.11) from .h(m, v) to .h(u, v), by substituting 

.u = m − 1
2v

2 , (4.14) 

leads to the equivalent Hamiltonian, 

.h(u, v) =
∫

1

2
u2 − γ

2
v2x + v3 dx . (4.15) 

The corresponding equivalent equations in Hamiltonian form in the transformed 
variables .(u, v) may be expressed in terms of the semidirect product Lie-Poisson
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equations with a generalised 2-cocycle as 

. ∂t

[
u

v

]
= −

[
u∂x + ∂xu v∂x

∂xv ∂x

] [
δh
δu

= u
δh
δv

= γ vxx + 3v2

]

= −
[
3uux + v∂x(γ vxx + 3v2)
∂x(uv) + ∂x(γ vxx + 3v2)

]
. (4.16) 

Evolution under the Lie-Poisson bracket corresponding to the Poisson operator in 
Eq. (4.16) is given by 

.
df

dt
= {f, h}(u, v) = −

∫

R

[
δf/δu

δf/δv

]T [
u∂x + ∂xu v∂x

∂xv ∂x

] [
δh/δu

δh/δv

]
dx . (4.17) 

The Poisson bracket in Eq. (4.17) is the sum of a Lie-Poisson bracket dual to 
the semidirect-product Lie algebra .X(R)�Den(R) of vector fields .X(R) acting 
on densities .Den(R) on the real line . R with dual coordinates .u ∈ X∗(R) and 
.v ∈ Den∗(R) plus constant antisymmetric bracket with . ∂x in the .{v, v} position, 
inherited as a central extension from the bi-Hamiltonian structure of the KdV 
equation. By skew symmetry of the Poisson operator in this bracket operation under 
the . L2 pairing, the equations in (4.16) preserve the Hamiltonian .h(u, v) in Eq. (4.15) 
above, since of course {h,h} vanishes identically. 

Numerical Method In the numerical study, we use the pseudo-spectrum method 
supported by Dedalus Project [2]. The computational domain is discretized into 
32,768 points over a length of 256 units, utilizing a .3/2 dealiasing factor to ensure 
accuracy in the Fourier spectral representation. We use a semi-implicit backward 
differentiation formula (SBDF4) scheme with a fixed timestep of .10−6. 

4.1 Introducing Stochasticity into Burgers-KdV via the SALT 
Approach 

Ideal fluid dynamics in the Eulerian representation admits a Lie symmetry reduced 
Euler-Poincaré formulation [16]. In turn, the Euler-Poincaré formulation defines 
advective transport in ideal Eulerian fluid dynamics in terms of the Lie derivative 
operation. The Stochastic Advection by Lie Transport (SALT) approach introduces 
stochasticity into the Euler-Poincaré formulation of ideal fluid dynamics as a 
semimartingale for the transport velocity, 

.dxt = u(x, t)dt +
N⎲

i=1

ξi(x) ◦ dWi
t , (4.18)
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thereby preserving the geometric form of the deterministic equations. In fact, the 
drift velocity .u(x, t) is the deterministic fluid transport velocity and the . ξ ’s are 
determined from principle component analysis of observed or simulated data, as 
discussed in [6, 7]. 

Since we have formulated the Burgers-KdV equations (4.8) in terms of determin-
istic Lie transport, we may reformulate them in SALT form as 

. 
(
d + Ldxt

)
(m dx2) = 0 and

(
d + Ldxt

)
(v dx) = − d(γ vxx + 3v2)dt ,

with m := u + 1
2v

2 . (4.19) 

An analysis of these SALT HB-KdV equations is deferred and will be discussed 
elsewhere. 

5 Burgers: Nonlinear Schrödinger (B-NLS) Collisions 

Consider the following application of Hamilton’s principle for the Burgers-NLS 
dynamics, with .F(N) = κN2, 

. 

0 = δS = δ

∫ T

0

∫

R

u2

2
− N (φt + uφx) − N

2
φ2

x − 1

2
(∂x

√
N)2 + F(N) dxdt ,

=
∫ T

0

∫

R

(u − Nφx)δu +
(

− (
φt + uφx

) − 1

2
φ2

x + (
√

N)xx

2
√

N
+ F '(N)

)
δN

+ (
Nt + ∂x

(
N(u + φx)

)
δφ dxdt .

(5.1) 

To check these equations, consider the NLS Hamiltonian in the fixed laboratory 
frame: 

.HLab(N, φ) =
∫

N

2
φ2

x + 1

2

(
∂x

√
N)2 − F(N)

)
dx , (5.2) 

with variations 

.δHLab =
∫ (

1

2
φ2

x + (
√

N)xx

2
√

N
− F '(N)

)

δN + (−∂x(N∂xφ)) δφ dx . (5.3) 

In the laboratory frame one then has Hamilton’s equations 

.

∂tφ = − δHLab

δN
= − 1

2
φ2

x − (
√

N)xx

2
√

N
+ F '(N) ,

∂tN = δHLab

δφ
= − ∂x(Nφx) .

(5.4)
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In the Burgers frame of motion, we have .δu = ∂t ξ − aduξ and the Hamiltonian 
.H(N, φ) is boosted into the Burgers frame by adding the momentum map coupling 
term 

. H(N, φ) = HLab(N, φ) +
∫

uNφx dx .

The Lie-Poisson form and the canonical Hamilton’s canonical equations in the 
Burgers frame then become 

.

(∂t + Lu#)
(
(u − N∂xφ)(dx ⊗ dx)

)
= 0 ,

(∂t + L(u+φx)# )(N dx) = 0 ,

(∂t + Lu#)φ = −1

2
φ2

x − (
√

N)xx

2
√

N
+ F '(N) .

(5.5) 

These boosted canonical equations in geometric form reveal the transport operations 
in the B-NLS equations and they agree with the results of Hamilton’s principle 
in Eq. (5.1) when their coefficients are collected. In particular, though, they reveal 
where stochastic transport may be properly added in the B-NLS system. Namely, the 
addition of stochastic transport to the vector fields . u# or . φ#

x may be added separately 
or together, provided the stochastic transport vector fields are uncorrelated. 

6 Conclusion and Outlook 

This chapter has derived and simulated 1D self-consistent models of wave-current 
interaction equations modelled by Burgers motion transporting KdV nonlinear wave 
evolution special initial conditions modelling the overtaking collisions of Burgers 
bores with KdV and NLS waves. In each case, we have stressed the generality of the 
derivations of the wave-current interaction equations via the composition-of-maps 
variational approach by writing the wave-current collision equations in coordinate-
free differential form to reveal their geometric structure. We have also simulated the 
B-KdV and B-NLS equations computationally in order to illustrate their fascinating 
solution behaviour. 

B-NLS wave-current collisions can be generalised to higher dimensions. In fact, 
the composition-of-maps approach for the coupling of ideal Euler fluid dynamics to 
NLS waves via composition of maps in 2D has already been derived, investigated, 
simulated and discussed in detail in [14]. However, the complexity of the 2D 
interactions of fluid flow with NLS waves seen in [14] warrants 1D investigation 
to better illustrate the rich solution behaviour in a simpler context. 

The coupled wave-current models studied here were also made stochastic using 
the SALT approach which preserves the variational derivations. The effects of 
stochasticity in other Burgers—nonlinear wave interactions also deserve further 
investigation.
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Average Dissipation for Stochastic 
Transport Equations with Lévy Noise 

Franco Flandoli, Andrea Papini, and Marco Rehmeier 

1 Introduction 

Stochastic transport (and advection, not discussed in this chapter) attracts more and 
more attention for its potentialities to describe small scale turbulence in several 
models and applications, see for instance the volumes [7–9] or the application to 
raindrop formation [15] and turbulence in pipes [2], among many others. Small 
scale turbulence is described by stochastic processes, space-dependent, either given 
a priori or inferred from data. Most models deal with white noise or Ornstein– 
Uhlenbeck processes, the first basic paradigms for any investigation of this kind. 
However, turbulent signals may be more complex. Two classes of processes seem to 
be the first ones to be considered after Gaussian noise: Fractional Gaussian noise, 
and .α-stable processes. The first one has been considered in [10], reporting some 
preliminary results. In this chapter we give some preliminary results on .α-stable 
processes, which seem to be the first of its kind. We also include a list of questions 
for future work in this direction. 

The property of turbulent fluids we want to emphasize is the additional dissipa-
tion produced by turbulent eddies. In the white noise case this has been widely 
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investigated, see for instance [8] and the references therein. Here, we consider 
this property in the case of .α-stable transport noise. The most interesting case is 
undoubtedly when this transport noise models the small scales acting on the large 
ones in nonlinear models, but such a case is still too difficult in the .α-stable case. 

We note that the significance of noise in modeling turbulence phenomena lies 
in its role as a surrogate for elements omitted by deterministic mathematical 
models. For example, in scenarios like the formation of vortices due to boundary 
irregularities noise plays a crucial role. While the intricate mechanisms underlying 
vortex generation are still unclear, incorporating this phenomenon into models on a 
phenomenological basis is imperative to capture its observable macroscopic effects. 
Rather than to search for an exhaustive physical portrayal of vortex creation, the 
approach is to embrace a phenomenological perspective. In particular, using the 
empirical observation of vortex emergence near obstacles and their effect, hence 
integrating this observation into the equations, despite the inherent complexity of 
the process. To do so, we use impulsive forces that are introduced in equations to 
emulate the sudden alterations in flow behavior caused by vortex emergence. These 
impulsive forces act as surrogates for the impact of irregularities on fluid motion. 
Acknowledging the random nature of these impulsive events, their generation time is 
often assumed to follow a random pattern as well. Mathematically, this randomness 
is often modeled using a family of Poisson processes, commonly employed to 
represent stochastic events happening over time. Depending on the behavior of such 
random pattern a limit to a continuous Brownian noise can be obtained, but in case 
of a real boundary lacking symmetry, it is not clear that such a limit can always 
be performed and as such it is mandatory to focus on more realistic jump-diffusion 
processes. 

As a primer, in this chapter we limit ourselves to linear transport of a scalar 
quantity, for instance heat, by an .α-stable noise. Even in this simplified setting, 
many difficult technical questions emerge. The first one is which notion of integral 
should be used. In the Gaussian white noise case the basic rule is to choose 
a noise providing the correct invariance (conservation) properties. This leads to 
Stratonovich noise. In the .α-stable case the same invariance is given by the so-
called Markus noise. This type of stochastic integral has already been developed 
in the literature, both in the finite- and infinite-dimensional case [1, 3, 11, 12]. 
Its main advantage is that it preserves the ordinary rules of calculus for general 
Lévy processes as integrators. In this sense, the Marcus integral can be considered a 
natural extension of the Stratonovich integral. Indeed, for diffusion integrators, both 
integral notions coincide. We briefly review its definition in Sect. 2. 

Given the model, the noise and the meaning of stochastic calculus, we limit 
ourselves here to investigate the following question: whether the expected value 
of the solution is dissipated, and whether this expected value satisfies a closed 
equation, similarly to the Gaussian noise case. We give affirmative answers to 
these questions: the expected value of the solution to the Marcus-type SPDE (2.1), 
for a suitable choice of an essentially .α-stable symmetric Lévy measure, satisfies 
the second-order parabolic deterministic Eq. (3.4), see Proposition 3.3. The precise 
shape of the operator in (3.4) depends, of course, on the chosen Lévy measure for
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the pure jump Lévy process Z from (2.1). With the aforementioned choice of an 
.α-stable symmetric Lévy measure, the resulting operator is close (but not identical) 
to the .α-fractional Laplacian. 

In order to support our claims, we include numerical simulations, which under-
line the dissipative character of the expected value of the solution to (2.1). We limit 
ourselves to dimension .d = 1, in which an explicit solution can be computed via 
the method of characteristics. We simulate the evolution of the averaged solution 
profile, obtained with Monte Carlo method, showing a decay in both time and space, 
as expected from our theoretical results. More so, starting with a compact supported 
initial condition, we analyze, in Figs. 2b and 3a and b, the decay in time in the origin 
.x = 0, obtaining an asymptotic behavior .∼ β(σ,m, α)t−1/α , with . β depending on 
the velocity field norm, the dimension of the Lévy process, and the parameter . α
of the Lévy measure . ν. This decay corresponds to the one of nonlocal PDEs. We 
remark that the pathwise solution profile shows no dissipativity when . σ is constant 
and .d = 1. It will be interesting to devote future work to the question whether 
pathwise dissipative behavior can be observed as well, for instance by improving 
the mixing property of the velocity field. 

The organization of this chapter is as follows. In Sect. 2, we introduce our model 
and recall the notion and basic properties of Marcus stochastic integral equations. In 
Sect. 3, we state our theoretical results, see in particular Proposition 3.3. We present 
and discuss numerical simulations in Sect. 4 and, finally, pose some open questions 
for future research in Sect. 5. 

2 Stochastic Transport Equations of Marcus-Type 

We consider the following transport Marcus-type SPDE on . R+ × R
d

.du(t, x) = (σ (x)∇u(t, x)) ◆ dZt , u(0, x) = u0(x), (2.1) 

where .σ : Rd → R
d×m and .u0 : Rd → R. Z is an m-dimensional pure jump Lévy 

process on a filtered probability space .(Ω,F , (Ft )t≥0,P), 

. Zt =
∫ t

0

∫
B1(0)

zÑ(dz, ds) +
∫ t

0

∫
B1(0)

c
zN(dz, ds), t ≥ 0,

with Poisson random measure N , Lévy measure . ν (i.e. . ν is a Borel probability 
measure on .Rm with .ν({0}) = 0 and .

∫
Rm min(1, z2)dν(z) < ∞), and . Ñ(dz, dt) =

N(dz, dt)−1B1(0)ν(dz)dt . Here .B1(0) denotes the Euclidean ball in .R
m with radius 

1 centered at 0, and .B1(0) its closure. We make specific choices for . σ and . ν below. 
The symbol . ◆ denotes the Marcus stochastic integral, i.e. (2.1) is understood in the 
following integral sense:
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.u(t, x) = u0(x) +
∫ t

0

∫
B1(0)

eσzu(s−, x) − u(s−, x) Ñ(dz, ds) (2.2) 

+
∫ t 

0

∫
Rm\B1(0) 

eσz  u(s−, x)  − u(s−, x)N(dz,  ds)  

+
∫ t 

0

∫
B1(0) 

eσz  u(s−, x)  − u(s−, x)  − ∇u(s−, x)  

· (σ (x)z) dν(z)ds, (t, x) ∈ R+ × Rd , 

where for .z ∈ R
m and .f : Rd → R, .eσzf denotes the solution g of 

.∂tg(t, x) = ∇g(t, x) · (σ (x)z), g(0, x) = f (x), (2.3) 

evaluated at . t = 1. Here  s- denotes the left limit of .s ∈ R. When . σ and f are 
sufficiently regular, the solution to this first-order linear transport PDE is unique 
and given by .g(t, x) = f (φt,0(x)), where .(t, x) I→ φt,0(x) is the inverse of the 
unique solution flow .(t, x) I→ φ0,t (x) for the ODE 

. ∂tφ0,t (x) = −σ(φ0,t (x))z, φ0,0(x) = x

on .R × R
d . 

Remark 2.1 The choice of Marcus-type integral over the more commonly used 
Stratonovich or Itô-type integral stems from the physical property that we want to 
maintain when using jump-diffusion processes in our SPDE. In particular it is the 
only integral that passes to the limit without additional terms, maintaining the usual 
properties of calculus, when considering .C∞ approximations of the active noise in 
the problem. Note that this is exactly the same reason why most of this theory is 
developed with the Stratonovich-type integral when considering Brownian noise. 

We recall the following definition and result from [11]. 

Definition 2.2 An .(Ft )-adapted random field .u : R+ × R
d × Ω → R is a solution 

to (2.1), if it is a càdlàg .C2-semimartingale and (2.2) is satisfied for .P-a.e. .ω ∈ Ω. 

Proposition 2.3 If .u0 ∈ C2
b(Rd) and .σ ∈ C4

b(Rd ,Rd×m), then there is a unique 
solution to (2.1), and it is given by 

. u(t, x) = u0(ϕt,0(x)),

where .(t, x) I→ ϕt,0(x) denotes the inverse of the stochastic flow of the Marcus-SDE 

.ϕ0,t (x) = x −
∫ t

0
σ(ϕ0,s−(x)) ◆ dZt , t ≥ 0, x ∈ R

d .
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The definition of solution to this SDE is similar to the infinite-dimensional case, 
precisely it is given by 

. ϕ0,t (x) = x −
∫ t

0

∫
B1(0)

Ψz(ϕ0,s−(x)) − ϕ0,s−(x) dÑ(dz, ds)

−
∫ t

0

∫
Rm\B1(0)

Ψz(ϕ0,s−(x)) − ϕ0,s−(x) dN(dz, ds)

−
∫ t

0

∫
B1(0)

Ψz(ϕ0,s−(x)) − ϕ0,s−(x) − zσ (ϕ0,s−(x)) ν(z)ds,

where .Ψz(y) denotes the solution to 

. ∂tf (t) = zσ (f (t)), t ∈ R, f (0) = y ∈ R
d ,

evaluated at . t = 1, see [12] and [1, Ch.4,6]. 

2.1 Special Cases 

We are specifically interested in the case .d = 1, .σ(x) = σ ∈ R
m constant and 

.ν = C
|z|m+α dz, where C is either a constant depending on m and .α ∈ (0, 2), or a  

function of z. In this case, the solution to (2.3) is given by .g(t, x) = f (x + σ · zt), 
and the last integral term in (2.2) simplifies to 

. 

∫ t

0

∫
B1(0)

u(s−, x + σ · z) − u(s−, x) − ∇u(s−, x)σz dν(z)ds.

Moreover, in this case we have .ϕ0,t (x) = x − σ · Zt . Since for any choice of . σ and 
. ν both stochastic integrals from (2.2) are martingales, taking expectation yields 

. E[u(t, x)] − E[u0(x)] = E

[ ∫ t

0

∫
B1(0)

u(s−, x + σ · z)

− u(s−, x) − ∇u(s−, x)σz dν(z)ds

]
, (2.4) 

where we write .E[X] = ∫
Ω

X dP for a random variable .X : Ω → R, provided the 
integral is defined. Also note that for .d = 1, every divergence-free vector field is 
constant.
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3 Averaged Enhanced Dissipation 

We started our investigation with the following question: is the expected value of 
the solution dissipated? If so, does it satisfy some closed equation? 

In this section we give affirmative answers to these questions proving the 
following: 

Claim 3.1 Under suitable hypotheses on the initial condition and on the Lévy 
noise, let u be the unique solution of (2.1) in the sense of Definition 2.2. Then, 
.U(t, x) := E[u(t, x)] satisfies the second-order parabolic deterministic equation 
with an operator dependent on the Lévy measure and close (but not identical) to the 
.α-fractional Laplacian. 

Let .d = 1, . σ be constant, and . ν have a radially symmetric density (for instance, 
the classical symmetric .α-stable density . 1

|z|m+α ), and set .θ := |σ |. Then, due to the 
radial symmetry, the RHS of (2.4) without expectation, i.e. for each fixed .ω ∈ Ω, 
equals 

.

∫ t

0

∫
B1(0)

u(s−, x + θz1) − u(s−, x) − ∇u(s−, x)θz1 dν(z)ds, (3.1) 

where we denote by . zi the i-th component of .z = (z1, . . . , zm) ∈ R
m. In order to 

further calculate this integral, we need the following lemma. Below, we denote by 
. π1 the canonical projection .π1 : Rm → R, .π1(z) = z1. 

Lemma 3.2 Let .α ∈ (0, 2). 

(i) Set .να := 1
|z|m+α dz. Then 

. να,1 := ν ◦ π−1
1 = C(m, α)

|y|1+α
dy,

with 

. C(m, α) = |Sm−2|
∫ ∞

0
(1 + r2)−

m+α
2 rm−2dr < ∞,

where .|Sm−2| denotes the surface area of .Sm−2, the unit sphere in .R
m−1. 

(ii) Let .ν1,α := 1B1(0)(z)
1

|z|m+α dz. Then 

. ν1,α,1 := ν1,α ◦ π−1
1 = C(y,m, α)

|y|1+α
dy,

with 

.C(y,m, α) := 1[−1,1](y)|Sm−2|
∫ √

1−y2

|y|

0
(1 + r2)−

m+α
2 rm−2dr, y ∈ R.
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Proof 

(i) Let .A ∈ B(R), and for .z = (z1, . . . , zm) ∈ R
m, write .z' = (z2, . . . , zm). Then 

. να,1(A) = να(A × R
m−1) =

∫
A

∫
Rm−1

(z2
1 + |z'|2)− m+α

2 dz1dz'

=
∫

A

|z1|−m−α

∫
Rm−1

(
1 + |z'|2

z2
1

)− m+α
2

dz'dz1

=
∫

A

|z1|−1−α

∫
Rm−1

(1 + |z'|)− m+α
2 dz'dz1

=
∫

A

C(m, α)|z1|−1−αdz1,

where the third equality follows from the transformation rule and the final one 
by calculating the inner integral by spherical coordinates. 

(ii) Due to the definition of .ν1,α , the proof is similar to the first part. 
⨅⨆

To convey our further procedure, first consider (3.1) with domain of integration . Rm

instead of .B1(0), and choose .ν = C(m, α)−1να . Then, by Lemma 3.2 (i), (3.1) 
equals 

. 

∫ t

0

∫
R

u(s−, x + θy) − u(s−, x) − ∇u(s−, x)θy

|y|1+α
dyds.

Inserting in (2.4) and interchanging the expectation with the temporal and spatial 
integral as well as with the gradient shows that .U(t, x) := E[u(t, x)] solves 

.∂tU(t, x) = LαU(t−, x), (3.2) 

where the operator . Lα is defined by 

. Lαf (x) :=
∫
R

f (x + θy) − f (x) − ∇f (x)θy

|y|1+α
dy.

Note that (3.2) is a deterministic, nonlocal second-order parabolic equation for the 
expected value of .u(t, x), which itself solves (pathwise) (2.1). We point out the 
similarity of . Lα with the fractional Laplacian .(−Δ)α on . R, 

. (−Δ)αf (x) =
∫
R

f (x + y) − f (x) − ∇f (x)y1(−1,1)(y)

|y|1+α
dy.

In fact, for .θ = 1 and .α > 1, .Lα = (−Δ)α , since in this case .
∫
B1(0)c

y

|y|1+α dy = 0.
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Now, in order to take into account the proper domain of integration .B1(0) in (3.1), 
we repeat the previous lines with the choice 

.ν = |Sm−2|−1ν1,α. (3.3) 

Then, similarly to (3.2), we arrive at 

.∂tU(t, x) = L1,αU(t−, x), (t, x) ∈ R+ × R, (3.4) 

satisfied by .U(t, x) = E[u(t, x)], where we set 

. L1,αf (x) :=
∫ 1

−1
f (x + θy) − f (x) − ∇f (x)θy dν1,α,1(y)

=
∫ 1

−1
c(m, α, y)

f (x + θy) − f (x) − ∇f (x)θy

|y|1+α
dy

with 

. c(y,m, α) :=
∫ √

1−y2

|y|

0
(1 + r2)−

m+α
2 rm−2dr.

For the finite positive weight .c(y,m, α), we note .c(y,m, α)
|y|→1−−−→ 0, and that 

.c(y,m, α) is symmetric around .y = 0. Since .c(y,m, α) is bounded on . (−1, 1), by  
Taylor formula .L1,αf (x) is well-defined and finite for any .α ∈ (0, 2), .x ∈ R, and 
.f ∈ C2(R). The latter is satisfied for .x I→ u(t−, x), for every .t ≥ 0 and .P-a.e. 
. ω ∈ Ω, as well as for .x I→ U(t−, x), for every .t ≥ 0. Interchanging the expectation 
with the temporal and spatial integral in (3.1) is justified, since u is given as in 
Proposition (2.3) and since . ϕ is a stochastic flow of smooth diffeomorphisms, see 
[1, Thm.6.10.10]. Therefore, we have arrived at the following result. 

Proposition 3.3 Consider (2.1) for .d = 1, .u0 ∈ C2
b(R), .σ ∈ R

m constant, Z 
with Lévy measure .ν1,α as in (3.3), and let u be the unique solution in the sense of 
Definition 2.2. Then, .U(t, x) := E[u(t, x)] solves (3.4). 

Remark 3.4 Note that Eq. (3.4) is dissipative since it involves a fractional Laplace-
like operator. For such operators, there are results for the decay of solutions, yielding 
a link with our numerical results (see Sect. 4) and the operator .L1,α . More precisely, 
consider 

. ∂tu(t, x) = (−Δ)α/2u(t, x), u(0, x) = u0(x), (t, x) ∈ R+ × R.

There exists a .C0-semigroup .(Sα(t))t≥0 such that .u(t, x) = Sα(t) ∗ u0(x). The  
following estimate in dimension .d = 1 was obtained in [4].
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. ||u(t)||∞ = ||Sα(t) ∗ u0||∞ ≤ t−α/2||u0||1,

where .|| · ||∞ and .|| · ||1 denote the usual .L∞- and .L1-norms, respectively, thus 
showing the dissipative behavior of the solution. This behavior is retrieved also 
numerically (see below), suggesting a similar behavior for .L1,α due to is similarity 
with the fractional Laplacian. 

So far, we were unable to prove similar results for individual paths of the solution 
to (2.1). In fact, the pathwise profile shows no sign of dissipativity (see Fig. 1) in our 
simple special case, where . σ is constant and .d = 1. So, a conclusion on the pathwise 
dissipative behavior and an Ito-Stratonovich diffusion limit-type result is yet to be 
reached. A main reason for this appears to be the absence of any mixing property 
of divergence-free vector fields in dimension .d = 1, yielding the pathwise profile a 
simple translation in time. We expect that in dimension .d > 1 and for suitable vector 
fields as in [5, 6], a pathwise dissipative behavior of the solution to (2.1) solution is 
possible. 

4 Numerical Results 

In order to support the results of the previous section, here we present numerical 
simulations of the SPDE (2.1) in our special case, thereby underlining the dissipative 
character of the expected value of its solution. The code used can be found in [14]. 
As in Sect. 3, we limit ourselves to dimension .d = 1, we consider a constant vector 
field .σ ∈ R

m, and we choose the Lévy measure of the driving pure jump Lévy 
process to be .ν1,α , as defined in Lemma 3.2 (ii). The jump dimension .m ∈ N of the 
Lévy process is arbitrary. Under these assumptions, an explicit solution to (2.1) can 
be computed via the method of characteristics, which can be exploited for simple 
numerical simulations, namely 

.u(t, x;ω) := u0(x + σ · Zt(ω)). (4.1) 

For all simulations below we fixed a smooth bump function . u0(x) :=
exp(− 0.01

0.01−min(0.01,x2)
) as initial condition. The choice of such an initial condition 

are twofold: the first one is to deal with the finite space domain in which the 
numerical simulations is performed, hence selection of a function with sufficiently 
small support. The other reason is to appreciate clearly the transport-like behavior 
of the solution as expressed in (4.1). Nonetheless, in future works it is fundamental 
to tackle a numerical analysis based on different and more physical initial condition. 

To simulate our .α-stable Lévy process trajectory, we need to take into account the 
fact that our choice of Lévy measure .ν1,α neglects large jumps. To this end, using 
the independent increment and self-similarity property, we compute the next step of 
the trajectory by cutting away jumps larger than one and generating a new realization 
until the jump size is sufficiently small. To implement the .α-stable distribution we
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used the R-package Stabledif [13]. The time step is .dt = 10−4, in the range .[0, 2], 
while the space domain is selected to be the interval .[−1, 1]. Note that the Eq. (2.1) 
is posed on . Rd , i.e. there is a slight discrepancy between the equation and our 
numerical simulations that needs to be taken into account when we interpreting the 
results. The support of .suppu0 is sufficiently small so that almost no mass escapes 
the system throughout the time evolution. The space discretization size is selected 
at .dx = 10−3. 

In our numerical analysis, we set our parameters in the range .θ = ||σ|| ∈ [0, 1], 
.α ∈ (0, 2) \ {1} and .m = 1, 2, 5, 10. Our results are qualitatively consistent, and 
we are here analyzing and presenting figures for .θ = 0.5, α = 1.5 and . m = 2. In  
future works, we expect to give a precise quantification of the dependence on these 
parameters or the decay rate in time of the averaged solution. Our results, as of now, 
focus on the qualitative behavior in time for the averaged solution. This behavior 
depends only on the parameter . α of the stable distribution. 

Figure 1 presents a solution trajectory to (2.1) at different times. Precisely, the 
black curve represents the initial condition, while the blue ones show the solution 
profile at times .t = 1/2, t = 1. Similarly, the grey curves represent the times . t =
3/2, t = 2. As expected, the solution trajectories are translations, with no mixing 
property arising from the constant vector field . σ , thus not showing any dissipation. 
The . L2 norm in space is preserved, and even for large times the solution preserves 
energy with an error of .10−14, which is only due to the space domain being finite 
in the simulations. Nonetheless it is clear that the energy is preserved, as expected, 
due to the transport character of (2.1). 
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To show consistency with the theoretical results, we simulate the evolution of the 
averaged solution profile, obtained with Monte Carlo methods over averaging 5000 
samples, as pictured in Fig. 2a and b, showing a decay in both time and space. In 
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the first figure, analogously to the pathwise result, we present the averaged solution 
at different times. The black graph represents the initial condition, while the green 
and purple ones show the average solution at times .t = 1/2, t = 1, respectively, 
and at times .t = 3/2, t = 2 for the red and blue ones. In this case, a diffusive 
behavior is present and a decay in space and time is observed. Concerning the space 
behavior, the profiles are still not smooth. The reason is twofold, one being the 
averaging procedure, the second one arising from the fractional operator obtained 
for the equation modeling the averaged system (i.e. (3.4)) and the corresponding 
small jumps. 

Concerning the decay, particularly care for .x = 0, in which the initial condition 
has its maximum, and note the decay of the averaged solution in time with a power 
law-like asymptotic behavior. 

More so, starting with a compact supported initial condition, we show, in Fig. 3a 
and b, the time decay in the origin .x = 0, with a nonlinear regression to estimate the 
asymptotic and power law-like behavior, linking it to the operator .L1,α proposed in 
the theoretical section. In particular, in Fig. 3a, we performed a regression using the 
insight of Remark 3.4 numerically to show that, with a residual error of less than 
.0.003, we have a decay of the averaged solution in time of the following form: 

. E[u(t, x = 0)] ∼ β(σ,m, α)t−1/α,

with . β depending on .θ := ||σ||, the dimension of the Lévy process .m ∈ N, and the 
parameter . α of the Lévy measure . ν. Here, we have not delved into an analysis of the 
behavior of . β, which could be theoretically examined, as discussed in Remark 3.4. 

Therefore, it is crucial for future research to explore how the strength of . β, and 
consequently the velocity field, interact with the decay of the profile. 

In Fig. 3b, we plot the log-log version of the decay in time, showing the inverse 
asymptotic behavior of the averaged solution profile in space and time and its 
concordance with the results of the theoretical section and the nonlinear regression. 
More so, on the right in Fig. 3b, the tail was analyzed in the time frame . z[500 :
1001] := [0.5, 1], showing a rough behavior, but with respect to the regression line, 
the error is in the range 0.003–0.006, which validates our results. 

5 Conclusions and Open Questions 

In this work we have answered positively the following question: is the expected 
value of the solution dissipated? In fact, under suitable hypothesis on the initial 
condition and on the Lévy noise, the unique solution of (2.1) satisfies a second-order 
parabolic deterministic equation with an operator dependent on the Lévy measure 
and close (but not identical) to the .α-fractional Laplacian. As such this is a first step 
to understand the effect of jump-diffusion processes into fluid motion and the effect 
of modelling turbulence with a noise term. 

We conclude this work with a few questions for future work in this direction.
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(i) Can similar results be obtained for non-constant . σ (in dimension .d ≥ 2)? 
(ii) Related to (i), do vector fields with suitable mixing properties lead to a 

pathwise dissipation result for solutions to (2.1)?
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(iii) Is it possible to obtain precisely the fractional Laplacian as the operator of the 
deterministic Eq. (3.4) instead of .L1,α , and what is the corresponding Lévy 
measure? 

(iv) Which operators does one obtain by choosing Lévy measures in (2.1) which 
are not .α-stable? 
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General Solution Theory for the 
Stochastic Navier-Stokes Equations 

Daniel Goodair 

1 Introduction 

The theoretical analysis of Stochastic Navier-Stokes Equations dates back to the 
work of Bensoussan and Temam [5] in 1973, where the problem of existence 
of solutions is addressed in the presence of a random forcing term. The well-
posedness question for additive and multiplicative noise has since seen significant 
developments, for example through the works [4, 6, 7], [8–10, 18, 23, 37, 39, 44] and 
references therein. The choice of noise to best encapsulate physical properties of this 
fluid equation is in constant study, recently yielding a strong argument for transport 
type stochastic perturbations (where the stochastic integral depends on the gradient 
of the solution). The chapter of Brzeźniak, Capinski and Flandoli [7] in 1992 was 
one of the first to bring attention to the significance of fluid dynamics equations 
with transport noise, whilst such ideas have only recently been cemented through 
the specific stochastic transport schemes of [32] and [43]. In these chapters Holm 
and Mémin establish a new class of stochastic equations driven by transport type 
noise which serve as fluid dynamics models by adding uncertainty in the transport 
of fluid parcels to reflect the unresolved scales. The physical significance of such 
equations in modelling, numerical analysis and data assimilation continues to be 
well documented, see [1, 13–17, 20, 21, 33, 34, 36, 38, 50] and in particular [19] for  
a comprehensive account of the topic. With this motivation our main object of study 
is the Navier-Stokes Equation under Stochastic Advection by Lie Transport (SALT) 
introduced in [32], given by 
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.ut − u0 +
∫ t

0
Lus us ds − ν

∫ t

0
Δus ds −

∫ t

0
B(us) ◦ dWs + ∇ρt = 0 (1) 

where u represents the fluid velocity, .ν > 0 the viscosity, . ρ the pressure,1 . W
is a Cylindrical Brownian Motion, . L represents the nonlinear term and B is a 
first order differential operator (the SALT Operator) properly introduced in Sect. 5. 
Intrinsic to this stochastic methodology is that B is defined relative to a collection 
of functions .(ξi) which physically represent spatial correlations. These .(ξi) can be 
determined at coarse-grain resolutions from finely resolved numerical simulations, 
and mathematically are derived as eigenvectors of a velocity-velocity correlation 
matrix (see [13–15]). 

The newfound attention on this class of equations arrives at a time where 
the analytical literature in stochastic partial differential equations (SPDEs) has 
established itself as one of mathematics’ most exciting prospects. Indeed, Martin 
Hairer’s Fields Medal winning work on regularity structures, [31], gave rigorous 
meaning to a drastically extended class of SPDEs which are ill-defined in standard 
function spaces due to spatial irregularities. At a similar time, Gubinelli, Imkeller 
and Perkowski developed a theory of paracontrolled distributions, [30], which again 
provided a toolkit for the seemingly intractable theory of distribution-valued SPDEs. 
These techniques are of a very different flavour to the more classical variational 
approach pioneered by Étienne Pardoux, [47], whereby the equation is formatted in 
a Gelfand Triple for a noise valued in the Hilbert Space. 

Our Eq. (1), however, finds itself in a structural limbo between these methodolo-
gies. The first-order noise operator introduces a singularity into the Hilbert Space 
of the variational framework, so it fails to fit into this classical theory. The noise, 
though, is still well-defined in traditional function spaces, suggesting that the heavy 
machinery and distribution-tailored approaches of Hairer, Gubinelli et al. are not 
particularly appropriate. Of course (1) is not alone in this, coming as part of a 
substantial class of equations which continue to expand. Figure 2 of [16] gives  a  
brief overview of just some of the deterministic fluid models, each of which can be 
stochastically perturbed through a similarly widening array of variational principles 
(beyond the seminal works [32, 43], see more recently [33, 50]). Therefore, two 
strong arguments for considering a general solution theory for this class of equations 
present themselves: 

1. To complete a highlighted gap in the SPDE literature; 
2. To most efficiently deduce their well-posedness for the purpose of modelling and 

applications. 

The goal of this chapter is to discuss two recent results of this kind, one for 
local-in-time solutions and the other global, demonstrating how these results can be 
applied to obtain the existence and uniqueness of solutions to the Eq. (1) in different

1 The pressure term is a semimartingale, and an explicit form for the SALT Euler Equation is given 
in [50] Subsection 3.3. 
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dimensions, under different boundary conditions, and with differing regularity on 
the initial condition. It is our hope to inspire a similar treatment for related equations. 
The structure of the chapter is detailed now: 

• Section 2 is devoted to the setup of the problem in terms of notation, along with 
the basic stochastic framework. 

• Section 3 covers the local-in-time theory. Section 3.1 details the functional 
framework of the abstract SPDE, and is followed by two sets of assumptions in 
Sects. 3.2 and 3.3. Corresponding solution types and their well-posedness results 
are given in the remaining two subsections. A stronger solution, which we call 
H -valued, is given in Sect. 3.4. A weaker notion follows in Sect. 3.5, named 
U -valued solutions. The role of each solution in terms of the Stochastic Navier-
Stokes Equations is given in Sect. 5. The results of this section are proven in [29]. 
We note that a corresponding theory for inviscid fluid equations is given in [2]. 

• Section 4 is comprised of the global-in-time theory. Following the same structure 
as Sect. 3, the functional framework is detailed in Sect. 4.1 whilst three sets of 
assumptions follow in Sects. 4.2, 4.3 and 4.4. These assumptions build upon each 
other for the corresponding notions of solution: ‘martingale weak solutions’ of 
Sect. 4.5, ‘weak solutions’ of Sect. 4.6 and ‘strong solutions’ of Sect. 4.7. The  
results of this section are proven in [26]. We note that a corresponding theory for 
inviscid fluid equations is given in [51]. 

• Section 5 addresses applications of the above theory to the Eq. (1).  The section is  
split into subsections based upon the domain and boundary conditions imposed: 
Sect. 5.1 considers (1) posed on the torus, Sect. 5.2 on a smooth bounded 
domain with no-slip boundary condition and Sect. 5.3 for the Navier boundary 
conditions. In all cases, the equation is considered in both 2 and 3 dimensions, 
with varied regularity on the initial condition. The spirit of this chapter is to 
demonstrate how the Stochastic Navier-Stokes Equations can be set-up in the 
abstract frameworks, and it is again not our intention to give complete proofs of 
the results here. We remark that a thorough introduction to (1) is given  in  [27], 
and much of the detail of the proofs is provided across [25, 27, 28]. 

2 Preliminaries 

2.1 Elementary Notation 

In the following . O will represent either the N -dimensional torus .TN or a smooth 
bounded domain .O ⊂ R

N . Both are equipped with Euclidean norm and Lebesgue 
measure . λ. We consider Banach Spaces as measure spaces equipped with their 
corresponding Borel .σ -algebra. Let .(X , μ) denote a general topological measure 
space, .(Y, ||·||Y ) and .(Z, ||·||Z ) be separable Banach Spaces, and .(U , 〈·, ·〉U ), 
.(H, 〈·, ·〉H) be general separable Hilbert spaces. We introduce the following spaces 
of functions.
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• .Lp(X ;Y) is the class of measurable p-integrable functions from . X into . Y , . 1 ≤
p < ∞, which is a Banach space with norm 

. ||φ||p

Lp(X ;Y)
:=

∫
X

||φ(x)||p

Y μ(dx).

In particular .L2(X ;Y) is a Hilbert Space when . Y itself is Hilbert, with the 
standard inner product 

. 〈φ,ψ〉L2(X ;Y) =
∫
X

〈φ(x), ψ(x)〉Y μ(dx).

In the case .X = O and .Y = R
N note that 

. ||φ||2
L2(O;RN)

=
N⎲

l=1

IIIIIIφl
IIIIII2

L2(O;R)
, φ =

(
φ1, . . . , φ2

)
, φl : O → R.

We denote .||·||Lp(O;RN) by .||·||Lp and .||·||L2(O;RN) by . ||·||. 
• .L∞(X ;Y) is the class of measurable functions from . X into . Y which are 

essentially bounded. .L∞(X ;Y) is a Banach Space when equipped with the norm 

. ||φ||L∞(X ;Y) := inf{C ≥ 0 : ||φ(x)||Y ≤ C for μ − a.e.x ∈ X }.

• .C(X ;Y) is the space of continuous functions from . X into . Y . 
• .Cw(X ;Y) is the space of ‘weakly continuous’ functions from . X into . Y , by  

which we mean continuous with respect to the given topology on . X and the 
weak topology on . Y . 

• .Cm(O;R) is the space of .m ∈ N times continuously differentiable functions 
from . O to . R, that is .φ ∈ Cm(O;R) if and only if for every 2 dimensional multi 
index .α = α1, α2 with .|α| ≤ m, .Dαφ ∈ C(O;R) where . Dα is the corresponding 
classical derivative operator .∂

α1
x1 ∂

α2
x2 . 

• .C∞(O;R) is the intersection over all .m ∈ N of the spaces .Cm(O;R). 
• .Cm

0 (O;R) for .m ∈ N or .m = ∞ is the subspace of .Cm(O;R) of functions which 
have compact support. 

• .Cm(O;RN), Cm
0 (O;RN) for .m ∈ N or .m = ∞ is the space of functions from . O

to . RN whose component mappings each belong to .Cm(O;R), Cm
0 (O;R). 

• .Wm,p(O;R) for .1 ≤ p < ∞ is the sub-class of .Lp(O,R) which has all weak 
derivatives up to order .m ∈ N also of class .Lp(O,R). This is a Banach space 
with norm 

. ||φ||p

Wm,p(O,R)
:=

⎲
|α|≤m

IIIIDαφ
IIIIp

Lp(O;R)
,

where . Dα is the corresponding weak derivative operator. In the case .p = 2 the 
space .Wm,2(O,R) is Hilbert with inner product
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. 〈φ,ψ〉Wm,2(O;R) :=
⎲

|α|≤m

〈
Dαφ,Dαψ

〉
L2(O;R)

.

• .Wm,∞(O;R) for .m ∈ N is the sub-class of .L∞(O,R) which has all weak 
derivatives up to order .m ∈ N also of class .L∞(O,R). This is a Banach space 
with norm 

. ||φ||Wm,∞(O,R) := sup
|α|≤m

IIIIDαφ
IIII

L∞(O;RN )
.

• .Wm,∞(O;RN) is the sub-class of .L∞(O,RN) which has all weak derivatives up 
to order .m ∈ N also of class .L∞(O,RN). This is a Banach space with norm 

. ||φ||Wm,∞ := sup
l≤N

IIIIIIφl
IIIIII

Wm,∞(O;R)
.

• .L̇2(TN ;RN) is the sub-class of .L2(TN ;RN) of functions . φ such that 

. 

∫
TN

φ dλ = 0.

• .Ẇm,2(TN ;RN) is simply the intersection .Wm,2(TN ;R3) ∩ L̇2(TN ;R3). 
• .W

m,p

0 (O;R),W
m,p

0 (O;RN) for .m ∈ N and .1 ≤ p ≤ ∞ is the closure of 
.C∞
0 (O;R), C∞

0 (O;RN) in .Wm,p(O;R),Wm,p(O;RN). 
• .L 2(U;H) is the space of Hilbert-Schmidt operators from . U to . H, defined as the 

elements .F ∈ L (U;H) such that for some basis .(ei) of . U , 

. 

∞⎲
i=1

||Fei||2H < ∞.

This is a Hilbert space with inner product 

. 〈F,G〉L 2(U;H) =
∞⎲
i=1

〈Fei,Gei〉H

which is independent of the choice of basis (see e.g. [12]). 

2.2 Stochastic Framework 

Let .(Ω,F , (Ft ),P) be a fixed filtered probability space satisfying the usual 
conditions of completeness and right continuity. We take . W to be a cylindrical 
Brownian motion over some Hilbert Space . U with orthonormal basis . (ei). Recall
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(e.g. [40], Definition 3.2.36) that . W admits the representation .Wt = ∑∞
i=1 eiW

i
t as 

a limit in .L2(Ω;U') whereby the .(Wi) are a collection of i.i.d. standard real valued 
Brownian Motions and . U' is an enlargement of the Hilbert Space . U such that the 
embedding .J : U → U' is Hilbert-Schmidt and . W is a .JJ ∗-Cylindrical Brownian 
Motion over . U'. Given a process .F : [0, T ] × Ω → L 2(U;H ) progressively 
measurable and such that .F ∈ L2

(
Ω × [0, T ];L 2(U;H )

)
, for any .0 ≤ t ≤ T we 

define the stochastic integral 

. 

∫ t

0
FsdWs :=

∞⎲
i=1

∫ t

0
Fs(ei)dWi

s ,

where the infinite sum is taken in .L2(Ω;H ). We can extend this notion to processes 
F which are such that .F(ω) ∈ L2

([0, T ];L 2(U;H )
)
for .P − a.e. ω via the 

traditional localisation procedure. In this case the stochastic integral is a local 
martingale in . H .2 

3 Local Theory for SPDEs 

3.1 Functional Framework 

Our object of study is the Itô SPDE 

.Ψ t = Ψ0 +
∫ t

0
A(s,Ψs)ds +

∫ t

0
G(s,Ψs)dWs (2) 

which we pose for a triplet of embedded, separable Hilbert Spaces 

. V c→ H c→ U

whereby the embeddings are continuous linear injections. We ask that there is a 
continuous bilinear form .〈·, ·〉U×V : U × V → R such that for .f ∈ H and .ψ ∈ V , 

. 〈f,ψ〉U×V = 〈f,ψ〉H . (3) 

The Eq. (2) is posed on a time interval .[0, T ] for arbitrary but henceforth fixed . T ≥
0. The mappings .A,G are such that . A : [0, T ] × V → U,G : [0, T ] × V →
L 2(U;H) are measurable. Understanding . G as a mapping .G : [0, T ]×V ×U → H , 
we introduce the notation .Gi (·, ·) := G(·, ·, ei). We further impose the existence of

2 A complete, direct construction of this integral, a treatment of its properties and the fundamentals 
of stochastic calculus in infinite dimensions can be found in [24] Section 1. 
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a system of elements .(ak) of V with the following properties. Let us define the 
spaces .Vn := span {a1, . . . , an} and . Pn as the orthogonal projection to . Vn in U . It is  
required that the .(Pn) are uniformly bounded in H , which is to say that there exists 
a constant c independent of n such that for all .φ ∈ H , 

. ||Pnf ||H ≤ c ||f ||H . (4) 

We also suppose that there exists a real valued sequence .(μn) with .μn → ∞ such 
that for any .f ∈ H , 

. ||(I − Pn)f ||U ≤ 1

μn

||f ||H (5) 

where I represents the identity operator in U . Specific bounds on the mappings 
. A and . G will be imposed in Assumption Sets A and B. In order to make the 
assumptions we introduce some more notation here: we shall let . c· : [0, T ] → R

denote any bounded function, and for any constant .p ∈ R we define the functions 
.KU : U → R, .KH : H → R, .KV : V → R by 

. KU(φ) = 1 + ||φ||p
U , KH (φ) = 1 + ||φ||p

H , KV (φ) = 1 + ||φ||p
V .

We may also consider these mappings as functions of two variables, e.g. . KU : U ×
U → R by 

. KU(φ,ψ) = 1 + ||φ||p
U + ||ψ||p

U .

Our assumptions will be stated for ‘the existence of a K such that. . . .’ where we 
really mean ‘the existence of a p such that, for the corresponding K , . . . .’. 

3.2 Assumption Set A 

Recall the setup and notation of Sect. 3.1. We assume that there exists a . c·, K and 
.γ > 0 such that for all .φ,ψ ∈ V , .φn ∈ Vn, .f ∈ H and .t ∈ [0, T ]: 
Assumption 3.1 

. ||A(t, φ)||2U +
∞⎲
i=1

||Gi (t, φ)||2H ≤ ctKU(φ)
[
1 + ||φ||2V

]
, . (6) 

||A(t, φ) − A(t, ψ)||2 U ≤ ctKV (φ, ψ) ||φ − ψ||2 V , . (7) 

∞⎲ 

i=1 

||Gi (t, φ) − Gi (t, ψ)||2 U ≤ ctKU(φ, ψ) ||φ − ψ||2 H . (8)
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Assumption 3.2 

. 2
〈
PnA(t, φn), φn

〉
H

+
∞⎲
i=1

IIIIPnGi (t, φ
n)

IIII2
H

≤ ctKU(φn)
[
1 + IIIIφn

IIII4
H

]
− γ

IIIIφn
IIII2

V
, . (9) 

∞⎲ 

i=1 

〈
PnGi (t, φn ), φn

〉2 
H ≤ ctKU(φn )

[
1 + IIIIφn

IIII6 
H

]
. (10) 

Assumption 3.3 

. 2 〈A(t, φ) − A(t, ψ), φ − ψ〉U +
∞⎲
i=1

||Gi (t, φ) − Gi (t, ψ)||2U

≤ ctKU(φ,ψ)
[
1 + ||φ||2H + ||ψ||2H

]
||φ − ψ||2U − γ ||φ − ψ||2H , . (11) 

∞⎲ 

i=1 

〈Gi (t, φ) − Gi (t, ψ), φ − ψ〉2 U 

≤ ctKU(φ, ψ)
[
1 + ||φ||2 H + ||ψ||2 H

]
||φ − ψ||4 U . (12) 

Assumption 3.4 

.2 〈A(t, φ), φ〉U +
∞⎲
i=1

||Gi (t, φ)||2U ≤ ctKU(φ)
[
1 + ||φ||2H

]
, . (13) 

∞⎲ 

i=1 

〈Gi (t, φ), φ〉2 U ≤ ctKU(φ)
[
1 + ||φ||4 H

]
. (14) 

Assumption 3.5 

. 〈A(t, φ) − A(t, ψ), f 〉U ≤ ctKU(φ,ψ)(1 + ||f ||H )

× [
1 + ||φ||V + ||ψ||V

] ||φ − ψ||H . (15) 

3.3 Assumption Set B 

Recall the setup and notation of Sect. 3.1. Suppose now that X is a separable Hilbert 
Space with continuous embedding .U c−→ X. We ask that there is a continuous
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bilinear form .〈·, ·〉X×H : X × H → R such that for .φ ∈ U and .f ∈ H , 

. 〈φ, f 〉X×H = 〈φ, f 〉U . (16) 

Moreover it is now necessary that the system .(ak) forms an orthogonal basis of U .3 

The operators . A and . G must now be extended to the larger spaces, and are such 
that for any .T > 0, .A : [0, T ] × H → X and .G : [0, T ] × H → L 2(U;U) are 
measurable. We assume that there exists a . c·, K and .γ > 0 such that for all .φ ∈ V , 
.f, g ∈ H and .t ∈ [0, T ]: 
Assumption 3.6 

. ||A(t, f )||2X +
∞⎲
i=1

||Gi (t, f )||2U ≤ ctKU(f )
[
1 + ||f ||2H

]
, . (17) 

||A(t, f ) − A(t, g)||2 X ≤ ctKU(f, g)
[
1 + ||f ||2 H + ||g||2 H

]
||f − g||2 H 

(18) 

Assumption 3.7 

. 2 〈A(t, f ) − A(t, g), f − g〉X +
∞⎲
i=1

||Gi (t, f ) − Gi (t, g)||2X ≤ ctKU(f, g)

×
[
1 + ||f ||2H + ||g||2H

]
||f − g||2X , . (19) 

∞⎲ 

i=1 

〈Gi (t, f ) − Gi (t, g), f − g〉2 X ≤ ctKU(f, g) 

×
[
1 + ||f ||2 H + ||g||2 H

]
||f − g||4 X (20) 

Assumption 3.8 

.2 〈A(t, φ), φ〉U +
∞⎲
i=1

||Gi (t, φ)||2U ≤ ctKU(φ) − γ ||φ||2H , . (21) 

∞⎲ 

i=1 

〈Gi (t, φ), φ〉2 U ≤ ctKU(φ). (22)

3 Therefore, the spaces V , H , must be dense  in  U . 
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3.4 H -Valued Solutions 

We state the definitions and main result for H -valued solutions. 

Definition 3.9 Let .Ψ0 : Ω → H be .F0- measurable. A pair .(Ψ, τ ) where 
. τ is a .P − a.s. positive stopping time and . Ψ is a process such that for . P −
a.e. ω, .Ψ ·(ω) ∈ C ([0, T ];H) and .Ψ ·(ω)1·≤τ(ω) ∈ L2 ([0, T ];V ) with . Ψ ·1·≤τ

progressively measurable in V , is said to be an  H -valued local strong solution of 
the Eq. (2) if the identity 

.Ψ t = Ψ0 +
∫ t∧τ

0
A(s,Ψs)ds +

∫ t∧τ

0
G(s,Ψs)dWs (23) 

holds .P − a.s. in U for all .t ∈ [0, T ]. 
Remark 3.10 If .(Ψ, τ ) is an H -valued local strong solution of the Eq. (2), then 
.Ψ · = Ψ ·∧τ due to the identity (23). 

Definition 3.11 A pair .(Ψ,Θ) such that there exists a sequence of stopping times 
.(θj ) which are .P − a.s. monotone increasing and convergent to . Θ, whereby 
.(Ψ ·∧θj

, θj ) is an H -valued local strong solution of the Eq. (2) for each j , is said to  
be an H -valued maximal strong solution of the Eq. (2) if for any other pair . (Ф, ┌)

with this property then .Θ ≤ ┌ P − a.s. implies .Θ = ┌ P − a.s.. 

Remark 3.12 We do not require . Θ to be finite in this definition, in which case we 
mean that the sequence .(θj ) is monotone increasing and unbounded for such . ω. 

Definition 3.13 An H -valued maximal strong solution .(Ψ,Θ) of the Eq. (2) is said  
to be unique if for any other such solution .(Ф, ┌), then .Θ = ┌ P − a.s. and 

. P ({ω ∈ Ω : Ψ t (ω) = Фt (ω) ∀t ∈ [0,Θ)}) = 1.

Theorem 3.14 Let Assumption Set A hold. For any given .F0- measurable . Ψ0 :
Ω → H , there exists a unique H -valued maximal strong solution .(Ψ,Θ) of the 
Eq. (2). Moreover at .P − a.e. ω for which .Θ(ω) < ∞, we have that 

. sup
r∈[0,Θ(ω))

||Ψr (ω)||2H +
∫ Θ(ω)

0
||Ψr (ω)||2V dr = ∞. (24) 

Proof See [29] Theorem 3.15. ⨅⨆

3.5 U -Valued Solutions 

We state the definitions and main result for U -Valued Solutions.
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Definition 3.15 Let .Ψ0 : Ω → U be .F0-measurable. A pair .(Ψ, τ ) where 
. τ is a .P − a.s. positive stopping time and . Ψ is a process such that for . P −
a.e. ω, .Ψ ·(ω) ∈ C ([0, T ];U) and .Ψ ·(ω)1·≤τ(ω) ∈ L2 ([0, T ];H) with . Ψ ·1·≤τ

progressively measurable in H , is said to be a  U -valued local strong solution of the 
Eq. (2) if the identity 

.Ψ t = Ψ0 +
∫ t∧τ

0
A(s,Ψs)ds +

∫ t∧τ

0
G(s,Ψs)dWs (25) 

holds .P − a.s. in X for all .t ∈ [0, T ]. 
Definition 3.16 A pair .(Ψ,Θ) such that there exists a sequence of stopping times 
.(θj ) which are .P − a.s. monotone increasing and convergent to . Θ, whereby 
.(Ψ ·∧θj

, θj ) is a U -valued local strong solution of the Eq. (2) for each j , is said  
to be a U -valued maximal strong solution of the Eq. (2) if for any other pair . (Ф, ┌)

with this property then .Θ ≤ ┌ P − a.s. implies .Θ = ┌ P − a.s.. 

Definition 3.17 A U -valued maximal strong solution .(Ψ,Θ) of the Eq. (2) is said  
to be unique if for any other such solution .(Ф, ┌), then .Θ = ┌ P − a.s. and 

. P ({ω ∈ Ω : Ψ t (ω) = Фt (ω) ∀t ∈ [0,Θ)}) = 1.

Theorem 3.18 Let Assumption Sets A and B hold. For any given .F0- measurable 
.Ψ0 : Ω → U , there exists a unique U -valued maximal strong solution .(Ψ,Θ) of 
the Eq. (2). Moreover at .P − a.e. ω for which .Θ(ω) < ∞, we have that 

. sup
r∈[0,Θ(ω))

||Ψr (ω)||2U +
∫ Θ(ω)

0
||Ψr (ω)||2H dr = ∞. (26) 

Proof See [29] Theorem 4.9. ⨅⨆

4 Global Theory for SPDEs 

4.1 Functional Framework 

Recall that our object of study is the Itô SPDE (2), 

. Ψ t = Ψ0 +
∫ t

0
A(s,Ψs)ds +

∫ t

0
G(s,Ψs)dWs

which we pose for a triplet of embedded separable Hilbert Spaces 

.V c→ H c→ U
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whereby the embeddings are continuous linear injections. The Eq. (2) is posed on a 
time interval .[0, T ] for arbitrary but henceforth fixed .T ≥ 0. The mappings . A,G
are such that .A : [0, T ] × V → U,G : [0, T ] × H → L 2(U;U) are measurable. 
Understanding . G as a mapping .G : [0, T ] × H ×U → U , we introduce the notation 
.Gi (·, ·) := G(·, ·, ei). We further impose the existence of a system of elements . (ak)

of V which form an orthogonal basis of U and a basis of H . Let us define the spaces 
.Vn := span {a1, . . . , an} and . Pn as the orthogonal projection to . Vn in U , that is 

. Pn : f I→
n⎲

k=1

〈f, ak〉U ak.

It is required that the .(Pn) are uniformly bounded in H , which is to say that there 
exists a constant c independent of n such that for all .f ∈ H , 

. ||Pnf ||H ≤ c ||f ||H . (27) 

Moreover, our setup can be expanded by considering the induced Gelfand Triple 

. H c−→ U c−→ H ∗

defined relative to the inclusion mapping .i : H → U ; indeed, the embedding of U 
into . H ∗ is given by the composition of the isomorphism mapping U into . U∗ with 
the adjoint .i∗ : U∗ → H ∗. In particular, the duality pairing between H and . H ∗, 
.〈·, ·〉H ∗×H , is compatible with .〈·, ·〉U in the sense that for any .f ∈ U , .g ∈ H , 

. 〈f, g〉H ∗×H = 〈f, g〉U .

We assume that .A : [0, T ] × H → H ∗ is measurable. Specific bounds on the 
mappings . A and . G will be imposed in Assumption Sets 1, 2 and 3. We shall again 
use the notation of K from Sect. 3.1. 

4.2 Assumption Set 1 

Recall the setup and notation of Sect. 4.1. We assume that there exists a . c·, K and 
.γ > 0 such that for all .φ,ψ ∈ V , .f ∈ H and .t ∈ [0, T ]: 
Assumption 4.1 

. ||A(t, f )||H ∗ +
∞⎲
i=1

||Gi (t, f )||2U ≤ ctKU(f )
[
1 + ||f ||2H

]
, . (28) 

||A(t, φ) − A(t, ψ)||2 U ≤ ctKV ||φ − ψ||2 V , . (29)
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∞⎲ 

i=1 

||Gi (t, φ) − Gi (t, ψ)||2 U ≤ ctKV (φ, ψ) ||φ − ψ||2 H . (30) 

Assumption 4.2 

.2 〈A(t, φ), φ〉U +
∞⎲
i=1

||Gi (t, φ)||2U ≤ ct

[
1 + ||φ||2U

]
− γ ||φ||2H , . (31) 

∞⎲ 

i=1 

〈Gi (t, φ), φ〉2 U ≤ ct

[
1 + ||φ||4 U

]
. (32) 

Assumption 4.34 

. 〈A(t, φ), f 〉U ≤ ct

[
KU(φ) + ||φ||

3
2
H

] [
KU(f ) + ||f ||

3
2
H

]
, . (33) 

∞⎲ 

i=1 

〈Gi (t, φ), f 〉2 U ≤ ctKU(φ)KH (f ). (34) 

Assumption 4.4 

. 〈A(t, φ) − A(t, f ), ψ〉H ∗×H ≤ ctKV (ψ)
[
1 + ||φ||H + ||f ||H

] ||φ − f ||U , . 

(35) 

∞⎲ 

i=1 

〈Gi (t, φ) − Gi (t, f ), ψ〉2 U ≤ ctKV (ψ) ||φ − f ||2 U . (36) 

4.3 Assumption Set 2 

Recall the setup and notation of Sect. 4.1. We assume that there exists a . c·, K and 
.γ > 0 such that for all .f, g ∈ H and .t ∈ [0, T ]: 
Assumption 4.5 

. ||A(t, f )||2H ∗ ≤ ctKU(f )
[
1 + ||f ||2H

]
. (37)

4 In fact in (33), the exponent .3/2 could be replaced by any .q < 2. 
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Assumption 4.6 

. 2 〈A(t, f ) − A(t, g), f − g〉H ∗×H +
∞⎲
i=1

||Gi (t, f ) − Gi (t, g)||2U

≤ ctKU(f, g)
[
1 + ||f ||2H + ||g||2H

]
||f − g||2U − γ ||f − g||2H , . (38) 

∞⎲ 

i=1 

〈Gi (t, f ) − Gi (t, g), f − g〉2 U 

≤ ctKU(f, g)
[
1 + ||f ||2 H + ||g||2 H

]
||f − g||4 U . (39) 

4.4 Assumption Set 3 

Recall the setup and notation of Sect. 4.1. We now impose the existence of a new 
Banach Space . H̄ which is an extension of H , or precisely, .H ⊆ H̄ ⊆ U and for 
every .f ∈ H̄ , .||f ||H̄ = ||f ||H . In addition, .G : [0, T ] × V → L 2

(
U; H̄

)
is 

assumed measurable. We also suppose that there exists a real valued sequence . (μn)

with .μn → ∞ such that for any .f ∈ H̄ , 

. ||(I − Pn)f ||U ≤ 1

μn

||f ||H̄ (40) 

where I represents the identity operator in U . Furthermore we assume that there 
exists a .γ > 0 such that for any .ε > 0, there exists a . c·, K (dependent on . ε) such 
that for any .φ ∈ V , .φn ∈ Vn and .t ∈ [0, T ]: 
Assumption 4.7 

. ||A(t, φ)||2U +
∞⎲
i=1

||Gi (t, φ)||2
H̄

≤ ctKU(φ)
[
1 + ||φ||4H + ||φ||2V

]
(41) 

Assumption 4.8 

. 2
〈
PnA(t, φn), φn

〉
H

+
∞⎲
i=1

IIIIPnGi (t, φ
n)

IIII2
H

≤ ctKU(φn)
[
1 + IIIIφn

IIII4
H

]
− γ

IIIIφn
IIII2

V
, . (42) 

∞⎲ 

i=1 

〈
PnGi (t, φn ), φn

〉2 
H ≤ ctKU(φn )

[
1 + IIIIφn

IIII6 
H

]
+ ε 

IIIIφn
IIII2 

V . (43)
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4.5 Martingale Weak Solutions 

We now state the definition and main result for martingale weak solutions. 

Definition 4.9 Let .Ψ0 : Ω → U be .F0-measurable. If there exists a filtered 

probability space .
(
Ω̃, F̃ , (F̃t ), P̃

)
, a Cylindrical Brownian Motion . W̃ over . U with 

respect to .
(
Ω̃, F̃ , (F̃t ), P̃

)
, an  .F0-measurable .Ψ̃0 : Ω̃ → U with the same law 

as . Ψ0, and a progressively measurable process . Ψ̃ in H such that for .P̃ − a.e. ω̃, 
. Ψ̃ ·(ω) ∈ Cw ([0, T ];U) ∩ L2 ([0, T ];H)5 and 

.Ψ̃ t = Ψ̃0 +
∫ t

0
A(s, Ψ̃s)ds +

∫ t

0
G(s, Ψ̃s)dWs (44) 

holds .P̃ − a.s. in .H ∗ for all .t ∈ [0, T ], then . Ψ̃ is said to be a martingale weak 
solution of the Eq. (2). 

Theorem 4.10 Let Assumption Set 1 hold. For any given .F0-measurable . Ψ0 ∈
L∞ (Ω;U), there exists a martingale weak solution of the Eq. (2). 

Proof See [26] Theorem 2.7. ⨅⨆

4.6 Weak Solutions 

We now state the definitions and main result for weak solutions. 

Definition 4.11 Let .Ψ0 : Ω → U be .F0-measurable. A process . Ψ which is 
progressively measurable in H and such that for .P−a.e. ω, . Ψ ·(ω) ∈ C ([0, T ];U)∩
L2 ([0, T ];H), is said to be a weak solution of the Eq. (2) if the identity (2) holds 
.P − a.s. in . H ∗ for all .t ∈ [0, T ]. 
Definition 4.12 A weak solution . Ψ of the Eq. (2) is said to be the unique solution 
if for any other such solution . Ф, 

. P ({ω ∈ Ω : Ψ t (ω) = Фt (ω) ∀t ≥ 0}) = 1.

Theorem 4.13 Let Assumption Sets 1 and 2 hold. For any given .F0-measurable 
.Ψ0 : Ω → U , there exists a unique weak solution of the Eq. (2). 

Proof See [26] Theorem 3.5. ⨅⨆

5 Note that .Cw ([0, T ]; U) ⊆ L∞ ([0, T ]; U). 
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4.7 Strong Solutions 

We now state the definitions and main result for strong solutions. 

Definition 4.14 Let .Ψ0 : Ω → H be .F0-measurable. A process . Ψ which is pro-
gressively measurable in V and such that for .P−a.e. ω, . Ψ ·(ω) ∈ L∞ ([0, T ];H)∩
L2 ([0, T ];V ), is said to be a strong solution of the Eq. (2) if the identity (2) holds 
.P − a.s. in U for all .t ∈ [0, T ]. 

Note that a strong solution necessarily has continuous paths in U , from the  
evolution equation satisfied in this space. 

Definition 4.15 A strong solution . Ψ of the Eq. (2) is said to be unique if for any 
other such solution . Ф, 

. P ({ω ∈ Ω : Ψ t (ω) = Фt (ω) ∀t ≥ 0}) = 1.

Theorem 4.16 Let Assumption Sets 1, 2 and 3 hold. For any given .F0-measurable 
.Ψ0 : Ω → H , there exists a unique strong solution of the Eq. (2). 

Proof See [26] Theorem 4.5. ⨅⨆

5 Stochastic Navier-Stokes Equations 

We recall the SALT Navier-Stokes Equation (1) stated in the introduction, given by 

. ut = u0 −
∫ t

0
Lus us ds + ν

∫ t

0
Δus ds +

∫ t

0
B(us) ◦ dWs − ∇ρt .

A complete introduction to this equation is given in [27], with full technical details 
that are glossed over here, although we note that our results can be applied for a 
variety of additive, multiplicative and transport noise structures. The choice of SALT 
noise is particularly challenging and demonstrates the efficacy of the frameworks 
from Sects. 3 and 4. The SALT operator B is given by the actions of its components 
. Bi on a vector field . φ, relative to the collection of vector fields . (ξi), by  

. Bi : φ I→
N⎲

j=1

(
ξ

j
i ∂jφ + φj∇ξ

j
i

)

in N -dimensions, where the superscript denotes the . j th component mapping. We 
note this is the sum of a classical transport term and a zeroth-order term. Here and 
throughout this section, we work with .N = 2 or 3. The nonlinear term is formally 
defined by
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. Lf g =
N⎲

j=1

f j ∂jg

with Laplacian .Δf = ∑N
j=1 ∂2j f . The  Eq. (1) is to be posed on either the N -

dimensional torus .TN or a smooth bounded domain . O with the no-slip or Navier 
boundary conditions, on a fixed time interval .[0, T ]. In all cases we require the 
divergence-free property of solutions, which is to say that .

∑N
j=1 ∂ju

j = 0. To  
facilitate the analysis, we introduce some additional function spaces. Recall that 
any function .f ∈ L2(TN ;RN) admits the representation 

.f (x) =
⎲

k∈ZN

fke
ik·x (45) 

where by each .fk ∈ C
N is such that .fk = f−k and the infinite sum is defined as a 

limit in .L2(TN ;RN), see e.g. [49] Subsection 1.5 for details. 

Definition 5.1 We define .L2
σ (TN ;RN) as the subset of .L̇2(TN ;RN) of functions 

f whereby for all .k ∈ ZN , .k · fk = 0 with . fk as in (45). For general .m ∈ N we 
introduce .Wm,2

σ (TN ;RN) as the intersection of .Wm,2(TN ;RN) respectively with 
.L2

σ (TN ;RN). 

Definition 5.2 We define .C∞
0,σ (O;RN) as the subset of .C∞

0 (O;RN) of func-

tions which are divergence-free. .L2
σ (O;RN) is defined as the completion of 

.C∞
0,σ (O;RN) in .L2(O;RN), whilst we introduce .W 1,2

σ (O;RN) as the intersec-

tion of .W 1,2
0 (O;RN) with .L2

σ (O;RN) and .W 2,2
σ (O;RN) as the intersection of 

.W 2,2(O;RN) with .W 1,2
σ (O;RN). 

Henceforth, we shall use the notation . L2
σ , .W

m,2
σ to represent the above spaces 

where the domain and dimensionality are clear from the context: we do the same 
for the general . L2, .Wm,2 spaces. We define the Leray Projector . P as the orthogonal 
projection in . L2 onto . L2

σ . In any context, for .m = 1, 2, the inner product 

. 〈f, g〉m :=
/
(−PΔ)m/2f, (−PΔ)m/2g

\
(46) 

is equivalent to the usual .Wm,2 inner product on .Wm,2
σ and we consider .Wm,2

σ as a 
Hilbert Space equipped with this inner product. Further details can be found in [11] 
Proposition 4.12, [49] Exercises 2.12, 2.13 and the discussion in Subsection 2.3. To 
study (1) more freely, we commit two manipulations of it; the first is to project via 
. P , and the second is to convert to Itô Form. With this, we arrive at 

. ut = u0 −
∫ t

0
PLus us ds + ν

∫ t

0
PΔus ds

+ 1

2

∫ t

0

∞⎲
i=1

PB2
i usds +

∫ t

0
PB(us)dWs (47)
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which is now in the form of (2). We emphasise again that a thorough overview of 
this process is given in [27]. Various applications are given below. 

5.1 The Torus 

The torus represents, mathematically, the simplest domain on which to pose (47). 
The zero-average and divergence-free constraints are imposed, both of which are 
included in .W 1,2

σ . Thus, with the right function spaces, a proper formulation of the 
problem becomes simple. We first consider global solutions, provided by the theory 
of Sect. 4. The functional framework of Sect. 4.1 is satisfied for the spaces 

. V := W 2,2
σ , H := W 1,2

σ , U := L2
σ

and the system .(ak) of eigenfunctions of the Stokes Operator .−PΔ (see [49] 
Theorem 2.24). The mappings . PL, .PΔ are understood from .W 1,2

σ into . 
(
W 1,2

σ

)∗

by the duality pairings for .f, g ∈ W 1,2
σ of 

. 
〈
PLf f, g

〉(
W

1,2
σ

)∗×W
1,2
σ

= 〈
Lf f, g

〉
L6/5×L6

〈PΔf, g〉(
W

1,2
σ

)∗×W
1,2
σ

= −〈f, g〉1 .

The first expression arises from the Sobolev Embedding of .W 1,2(O;R3) into 
.L6(O;R3), and the Hölder conjugation between .L6(O;R3) and .L6/5(O;R3); see  
e.g. [28] equation (25). As a direct application of Theorem 4.10, we can obtain 
martingale weak solutions. 

Theorem 5.3 Let .N = 2 or 3, .u0 ∈ L∞ (
Ω;L2

σ

)
be .F0-measurable, . (ξi) ∈

W 1,2
σ ∩ W 2,∞ with .

∑∞
i=1 ||ξi||2W 2,∞ < ∞. Then there exists a filtered probability 

space .
(
Ω̃, F̃ , (F̃t ), P̃

)
, a Cylindrical Brownian Motion . W̃ over . U with respect 

to .
(
Ω̃, F̃ , (F̃t ), P̃

)
, an  .F0-measurable .ũ0 : Ω̃ → U with the same law as 

. u0, and a progressively measurable process . ̃u in .W 1,2
σ such that for .P̃ − a.e. ω̃, 

.ũ·(ω) ∈ L∞ ([0, T ];L2
σ

) ∩ Cw

([0, T ];L2
σ

) ∩ L2
([0, T ];W 1,2

σ

)
and 

. ̃ut = ũ0 −
∫ t

0
PLũs

ũs ds + ν

∫ t

0
PΔũs ds + 1

2

∫ t

0

∞⎲
i=1

PB2
i ũsds

+
∫ t

0
PB(ũs)dW̃s

holds .P̃ − a.s. in .
(
W 1,2

σ

)∗
for all .t ∈ [0, T ].
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In fact we can do better in 2D, as an application of Theorem 4.13. 

Theorem 5.4 Let .N = 2, .u0 : Ω → L2
σ be .F0-measurable, . (ξi) ∈ W 1,2

σ ∩
W 2,∞ with .

∑∞
i=1 ||ξi||2W 2,∞ < ∞. Then there exists a unique progressively 

measurable process u in .W 1,2
σ such that for .P − a.e. ω̃, . u·(ω) ∈ C

([0, T ];L2
σ

) ∩
L2

([0, T ];W 1,2
σ

)
and (47) holds .P − a.s. in .

(
W 1,2

σ

)∗
for all .t ∈ [0, T ]. 

These results are proven in [28] Theorems 1.9 and 1.10, stated slightly differently 
although Lemma 3.9 connects the definitions. The results there are proven in the 
case of the no-slip boundary condition, but there is no difference for the torus. More 
than that, we can invoke Theorem 4.16 to obtain the existence of strong solutions of 
the Eq. (47). 

Theorem 5.5 Let .N = 2, .u0 : Ω → W 1,2
σ be .F0-measurable, . (ξi) ∈ L2

σ ∩ W 3,∞
with .

∑∞
i=1 ||ξi||2W 3,∞ < ∞. Then there exists a unique progressively measurable 

process u in .W 2,2
σ such that for .P − a.e. ω, . u·(ω) ∈ C

([0, T ];W 1,2
σ

) ∩
L2

([0, T ];W 2,2
σ

)
and (47) holds .P − a.s. in . L2

σ for all .t ∈ [0, T ]. 
Here, use of [26] Lemma 4.14 is required to obtain the continuity. The extension 

. H̄ of H in Assumption Set 3, Sect. 4.4, can simply be taken as H itself. With some 
concessions, the corresponding existence result in the case of a bounded domain 
is also obtainable as seen in the following subsections. However, use of the torus 
allows us to obtain a strong existence result in 3D; the analogous result for the no-
slip boundary condition is still open, due to a problematic boundary integral arising 
in controlling the noise. This comes as an application of the local theory of Sect. 3. 
The functional framework of Sect. 3.1 and Assumption Set B is satisfied for the 
spaces 

. V := W 3,2
σ , H := W 2,2

σ , U := W 1,2
σ , X := L2

σ

where .W 3,2
σ is equipped with the .〈·, ·〉3 inner product as defined in (46).6 As a direct 

application of Theorem 3.18, we obtain the following. 

Theorem 5.6 Let .N = 3, .u0 : Ω → W 1,2
σ be .F0-measurable, . (ξi) ∈ L2

σ ∩ W 3,∞
with .

∑∞
i=1 ||ξi||2W 3,∞ < ∞. Then there exists a unique U -valued maximal strong 

solution .(u,Θ) of the Eq. (47) in the sense of Definitions 3.15, 3.16, 3.17. Moreover 
at .P − a.e. ω for which .Θ(ω) < ∞, we have that 

. sup
r∈[0,Θ(ω))

||ur(ω)||21 +
∫ Θ(ω)

0
||ur(ω)||22 dr = ∞. (48) 

The result in the case of the H -valued solution, coming from Theorem 3.14, is  
particularly interesting. The additional degree of regularity obtained in these solu-

6 For the bounded domain, this does not define an equivalent inner product to the usual .W 3,2 one 
on .W 3,2

σ . 
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tions is pertinent for the Itô-Stratonovich conversion, which has been little-discussed 
here but was greatly emphasised in [24] Subsection 2.3, [27] Subsection 3.1. We first 
state the following proposition, which was [27] Proposition 3.2. 

Proposition 5.7 Suppose that .(u, τ ) are such that: . τ is a .P−a.s. positive stopping 
time and u is a process whereby for .P − a.e. ω, .u·(ω) ∈ C

([0, T ];W 2,2
σ

)
and 

.u·(ω)1·≤τ(ω) ∈ L2
([0, T ];W 3,2

σ

)
with .u·1·≤τ progressively measurable in .W 3,2

σ , 
and moreover satisfying the identity 

. ut = u0 −
∫ t∧τ

0
PLus us ds + ν

∫ t∧τ

0
PΔus ds

+ 1

2

∫ t∧τ

0

∞⎲
i=1

PB2
i usds +

∫ t∧τ

0
PBusdWs

.P − a.s. in .W 1,2
σ for all .t ∈ [0, T ]. Then the pair .(u, τ ) satisfies the identity 

. ut = u0 −
∫ t∧τ

0
PLus us ds + ν

∫ t∧τ

0
PΔus ds +

∫ t∧τ

0
PBus ◦ dWs

.P − a.s. in . L2
σ for all .t ∈ [0, T ]. 

As a consequence of this, by applying Theorem 3.14, we obtain: 

Theorem 5.8 Let .N = 3, .u0 : Ω → W 1,2
σ be .F0-measurable, . (ξi) ∈ L2

σ ∩ W 3,∞
with .

∑∞
i=1 ||ξi||2W 3,∞ < ∞. Then there exists a pair .(u, τ ) such that: . τ is a . P −

a.s. positive stopping time and u is a process whereby for .P − a.e. ω, . u·(ω) ∈
C

([0, T ];W 2,2
σ

)
and .u·(ω)1·≤τ(ω) ∈ L2

([0, T ];W 3,2
σ

)
with .u·1·≤τ progressively 

measurable in .W 3,2
σ , and moreover satisfying the identity 

. ut = u0 −
∫ t∧τ

0
PLus us ds + ν

∫ t∧τ

0
PΔus ds +

∫ t∧τ

0
PBus ◦ dWs

.P − a.s. in . L2
σ for all .t ∈ [0, T ]. 

This result is proven in [27] Theorem 3.1. 

5.2 No-Slip Boundary Condition 

Let us impose the boundary condition .u = 0 on . ∂O; this is the so-called no-slip 
boundary condition. Considering the global theory, the functional framework of 
Sect. 4.1 is satisfied for the spaces 

.V := W 2,2
σ , H := W 1,2

σ , U := L2
σ
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and the system .(ak) of eigenfunctions of the Stokes Operator .−PΔ (see [49] 
Theorem 2.24). In this setting, the identical results of Theorems 5.3 and 5.4 are 
achieved. The existence of strong solutions in 2D is far more challenging, however, 
and remains unsolved. Towards a success, we note the necessity of considering an 
extension . H̄ of H in Assumption Set 3, Sect. 4.4. The Leray Projector . P does not 
preserve the zero-trace property, so .PBi does not map from .W 2,2

σ into .W 1,2
σ , but  

instead an extended space .W̄ 1,2
σ defined as the intersection of .W 1,2 with . L2

σ . This is  
again a Hilbert Space with .〈·, ·〉1 inner product; see [25] Subsection 1.2. 

Nevertheless, we are still unable to verify (40) and Assumption 4.8. This owes to  
the fact that . Pn is self-adjoint only on .W 1,2

σ and not .W̄ 1,2
σ , leaving us stuck with the 

finite dimensional projection in a way which offers no clear solution. The situation 
is different for the Navier boundary conditions. 

5.3 Navier Boundary Conditions 

In two spatial dimensions we can impose different boundary conditions for (47), 
namely the Navier boundary conditions. These are defined on . ∂O by 

.u · n = 0, 2(Du)n · ι + αu · ι = 0 (49) 

where . n is the unit outwards normal vector, . ι the unit tangent vector, Du is the rate of 
strain tensor .(Du)k,l := 1

2

(
∂ku

l + ∂lu
k
)
and .α ∈ C2(∂O;R) represents a friction 

coefficient which determines the extent to which the fluid slips on the boundary 
relative to the tangential stress. These conditions were first proposed by Navier in 
[45, 46], and have been derived in [[42]] from the kinetic theory of gases and in 
[41] as a hydrodynamic limit. Furthermore these conditions have proven viable for 
modelling rough boundaries as seen in [3, 22, 48]. To fit the framework of this 
chapter we again have to embed the boundary conditions into useful function spaces. 
We shall use the space .W̄ 1,2

σ , which was the intersection of .W 1,2 with . L2
σ , and 

contains the divergence-free and impermeable boundary condition (that .u · n = 0). 
The remaining component of (49) has to be included at the .W 2,2 level, as we are 
concerned with the trace of a derivative which needs more than .W 1,2 regularity to 
be understood in the usual sense. Thus, we define 

. W̄ 2,2
α :=

{
f ∈ W 2,2(O;R2) ∩ W̄ 1,2

σ : 2(Df )n · ι + αf · ι = 0 on ∂O
}

.

Of course this space does not appear in the definition of a weak solution, so it is 
perhaps unclear how the boundary conditions (49) inform the weak solution. The 
answer comes from how to extend the Stokes Operator .−PΔ to .W̄ 1,2

σ . In [35] 
equation (5.1), c.f. [25] Lemma 1.4, it is verified that for .φ ∈ W̄ 2,2

α , .f ∈ W̄ 1,2
σ , 

. 〈PΔφ, f 〉L2 = −〈φ, f 〉1 + 〈(κ − α)φ, f 〉L2(∂O;R2)
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where .κ : ∂O → R represents the curvature of the boundary. Therefore, for each 
. α as in (49), we extend the Stokes Operator from .W̄ 2,2

α to .W̄ 1,2
σ as a mapping into 

.
(
W̄ 1,2

σ

)∗
by the duality pairing for .g, f ∈ W̄ 1,2

σ of 

. 〈PΔg, f 〉(
W̄

1,2
σ

)∗×W̄
1,2
σ

= −〈g, f 〉1 + 〈(κ − α)g, f 〉L2(∂O;R2) .

The nonlinear term requires no special attention to be understood in the weak sense, 
similarly to the no-slip boundary condition. We equip .W̄ 2,2

α with the inner product 
.〈f, g〉2 := 〈PΔf,PΔg〉L2 which is equivalent to the standard .W 2,2 inner product 
(see [25] Lemma 1.2), and .W̄ 1,2

σ with the .〈·, ·〉1 inner product. Then as a direct 
application of Theorem 4.13 we obtain the following. 

Theorem 5.9 Let .α ∈ C2(∂O;R), .u0 : Ω → L2
σ be .F0-measurable, . (ξi) ∈

W 1,2
σ ∩ W 2,∞ with .

∑∞
i=1 ||ξi||2W 2,∞ < ∞. Then there exists a progressively 

measurable process u in .W̄ 1,2
σ such that for .P − a.e. ω̃, . u·(ω) ∈ C

([0, T ];L2
σ

) ∩
L2

([0, T ]; W̄ 1,2
σ

)
and (47) holds .P − a.s. in .

(
W̄ 1,2

σ

)∗
for all .t ∈ [0, T ]. 

This result is given in [25] Theorem 1.14, and a strong existence result is proven 
as Theorem 1.15 in the same chapter. For this, we need to make some adjustments; 
to verify Assumption 4.8 we cannot use the .〈·, ·〉1 inner product for H as this leads 
to an uncontrollable boundary integral. Instead, we have to manufacture a more 
reasonable boundary integral into our inner product. Thus, we instead equip . W̄ 1,2

σ

with 

. 〈f, g〉H := 〈f, g〉1 + 〈(κ − α)f, g〉L2(∂O;R2)

which is an inner product equivalent to the usual .W 1,2 form when .α ≥ κ everywhere 
on . ∂O . This requirement appears in the result, obtainable through Theorem 4.16. 

Theorem 5.10 Let .α ∈ C2(∂O;R) be such that .α ≥ κ , .u0 : Ω → W̄ 1,2
σ be 

.F0-measurable, .(ξi) ∈ L2
σ ∩ W

3,2
0 ∩ W 3,∞ with .

∑∞
i=1 ||ξi||2W 3,∞ < ∞. Then there 

exists a progressively measurable process u in .W̄ 2,2
α such that for .P−a.e. ω̃, . u·(ω) ∈

C
([0, T ]; W̄ 1,2

σ

)∩L2
([0, T ]; W̄ 2,2

α

)
and (47) holds .P−a.s. in . L2

σ for all .t ∈ [0, T ]. 
We note that continuity is obtainable in this instance as the extension . H̄ of H in 

Assumption Set 3, Sect. 4.4, can simply be .W̄ 1,2
σ itself (such that [26] Lemma 4.14 

can be applied). In addition, it should be noted that the requirement .α ≥ κ is rather 
reasonable; at least heuristically, as . α grows large then .u·ι = 0 dominates the second 
identity of (49), which would then result in the traditional no-slip condition. Given 
the wide acceptance of the no-slip condition, deviation from it with Navier boundary 
conditions is only expected for large . α. A rigorous result regarding the convergence 
of solutions to the deterministic Navier-Stokes equation with Navier boundary 
conditions to the no-slip solution for .α → ∞ is available in [35] Section 9. 

Of course this invites the question as to how the Navier boundary conditions solve 
the issue of . Pn present for the no-slip case. More detail is given in the conclusion
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of [25], but in essence, this owes to the fact that the basis of eigenfunctions of 
the Stokes Operator satisfying the Navier boundary conditions are dense in the 
range of the Leray Projector in .W 1,2. That is, these eigenfunctions form a basis 
of .W̄ 1,2

σ instead of .W 1,2
σ , so the Leray Projector mapping only into .W̄ 1,2

σ is now 
non-problematic. 
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Geometric Theory of Perturbation 
Dynamics Around Non-equilibrium Fluid 
Flows 

Darryl D. Holm, Ruiao Hu, and Oliver D. Street 

1 Introduction 

We are dealing with the stability analysis of ideal fluid dynamics when the perturba-
tions are in the form of displacement vector fields. In our approach, the displacement 
vector fields are shown to possess their own dynamics which depend functionally on 
the unperturbed fluid flow. The methodology we employ to derive the dynamics of 
the unperturbed flow and its perturbations is the Euler-Poincaré variational principle 
[20] with higher-order variations. In the Euler-Poincaré variational principle, the 
1. st order variations yield essentially all of the well known models of ideal fluid 
dynamics [21]. When the stationary condition of the 1. st order variations are 
satisfied, the 2. nd order variations yield the dynamics of the perturbations of the 
steady flows arising from the 1. st order variations. The advantage of this variational 
approach is that the dynamics of the perturbations arising from the 2. nd order 
variations are linear perturbation equations for arbitrary time-dependent flows. 
Thus, it is a generalisation to the fluid equilibrium flows that are typically used 
in stability analysis. 

The emergence of fluid models from the 1. st order variations in Hamilton’s 
Principle was first revealed long before VI Arnold’s observation [2] that the 
solutions of Euler’s fluid equations represent time (t) dependent geodesic paths . gt on 
the manifold of smooth invertible maps (diffeomorphisms). That is, . gt ∈ Diff(M)

acts on the fluid reference configuration .(Diff × M → M) in the flow domain M , 
whose paths .xt (x0) = gtx0 with .g0x0 = x0 are the trajectories of Lagrangian fluid 
parcels. Arnold’s observation opened the flood gates of new mathematical research 
in fluid dynamics. For a review, see e.g., [3]. In Arnold [2], the variational principle 
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which governs the Euler fluid motion was found to be the Hamilton principle . δS = 0
with .S = ∫ T

0 𝓁(u) dt whose Lagrangian .𝓁(u) is the fluid kinetic energy . 12||u||2
L2 for 

fluid velocity, u. The fluid kinetic energy serves as the metric on the tangent space of 
the diffeomorphisms, expressed in terms of the Eulerian velocity vector fields. The 
variations are taken with respect to the infinitesimal action of the diffeomorphisms 
on volume-preserving (spatial) vector fields. Since this observation, the framework 
was generalised to semidirect product spaces where the symmetry is broken by 
the inclusion of advected quantities [21]. As a result, the characterisation of a 
broad class of models through the variational approach became available. These 
developments related symmetry reduction to fluid dynamics. 

The 2. nd order variations of the Euler-Poincaré variational principle have already 
been effective in deriving mean-flow equations [17–19] as small-amplitude gener-
alised Lagrangian mean (called . glm) equations leading to turbulence models such 
as the Navier-Stokes-alpha model and its ideal version the Euler-alpha model. 
The alpha turbulence models introduced in [9, 21] were derived by applying the 
Lagrangian mean to the 2. nd order variations for fluid dynamics in [17–19]. They 
were then analysed mathematically in [11, 12] and applied computationally to 
primitive-equation global ocean circulation models in [14–16]. Furthermore, a rela-
tionship exists between the 2. nd order variations of the Euler-Poincaré variational 
principle, Jacobi fields and the Jacobi equations. The Jacobi field equations for 
the evolution of an initial Lagrangian displacement away from a geodesic flow 
are usually treated in terms of covariant derivatives. However, here we will discuss 
Jacobi fields in the Euler-Poincaré framework. For examples and references to the 
classical approach to the treatment of Jacobi fields, see [5, 10, 23–25, 27, 28, 30, 31]. 

Stability analysis is a vast field with a long history. Below, we will briefly 
review the Jacobi approach to stability analysis to better illuminate how this chapter 
contributes to the literature. 

Brief Review of the Jacobi Approach to Stability Analysis Stationary variational 
principles deal with balance and closure in dynamical systems. The dynamics near 
balance and the discovery of imbalance is the province of perturbation theory. 
Higher order variational principles which govern the perturbations can tell us about 
instability and the initial phases of imbalance. Of course, for nonlinear systems 
tipping points also may exist and those can take the system to states far away from 
balance. For viscous fluids, the primary tipping point is the onset of turbulence, 
whose true nature remains fascinating but elusive and beyond the treatment of linear 
imbalance and instability of ideal fluid flow considered here. 

The classical studies of imbalance and instability refer to the dynamical 
behaviour of solutions near equilibria. One of the most beautiful mathematical 
theories of imbalance was introduced by Jacobi to describe solutions near 
geodesic flows. Besides Jacobi, this topic also stimulated research by the likes 
of Dirichlet, Dedekind, Riemann, Poincaré, and Lyapunov [29]. Jacobi’s theory 
and Riemann’s results inspired Chandrasekhar’s focus on ellipsoidal figures of 
equilibrium of rotating self-gravitating fluids [6]. That focus on steady ellipsoidal 
fluid configurations in turn led Chandrasekhar to his work on the emission of gravity
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waves by rotating ellipsoidal fluid masses in [7], and eventually to Chandrasekhar’s 
mathematical theory of black holes in [8]. The angular momentum of the rotating 
fluid body is the source of the emission of gravity waves. However, in the current 
chapter we shall be concerned with the dual of angular momentum introduced by 
Dedekind: namely, we shall focus on the fluid circulation in a fixed frame. 

In Arnold [1], a stationary flow of an ideal fluid is shown to be Lyapunov 
stable if the quadratic form given by the second variation of the kinetic energy 
restricted to coadjoint orbits in the algebra of smooth divergence-free vector fields 
is either positive, or sufficiently negative. The Hamiltonian version of Arnold’s 
stability result for the Euler fluid equations was obtained by applying the Legendre 
transformation to their application of Hamilton’s principle. This step led to new 
methods for determining sufficient conditions for nonlinear stability of fluid and 
plasma equilibria which include potential energy such as thermodynamics and 
magnetic energy, as well as kinetic energy; see, e.g., [22]. The present work 
investigates the quadratic form given by the second variation of the Hamilton 
principle whose fluid Lagrangian contains both the kinetic and potential energy. In 
addition, this work investigates the second-variation Hamilton’s principle for time-
dependent fluid flows, and is not limited to time-independent fluid equilibria. 

Plan of the Chapter Section 2 sets the stage for the remainder of the chapter, 
by defining symmetry-reduced variational principles at 1. st and 2. nd order. By 
considering geodesics of a right-invariant metric on a Lie group, the equations 
resulting from the 2. nd variation are shown to be an extension of the literature on 
Jacobi fields. Section 3 presents several examples of linearisation of well-known 
Euler-Poincaré fluid equations based on second-order symmetry-reduced variational 
principles. The examples in Sect. 3 demonstrate that the current approach is not 
limited to geodesic motions, nor is it limited to steady flows. Section 4 presents 
numerical simulations for the Euler-Bousinessq equations and their perturbation 
equations resulting from the .2nd order variations in a vertical slice domain. In 
Sect. 5, we summarise the present results and discuss future developments. 

2 Euler-Poincaré Variational Principles and Their 
Linearisation 

Following Arnold’s identification of fluid flows as paths . gt on the manifold of 
smooth invertible maps, it is natural to consider the dynamics of imbalance induced 
by perturbations of nonequilibrium fluid flows in the light of the Jacobi equations 
for geodesic flows [24, 25]. Here, we are concerned with time-parameterised 
curves . gt in the diffeomorphism group, and a family of variations of these curves, 
parameterised by .ϵ ∈ R, .gϵ,t such that .g0,t = gt . We seek to extend the Jacobi 
equations of displacement dynamics near a geodesic flow to apply in semidirect 
product spaces which admit the dynamics of an Eulerian vector field . ξ(x, t) ∈ X(M)

representing the displacement defined by
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.ξ(xt , t) := ∂gt,ϵ

∂ϵ

∣
∣
∣
ϵ=0

g−1
t xt = δgtx0 =: δgtg

−1
t xt , (2.1) 

for each fluid element in the flow .xt = gtx0 initially at the reference position 
.g0x0 = x0, where .gt,ϵ are arbitrary disturbances of . gt near the identity of the 
group of diffeomorphisms. This infinitesimal displacement vector field appears 
naturally in the Euler-Poincaré variational principle which we will discuss next 
before considering the correspondence to Jacobi fields and the Jacobi equation. 

2.1 The Euler-Poincaré and Lie-Poisson Equations 

In the Euler-Poincaré theory of ideal fluid dynamics [20], the fluid is formally 
described by the elements in the semidirect product space comprising the vector 
fields .X(M), and the space of advected quantities, . V ∗, on which there exists a right 
representation of .Diff(M) by pullback. The space of vector fields .X(M) contains 
the fluid’s Eulerian velocity vector field u, defined in terms of curves, . gt , in the  
diffeomorphism group as .u := ġt g

−1
t . The vector space .V ∗(M), defined following 

convention as the dual to a vector space .V (M), is the space of advected quantities. 
Let .a ∈ V ∗(M), we say that a is an advected quantity if it satisfies the pushforward 
relation .at = a0g

−1
t . This . at is the global solution of the advection relation, 

.∂tat = −Lut at , (2.2) 

in which . Lut denotes Lie derivative with respect to the time-dependent fluid velocity 
vector field .ut ∈ X(M). Advected quantities are tensor fields, examples of which 
are mass density (a volume form) or potential temperature (a 0-form). Arising from 
the variations of the paths . gt on the manifold of diffeomorphisms, the corresponding 
variations of the fluid velocity .u = ġt g

−1
t and the advected quantity .at = a0g

−1
t are 

given, respectively, by [20] 

.δu = ∂t ξ − aduξ := ∂t ξ + [
u , ξ

]
and δa = −Lξ a . (2.3) 

Here, the displacement vector field .ξ ∈ X(M) is defined in Eq. (2.1) and . − aduξ :=[
u , ξ

] ∈ X(M) for right adjoint Lie algebra action is the Jacobi-Lie bracket of the 
vector fields u and . ξ . 

Let .𝓁(u, a) denote the fluid Lagrangian. By applying Hamilton’s principle, . δS =
0, to the action integral .S = ∫ T

0 𝓁(u, a) dt with the constrained variations of fluid 
variables .(u, a) as given in (2.3), we find 

.0 = δS = δ

∫ T

0
𝓁(u, a) dt

=
∫ T

0

/
δ𝓁

δu
, δu

\

+
/
δ𝓁

δa
, δa

\

dt
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=
∫ T 

0 

/ 
δ𝓁 
δu 

, ∂t ξ − aduξ 
\ 
+ 

/ 
δ𝓁 
δa 

, −Lξ a 
\ 

dt 

=
∫ T 

0 

/ 
−( 

∂t + ad∗
u 
) δ𝓁 
δu 

+ 
δ𝓁 
δa 

◆ a ,  ξ  
\ 

dt + 
/ 
δ𝓁 
δu 

, ξ  
\ ∣
∣
∣
T 

0 
, (2.4) 

where the brackets .(· , ·) denote the . L2 pairing on the flow manifold M and the 
diamond . (◆) operator is defined as 

.

/
δ𝓁

δa
, −Lξ a

\

V ×V ∗
=:

/
δ𝓁

δa
◆ a , ξ

\

X∗(M)×X(M)

(2.5) 

in which we have applied natural boundary conditions when integrating by parts 
in space. The stationarity condition in Hamilton’s principle .δS = 0 with vanishing 
endpoint conditions in time on .ξ = δg ·g−1 then yields the Euler-Poincaré equation 
of fluid motion 

.
(
∂t + Lu

) δ𝓁

δu
= δ𝓁

δa
◆ a , (2.6) 

where the advected quantities a satisfy the advection relation, 

.
(
∂t + Lu

)
a = 0 . (2.7) 

Note that the fact that a is an advected quantity is encoded within the variational 
procedure (2.4) within the form of the variation . δa. This calculation leads us to the 
Kelvin-Noether theorem, written below. 

Theorem 2.1 (Kelvin-Noether Theorem [20]) Given the local advection of mass 
by fluid transport, 

.
(
∂t + Lu

)
(Ddnx) = 0 , (2.8) 

implied by the push-forward relation .Dtd
nxt = gt ∗(D0d

nx0) for each fluid element 
in the flow .xt = gtx0 initially at the reference position .g0x0 = x0 and volume 
element .dnx in n dimensions, then the Euler-Poincaré equation of fluid motion (2.6) 
implies the Kelvin-Noether relation, 

.
d

dt

∮

C(u)

1

D

δ𝓁

δu
=

∮

C(u)

1

D

δ𝓁

δa
◆ a , (2.9) 

for any material loop .C(u) moving with the flow velocity .u = ġt g
−1
t . 

The Euler-Poincaré equation (2.6), together with the advection relation for a, can 
be shown to be equivalent to semidirect-product Lie-Poisson equations on .X∗

|xV ∗, 
where . |x denotes the semidirect product. Indeed, we make the following Legendre
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transformation from . X to . X∗

. m = δ𝓁

δu
, and h(m, a) = (m , u) − 𝓁(u, a) .

Under the assumption that the map .u → m is a diffeomorphism from . X to . X∗, 
we have that .u = δh/δm and the Lie-Poisson equations arise from the following 
application of Hamilton’s principle. 

. 

0 = δS = δ

∫ T

0
𝓁(u, a) dt = δ

∫ T

0
(m , u) − h(m, a) dt

=
∫ T

0
(m , δu) +

/

δm , u − δh

δm

\

−
/
δh

δa
, δa

\

dt

=
∫ T

0
(m , ∂t ξ − aduξ ) +

/

δm , u − δh

δm

\

+
/
δh

δa
, Lξ a

\

dt

=
∫ T

0

/

−(
∂t + ad∗

u

)
m − δh

δa
◆ a , ξ

\

+
/

δm , u − δh

δm

\

dt +
/
δ𝓁

δu
, ξ

\ ∣
∣
∣
T

0
.

This calculation yields the implicit form of the following Lie-Poisson equation for 
fluid motion 

.
(
∂t + Lδh/δm

)
m = −δh

δa
◆ a , and

(
∂t + Lδh/δm

)
a = 0 . (2.10) 

Note that these equations are equivalent to the Lie-Poisson equation 

.(∂t + ad∗
δh/δμ)μ = 0 , for μ = (m, a) ∈ X∗

|x V ∗ , (2.11) 

where . ad∗ is the coadjoint representation of .X|x V acting on its dual .X∗
|x V ∗. 

2.2 The Second Variation 

The first and second variations are defined as 

. δf (μ; δμ) := d

dϵ

∣
∣
∣
∣
ϵ=0

f (μ + ϵδμ) , and δ2f (μ; δμ) := d2

dϵ2

∣
∣
∣
∣
ϵ=0

f (μ + ϵδμ) ,

(2.12) 

respectively. In each example we consider in this article, the second variation 
produces a symmetric bilinear form, which we will denote also by .δ2f (δμ, δμ). 
Recall the definition of a functional derivative,
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. 

/
δf

δμ
, δμ

\

:= δf (μ; δμ) .

That is, .(δf/δμ , δμ) is the first term of the expansion around .ϵ = 0 of the first 
derivative of .f (μ + ϵδμ) in . ϵ. When taking second variations, we will often wish 
to go further in this expansion. Indeed, we see that 

. 

d

dϵ
f (μ + ϵδμ) = d

dϵ

∣
∣
∣
∣
ϵ=0

f (μ + ϵδμ) + ϵ
d2

dϵ2

∣
∣
∣
∣
ϵ=0

f (μ + ϵδμ) + O(ϵ2)

=
/
δf

δμ
, δμ

\

+ ϵδ2f (δμ, δμ) + O(ϵ2)

=
/
δf

δμ
, δμ

\

+ ϵ

2

/
δ(δ2f )

δ(δμ)
, δμ

\

+ O(ϵ2) ,

(2.13) 

where the final equality holds since .δ2f (δμ, δμ) is a symmetric bilinear form. This 
calculation allows us to take functional derivatives to the next order of the expansion, 
since the term of order . ϵ involves a pairing of an element of . g against . δμ. 

2.3 Linearised Euler-Poincaré and Lie-Poisson Equations 

We may consider an expansion of the Lie-Poisson equation 

.∂tμ + ad∗
δh
δμ

μ = 0 , (2.14) 

by exploiting the calculation in Eq. (2.13) to notice that 

.

(

∂t + ad∗
δh
δμ

+ ϵ
2

δ(δ2h)
δ(δμ)

)

(μ + ϵδμ) = O(ϵ3) . (2.15) 

Notice that the first order terms in this equation correspond exactly to the Lie-
Poisson equation (2.14), and the next order terms give the linearised equation for 
the perturbation . δμ around the solution . μ to the Lie-Poisson system 

.∂t δμ + ad∗
δh
δμ

δμ = −1

2
ad∗

δ(δ2h)
δ(δμ)

μ . (2.16) 

This can be written in terms of Poisson bracket-like objects as 

.∂tf (δμ) =
/

δμ ,

[
δf

δ(δμ)
,

δh

δμ

]\

+ 1

2

/

μ ,

[
δf

δ(δμ)
,
δ(δ2h)

δ(δμ)

]\

. (2.17)
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For a fixed solution, . μ, of the Lie-Poisson equation, the second bracket here is 
a frozen Lie-Poisson bracket. Notice that there is a direct connection here to the 
motion considered in a previous study [22], where it was observed that for an 
equilibrium solution, . μe, corresponding to a critical point of .h+C for some Casimir, 
C, this equation for . δμ is Hamiltonian with respect to the frozen Lie-Poisson bracket 
with Hamiltonian .δ2hC . The  full  Eq. (2.16) considered here is not itself a Lie-
Poisson system. 

Hamiltonian Systems on Semidirect Product Spaces and Continuum Dynamics 
When the configuration space is a semidirect product Lie group, .G |x V , where G 
acts on V through a right representation, the equations of motion on the Lie co-
algebra, .g∗

|x V ∗, are  

.∂t (δμ, δa) + ad∗
δh

δ(μ,a)

(δμ, δa) = −1

2
ad∗

δ(δ2h)
δ(δμ,δa)

(μ, a) . (2.18) 

These equations can be manipulated into a more convenient form by determining 
.ad∗ for the semidirect product space in the usual way. That is, an alternative form 
of Eq. (2.18) can be directly deduced from Eq. (2.17) by inserting the standard Lie 
bracket for semidirect product spaces as 

.

∂tf (δμ, δa) =
/

(δμ, δa) ,

[
δf

δ(δμ, δa)
,

δh

δ(μ, a)

]\

+ 1

2

/

(μ, a) ,

[
δf

δ(δ(μ, a))
,

δ(δ2h)

δ(δμ, δa)

]\

=
/

δμ , ad δf
δ(δμ)

δh

δμ

\

+
/

δa , LT
δf

δ(δμ)

δh

δa
− LT

δh
δμ

δf

δ(δa)

\

+ 1

2

/

μ , ad δf
δ(δμ)

δ(δ2h)

δ(δμ)

\

+ 1

2

/

a , LT
δf

δ(δμ

δ(δ2h)

δ(δa)
− LT

δ(δ2h)
δ(δμ)

δf

δ(δa)

\

,

(2.19) 

where .LT is the transpose of the Lie derivative. Integrating by parts gives the 
following equations for the dynamics of the perturbations, 

.

(

∂t + ad∗
δh
δμ

)

δμ = −1

2
ad∗

δ(δ2h)
δ(δμ)

μ − δh

δa
◆ δa − 1

2

δ(δ2h)

δ(δa)
◆ a , . (2.20)

(
∂t + L δh 

δμ

)
δa = −1 

2
L δ(δ2h) 

δ(δμ) 
a . (2.21) 

These comprise a useful form in which to write the equations, since the operator 
.∂t + ad∗

δh/δμ is the standard geometric form of the advective derivative and mirrors
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the left hand side of the regular Lie-Poisson and Euler-Poincaré equations. It then 
remains only to determine the right hand sides of the equation in an analogous 
fashion to how fluid models are derived from the Euler-Poincaré equation (2.6), as  
discussed in [20]. It is well known that the equations with advected quantities which 
break the relabelling symmetry under the entire diffeomorphism group, whilst not 
Euler-Poincaré equations on the semidirect product space .g |x V ∗, are the standard 
Lie-Poisson equations on the dual space .g∗

|x V ∗. Here, we have demonstrated that 
the same is true for the linearised equation on the semidirect product space. That is, 
the linearised system of Eqs. (2.20) and (2.21) has the same geometric form as the 
linearised Lie-Poisson equation (2.16). 

Euler-Poincaré Equations for Semidirect Product Spaces When the Legendre 
transform is well defined, the Eqs. (2.20) and (2.21) have equivalent forms in terms 
of the Lagrangian, .𝓁 : g × V ∗ → R. As was achieved for the Lie-Poisson 
equations, one may deduce these equations directly from the following Euler-
Poincaré equations 

.
(
∂t + ad∗

u

) δ𝓁

δu
= δ𝓁

δa
◆ a , . (2.22) 

(∂t + Lu) a = 0 . (2.23) 

Again utilising the calculation performed in Eq. (2.13), we find the expansion of 
these equations as 

. 
(
∂t + ad∗

u+ϵδu

)
(

δ𝓁

δu
+ ϵ

2

δ(δ2𝓁)

δ(δu)

)

=
(

δ𝓁

δa
+ ϵ

2

δ(δ2𝓁)

δ(δa)

)

◆ (a + ϵδa) + O(ϵ3) ,

(∂t + Lu+ϵδu) (a + ϵδa) = O(ϵ3) .

As for the Hamiltonian case, the first order terms are the Euler-Poincaré equations 
and the linearised equations are given by the order . ϵ terms as 

.
(
∂t + ad∗

u

)
(
1

2

δ(δ2𝓁)

δ(δu)

)

= − ad∗
δu

δ𝓁

δu
+ δ𝓁

δa
◆ δa + 1

2

δ(δ2𝓁)

δ(δa)
◆ a , . (2.24) 

(∂t + Lu) δa + Lδua = 0 . (2.25) 

2.4 Second Order Variations of the Euler-Poincaré Variational 
Principle 

In the previous linearised equations, the perturbations .(δu, δa) have been arbitrary. 
When understanding such equations within the variational principle itself, these 
perturbations become constrained.
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The Euler-Poincaré Variational Principle The Eqs. (2.24) and (2.25) can also be 
deduced by considering the next variation in Hamilton’s principle. When deducing 
symmetry reduced equations from the variational principle, arbitrary variations in 
the group are not arbitrary in the algebra. In particular, for an Eulerian velocity 
vector field .u = ∂tg · g−1 ∈ g, where concatenation denotes the lifted right 
translation of .∂tg ∈ TgG by . g−1, an arbitrary variation . δg of the group element 
allows the variation of u to be expressed in terms of an arbitrary vector field 
.ξ = δg · g−1 ∈ g. We may deduce the forms of the first and second variation 
by expanding the vector field .uϵ = ∂tgt,ϵ · g−1

t,ϵ in a Taylor series in powers of a 
small parameter .ϵ ⟪ 1 around the identity .ϵ = 0 as 

. uϵ = u + ϵ(∂t ξ − aduξ) + ϵ2

2
(∂t δξ − adδuξ − aduδξ) + O(ϵ2)

=: u + ϵδu + ϵ

2
δ2u + O(ϵ2) . (2.26) 

Likewise, for an advected quantity which evolves by push-forward as . at = a0g
−1
t

one defines the Taylor series for the variation as 

. aϵ = u|ϵ=0 − ϵLξ a − ϵ2

2

(
Lδξ a + Lξ δa

) + O(ϵ2) =: a + ϵδa + ϵ

2
δ2a + O(ϵ2) .

(2.27) 

Equations (2.26) and (2.27) comprise a second order extension of the Lin constraints 
used to derive the original Euler-Poincaré equations (see e.g. [4]). 

As in Sect. 2.1, the Euler-Poincaré equations (2.22) and (2.23) can be deduced 
from Hamilton’s principle by making use of these variations 

.

0 = δS = δ

∫
𝓁(u, a) dt =

∫ /
δ𝓁

δu
, δu

\

+
/
δ𝓁

δa
, δa

\

dt

=
∫ /

δ𝓁

δu
, ∂t ξ − aduξ

\

−
/
δ𝓁

δa
, Lξ a

\

dt

= −
∫ /

(
∂t + ad∗

u

) δ𝓁

δu
− δ𝓁

δa
◆ a , ξ

\

dt .

(2.28) 

At the second order, we have
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. 

0 = δ2S =
∫ /

1

2

δ(δ2𝓁)

δ(δu)
, δu

\

+
/
1

2

δ(δ2𝓁)

δ(δa)
, δa

\

+
/
δ𝓁

δu
, δ2u

\

+
/
δ𝓁

δa
, δ2a

\

dt

=
∫ /

1

2

δ(δ2𝓁)

δ(δu)
, ∂t ξ − aduξ

\

−
/
1

2

δ(δ2𝓁)

δ(δa)
, Lξ a

\

+
/
δ𝓁

δu
, ∂t δξ − adδuξ − aduδξ

\

−
/
δ𝓁

δa
, Lδξ a + Lξ δa

\

dt

=
∫ /

−(∂t + ad∗
u)

δ𝓁

δu
+ δ𝓁

δa
◆ a , δξ

\

+
/

−(∂t + ad∗
u)
1

2

δ(δ2𝓁)

δ(δu)
+ 1

2

δ(δ2𝓁)

δ(δa)
◆ a + δ𝓁

δa
◆ δa − ad∗

δu

δ𝓁

δu
, ξ

\

dt .

(2.29) 

The arbitrary nature of the vector field . ξ and, by extension, . δξ gives the Euler-
Poincaré equation (2.22) and the Eq. (2.24) for the linear perturbation. This is the 
symmetry-reduced version of taking second order variations in first order variational 
principle used in e.g. [5] to derive dynamics of Jacobi fields. 

In practice, this process will give us equations for . δu and . δa. Since .(δu, δa) can 
be expressed in terms of the arbitrary variable .ξ = δg ·g−1, these imply an equation 
for . ξ . However, as the following Proposition demonstrates, deriving an equation for 
. ξ only requires the equation for . δu, since the equation for . δa is satisfied trivially. 

Proposition 2.1 Given the constrained form of the first variations 

.δu = ∂t ξ − adu ξ , and δa = −Lua , (2.30) 

and the fact that .a ∈ V ∗ is advected by .u ∈ X(M), we find that the Eq. (2.25) is 
satisfied. 

Proof We may verify this claim by direct computation. Indeed, notice that 

. 

∂t δa + Luδa + Lδua = −∂tLξ a − LaLξ a + L∂t ξ−adu ξ a

= −L∂t ξ a − Lξ ∂ta − LaLξ a + L∂t ξ a − Ladu ξ a

= LξLua − LuLξ a − Ladu ξ a = 0 ,

where the final line is a consequence of the standard relationship between the adjoint 
representation and the Lie bracket for right-invariant systems. ⨅⨆
The Legendre Transform and Lie-Poisson Equations As was described in 
Sect. 2.1, the Lie-Poisson equations on semidirect product Lie co-algebras can be 
deduced by Legendre transforming within the application of Hamilton’s Principle 
illustrated by Eq. (2.28). That is, we consider the following variational problem
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.

0 = δS(μ, a; u) = δ

∫
(μ , u) − h(μ, a) dt

=
∫ /

δμ , u − δh

δμ

\

+ (μ , δu) −
/
δh

δa
, δa

\

dt

=
∫ /

δμ , u − δh

δμ

\

+ (μ , ∂t ξ − aduξ ) +
/
δh

δa
, Lξ a

\

dt

=
∫ /

δμ , u − δh

δμ

\

−
/
(
∂t + ad∗

u

)
μ + δh

δa
◆ a , ξ

\

dt ,

(2.31) 

which yields Lie-Poisson equation (2.10). Again, considering the second variation 
of this we have 

.

0 = δ2S(μ, a; u) =
∫ /

δμ , δu − 1

2

δ(δ2h)

δ(δμ)

\

+
/

δ2μ , u − δh

δμ

\

+ (δμ , δu) −
/
1

2

δ(δ2h)

δ(δa)
, δa

\

+
/
μ , δ2u

\
−

/
δh

δa
, δ2a

\

dt

=
∫ /

δμ , δu − 1

2

δ(δ2h)

δ(δμ)

\

+
/

δ2μ , u − δh

δμ

\

+ (δμ , ∂t ξ − adu ξ ) +
/
1

2

δ(δ2h)

δ(δa)
, Lξ a

\

+ (μ , ∂t δξ − adδu ξ − adu δξ ) +
/
δh

δa
, Lξ δa + Lδξ a

\

dt

=
∫ /

δμ , δu − 1

2

δ(δ2h)

δ(δμ)

\

+
/

δ2μ , u − δh

δμ

\

+
/

−(∂t + ad∗
u)μ − δh

δa
◆ a , δξ

\

+
/

−(∂t + ad∗
u)δμ − 1

2

δ(δ2h)

δ(δa)
◆ a − δh

δa
◆ δa − ad∗

δu μ , ξ

\

dt .

(2.32) 

The first two terms in the final line of this calculation give us the identities 

. u = δh

δu
, and δu = 1

2

δ(δ2h)

δ(δμ)
,

the arbitrary nature of . δξ gives us the Lie-Poisson equation, and since . ξ is 
arbitrary we have the Eq. (2.20) for the linear perturbation expressed in terms of 
the Hamiltonian.
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2.5 Jacobi Fields and Geodesics of a Right-Invariant Metric on 
a Lie Group 

In this section, we will specialise to the case in which the Euler-Poincaré equation 
and its linearisation arise from a Lagrangian which is defined by a right-invariant 
inner product. Since we are in the Euler-Poincaré setting [20] and are motivated 
by fluid dynamics, it is natural to derive these equations in terms of pull-backs 
by diffeomorphisms and Lie derivatives with respect to the smooth vector fields 
which generate the diffeomorphisms. However, the literature on Jacobi fields in 
the context of Lie groups is predominantly concerned with expressions on the 
group, G, or algebra, . g, rather than its dual. As such, the Jacobi equation is most 
familiarly expressed in terms of geometric objects such as the covariant derivative 
and Riemannian curvature, as opposed to the adjoint representation, Lie derivative, 
and diamond operation we have thus far employed. Of course, the transformation 
from Lie derivatives to covariant derivatives can be performed using standard 
methods for Riemannian spaces, [24, 25, 31]. 

In this section, we will relate these fields by showing that, for the Lagrangian 
defined by our right-invariant inner product, the resulting Euler-Poincaré equation 
on . g∗ is the geodesic equation. This will be illustrated by writing the equation in 
its equivalent form on . g. Furthermore, since the equation is then expressed on . g, 
we will demonstrate that the linearised Euler-Poincaré equation is equivalent to the 
Jacobi equation in which the Jacobi field is defined by the arbitrary variations in 
the Euler-Poincaré variational principle. This will involve a shift in notation in this 
section relative to the others in this chapter. 

For a Lie group, G, there exists a natural duality pairing between its algebra 
. g, and its co-algebra . g∗, which we will denote by .(· , ·)g∗×g : g∗ × g → R. If  
the Lie group is augmented further with a right-invariant Riemannian metric, then 
the algebra possesses a (weak) right-invariant inner product, denoted by . (· , ·)g :
g × g → R. This metric permits the discussion of geodesics in this setting. Indeed, 
consider the following application of Hamilton’s Principle 

.0 = δ

∫
1

2

〈
ub , u

〉
g∗×g

dt , (2.33) 

where .b : g → g∗ is the musical mapping defined by .
〈
ub , v

〉
g∗×g

= (u , v)g for 
.u, v ∈ g. We note that when the inner product is weak, the musical mapping . b is 
not surjective [26]. Thus, the inverse musical mapping .# : g∗ → g is defined, on the 
image of . b, by .(α , v)g∗×g = 〈

α# , v
〉
g
for .α ∈ g∗ and .v ∈ g. When the inner product 

is strong, the musical mappings become isomorphisms. Following the calculations 
in Sect. 2.4, we see that the variational problem (2.33) implies the following Euler-
Poincaré equation 

.∂tu
b + ad∗

u ub = 0 . (2.34)
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The equation for . δu, given by going to the second order in Hamilton’s Principle, is 

.∂t δu
b + ad∗

u δub = − ad∗
δu ub , (2.35) 

and, when considered together with the constrained variations (2.30), implies the 
following equation, 

.(∂t + ad∗
u)

(
(∂t ξ − adu ξ)b

) = − ad∗
∂t ξ−adu ξ ub , (2.36) 

written in terms of the variable .ξ = δg · g−1 ∈ g, which is a Jacobi field. We will 
now seek to formalise this notion. 

In what follows, will use definitions and notation following Michor [25] and 
readers should consult this text for additional details of this construction. Consider 
a family of time-parameterised geodesics, .{gt,s}s∈R. Then we define .u, ξ ∈ g by 
.u = [

(∂tgt,s) · gt,s

]
s=0 and .ξ = [

(∂sgt,s) · gt,s

]
s=0, and these associations can be 

understood as smooth maps .C∞(G, g). Furthermore, the lifted right action by . gt,s

provides a map from .C∞(G, g) to the space of vector fields on G, and as such 
we have an isomorphism, .C∞(G, g) ∼= X(G). Notice that . ∂tgt,s , ∂sgt,s ∈ Tgt,s G

and the pushforward of . ∂t and . ∂s by .gt,ϵ can be understood as vector fields in G. 
This permits us to introduce the notation .∇∂t ξ by which we mean the Levi-Civita 
covariant derivative of . ξ along the curve . gt , which can be interpreted as an element 
of .C∞(G, g). Since we have constructed a covariant derivative in this manner, we 
may similarly define the Riemannian curvature as a function of u and . ξ , . R(ξ, u) :
C∞(G, g) → C∞(G, g). In particular, this is understood in the usual sense in terms 
of .X(G), where the isomorphism is applied at each stage to identify the vector fields 
on G with elements of Lie algebra. 

Theorem 2.2 Suppose u is a solution of the geodesic Eq. (2.34), then we have the 
following infinite dimensional analogue of the Jacobi equation 

.∇∂t ∇∂t ξ + R(ξ, u)u = 0 . (2.37) 

Proof Following on from the equations derived in Sect. 2.4, we have Eqs. (2.33) 
and (2.35). In order to prevent overuse of the musical isomorphisms, and to better 
connect with the existing literature in this direction, we will define . ad†�� : g×g →
g in terms of .ad∗

�� : g × g∗ → g∗ as 

. ad†u v = (
ad∗

u vb
)#

. (2.38) 

Note that this is simply the consequence of .ad∗ being the dual operator to . ad
with respect to the natural pairing .(· , ·)g and .ad† being defined in the same 
manner with respect to the inner product .(· , ·)g on . g. This allows us to write the 
equations entirely on the Lie algebra, without needing the dual space. Firstly, notice 
that applying Hamilton’s Principle instead to the action . 12

∫ (u , u)g dt yields the 
following equations
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.∂tu + ad†u u = 0 , . (2.39) 

(∂t + ad† u)(∂t ξ − adu ξ)  = − ad† ∂t ξ−adu ξ u , (2.40) 

which correspond to rewriting Eqs. (2.33) and (2.35) in terms of the operator . ad†. 
By using the linearity of . ad† and moving terms in Eq. (2.40) to the right hand side, 
we have 

. ∂tt ξ = − ad†∂t ξ
u + adu ∂t ξ − ad†u ∂t ξ + ad†adu ξ u

+ ad†u adu ξ + ad∂t u ξ

using Eq. (2.39) = − ad† ∂t ξ u + adu ∂t ξ − ad† u ∂t ξ + ad† adu ξ u 

+ ad† u adu ξ − adad† u u ξ 

antisymmetry of the Lie bracket = − ad† ∂t ξ u + adu ∂t ξ − ad† u ∂t ξ − ad† adξ u u 

− ad† u adξ u + adξ ad
† 
u u 

= − ad† ∂t ξ u + adu ∂t ξ − ad† u ∂t ξ 

+ [ad† ξ + adξ , ad
† 
u]u ,  

where, in the final line, we have used the identity .− ad†adξ u u = [ad†ξ , ad†u]u. As was  
shown by Michor [25], .∇∂t ∇∂t ξ +R(ξ, u)u is zero when the above equation is true. 

⨅⨆

3 Examples 

In each example, we will first derive the linearised equations in terms of arbitrary 
perturbations of our variables .(δu, δa). Following this, we will illustrate the 
equation in terms of the arbitrary vector field .ξ = δg · g−1. 

3.1 The Incompressible Euler Equations 

The n-dimensional Euler equations on a manifold M correspond to a Lagrangian, 
.𝓁E : X(M) × Den(M) → R, defined by 

.𝓁E(u,Ddnx;π) =
∫

M

D

2
|u|2 − π(D − 1) dnx , . (3.1)
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and thus 
1 

2 
δ2𝓁E =

∫

M 

D 
2 

|δu|2 + δDu · δu − δπδD dn x , (3.2) 

where .u = u · ∇ and .δu = δu · ∇ denote the vector fields expressed in terms 
of a basis. From Eqs. (3.1) and (3.2), we may compute the following variational 
derivatives 

. 
δ𝓁E

δu
= Dub ⊗ dnx ,

δ𝓁E

δD
= 1

2
|u|2 − π ,

δ𝓁

δπ
= (D − 1) dnx ,

1

2

δ(δ2𝓁E)

δ(δu)
= Dδub ⊗ dnx + δDub ⊗ dnx ,

1

2

δ(δ2𝓁E)

δ(δD)
= u · δu − δπ ,

1

2

δ(δ2𝓁E)

δ(δπ)
= −δD dnx .

We may assemble the variational derivatives of the Lagrangian into the Euler-
Poincaré equations (2.22) and (2.23) gives 

. (∂t +Lu)(Dub⊗dnx) = Dd

(
1

2
|u|2 − π

)

⊗dnx , and (∂t +Lu)(D dnx) = 0 .

The second of these equations, together with the variation in . π giving .D = 1, 
implies that u is a divergence free vector field. The first of these equations is 
Euler’s momentum equation in its geometric form. We may similarly assemble the 
variational derivatives of .δ2𝓁/2 into the Eqs. (2.24) and (2.25) as follows 

. (∂t + Lu)
(
Dδub ⊗ dnx + δDub ⊗ dnx

) = −Lδu

(
Dub ⊗ dnx

)

+ δDd

(
1

2
|u|2 − π

)

⊗ dnx + Dd (u · δu − δπ) ⊗ dnx , . (3.3) 

(∂t + Lu)(δD dn x) = −Lδu(D dn x) . (3.4) 

The variations in . π and . δπ imply that .D = 1 and .δD = 0 . Hence . δu is a divergence 
free vector field and we have 

. (∂t + Lu)(δu
b) = −Lδuu

b + d(u · δu − δπ) , and (∗d∗)ub = (∗d∗)δub = 0 ,

(3.5) 

where . ∗ denotes the Hodge star. In three dimensions, this can be represented in 
vector calculus notation as 

. ∂tδu − u × curl δu = δu × curlu − ∇(u · δu + δπ) , and divu = div δu = 0 ,

(3.6) 

or, equivalently,
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.∂tδu + u · ∇δu + δu · ∇u = −∇(δπ) . (3.7) 

Taking the approach described in Sect. 2.4, these equations, when written in terms 
of .ξ = (δg) · g−1 give 

.(∂t +ad∗
u)((∂t ξ −adu ξ)b) = − ad∗

∂t ξ−adu ξ ub+d((∂t ξ −adu ξ)⌟ub−δπ) . (3.8) 

This equation results from simply substituting in the relationship . δu = ∂t ξ − adu ξ

into the Eq. (3.5). To obtain (3.8) in vector calculus notation, the equation . δu =
∂tξ + ξ · ∇u − u · ∇ξ can be considered alongside the Eq. (3.7). 

3.2 The Stratified Thermal Rotating Euler Equations 

We take a constant gravitational force to act in the direction of one of our 
coordinates, z, and introduce an advected parameter, . ρ, which models thermal 
effects. Furthermore, we introduce a variable representing the effects of rotation, 
. R, which is a given function of . x satisfying .curlR(x) = 2�(x) = f (x)ẑ, where f is 
the Coriolis parameter. The thermal rotating Euler equations then correspond to the 
following Lagrangian, . 𝓁tE : X(M) × Den(M) × Λ0(M) → R

.𝓁tE(u,Ddnx, ρ;π) =
∫

M

Dρ

(
1

2
|u|2 + u · R − gz

)

− π(D − 1) dnx , . (3.9) 

1 

2 
δ2𝓁tE  =

∫

M 

Dρ 
2 

|δu|2 + (δDρ + Dδρ) (u · δu + δu · R) 

+ δDδρ

( |u|2 
2 

+ u · R − gz

)

− δπδD dn x .  

(3.10) 

The variational derivatives can be computed in a manner analogous to those found 
in Sect. 3.1. The Euler-Poincaré equations are 

.(∂t + ad∗
u)

(
Dρ(ub + R · dx) ⊗ dnx

) = Dd (ρ𝜛 − π) ⊗ dnx − D𝜛dρ ⊗ dnx , . 

(3.11) 

(∂t + Lu)(D dn x) = 0 , . (3.12) 

(∂t + Lu)ρ = 0 , (3.13) 

where 

.𝜛 := 1

2
|u|2 + u · R − gz . (3.14)
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Making use of the advection equations and the pressure constraint .D = 1, the first 
of these is 

.ρ(∂t + ad∗
u)(u

b + R · dx) = ρd𝜛 − dπ . (3.15) 

In three dimensions, these equations can be expressed in vector calculus form as 

. ∂tu + u · ∇u − u · curlR = −gẑ − 1

ρ
∇π ,

∂tρ + u · ∇ρ = 0 ,

∇ · u = 0 ,

where . ̂z is the unit vector in the z direction. Similarly, the variational derivatives of 
the functional defined in Eq. (3.10) can be substituted into the Eqs. (2.24) and (2.25) 
to give 

. (∂t + ad∗
u)

(
Dρδub ⊗ dnx + (δDρ + Dδρ)(ub + R · dx) ⊗ dnx

)

= −Lδu

(
Dρ(ub + R · dx) ⊗ dnx

) + δDd (ρ𝜛 − π) ⊗ dnx

+ Dd (ρ(u · δu + δu · R) + δρ𝜛 − δπ) ⊗ dnx

− D𝜛d(δρ) ⊗ dnx − (D(u · δu + δu · R) + δD𝜛) dρ ⊗ dnx , . (3.16) 

(∂t + Lu)(δD dn x) = −Lδu(D dn x) , . (3.17) 

(∂t + Lu)δρ = −Lδuρ . (3.18) 

The first of these equations is simplified when using the constraints .D = 1 and 
.δD = 0 and, after applying the product rule, we have 

. 
ρ(∂t + ad∗

u)δu
b + δρ(∂t + ad∗

u)
(
ub + R · dx

) = δρ d𝜛 + ρd (u · δu + δu · R)

− ρLδu

(
ub + R · dx

) − d (δπ) .

(3.19) 

Making use of the Euler-Poincaré equation (3.15), this equation is 

. (∂t + ad∗
u)δu

b = δρ

ρ2 dπ + d (u · δu + δu · R) − Lδu

(
ub + R · dx

) − 1

ρ
d (δπ) .

(3.20) 

In vector calculus notation, the equations are given in three dimensions by 

.∂tδu + u · ∇δu + δu · ∇u − δu × curlR = δρ

ρ2
∇π − 1

ρ
∇(δπ) , . (3.21)
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∂t δρ + u · ∇δρ + δu · ∇ρ = 0 , . (3.22) 

∇ ·  u = ∇ ·  δu = 0 . (3.23) 

The equation for .ξ = δg · g−1 = ξ · ∇ is given by substituting the equations 

.δu = ∂t ξ − adu ξ , and δρ = −Lξ ρ , (3.24) 

or 

.δu = ∂tξ + ξ · ∇u − u · ∇ξ , and δρ = −ξ · ∇ρ , (3.25) 

into Eq. (3.20) or (3.21) respectively. 

3.3 The Euler-Boussinesq Equations 

Notice that the introduction of thermal effects in the previous example results in the 
pressure, . π , from the fluid remains in the equation governing the linear perturbation. 
This is not the case if one makes the Boussinesq approximation as follows. The 
Lagrangian is now defined to be 

.𝓁EB(u,Ddnx, ρ;π) =
∫

M

D

(
1

2
|u|2 + u · R − gρz

)

− π(D − 1) dnx , . 

(3.26) 

1 

2 
δ2𝓁EB =

∫

M 

D 
2 

|δu|2 + δD (u · δu + δu · R) 

− gzδDδρ − δπδD dn x . (3.27) 

Proceeding as in the previous examples, the Euler-Poincaré equation is 

.(∂t + ad∗
u)(u

b + R · dx) = d

(
1

2
|u|2 + u · R − π

)

− gρdz , (3.28) 

where the incompressibility constraint and the Eq. (2.22) has been rearranged 
after substituting in the variational derivatives of the Lagrangian, . 𝓁EB . In three 
dimensions, this equation is given by 

.∂tu + u · ∇u − u × curlR = −∇π − gρẑ ,

∂tρ + u · ∇ρ = 0 ,

∇ · u = 0 .
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Computing the variational derivatives with respect to . δu, . δD, and . δπ and substitut-
ing the results into Eqs. (2.24) and (2.25), we have  

.

(∂t + ad∗
u)(Dδub ⊗ dnx + δD(ub + R · dx) ⊗ dnx)

= −Lδu(D(ub + R · dx) ⊗ dnx)

+ Dgz d(δρ) ⊗ dnx + δDgz dρ ⊗ dnx

+ δDd

(
1

2
|u|2 + u · R − gρz − δπ

)

⊗ dnx

+ Dd (u · δu + δu · R − gzδρ − δπ) ⊗ dnx .

(3.29) 

Making use of the constraints .D = 1 and .δD = 0, resulting from the arbitrary 
variation in . π and . δπ , we have  

. (∂t + ad∗
u)δu

b = − Lδu(u
b + R · dx) + gz d(δρ)

+ d (u · δu + δu · R − gzδρ − δπ) . (3.30) 

The equations, in three dimensions, are therefore 

.∂tδu + u · ∇δu + δu · ∇u − δu × curlR = −∇(δπ) − g δρẑ , . (3.31) 

∂t δρ + u · ∇δρ + δu · ∇ρ = 0 , . (3.32) 

∇ ·  u = ∇ ·  δu = 0 . (3.33) 

As for the previous example, the equation for . ξ follows from substituting the 
Eqs. (3.24) into (3.30) or Eqs. (3.25) into (3.31). 

3.4 The 2D Thermal Rotating Shallow Water Equations 

We here consider the two dimensional thermal rotating shallow water equations, 
which can be interpreted as an approximation to three dimensional models using 
vertical averaging. The Lagrangian is 

.𝓁T RSW (u, η dnx, ρ) =
∫

M⊆R2

( |u|2
2

+ u · R − gρ

2
(η − 2h)

)

η d2x , . (3.34) 

1 

2 
δ2𝓁T RSW  =

∫

M⊆R2

(η 
2
|δu|2 + δη δu · (u + R) 

−g δρ  δη  (η  − h) − 
gρ 
2 

δη2
)

d2x . (3.35)
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The variational derivatives are computed as follows 

. 
δ𝓁

δu
= η(ub + R · dx) ⊗ d2x ,

δ𝓁

δρ
= −gη

2
(η − 2h) d2x ,

δ𝓁

δη
= |u|2

2
+ u · R − gρ(η − h) ,

1

2

δ(δ2𝓁)

δ(δu)
= (η δub + δη(ub + R · dx)) ⊗ d2x ,

1

2

δ(δ2𝓁)

δ(δρ)
= −g δη(η − h) d2x ,

1

2

δ(δ2𝓁)

δ(δη)
= δu · (u + R) − g δρ(η − h) − gρ δη .

Assembling these into the Euler-Poincaré equation, making use of the fact that . η
and . ρ are advected quantities, we have 

.(∂t + ad∗
u)(u

b + R · dx) = d

( |u|2
2

+ u · R
)

− gρ d(η − h) − gη

2
dρ , (3.36) 

which, in vector calculus notation, is 

.∂tu + u · ∇u − (∇⊥ · R)u⊥ = −gρ∇(η − h) − 1

2
gη∇ρ , . (3.37) 

∂tρ + u · ∇ρ = 0 , . (3.38) 

∂tη + ∇ ·  (ηu) = 0 . (3.39) 

Assembling the variational derivatives into the Eqs. (2.24) and (2.25), we have  

.

(∂t + ad∗
u)

(
(η δub + δη(ub + R · dx)) ⊗ d2x

)

= −Lδu(η(ub + R · dx) ⊗ d2x)

+ δη d

( |u|2
2

+ u · R − gρ(η − h)

)

⊗ d2x

+ η d (δu · (u + R) − g δρ(η − h) − gρ δη) ⊗ d2x

+ gη

2
(η − 2h) d(δρ) ⊗ d2x

+ g δη(η − h) dρ ⊗ d2x .

(3.40) 

These equations can be simplified by applying the product rule and making use of 
the Euler-Poincaré equation (3.36) to give
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.

(∂t + ad∗
u)δu

b = −Lδu(u
b + R · dx) + d

( |u|2
2

+ u · R
)

− g δρ d(η − h) − gρ d(δη) − gη

2
d(δρ) − g

2
δη dρ .

(3.41) 

The equations, in vector calculus form, are 

. ∂tδu + u · ∇δu + δu · ∇u − (∇⊥ · R)δu⊥

= 1

2
g δη∇ρ − 1

2
gη∇(δρ) − g δρ∇(η − h) − gρ∇(δη) , . (3.42) 

∂t δρ + u · ∇δρ + δu · ∇ρ = 0 , . (3.43) 

∂t δη + ∇ ·  (δρu) + ∇ ·  (ρδu) = 0 . (3.44) 

The equation for .ξ = δg · g−1 is given, in its geometric form, by substituting the 
equations 

.δu = ∂t ξ − adu ξ , δρ = −Lξ ρ , and δη = −Lξ η , (3.45) 

into Eq. (3.41). Alternatively, in vector calculus notation, this equation corresponds 
to substituting 

.δu = ∂tξ + ξ ·∇u−u ·∇ξ , δρ = −ξ ·∇ρ , and δη = −∇ · (ηξ) , (3.46) 

into Eq. (3.42). 

4 Numerical Simulations 

In this section, we consider numerical simulations of the linearised Euler-Poincaré 
equations and the associated dynamics of the perturbation vector field for the 
example of the Euler-Boussinesq (EB) equations given in Sect. 3.3. Simplifying to 
a 2D vertical domain, the incompresibility conditions of both . u and . δu allow us 
to express the EB equations and their linearised equations in streamfunction and 
vorticty formulation. Using the Jacobian operator .J : C∞(M) × C∞(M) → R in 
the vertical .(x, z)-plane defined by 

.J (f, g) = −ŷ · ∇f × ∇g = ∂xf ∂zg − ∂zf ∂xg , (4.1) 

we have the following equivalent formulation of Eq. (3.31) 

.

∂tω + J (ψ, ω) + gJ (z, b) = 0 ,

∂tb + J (ψ, b) = 0 , where ω := Δψ and u = ∇⊥ψ ,
. 

(4.2)
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∂t δω + J (ψ, δω) + J (δψ, ω) + gJ (z, δb) = 0 , 

∂t δb + J (ψ, δb) + J (δψ, b) = 0 , where δω := Δδψ and δu = ∇⊥δψ . 
(4.3) 

Substituting the Ansatz .δb = −Lξ b = −ξ ·∇b where .ξ ∈ X(M) is the perturbation 
vector field, we have the equivalent form of the linearised dynamics as 

. 
∂t δω + J (ψ, δω) + J (δψ, ω) − gJ (z, ξ · ∇b) = 0 ,

∂tξ + (ξ · ∇)u − u · ∇ξ = δu , where δω := Δδψ and δu = ∇⊥δψ .

(4.4) 

The configurations of the numerical simulations are as follows. The computational 
domain is .Ω = [0, 1] × [0, 1] which is discretized using .256 × 256 finite element 
cells. The boundary conditions for . u and . δu are periodic in the x direction and 
free slip in z. These boundary conditions can be enforced through their definition 
from the stream functions . ψ and . δψ respectively, both of which have homogeneous 
Dirichlet boundary conditions in .y = 0, 1 and are periodic in x. In the absence of 
viscosity, no other boundary conditions are required. The fluid vorticity . ω, perturbed 
vorticity . δω and buoyancy b are approximated with the .2nd order discontinuous 
Galerkin finite element space (DG1); the stream function . ψ and the perturbation 
stream function .δψ are approximated with the .2nd order continuous Galerkin 
finite element space (CG1); Lastly, the perturbation vector field . ξ , fluid velocity 
. u, and perturbed fluid velocity . δu are approximated with the vectorised .2nd order 
continuous Galerkin finite element space. The numerical method is implemented 
using the firedrake software [13] and we ran the simulation for a total of 16 time 
units. The snapshots of interest are presented in Figs. 1, 2, and 3. 

Fig. 1 At .t = 5, one observes the initial phases of Kelvin Helmholtz instabilities generated by 
the initial conditions in fluid vorticity and buoyancy gradients in the snapshots of . ω (left) and b 
(middle). The inhomogeneous regions in the . δw snapshot (right) closely track the fronts of these 
instabilities, notably the downwards plume and upwards plume located at the left and right side 
of domain centre. This feature allows the perturbation vorticity . δω to be used a diagnostic for 
instabilities
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Fig. 2 At .t = 8, the Kelvin Helmholtz instabilities are fully developed as they are visible in the . ω
(left) and b (middle) snapshots. The perturbation vorticity . δω (right) shows strong correlations with 
these instabilities whilst the magnitude are .≈ 10 times larger than the . δω snapshot at .t = 5. We  
note that the region of largest . δω originated from the initial Kelvin Helmholtz instability shown in 
Fig. 1. This is indeed expected as . δω is advected by the fluid velocity, . u, with an additional forcing 
term, .δu · ∇ω, that generates circulation of . δu

Fig. 3 Snapshots of the fluid velocity field . u (left), perturbation vector field . ξ (middle), and the 
perturbed velocity field . δu (right) at time .t = 8
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5 Summary, Open Problems and Outlook 

The present chapter has treated higher-order variations in the Euler-Poincaré varia-
tional principles with applications to ideal fluid dynamics. The 1. st variations yield 
the well knownmodels of ideal fluid dynamics via the Euler-Poincaré approach [20]. 
The 2. nd variations yield equations for linear perturbations propagating in the frame 
of the fluid motion arising from the 1. st variation. The advantage of this approach is 
that the stability equations arising from the 2. nd variation are perturbation equations 
for time-dependent flows, not only for equilibrium time-independent flows, although 
fluid equilibrium solutions are permitted. For the EPDiff equation for geodesics on 
a Lie group, the linearised equation derived using the methods discussed in this 
chapter is shown to be equivalent to Jacobi’s equation and thus the arbitrary vector 
field employed in the 1. st variation is the Jacobi field. The physical examples of 
fluid models given in this chapter are expressed naturally on semidirect product 
spaces and are thus not geodesic equations. It remains to understand how the broken 
symmetry of ideal fluid dynamics with advected quantities influences the Jacobi 
equation for the vector field .ξ = δgg−1, when expressed in terms of covariant 
derivatives, and hence the behaviour of nearby trajectories in the Lie group. 
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On Forward–Backward SDE Approaches 
to Conditional Estimation 

Jin Won Kim and Sebastian Reich 

1 Introduction 

In this chapter, we revisit the problem of partially observed diffusion processes 
and their associated continuous time filtering problems [1, 11]. While the detailed 
problem formulation appears in Sect. 2, the goal of the continuous time filtering 
problem is to characterise the distribution of the hidden state . XT at time T , given  
the observation path .Z0:T . Let us denote the conditional distribution at time T by 
. πT . Instead of computing . πT as a probability measure, we focus on constructing an 
estimator of .f (XT ) for given a measurable and bounded function f in the form of 

.ST [f ] = μ[Y0] −
∫ T

0
UT

t dZt , (1) 

where . μ is the density of states at initial time .t = 0 which is assumed to be known 
and . Ut is a weight on the incoming observation. The function .Y0(x) is chosen 
such that the corresponding estimator .ST [f ] becomes an unbiased estimator of 
.f (XT )—that is, .E[ST [f ]] = E[f (XT )]—for any admissible . Ut . Our interest has 
been triggered by recent progress on the topic [15–17], which has extended the dual 
optimal control perspective for linear problems, as originally introduced by [12, 14], 
to nonlinear filtering problems. In the work of [15–17], the weight . Ut is considered 
as a control input to drive a function-valued stochastic process .Yt (x) for . t ∈ [0, T ]
to satisfy the backward stochastic partial differential equation (BSPDE) 

. − dYt = Lx Ytdt − VT
t dZt + (Ut + Vt )

Th dt, YT = f. (2) 
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Here . Lx denotes the generator of the underlying signal process and .h(x) is the 
forward map in the observation process. See Sect. 2 for a more detailed definition. 
The minimum variance property of the conditional expectation is then expressed in 
terms of an appropriate cost function which determined the optimal .U0:T uniquely, 
such that the optimal estimator satisfies 

.ST [f ] = πT [f ] := E[f (XT )|Z0:T ]. (3) 

Instead of the BSPDE (2) and the minimum variance properties, we address the 
definition of (1) from the perspective of forward-backward stochastic differential 
equations (FBSDEs) [7] instead. In particular, instead of the controlled process in 
function space, we consider the backward-in-time process to be an uncontrolled 
representation of the target value. Our approach provides a unified perspective on 
the following four scenarios: 

(i) estimating .πT [f ] using an estimator of the form (1), 
(ii) estimating .σT [f ] using an estimator of the form (1), where . σt denotes the non-

normalised filtering distribution satisfying the Zakai equation [1, 11], 
(iii) estimating .πT [f ] using the innovation 

.It = Zt −
∫ t

0
πs[h]ds (4) 

in the estimator (1) instead of the observations . Zt , 
(iv) estimating .σT [f ] using the induced observation error 

.Wt = Zt −
∫ t

0
h(Xs)ds (5) 

instead of the observations . Zt directly. 

Our FBSDE approach allows for a transparent definition of estimators that exactly 
match the corresponding conditional expectations in all four cases. It is found 
that (ii)–(iv) lead to deterministic backward Kolmogorov equations [7, 19] in  
the unknown .Yt (x) instead of the BSPDE formulation (2), which arises from 
(i). Furthermore, while (ii) and (iii) lead to the standard backward Kolmogorov 
equation, (iv) introduces an additional drift term in the spirit of Feynman-Kac 
formulations [7]. By strictly following an FBSDE approach, a numerical treatment 
also becomes feasible following established computational methods for FBSDEs 
[8]. This aspect will be explored in a future publication. 

We emphasise that we assume throughout this chapter that the observable .f (x) is 
a deterministic function independent of the data .Z0:T . On the contrary, applications 
of estimators of the form (1) to the problem of filter stability have been discussed in 
[15, 18]. In this context, the terminal condition in (2) becomes data dependent and 
the analysis of the resulting FBSDEs becomes more involved. Such an extension is 
left to future work.
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Estimators of the form (1) extend to conditional expectation values 

.VT :=
∫ T

0
πt [ct ]dt + πT [f ], (6) 

which naturally arise from partially observed stochastic optimal control problems. 
Here .ct (x), .t ∈ [0, T ] denotes the running cost and .f (x) the terminal cost at some 
finite time horizon T [3, 5]. We briefly discuss such an extension and its connection 
to our FBSDE formulations later in the chapter. 

The remainder of this chapter is structured as follows. Sect. 2 provides the neces-
sary background on time-continuous nonlinear filtering and introduces two sets of 
forward SDEs (FSDEs), which will play an essential role in deriving the optimal 
estimators for scenarios (i)–(iv). The estimators for the conditional expectation 
values are discussed for all four scenarios separately in Sect. 3. Emphasis is put on 
a unified framework using appropriate FBSDEs. It is demonstrated that the FBSDE 
become equivalent to a backward Kolmogorov equation under scenarios (ii) and 
(iii). The FBSDE perspective also leads to novel formulations of the stochastic 
optimal estimation problem (i) while scenario (iv) results in a backward PDE 
formulation in the spirit of Feynman–Kac. Sect. 4 provides an application of (6) 
to problems from optimal control of partially observed diffusion processes [3, 5]. 
Our chapter ends with some conclusions. 

2 The Continuous Time Filtering Problem 

The joint measure over paths .(X0:T , Z0:T ) in state variable x and observed variable 
z is determined by the FSDE 

.dXt = b(Xt )dt + σdBt , X0 ∼ μ, . (7a) 

dZt = h(Xt )dt + dWt, Z0 = 0, (7b) 

for time .t ∈ [0, T ]. It is assumed that .Xt ∈ ℜdx and .Zt ∈ ℜdz . .b : ℜdx → ℜdx is the 
drift function and .h : ℜdx → ℜdz is called the observation function. .(Bt ,Wt ) are 
assumed to be independent Brownian motions on .ℜdx × ℜdz , while we assume . σ is 
a scalar for simplicity. We denote the infinitesimal generator of the signal process 
. Xt by . Lx which is given by 

.Lxg = bT∇xg + σ 2

2
∇2

xg. (8) 

We denote the induced path measure by . P and the expectation value of a function 
.g(x, z) by .E[g(Xt , Zt )]. We are interested in the conditional path measure . Xt |Z0:t
and denotes its density at time t , by  . πt , .t ∈ [0, T ] [1, 11]. Recall that the filtering
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distribution . πt satisfies the Kushner–Stratonovitch (KS) equation of nonlinear 
filtering [1, 11]. 

It is also well-known that the innovation process (4) behaves like Brownian 
motion independent of . Bt under the path measure . P and we introduce the FSDE 

.dXt = b(Xt )dt + σdBt , X0 ∼ μ, . (9a) 

dDt = Dt (h(Xt ) − πt [h])TdIt , D0 = 1, (9b) 

which are driven by the independent Brownian processes .(Bt , It ). We denote the 
path measure induced by the FSDE (9) by . P∗ and its expectation operator by . E∗. It  
holds that 

.πt [f ] = E
∗[Dtf (Xt )|I0:t ]. (10) 

We also introduce the shorthand notation 

.E
∗
I [g(Xt ,Dt )] = E

∗[g(Xt ,Dt )|I0:t ], (11) 

for any suitable function .g(x, d). 
The SDE (9b) is of mean-field type, which becomes more transparent when 

rewritten in the form 

.dDt = Dt (h(Xt ) − E
∗
I [Dth(Xt )])TdIt . (12) 

Hence, alternatively, we consider the change of measure 

.
dP̃

dP
(Xt ) = D̃−1

t , (13) 

where 

.dD̃t = D̃t h(Xt )
TdZt , D̃0 = 1. (14) 

We recall that this change of measure arises from an application of Girsanov’s 
theorem [19] and that . Zt behaves like Brownian motion independent of . Bt under 
the new path measure . ̃P [1]. We, hence, introduce a second pair of FSDEs 

.dXt = b(Xt )dt + σdBt , X0 ∼ μ, . (15a) 

d D̃t = D̃t h(Xt )
TdZt , D̃0 = 1, (15b) 

which are now driven by the independent Brownian processes .(Bt , Zt ). The induced 
path measure is denoted by . ̃P∗ and its associated expectation operator by . Ẽ∗.
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Furthermore, one can introduce the non-normalised filtering density . σt , which 
satisfies 

.σt [f ] = Ẽ
∗[D̃tf (Xt )|Z0:t ] (16) 

for fixed observation process . Z0:t . Again we introduce the shorthand notation 

.Ẽ
∗
Z[g(Xt , D̃t )] = Ẽ

∗[g(Xt , D̃t )|Z0:t ]. (17) 

Recall that . σt satisfies the Zakai equation of nonlinear filtering [1, 11] and that 

.πt [f ] = σt [f ]
σt [1] . (18) 

3 FBSDE Estimators for Conditional Expectation Values 

We wish to construct estimators for the conditional expectation values .πT [f ] and 
.σT [f ], respectively, of the following form: 

.Sσ
T [f ] := Ỹ0 −

∫ T

0
ŨT

t dZt , . (19a) 

Sπ 
T [f ] :=  ̆Y0 −

∫ T 

0 
ŬT 

t dIt , . (19b) 

Ŝπ 
T [f ] :=  ̂Y0 −

∫ T 

0 
ÛT 

t dZt , . (19c) 

S̄σ 
T [f ] :=  ̄Y0 −

∫ T 

0 
ŪT 

t dWt. (19d) 

The required random variables . Ỹ0, . Y̆0, . Ŷ0, . Ȳt and controls .Ũ0:T , .Ŭ0:T , .Û0:T , . Ūt , 
respectively, are chosen such that 

.Ẽ
∗
Z[Sσ

T [f ]] = σT [f ], . (20a) 

E
∗
I [Sπ 

T [f ]] = πT [f ], . (20b) 

E
∗
I [Ŝπ 

T [f ]] = πT [f ], . (20c) 

Ẽ
∗
Z[S̄σ 

t [f ]] = σT [f ] (20d) 

for any suitable observable .f (x). 
We derive appropriate FBSDE formulations for each of the four estimators in the 

following subsections. See [4, 7] for an introduction to BSDEs and FBSDEs.
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3.1 Observation-Based Estimator I 

We start with the estimator (19a) and introduce the BSDE 

.dỸt = Q̃T
t dBt + Ṽ T

t dZt , ỸT = D̃T f (XT ), (21) 

where .(XT , D̃T ) is defined by the forward Eq. (15). The equation is a BSDE as the 
terminal condition . ỸT is given. While both .B0:T and .Z0:T are the driving martingales 
of the BSDE (21), the right-hand side is expressed as a single stochastic integral: 

.Q̃T
t dBt + Ṽ T

t dZt = [
Q̃T

t ; Ṽ T
t

] [
dBt

dZt

]
=: P̃ T

t

[
dBt

dZt

]
(22) 

where .P̃ T
t = [

Q̃T
t ; Ṽ T

t

]
. The solution to the BSDE is given by a pair of processes 

.(Ỹt , P̃t ). However, we keep . Q̃t and . Ṽt separate throughout this chapter rather than 
using the concatenated vector notation . P̃t . 

We note that 

.D̃T f (XT ) − Sσ
T [f ] = D̃T f (XT ) − Ỹ0 +

∫ T

0
ŨT

t dZt . (23a) 

=
∫ T 

0 
Q̃T 

t dBt +
∫ T 

0 
( Ũt + Ṽt )

TdZt . (23b) 

Therefore taking conditional expectation .Ẽ
∗
Z[·] on both sides yields 

.σT [f ] − Ẽ
∗
Z[Sσ

T [f ]] = Ẽ
∗
Z

[∫ T

0
(Ũt + Ṽt )

TdZt

]
. (24) 

We immediately obtain the condition 

.Ũt = −Ṽt . (25) 

Remark 1 In the work of [17], U is interpreted as a “control” term while the 
optimisation objective is the error variance of the estimator of the form (19c) from 
.f (XT ). Similar consideration on minimum variance estimation is also possible 
because 

.Ẽ
∗
Z

[(
D̃T f (XT ) − Sσ

T [f ]
)2] = Ẽ

∗
Z

[(
D̃T f (XT ) − Ỹ0 +

∫ T

0
ŨT

t dZt

)2]
. 

(26a)
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= Ẽ∗
Z

[(∫ T 

0 
Q̃T 

t dBt +
∫ T 

0 
( Ũt + Ṽt )

TdZt

)2]
. 

(26b) 

= Ẽ∗
Z

[∫ T 

0

(
||Q̃t||2 + ||Ũt + Ṽt||2

)
dt

]
+ M̃T , 

(26c) 

where .M̃T is a martingale term which vanishes under expectations with respect to 
observations .Z0:T . Therefore the optimal choice is again .Ũt = −Ṽt . Note that our 
FBSDE formulation allows the estimator to be exact, and therefore we directly use 
the backward-in-time representation of the state process itself. 

In order to gain a better insight into the solution structure of the FBSDEs (15) 
and (21) and to find an explicit expression for the optimal weight .Ũ0:T , we  
introduce the notations .Ỹ

t,x,d
s , .Ṽ t,x,d

s , .Q̃t,x,d
s , and .Ũ

t,x,d
s for solutions of the FBSDE 

considered over the restricted time interval .s ∈ [t, T ] with initial condition . Xt = x

and .D̃t = d. Equation (21) now implies 

.Ỹ
t,x,d
t = Ẽ

∗ [
Ỹ

t,x,d
t+τ

]
(27) 

for .τ ∈ (0, T − t], where .Xt,x
s denotes solutions of the forward SDE (15a) with 

.Xt = x for .s ≥ t and similarly for .D̃t,x,d
s . Here  . Ẽ∗ denotes now expectation with 

respect to the Brownian noise .Bt :t+τ in (15a) and the observations .Zt :t+τ in (15b) 
under the path measure . ̃P∗ for fixed initial conditions .Xt = x and .D̃t = d. In  
particular, we can set .t + τ = T and use .Ỹ

t,x,d
T = D̃

t,x,d
T f (X

t,x
T ). 

Furthermore, let us denote the generator of the FSDEs (15) by  . L̃, which acts on 
functions .g(x, d), that is, 

.L̃ g(x, d) = b(x)T∇xg(x, d) + σ 2

2
∇2

xg(x, d) + d2

2
h(x)Th(x) ∂2dg(x, d). (28) 

Then, under appropriate smoothness assumptions, the deterministic function 

.ỹt (x, d) := Ỹ
t,x,d
t (29) 

satisfies the backward Kolmogorov equation 

. − ∂t ỹt (x, d) = L̃ ỹt (x, d), ỹT (x, d) = d f (x), (30)
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since 

.dỹt (Xt , D̃t ) = (∂t ỹt (Xt , D̃t ) + L̃ỹt (Xt , D̃t ))dt . (31a) 

+ σ∇x ỹt (Xt , D̃t )dBt + ∂d ỹt (Xt , D̃t ) D̃th(Xt )
TdZt . (31b) 

= dỸt = Q̃T 
t dBt + Ṽ T t dZt . (31c) 

Hence one also obtains 

.Q̃
t,x,d
t = σ∇x ỹt (x, d), . (32a) 

Ṽ t,x,d 
t = d ∂d ỹt (x, d) h(x), (32b) 

and we can define the deterministic control function 

.ũt (x, d) := −d ∂d ỹt (x, d) h(x) (33) 

and minimum variance control .Ũt = ũt (Xt , D̃t ). 
To simplify further, we make the separation ansatz .ỹt (x, d) = d yt (x) and find 

that this assumption implies 

.L̃ ỹt (x, d) = d Lx yt (x), (34) 

where . Lx denotes the generator of (9a). Hence .yt (x) has to satisfy the backward 
Kolmogorov equation 

. − ∂tyt (x) = Lxyt (x), yT (x) = f (x). (35) 

Furthermore, 

.ut (x, d) = −d yt (x) h(x) (36) 

and (19a) becomes 

.Sσ
T [f ] = y0(X0) +

∫ T

0
D̃t yt (Xt ) h(Xt )

TdZt . (37) 

A closely related estimator can be found in [15] (Section 2.3.3), where it has 
been used to derive Zakai’s equation. The difference is that [15] considers directly 
the averaged estimator (43) not relying on an FBSDE formulation. 

Furthermore, one can derive a BSDE representation for .yt (x) directly. Upon 
introducing . Yt such that .Ỹt = D̃tYt and utilizing (15b), (7b), and (21), one obtains 
the BSDE 

.dYt = QT
t dBt + V T

t dWt, YT = f (XT ), (38)
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along the FSDEs (7). Please be aware that .(Qt , Vt ) are not the same as in the 
BSDE (21). In fact, since 

.dỸt = D̃tdYt + Yt D̃th(Xt )
TdZt + D̃th(Xt )

TVtdt . (39a) 

= D̃tQ
T 
t dBt + D̃t (Vt + Yth(Xt ))

T dZt , (39b) 

one finds that .Q̃t = D̃tQt and .Ṽt = D̃tVt + D̃tYth(Xt ). Furthermore, since . Yt does 
not depend on .Zt :T , .Vt ≡ 0 and we obtain 

.dYt = QT
t dBt (40) 

in line with the backward Kolmogorov equation (35). Let us summarise our findings 
in the following lemma. 

Lemma 1 The estimator (19a) becomes unbiased for .Ỹ0 = Y0 with . Yt , .t ∈ [0, T ], 
defined by the FBSDEs 

.dXt = b(Xt )dt + σdBt , X0 ∼ μ, . (41a) 

dYt = QT 
t dBt , YT = f (XT ). (41b) 

The control . Ũt , .t ∈ [0, T ], is provided by 

.Ũt = −D̃tYth(Xt ). (42) 

We end this section with a brief discussion related to the problem of filter stability. 
Let us introduce the abbreviation 

.Sσ
T [f ] := Ẽ

∗
Z[Sσ

T [f ]] = μ[Y0] −
∫ T

0
Ẽ

∗
Z[Ũt ]dZt (43) 

The optimal choice .Ũt = −Ṽt leads to 

.ỸT − Sσ
T [f ] = Ỹ0 − μ[Ỹ0] +

∫ T

0
Q̃T

t dBt +
∫ T

0
(Ṽt − Ẽ

∗
Z[Ṽt ])dZt (44) 

from which we can recover 

.Sσ
T [f ] = Ẽ

∗
Z[ỸT ] = σT [f ] (45) 

(unbiasedness) as well as
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.Ẽ
∗
[(

ỸT − σT [f ]
)2] = μ

[(
Ỹ0 − μ[Ỹ0]

)2]
. (46a) 

+ Ẽ∗
[∫ T 

0

(
||Q̃t||2 + ||Ṽt − Ẽ∗

Z[Ṽt ]||2
)
dt

]

(46b) 

(variance propagation). The last identity gives rise to the differential equation 

.
d

dt
Ẽ

∗
[(

Ỹt − σt [f ]
)2] = Ẽ

∗ [
||Q̃t||2 + ||Ṽt − Ẽ

∗
Z[Ṽt ]||2

]
(47) 

and the variance of . Ỹt is non-increasing as time goes backward from .t = T to .t = 0. 
The expression on the right hand side of (47) can be viewed as a (non-stationary) 
Dirichlet form and carré du champ operator [2], respectively, associated with the 
FSDE (15). Furthermore, under an assumed Poincaré-type inequality 

.c Ẽ∗
[(

Ỹt − σt [f ]
)2] ≤ Ẽ

∗ [
||Q̃t||2 + ||Ṽt − Ẽ

∗
Z[Ṽt ]||2

]
, (48) 

.c > 0, the decay becomes exponential. We note that 

. ||Q̃t||2 + ||Ṽt − Ẽ
∗
Z[Ṽt ]||2 = σ 2||D̃t∇xyt (Xt )||2 + ||D̃tyt (Xt )h(Xt ) − σt [yth]||2,

(49) 

which provides an explicit expression for the decay of variance via (47). It would 
be of interest to relate these considerations to the problem of filter stability. See the 
closely related work [18]. An obvious observation is that an exponential decay in 
the variance of . Yt implies an exponential decay of variance in . Ỹt . 

3.2 Innovation-Based Estimator 

We now turn to the estimator (19b). The required BSDE for . Y̆t is given by 

.dY̆t = Q̆T
t dBt + V̆ T

t dIt , Y̆T = DT f (XT ), (50) 

along solutions of the FSDE (9). We note again that 

.DT f (XT ) − Sπ
T [f ] = DT f (XT ) − Y̆0 +

∫ T

0
ŬT

t dIt . (51a) 

=
∫ T 

0 
Q̆T 

t dBt +
∫ T 

0 
( Ŭt + V̆t )

TdIt . (51b)
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Similar to the previous case, we take conditional expectation .E∗
I [·] on both sides to 

conclude 

.πT [f ] − E
∗
I [Sπ

T [f ]] = E
∗
I

[∫ T

0
(Ŭt + V̆t )

TdIt

]
, (52) 

which again yields the optimal choice .Ŭt = −V̆t and the associated estimator (19b) 
is of minimum variance (see Remark 1). 

The time-dependent generator . Lt associated with the FSDE (9) is provided by 

.Lt g = bT∇xg + σ 2

2
∇2

xg + d2

2
||h − πt [h]||2 ∂2dg. (53) 

Let the function .y̆t (x, d) satisfy the associated BSPDE 

. − dt y̆t = Lt y̆t dt − V̆T
t dIt , y̆T (x, d) = d f (x), (54) 

where the . V̆t term is needed to make .y̆t (x, d) adapted to the forward process. 
However, as shown below, .∂2d y̆t = 0 and we may conclude that .V̆t ≡ 0. Then 
Itô’s formula implies 

.dy̆t (Xt ,Dt ) = (dt y̆t (Xt ,Dt ) + Lt y̆t (Xt ,Dt )dt) + σ∇x y̆t (Xt ,Dt )dBt . (55a) 

+ Dt∂d y̆t (Xt ,Dt )(h(Xt ) − πt [h])TdIt . (55b) 

= Q̆T 
t dBt + V̆ T t dIt = dY̆t . (55c) 

Hence, we find that .q̆t (x, d) = σ∇x y̆t (x, d) as well as 

.v̆t (x, d) = d ∂d y̆t (x, d) (h(x) − πt [h]). (56) 

Again, we make the ansatz .y̆t (x, d) = d yt (x) and find that .yt (x) has to satisfy the 
previously stated backward Kolmogorov equation (35). Therefore, we also find that 
.Q̆t = q̆t (Xt ,Dt ) with .q̆t (x, d) := d σ ∇xyt (x) as well as .V̆t = v̆t (Xt ,Dt ) with 
.v̆t (x, d) = d vt (x) where 

.vt (x) = yt (x) (h(x) − πt [h]). (57) 

The optimal control is given by 

.Ŭt = −Dt yt (Xt ) (h(Xt ) − E
∗
I [Dth(Xt )]) (58) 

and (19b) becomes 

.Sπ
T [f ] = y0(X0) +

∫ T

0
Dt yt (Xt ) (h(Xt ) − E

∗
I [Dth(Xt )])TdIt . (59)



126 J. W. Kim and S. Reich

An alternative derivation is to use the ansatz .Y̆t = DtYt as in the previous section, 
where .(Yt , (Qt , Vt )) is the solution of the BSDE (38) along with the FSDE (7). The 
two BSDEs (50) and (38) are now related by .Q̆t = DtQt as well as 

.V̆t = DtVt + DtYt

(
h(Xt ) − E

∗
I [Dth(Xt )]

)
(60) 

and one finds again that .Vt ≡ 0. Hence the BSDE (38) reduces to (40), which 
corresponds to the backward Kolmogorov equation (35). Let us summarise our 
findings in the following lemma. 

Lemma 2 The estimator (19b) becomes unbiased for .Y̆0 = Y0 with . Yt , .t ∈ [0, T ], 
defined by the FBSDEs (41) and the control . Ŭt , .t ∈ [0, T ], is provided by 

.Ŭt = −DtYt (h(Xt ) − E
∗
I [Dth(Xt )]). (61) 

The considerations on filter stability, as put forward in Section 3.1, extend naturally 
to the innovation-based estimator (19b). In particular, (47) becomes 

.
d

dt
E

∗
[(

Y̆t − πt [f ]
)2]

. (62a) 

= E∗ [
σ 2||Dt∇xyt (Xt )||2 + ||Dtyt (Xt )(h(Xt ) − πt [h]) − πt [yt (h − πt [h])]||2

]
(62b) 

with .Y̆t = Dt yt (Xt ) and an appropriate Poincaré inequality would again establish 
an exponential decay of variance. 

Example 1 The linear-Gaussian case is a special case of the model (7) where 
.b(x) = ATx, .h(x) = HTx for some .A ∈ ℜdx×dx and .H ∈ ℜdx×dz , and . μ is 
Gaussian with mean . m0 and covariance matrix . Σ0. Fix  .f̄ ∈ ℜdx and consider a 
linear function .f (x) = f̄ Tx. In this case, the solution to the backward Kolmogorov 
equation is also a linear function .yt (x) = ȳT

t x with 

. − dȳt

dt
= Aȳt , ȳT = f̄ . (63) 

Upon introducing the filtered state covariance matrix 

.Σt := E
∗
I [DtXtX

T
t ] − E

∗
I [DtXt ]E∗

I [DtXt ]T, (64) 

the optimal control (58) takes the form 

.E
∗
I [Ut ] = −HTΣt ȳt (65) 

and the estimator (59) becomes
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.Sπ
T [f ] := E

∗
I [Sπ

T [f ]]. (66a) 

= ȳT 
0 m0 +

∫ T 

0 
ȳT 
t ΣtHdIt . (66b) 

= f̄ TeT AT 
m0 +

∫ T 

0 
f̄ Te(T −t)AT 

ΣtHdIt . (66c) 

Define the filtered mean 

.mt := etAT
m0 +

∫ t

0
e(t−s)AT

ΣsHdIs, (67) 

and observe that .Sπ
T [f ] = f̄ TmT . The Kalman–Bucy filter is obtained by 

differentiate (67) with respect to t : 

.dmt = ATmtdt + ΣtHdIt . (68) 

Please note that, contrary to (63), the BSPDE formulations (2) leads to the controlled 
backward Kolmogorov equation 

. − dȳt

dt
= Aȳt + Hūt , ȳT = f̄ (69) 

instead [17]. We explore this connection further in the following subsection. . ◻

3.3 Observation-Based Estimator II 

We now state a BSDE required to define the estimator (19c). The key observation is 
again that the backward process . Ŷt is chosen such that 

.DT f (XT ) − Ŝπ
T [f ] = ŶT − Ŷ0 +

∫ T

0
ÛT

t dZt (70) 

becomes independent of the innovation process .I0:T under an optimal choice of the 
control .Û0:T . These considerations lead immediately to the BSDE 

.dŶt = Q̂T
t dBt + V̂ T

t dIt − ÛT
t E

∗
I [Dth(Xt )]dt, ŶT = DT f (XT ), (71) 

along the FSDE (9) since then 

.DT f (XT ) − Ŝπ
T [f ] =

∫ T

0
Q̂T

t dBt +
∫ T

0
(Ût + V̂t )

TdIt (72)
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and the desired solution is provided by .Ût = −V̂t . In the context of minimum 
variance estimation, the conclusion can be drawn from the associated cost function 

.ĴT (Û0:T ) := E
∗
[∫ T

0

(
||Q̂t||2 + ||Ût + V̂t||2

)
dt

]
. (73) 

However, contrary to the previous two estimators, the BSDE (71) does no longer 
lead to a standard backward Kolmogorov-type PDE. This is due to the appearance 
of the 

.ÛT
t E

∗
I [Dth(Xt )] = −V̂ T

t E
∗
I [Dth(Xt )] (74) 

drift term in (71). Let us summarise our findings in the following lemma. 

Lemma 3 The estimator (19c) becomes unbiased for . Ŷ0 defined by the FBSDEs 

.dXt = b(Xt )dt + σdBt , X0 ∼ μ, . (75a) 

dDt = Dt (h(Xt ) − E∗
I [Dth(Xt )])TdIt , D0 = 1, . (75b) 

d Ŷt = Q̂T 
t dBt + V̂ T t (dIt + E∗

I [Dth(Xt )]dt),  ŶT = DT f (XT ). (75c) 

The control . Ût , .t ∈ [0, T ], is provided by .Ût = −V̂t . 

Let us again discuss some implications of the proposed estimator and introduce the 
abbreviation 

.Ŝπ
T [f ] := E

∗
I [Ŝπ

T [f ]] = μ[Ŷ0] −
∫ T

0
E

∗
I [Ût ]TdZt , (76) 

which implies 

.ŶT − Ŝπ
T [f ] = Ŷ0 − μ[Ŷ0] +

∫ T

0
Q̂T

t dBt . (77a) 

+
∫ T 

0 
( V̂t + E∗

I [Ût ])TdIt +
∫ T 

0 
( Ût − E∗

I [Ût ])Tπt [h]dt. 
(77b) 

The choice .Ût = −V̂t leads to 

.Ŝπ
T [f ] = E

∗
I [ŶT ] = πT [f ] (78) 

as well as
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.E
∗
[(

ŶT − Ŝπ
T [f ]

)2] = μ

[(
Ŷ0 − μ[Ŷ0]

)2]
. (79a) 

+ E∗
[∫ T 

0

(
||Q̂t||2 + ||V̂t − E

∗
I [V̂t ]||2

)
dt

]
. 

(79b) 

+ E∗
[(∫ T 

0 
( V̂t − E

∗
I [V̂t ])Tπt [h]dt

)2]
. 

(79c) 

Furthermore, if one applies the averaged control 

.Ût = −E
∗
I [V̂t ] (80) 

in the BSDE (71) directly, then (77) turns into 

.ŶT − Ŝπ
T [f ] = Ŷ0 − μ[Ŷ0] +

∫ T

0
Q̂T

t dBt +
∫ T

0
(V̂t − E

∗
I [V̂t ])TdIt . (81) 

Hence the integral term (79c) vanishes and the resulting (79) reveals the more 
common minimum variance/optimal control aspect of the averaged control (80). 
We also note that the resulting estimator (19c) remains unbiased under the averaged 
control (80). 

Let us finally connect the discussion so far to the work of [15, 17], which is based 
on the estimator (1) and the BSPDE (2). We note that . Zt is not Brownian motion 
with respect to the path measure . P generated by the FSDEs (7a)–(7b). Hence we 
first reformulate (2) into the BSDE 

.dYt = QT
t dBt + V T

t dWt − UT
t h(Xt ) dt, YT = f (XT ). (82) 

along the FSDE (7). In a next step, we obtain 

.YT − ST = Y0 − μ[Y0] +
∫ T

0
QT

t dBt +
∫ T

0
(Vt + Ut )

TdWt (83) 

and 

. E

[
(YT − ST )2

]
= E

[
(Y0 − μ[Y0])2

]
+ E

[∫ T

0

(
||Qt||2 + ||Vt + Ut||2

)
dt

]
.

(84) 

Please note that the optimal control is not provided by .Ut = −E[Vt |Z0:t ]. In fact, 
we introduce



130 J. W. Kim and S. Reich

.Y̌t := DtYt (85) 

and, using (9) and (82), obtain the BSDE 

.dY̌t = Q̌T
t dBt + V̌ T

t dIt − Dt UT
t h(Xt )dt, Y̌T = DT f (XT ), (86) 

with . V̌t and . Q̌t satisfying 

.V̌t = Dt {Vt + Yt (h(Xt ) − πt [h])} (87) 

and .Q̌t = DtQt , respectively. Note that the BSDE (86) implies 

.πT [f ] = μ[Y̌0] +
∫ T

0
E

∗
I [V̌t ]TdIt −

∫ T

0
UT

t πt [h]dt (88) 

and we can characterise the dependence of the estimation error on . Ut : 

.ST − πT [f ] = −
∫ T

0

(
Ut + E

∗
I

[
V̌t

])T
dIt . (89) 

The error becomes zero (unbiased estimator) for 

.Ut = −E
∗
I [V̌t ] = −E

∗
I [DtVt + DtYt (h(Xt ) − πt [h])], (90) 

which also provides the minimiser of (84) (minimum variance estimator) in 
agreement with the results from [17]. 

Please also compare the BSDE formulations (71) to the BSDE formulation (86), 
which are both along the FSDE (9). In particular, . Q̂t corresponds formally to 
. Q̌t and . V̂t to . V̌t , respectively. There remains a difference in the use of either 
.ÛT

t E
∗
I [Dth(Xt )] or .UT

t (Dth(Xt )), respectively, as the additional drift term. How-
ever, since the representation of an unbiased estimator is unique (Proposition 2.31 
in [1]), the resulting estimators are equivalent, that is, .Ŝπ

T [f ] = ST [f ]. 
Example 2 In the linear Gaussian case, .Vt ≡ 0 in (82) and the BSDE gives rise to 
the controlled backward Kolmogorov equation (69). Furthermore, the control (90) 
reduces to 

.ūt = −HTΣt ȳt , (91) 

where . ȳt now satisfies the closed loop backward equation 

. − dȳt

dt
= Aȳt − HHTΣt ȳt , ȳT = f̄ (92) 

in line with the dual optimal control perspective of [13–15]. .◻
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3.4 Observation Error Based Estimator 

We finally discuss the rather unconventional estimator (19d) with the observation 
error defined by (5). We again employ the FSDE (15) and introduce the associated 
BSDE 

.dȲt = Q̄T
t dBt + V̄ T

t dZt + ŪT
t h(Xt )dt, ȲT = D̃T f (XT ). (93) 

Hence 

.ȲT − S̄σ
T [f ] =

∫ T

0
Q̄T

t dB +
∫ T

0
(V̄t + Ūt )

TdZt (94) 

from which we conclude that 

.Ẽ
∗
Z[S̄σ

T [f ]] = Ẽ
∗
Z[ȲT ] = σT [f ] (95) 

provided that .Ūt = −V̄t . 
Let us introduce a second BSDE for . Yt defined by .Ȳt = D̃tYt . The  BSDE  is  

given by 

.dYt = QT
t dBt + V T

t dWt + UT
t h(Xt )dt, YT = f (XT ), (96) 

and the following identities hold: 

.Q̄t = D̃tQt , V̄t = D̃t (Vt + Yth(Xt )), Ūt = D̃tUt . (97) 

Using the optimal control .Ūt = −V̄t , we obtain the closed FBSDE system 
consisting of the FSDE (7) and the BSDE 

.dYt = QT
t dBt + V T

t dWt − (Vt + Yth(Xt ))
Th(Xt)dt, YT = f (XT ). (98) 

It holds that .Vt ≡ 0 and one obtains the Feynman-Kac type BSDE [7, 19] 

.dYt = QT
t dBt − Yth(Xt )

Th(Xt )dt, YT = f (XT ) (99) 

along the FSDE (7a) with associated backward PDE 

. − ∂tyt = Lxyt − ||h||2yt , yT = f. (100) 

Let us summarise our findings in the following lemma. 

Lemma 4 The estimator (19d) becomes unbiased for . Ȳ0 defined by .Ȳ0 = y0(X0), 
where . yt satisfies the backward PDE (100) and the control . Ūt , .t ∈ [0, T ], is  
provided by 

.Ūt = −D̃tyt (Xt )h(Xt ). (101)
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4 FBSDE Estimators for Optimal Control Application 

In this section, we discuss an extension of the estimator (19b) to partially observed 
stochastic optimal control problems [3, 5]. More specifically, consider the controlled 
diffusion process 

.dXt = b(Xt )dt + Gαtdt + σdBt . (102) 

The observation model is kept identical to (7b). The objective is to minimise the 
cost function 

.VT (α0:T ) = E

[∫ T

0

(
ct (Xt ) + 1

2
||αt||2

)
dt + f (XT )

]
(103) 

for given .ct (x) and .f (x) over all admissible controls .α0:T . 
In literature, the optimal control problem is reshaped into a fully observed 

problem of the unnormalised filter, and then the stochastic maximum principle 
applies. See Chapter 8 of [3] for a detailed discussion. We present the FBSDE 
approach to obtain the adjoint equation using the nonlinear filter in this section. 

Since we wish to condition the control on the available data, we introduce the 
cost function for a given observation trajectory 

.VT (α0:T |I0:T ) = E
∗
I

[∫ T

0
Dt

(
ct (Xt ) + 1

2
||αt||2

)
dt + DT f (XT )

]
. (104) 

Note that (104) corresponds to the motivating example (6) for a fixed control input 
.α0:T . 

Upon extending the techniques developed in Sect. 3.2, we construct an estimator 
of the form 

.VT (α0:T |I0:T ) = μ[Y̆0] +
∫ T

0
E

∗
I [V̆t ]TdIt , (105) 

where .(Y̆t , V̆t ) satisfy an appropriate generalization of the BSDE (50); namely 

. dY̆t = Q̆T
t dBt + V̆ T

t dIt − Dt

(
ct (Xt ) + 1

2
||αt||2

)
dt, Y̆T = DT f (XT ),

(106) 

along the FSDE (9) with the drift term in (9a) now being given by .b(Xt , αt ). Note  
that .μ[Y̆0] = VT (α0:T ). 

Following the weak formulation of stochastic optimal control [4, 7], we introduce
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.B̄t = Bt + σ−1
∫ t

0
Gαsds (107) 

and recall that . B̄t is Brownian motion under a modified probability measure . ̄P∗
according to Girsanov’s theorem [19]. Hence the FSDEs (9a)–(9b) become 

.dX̄t = b(X̄t )dt + σdB̄t , X̄0 ∼ μ, . (108a) 

d D̄t = D̄t (h( X̄t ) − πt [h])TdIt + σ−1 D̄t (Gαt )
TdB̄t , D̄0 = 1. (108b) 

The associated BSDE is provide by 

.dȲt = Q̄T
t dB̄t +V̄ T

t dIt −D̄t

(
ct (X̄t ) + 1

2
||αt||2

)
dt, ȲT = D̄T f (X̄T ). (109) 

In order to find the desired optimal control, we make the ansatz .Ȳt = D̄tYt , which 
turns the BSDE (109) into the BSDE 

.dYt = QT
t dB̄t + V T

t dIt . (110a) 

−
{
ct ( X̄t ) + 

1 

2
||αt||2 + V T t (h( X̄t ) − πt [h]) + σ−1QT 

t Gαt

}
dt, (110b) 

with final condition .YT = f (X̄T ). Compare the previously derived BSDE (38) and 
the discussion from Sect. 3.2. Recall that .μ[Y̆0] = μ[Ȳ0] = μ[Y0], . Q̄t = D̄t (Qt +
σ−1YtGαt ), and .V̄t = D̄t (Vt + Yt (h(X̄t ) − πt [h])). 

Assuming sufficient spatial regularity, we now consider the BSPDE reformula-
tion of (110). However, contrary to the discussion in Sect. 3.2, the auxiliary term 
. Vt no longer vanishes since . αt is a random process and we are led to consider the 
BSPDE 

. − dYt = Lx,αtYtdt +
(

ct + 1

2
||αt||2 + VT

t (h − πt [h])
)
dt − VT

t dIt ,YT = f,

(111) 

instead. This SPDE formulation leads to a dual optimal control problem [21] with 
the forward SPDE provided by the KS equation 

.dπt = (Lx,αt )†πtdt + πt (h − πt [h])TdIt (112) 

[1, 11]. Here .(Lx,αt )† denotes the adjoint of .Lx,αt . Upon calculating .dπt [Yt ], it is  
easy to verify that
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.VT (α0:T |I0:T ) = μ[Y0] +
∫ T

0
πt [Vt + Yt (h − πt [h])]T dIt , (113) 

which corresponds to (105). 

Lemma 5 The control in the KS equation (112) and the BSPDE (111) has to satisfy 

.αt = argmin
α

πt

[
Lx,αYt + 1

2
||α||2

]
(114) 

in order to minimise .VT (α0:T ) = μ[Y0]. 
Proof See Theorem 8.2.1. in [3] for the related optimality criterion in terms of 
Zakai’s equation and its adjoint BSPDE formulation. A formal argument can be 
stated as follows. Let .α(0)

0:T denote some control and .π(0)
0:T , .Y

(0)
0:T the associated 

solutions of the KS equation (112) and the BSPDE (111), respectively. Assume that 
the control does not satisfy (114). Then determine a new .Y(1)

0:T by solving (111) 

subject to a new control law .α(1)
0:T determined by (114) with .π0:T = π

(0)
0:T . It  

holds by the comparison theorem that .μ[Y(1)
0 ] < μ[Y(0)

0 ]. Next determine . π(1)
0:T

by solving (112) with the new control law .α(1)
0:T . This procedure is to be repeated 

until a control .α∗
0:T has been found which cannot be improved upon further. 

The SPDE pair (112) and (111) can be replaced by the FSDEs (108) together with 
the BSDE (110). The optimality condition (114) turns then into 

.αt = −σ−1GT
Ē

∗
I

[
D̄tQt

]
. (115) 

Note that one can follow the procedure in this section under the modified measure 
. ̃P and consider the estimator of the form (19a). See also Eq. 8.2.40 in [3] for  
a related BSPDE formulation associated with Zakai’s evolution equation for the 
unnormalised filtering distribution . σt . 

Remark 2 We close this section by highlighting a link to the observation-based 
estimator (1) and its derivation in Sect. 3.3. Let us formally introduce the following 
partially observed stochastic control problem. We set .G = 0 in (102) and introduce 
the running cost 

.ct (x, α) = h(x)Tα. (116) 

Hence the cost functional (104) becomes 

.VT (α0:T |I0:T ) = E
∗
I

[∫ T

0
Dth(Xt )αtdt + DT f (XT )

]
(117) 

and its estimator is given by (105) and (113), respectively. Then (113) and (117) 
together imply
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.πT [f ] = μ[Y0] −
∫ T

0
πt [h]Tαtdt +

∫ T

0
πt [Vt + Yt (h − πt [h])]T dIt . (118) 

The definition (4) of the innovation process dictates that the estimator (1) corre-
sponds to the choice 

.Ut = αt = −πt [Vt + Yt (h − πt [h])] . (119) 

However, please be aware that .α0:T = U0:T is not a minimiser of the cost 
functional (117) [16]. 

5 Conclusions 

Building on the previous work [15–17] on optimal estimation for nonlinear filtering 
problems, in this chapter we approach the problem from an FBSDE approach, as 
also widely used in the context of optimal control problems [7]. Our approach sheds 
new light on the underlying structure of conditional estimation by carefully selecting 
the set of FBSDEs. In particular, we have strictly followed the classical FBSDE 
framework by allowing only Brownian noise in the FBSDE formulations. We have 
also demonstrated that the two estimation formulations for .σT [f ] actually lead to 
a deterministic control law. This fact had been previously been used in [15] in the  
context of scenario (ii) for deriving Zakai’s equation; but its full implications only 
emerge in the context conditional estimation. A further application could include 
the study of filter stability using (100). 

It will also be of interest to further explore numerical approximations of the 
proposed estimators and control laws based, for example, on [8–10] and their 
relation to mean-field filtering equations [6, 20, 22]. 
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Data Assimilation for the Stochastic 
Camassa-Holm Equation Using Particle 
Filtering: A Numerical Investigation 

Colin J. Cotter, Dan Crisan, and Maneesh Kumar Singh 

1 Introduction 

Data assimilation (DA) is a set of methodologies that integrate past knowledge, 
represented as numerical models of a system, with newly acquired observational 
data from the same system [24, 26]. This tool is used in many domains, including 
meteorology, oceanography, and environmental research, to merge observational 
data with numerical models to improve forecast and simulation accuracy [26]. A 
concise overview of DA is presented in [2], including the references contained 
within. For stochastic systems, data assimilation in the context of the filtering 
problem can be rigorously formulated as stochastic filtering. In this work, we 
emphasise a stochastic filtering problem where a hidden stochastic process (signal) 
is observed at discrete times with noise. The nonlinear filtering problem consists of 
computing the law of the signal, given observations that are collected sequentially. 
More details on stochastic filtering can be found in [3] and references therein. 

In this study, we investigate the data assimilation method for a nonlinear stochas-
tic partial differential equation that corresponds to a viscous shallow water equation. 
In particular, we examine the particle filter methodology for a stochastic Camassa– 
Holm (CH) model with transport noise (referred to as Stochastic Advection by 
Lie Transport, or SALT). A detailed outlook on SALT-type noise can be found 
in [10, 18]. The deterministic CH equation [6] admits solutions with singularities, 
which possess a sharp peak at the apex of their velocity profile. By following 
the variation principle approach in stochastic fluid dynamics [18], the stochastic 
Camassa–Holm (SCH) equation in the SALT framework is derived in [13]. The 
interaction of peakons (peaked soliton solutions) with the stochastic transport in 
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the SCH model is investigated in [4]. This model is useful in providing a 1+1 (one 
space and one time dimension) SPDE example where the behaviour of SALT in 
data assimilation can be easily investigated. However, there is a disadvantage: the 
solutions become rougher as time progresses. Numerical solutions behave like a 
space-time random field at longer times, leading to an atypical data assimilation 
problem, in that it is easy to solve numerically since the long-time solution of 
the filtering problem is a steady state distribution describing this random field. In 
this chapter, we incorporate a viscous dissipation to the equations to control the 
regularity of the solution at longer times. 

Particle filtering in high dimensions typically requires adaptation to deal with 
the curse of dimensionality, which otherwise leads to a loss of particle diversity 
as explained in Sect. 3. In this chapter, we continue along the recent line of work 
to combine tempering, jittering and nudging techniques to avoid this diversity 
loss. In [23], adaptation to particle filtering is discussed for the stochastic Navier– 
Stokes equation with linear additive type noise. Data assimilation using an adapted 
particle filter for the two-dimensional Euler equation and quasi-geostrophic model 
is investigated in [8, 9]. A tempering-based adaptive particle filter to infer from a 
partially observed stochastic rotating shallow water (SRSW) model is studied in 
[21]. Recently, a lagged particle filter has been introduced for stable filtering of 
high-dimensional state-space models in [25]. 

This article aims to investigate the potential for jittering, tempering and nudging 
for stochastic PDEs by focusing on identical twin experiments using an SPDE 
with one space dimension (SCH), where the effect on the whole solution can be 
easily visualised. Our investigations also demonstrate the emerging capability of 
our parallel library for particle filtering with SPDEs, built around the Firedrake auto-
mated code generation system. In this chapter, we focus on numerical experiments 
testing the stability of the particle filters available in our library. A full evaluation of 
accuracy will follow in future work. 

The organization of this chapter is as follows. In Sect. 2, we introduce the 
stochastic Camassa–Holm equation and discuss the numerical approximation of 
the model problem. In Sect. 3, we briefly review the bootstrap particle filter and 
its consequent augmentations with jittering, tempering and nudging procedures. 
In Sect. 4, a numerical study is conducted, illustrating the behaviour of data 
assimilation methods. Finally, we summarize with some concluding remarks in 
Sect. 5. 

2 The SCH Model and Its Discretisation 

The deterministic viscous Camassa–Holm is expressed as the following evolution 
equation, 

.
m = u − α2∂xxu,

dm − μ∂xxm dt + (∂xm + m∂x)udt,
(1)
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for the evolution in time .t ∈ [0, T ) of the fluid momentum density .m(x, t) and 
the velocity .u(x, t) solved on the spatial domain .[0, L] with periodic boundary 
conditions and initial conditions .u(x, 0) = u0(x), with .α > 0 some chosen constant 
parameter. 

In the SALT framework, this deterministic PDE is transformed into a stochastic 
PDE by replacing.du I→ udt + dU , where U is some stochastic process. Instead of 
the noise expansions of the form .dU = ∑K

k=1 ξkdWk used in some previous works 
on SALT, in this chapter we use Gaussian random space-time fields obtained from 
the Matérn formula, 

.(I − κ−2∇2)kdU(x, t) = ηdW(x, t), (2) 

where .dW(x, t) is a space-time white noise that is cylindrical in space and 
Stratonovich (in keeping with the SALT approach) in time. The coefficients . η and 
. κ determine the expected smoothness of the process U . For this work, we consider 
.η = 1, and .k = 3. 

Henceforth, we consider the SCH equation, 

.m = u − α2∂xxu, dm − μ∂xxm dt + (∂xm + m∂x)(udt + ◦dU), (3) 

with the same setup as for (1). Here  . ◦ is used to indicate that the integral is 
Stratonovich in time rather than Ito. 

For spatial discretisation, we will be interested in approximating solutions of the 
SCH that are periodic functions in the spatial variable. We will consider a finite 
element discretisation on a uniform mesh of the interval .I = [0, L] with N cells of 
width .h = L/N . 

The space-time white noise .dW(x, t) is approximated by a process . dWh(x, t)

depending on a finite number of Brownian motions according to 

.Wh(x, t) =
N⎲

i=1

1

A
1/2
i

φi(x)Wi(t), (4) 

where . Ai is the width of cell i (which is equal to h for a uniform grid), . φi is the 
indicator function of cell i, and .{Wi(t)}Ni=1 are N iid standard Brownian motions. 
In other words, .

∫ tB
tA

dWh ∈ Qh for any times .tA < tB , where . Qh is the piecewise 
constant finite element space (DG0). This is a low-order spatial approximation of the 
space-time white noise; higher-order approximations can be obtained. However, the 
required square root factorisation of the finite element mass matrix is not diagonal 
and we did not implement this. Croci et al. [14] provided an efficient formulation 
for continuous finite element fields using a generalised form of the square root that 
exploits the local assembly procedure.
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We then approximate U with .Uh := Uh,k , for  .n = 0, 1, 2, . . ., where . {Uh,j }kj=1
are space-time Gaussian random fields in the continuous linear Lagrange (P1) finite 
element space on the mesh, denoted here as . Vh. Then we approximate the solution 
of (2) by solving k approximated second-order elliptic problems, according to 

. (ΔUn
h,j , v) + κ−2(∇ΔUn

h,j ,∇v)

=
{

η(ΔnWh, v), j = 1
(ΔUn

h,j−1, v), j > 1
, ∀v ∈ Vh, j = 1, 2, . . . , k, (5) 

where .(·, ·) represents the usual . L2 inner product for functions on I , . ΔUn
h,j =

∫ tn+1
tn

dUh,j (t), .ΔWn
h = ∫ tn+1

tn
dWh(t) for two consecutive time levels .tn < tn+1. In  

this chapter, we use .k = 3. 
Then, the semidiscrete numerical scheme seeks .m(t) ∈ Vh and .u(t) ∈ Vh such 

that 

.
(u, ψ) + α2(∂xu, ∂xψ) − (m,ψ) = 0, ∀ψ ∈ Vh,

(mt , φ) + μ(∂xm, ∂xφ) + (m∂xv, φ) − (mv, ∂xφ) = 0, ∀φ ∈ Vh.
(6) 

This is equivalent to a finite-dimensional stochastic differential equation on . RN . 
More details on the selection of the initial conditions are given in a later section. 

For the time discretization, we select a uniform time step .Δt = T/M and . tn =
nΔt, n = 1, 2, . . . , NT , and solve for .mn ≈ m(x, tn) and .un ≈ u(x, tn). 

Then we use .ΔUn
h in an implicit midpoint rule discretisation (leading to a 

Stratonovich method since .ΔUn
h multiplies .mn+1/2, not . mn.), finding . mn+1, un ∈

Vh

.

(un+1, ψ) + α2(∂xu
n+1, ∂xψ) − (mn+1, ψ) = 0, ∀ψ ∈ Vh,

(mn+1 − mn, φ) + μΔt(∂xm
n+1/2, ∂xφ)

+(mn+1/2∂x(Δtun+1/2 + ΔUn
h ), φ)

−(mn+1/2(Δtun+1/2 + ΔUn
h ), ∂xφ) = 0, ∀φ ∈ Vh,

(7) 

and .mn+1/2 = (mn+1 + mn)/2, etc.  

3 Data Assimilation Methods 

In Sect. 2, we defined the SPDE providing the unknown signal, i.e., the system we 
are interested in performing Bayesian inference upon. In this work, we will use the 
language of stochastic filtering to provide the background framework for a Bayesian 
inference case study for the SCH model.
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Let X and Y be two processes defined on the probability space .(Ω,F ,P). The  
process X is usually called the signal process or the “truth”, with range in a specified 
function space V in the SPDE case (approximated by a finite element space in this 
work) and Y is the observation process, with range . RM . The pair of processes . (X, Y )

forms the basis of the nonlinear filtering problem: find the best approximation of 
the posterior distribution of the signal . Xt , denoted by . πt given the observations 
.Y1, Y2, . . . , Yt . In our context, the observations consist of noisy measurements of 
the true state recorded at discrete times and they are taken at locations on a data grid 
. Gd , defined later. The data assimilation is performed at these times, which we call 
the assimilation times. 

In this work, we discuss the approximation of the posterior distribution of 
the signal by particle filters. These sequential Monte Carlo methods generate 
approximations of the posterior distribution using sets of particles, which represent 
samples from the conditional distribution of X. Particle filters are employed to 
make inferences about the signal process. This involves utilizing Bayes’ theorem, 
considering the time-evolution induced by the signal . Xt , and taking into account the 
observation process . Yt . The observation data . Yt is, in our case, an M-dimensional 
process that consists of noisy measurements of the (one dimensional) velocity field 
u taken at a point belonging to the data grid . Gd , 

.Yt := Ps
d (Xt ) + Vt , (8) 

where the observation operator .Ps
d : V → R

M is a projection operator correspond-
ing to interpolation of X to the points on the data grid . Gd , and .Vt ∼ N (0, Iσ ), where 
.Iσ = diag(σ 2

1 , σ 2
2 , . . . , σ 2

M). While we assumed standard normal distributions 
for . Vt , the methodology presented is valid for any observation likelihood with 
a computable pdf. The ensemble of particles evolved between assimilation times 
according to the law of the signal. 

Next, we explain briefly the various types of particle filters used in this article. 
Before going into the details of particle filters, we introduce some technical terms 
used to explain filters. The likelihood weight function is defined as 

.W(Xtn, Yn) = exp

(

−1

2

M⎲

i=1

II
II
II
II
Ps

d (Xtn)i − Ytn,i

σi

II
II
II
II

2

2

)

, (9) 

where .Yt1, . . . YtM are the components of . Yt (one for each of the M observation 
points). One can then write the observation likelihood at instance . tn as 

. p(Y (tn)|X(tn)) ∝ W(Xtn, Ytn).

We enumerate the particles .X1
t , X

2
t , . . . , X

Np

t . To measure the variability of the 
weights (9) of particles at time t , we use  the  effective sample size (ESS),
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. ESS(w)
Δ= ||w||2

𝓁2
=

⎛

⎝
Np⎲

n=1

(wn)
2

⎞

⎠

−1

,

wn := wn
∑Np

n=1 wn

, where wn = W(X
(n)
t , Yt , (10) 

where . Np is the number of particles. .ESS quantifies the distribution of weights. 
The .ESS value approaches . Np if the particle weights are almost uniform, and it is 
close to one when fewer particles have large weights and the remaining particles 
have small weights. We resample whenever .N∗

p = ESS/Np drops below a specified 
threshold. For all the numerical experiments, we used the threshold . 0.8. 

3.1 Particle Filters: Basic Terminology 

In this subsection, we briefly discuss the basics of particle filters, so that we can 
present our results in context. We mostly describe the methodology; more details on 
why it works can be found in the references [8, 9, 23]. 

3.1.1 Bootstrap Particle Filter 

The bootstrap particle filter is the basic particle filter, also called a Sampling 
Importance Resampling filter. In the bootstrap filter, given an initial distribution 
of particles (obtained as samples from a prior distribution for the initial state), each 
particle is propagated forward according to the signal equation (the spatially dis-
cretised SCH equation in our case), with independent realisations of the Brownian 
motions. Here, and in the more sophisticated particle filter formulations later, we 
consider intermittent data assimilation in intervals of length . Δτ , subdivided into 
model timesteps . Δt with .Δτ/Δt = Ns some positive integer. When the discrete 
time is discussed, we will use the suffix .un,mn to indicate the solution n timesteps 
after the last assimilation time, i.e. the index n resets to 0 after the most recent data 
has been assimilated, for the purposes of presentation here. 

The empirical distribution, 

.dμF =
Np⎲

i=1

1

Np

δ(X − Xi), (11) 

where . δ is the Dirac measure, is an approximation of the prior (forecast) distribution 
for the signal, before receiving the observations.
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Subsequently, utilizing partial observations, weights for new particles are calcu-
lated. This is done by computing the likelihood weight function (9) for each particle, 
and then renormalising so that the complete set of weights sums to 1. The weighted 
empirical distribution, 

.dμA =
Np⎲

i=1

wiδ(X − Xi), (12) 

where .{wi}Np

i=1 are the normalised weights, is an approximation of the posterior 
(analysis) distribution for the signal, conditional on the received observations. 

Next, a selection process is used on the weighted particles. This is a statistical 
procedure that aims to find a new equally weighted set of particles that approximate 
the same distribution as the old nonequally weighted set of particles. On average, 
the particles with larger weights will be duplicated, while the particles which have 
smaller weights will be eliminated. In the simplest case, this is done by sampling 
with replacement from the ensemble of particles using the multinomial distribution 
described by the weights. In this work, we use the systematic resampling algorithm 
[17], to reduce the sampling error. 

The .ESS is a crude diagnostic that measures how far the weights are from 
being uniform. The value of .ESS typically drops fast for higher dimensional 
problems because of the curse of dimensionality: the particles are relatively sparse 
in observation space (i.e. under the mapping of . Ps

d ) and a small number of particles 
will have much higher weights than the others with high probability. This causes 
a loss of diversity amongst the particle population after resampling. As a result, 
the particles fail to give a better approximation of the posterior distribution. To 
overcome this situation, one would require a huge number of particles. 

To resolve the filter degeneracy, we replace the direct resampling from the 
weighted predictive approximations by a tempering procedure combined with 
jittering and nudging procedures, described below. 

3.1.2 Tempering and Jittering 

As discussed above, due to the sample degeneracy, the .ESS value will rapidly fall 
below the tolerance . N∗

p . The purpose of tempering is to take incremental steps 
between the approximations of the prior and posterior distributions, resampling on 
each step, to maintain a high .ESS value. In each tempering step .k = 1, . . . , Nθ ,the 
particle likelihood weights are evaluated and scaled by .0 < Δθk < 1, with 
.
∑Nk

k=1 Δθk = 1, where .Δθk is chosen so that .ESS > N∗
p for that step. In our work 

we use an adaptive tempering procedure as discussed in [5, 19, 20]. This procedure 
repeatedly reduces .Δθk until the condition holds, keeping the number of tempering 
steps to a minimum.
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After each tempering step, the particles are resampled according to the scaled 
(and normalised) weights. This alone is insufficient to prevent the accumulation of a 
large number of duplicates in the particle ensemble. To remove the duplication in the 
resulting ensembles, we employ jittering. This can be understood by using the fact 
that distributions on the state at assimilation time . τn are equivalent to distributions 
on the joint distribution of the state at assimilation time .τn−1 together with the Brow-
nian increments from .τn−1 to . τn. The equivalence comes because given a sample 
from the latter, we can solve the signal equation forwards with the initial condition 
given by the state value .Xτn−1 at time .τn−1, using the realisation of the Brownian 
increments .ΔW ,1 to obtain a state value .Xτn at time . τn. Each particle can thus be 
represented by .(Xτn−1 ,ΔW), which may be duplicated after resampling. Using the 
disintegration formula .π(Xτn−1 ,ΔW |Ŷn) = π(Xτn−1 |Ŷn)π(ΔW |Xτn−1 , Ŷn), where 
. Ŷn is a shorthand for all the observations .Y1, Y2, . . . , Yn, we see that keeping 
.Xτn−1 the same, but obtaining a new .ΔW sample from .π(ΔW |Xτn−1 , Ŷn), produces 
another consistent sample from .π(Xτn−1 ,ΔW |Ŷn). This is the jittering technique 
that allows duplicates to be replaced by different samples from the same distribution. 
This is achieved by performing tempering using the .(Xτn−1 ,ΔW) representation, 
and only updating to .Xτn−1 once the tempering step is complete. At each tempering 
step, after resampling, the noise realisation .ΔW for each particle is moved using a 
Monte Carlo Markov Chain (MCMC) method with the target being the tempered 
posterior distribution with the likelihood function scaled by .θk = ∑

k Δθk at step k. 
Since the samples are from the conditional distribution .π(ΔW |Xτn−1 , Ŷn), this can 
be done independently for each particle. 

The MCMC method describes a sequence of samples .ΔW from .π(ΔW |Xτn−1), 
namely .ΔW 0,ΔW 1,ΔW 2, . . ., where .ΔW 0 is the sample of .ΔW given after 
resampling. After space and time discretisation, this is a finite array of numbers 
(of dimension .Ns × N for our discretisation choices) whose prior distribution is 
iid .N (0,Δt). We use the Preconditioned Crank Nicholson (PCN) algorithm [12] to  
move the particles. Given a previous old sample .ΔW0, PCN proposes a new sample 
.ΔW1 = (2 − δ)/(2 + δ)ΔW0 + (8δ)1/2/(2 + δ)ΔŴ , where .ΔŴ is a new sample 
from the prior distribution, and .δ > 0 is a time-stepping parameter. The proposal is 
accepted with probability 

.a = max

(

1,
W(Xτn(ΔW0), Yn)

θk

W(Xτn(ΔW1), Yn)θk

)

, (13) 

where .Xτn(ΔW0) and .Xτn(ΔW0) denote the solutions generated from .ΔW0 and 
.ΔW1, respectively. Otherwise, the old value of .ΔW is repeated.2 Larger . δmeans

1 Note that here .ΔW represents all of the Brownian increments from . τn to .τn+1. 
2 Note that a numerically stable implementation should deal with log weights. 
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that the proposal is moved further away and smaller . δ means that the proposal is 
more likely to be accepted. The number of MCMC iterations (we call them “jittering 
steps”) per tempering steps is fixed. The MCMC algorithm doesn’t need to converge 
in statistics, just that the duplicated particles are sufficiently spread. The accept-
reject criteria ensure statistical consistency as proved in [5]. 

In the completed algorithm, one selects several jittering steps . Nj per tempering 
step. Thus the full assimilation step consists of .Nj × Nt tempering steps, where . Nt

is the number of tempering steps which are selected adaptively. Each jittering step 
requires one forward model run from .τn−1 to . τn, and each tempering step requires 
one resampling step (which requires parallel communication). Thus the total cost is 
.Nt × Nj × Cf + Nt × Cr where . Cf is the cost of one forward model run and . Cr is 
the cost of one resampling step. 

3.1.3 Nudging 

In the nudging particle filter framework, we introduce a time-dependent control 
variable that we may choose, so that particles are “nudged” towards regions where 
the observations suggest the signal is likely to be. This nudging is done in a way that 
preserves the consistency of the particle filter, i.e. the particle ensemble remains a 
consistent set of samples from the prior distribution, after appropriate modification 
of the weights. A similar technique is discussed in [23] where the likelihood-
informed proposals are used. Implicit particle filters [7] are related and rely on the 
principle of pushing particles to high-probability regions to prevent the collapse of 
the filter in high-dimensional state spaces. We also mention the equal/equivalent 
weights particle filter which aims to keep the particle weights uniform in high 
dimensional problems [1, 28]. Presently, we justify this at the level of the spatial 
semidiscretisation, which is interpretable as an SDE, of the form 

.dx = f (x)dt + G(x)dW, x(0) = x0, (14) 

where .x ∈ R
N , .f : RN → R

N , .G : RN → R
N×Q (i.e., .G(x) is an .N × Q matrix 

for each .x ∈ R
N ), and .W(t) is a Q-dimensional Brownian motion. If one instead 

solves the modified SDE, 

.dx̂ = f (x̂)dt + G(x̂)(λ(t)dt + dW), x̂(0) = x0, (15) 

where .λ(t) ∈ R
Q, then the joint probability measure for .x̂(t) for .t ∈ (0, T ) is 

absolutely continuous with respect to the joint probability measure for .x(t) on the 
same range, and the Radon-Nikodym derivative from one measure to the other is 

.G = exp

(

−
∫ T

0

1

2
|λ(t)|2dt +

∫ T

0
λ(t) · dW

)

, (16)
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subject to appropriate regularity conditions on .f (x) and .G(x) which we assume  
here. This means that we can choose . λ to reduce the likelihood weight, but we must 
pay the price of multiplying this weight by G. 

In particular, in this work, we use the Girsanov formula to correct the solution 
of the spatially discrete SCH Eq. (6) to keep the particles closer to the true state. To 
implement this, we update the SCH model (3) with a ‘nudging term’, replacing the 
.j = 1 case of (5) with 

.(ΔUj , v) + κ−2(∇ΔUj ,∇v) = η(ΔWh + ΔΛ, v), ∀v ∈ Vh, (17) 

where .ΔΛ = Λ(t)(tB − tA), and .Λ(t) ∈ Qh. The Girsanov formula (16) can be 
rewritten as 

.G = exp

(

−
∫ T

0

1

2
(Λ2(t), 1/A)dt +

∫ T

0
(Λ(t), dWh/A)

)

, (18) 

where .A ∈ Qh, such that .
∫
ei

Adx = 1, for each cell . ei . In our discrete time 
approximation of this, we use .ΔUh = ΔUk from (17) with .tA = tn and . tB = tn+1
in (7), and we use the approximated time integral, 

.G ≈ GΔt = exp

(

−
Ns⎲

n=0

(
1

2
((Λn)2, 1/A)Δt + (Λn,ΔWn

h /A)

))

. (19) 

After choosing .Λ(t), the particles will have a new weights according to 
Girsanov’s theorem, given by 

. W̃ (u, Y,Λ) = W(u, Y ) + G(Λ).

Hence, it makes sense to maximise . W̃ over . Λ. However, a critical aspect is that 
Girsanov’s theorem only holds if .λ(t) only depends on .W(s) for .s < t . Our strategy 
is to incrementally optimise .λ(t) as we reveal .W(t); we have to adapt .λ(t) to 
past noise. After time discretisation, this means that we first initialise . Λn = 0
and .ΔWn = 0 for .n = 0, 1, . . . , Ns . Then we optimise . W̃ over . Λ0, keeping the 
other values of . Λ fixed. Next, we randomly sample .ΔW 0

h from the Q-dimensional 
distribution .N (0,ΔtI ). Then we optimise . W̃ over . Λ1, keeping the other values 
fixed, and randomly sample .ΔW 1

h from .N (0,ΔtI ), and so on until we reach 
.n = Ns . This approach was investigated in [8] in application to data assimilation 
for a quasigeostrophic ocean model, but . Λ was only nonzero in the final stage of 
the splitting method in the last timestep .n = Ns , which allows the optimisation 
problem to be solved using linear least squares. This simplification was due to the 
lack of an available nonlinear optimisation algorithm within that code framework. 
This is something that we have addressed in the current work.
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In general, these optimisation problems are nonlinear since the observations at . τn

depend on the entire history of .dW from .t = τn−1 to . τn through the nonlinear SDE. 
We solve these problems numerically, using a gradient descent algorithm (BFGS), 
with the gradient of the functional computed using the adjoint technique. In our 
implementation, this is automated using Firedrake [15], which is built according 
to the methodology of [16].3 Briefly, when the forward model is run for the first 
time, Firedrake records the sequence of solves and arithmetic operations in a graph 
structure. Since all of these operations are expressed symbolically in Firedrake, 
from which code is automatically generated, the symbols can be automatically 
differentiated, leading to a symbolic representation of the adjoint model from which 
more code can be automatically generated and run. 

After applying the nudging step, it may still be necessary to use tempering and 
jittering as above. In that case, the . θk adjusted weight formulas described above 
need to be modified by replacing W with . W̃ , as described in [8]. 

3.1.4 Ensemble Parallelism 

Our present implementation using Firedrake allows us to combine spatial domain 
decomposition for each particle with ensemble parallelism across particles. The 
algorithms discussed above involve independent calculations for each particle, 
with the exception of the resampling step, when particle states (and noise incre-
ments) need to be replaced with copies from others. The weight normalisation 
step also requires inter-particle communication, but only for one floating point 
number per particle, which is insignificant for large models. Ensemble parallelism 
means dividing the ensemble of particles into batches and executing the inde-
pendent calculations for each batch, before updating the particles from copies, 
which may come from other batches. In our implementation, we use distributed 
memory parallelism using the Message Passing Interface (MPI) protocol, see 
Fig. 1. 

Our present algorithm for resampling is quite naive: we just compute which par-
ticles need to be replaced by copies of which other ones, and send and receive from 
batches as necessary. Since communication of entire model states between ranks is 
costly (and likely to dominate the algorithm cost for large ensemble sizes), a more 
sophisticated approach should optimise the order of the particles after resampling to 
minimise communication. Alternatively, algorithms such as the Islands particle filter 
should be considered [27]. We also mention the parallel resampling of [22], although 
this is more appropriate for shared memory parallelism than the distributed memory 
parallelism that we require for SPDEs. In the present work, we do not investigate

3 Since we need to solve repeated optimisation problems with different data, this required minor 
extensions to Firedrake, namely the family derivative_components argument to family 
adjoint.ReducedFunctional, which allows to ignore derivatives concerning the observed data 
in the minimisation calculation; these changes are now in the main branch of Firedrake. 
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Fig. 1 Spatial and ensemble parallelism for an ensemble with 5 batches of particles, each executed 
in parallel over 5 processors, using 25 ranks in total. Spatial subcommunicators are used for the 
domain decomposition algorithm for the iterative solvers involved in solving the forward equations 
for each particle, and ensemble subcommunicators are used to transfer particle states (and noises) 
during resampling 

parallel performance. We just note that this combined parallelism is possible in our 
code framework, and will present a thorough investigation in future work on more 
challenging problems in 2D and 3D. 

4 Numerical Investigations 

In our numerical experiments of particle filtering applied to the SCH model, we 
use an ensemble of 150 particles. This is motivated by (the upper end of) typical 
ensemble sizes of ensemble uncertainty quantification and data assimilation systems 
for operational weather forecasting, where ensemble sizes are limited by the large 
computational cost of the forward models. In the standard context, the velocity of 
the SCH model (7) is observed every 5 time steps. For all numerical experiments, 
we choose the length L of the spatial domain to be 40, and we take .α = 1. There 
are .N = 100 equispaced cells in the decomposition of the interval .[0, L], and the 
model time step is .Δt = 0.025. We explore multiple scenarios to evaluate stochastic 
filtering. In the initial scenario, observation data is gathered from the entire spatial 
domain, while in the second scenario, only half of the spatial domain is observed.
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All the numerical simulations are conducted using our general-purpose particle filter 
library [11] which is built upon Firedrake [15]. 

4.1 Experiment 1: Full Domain Observed 

In this experiment, we took measurements at .M = 80 equispaced grid points in the 
interval .[0, L]. These grid points constitute . Gd . The observations were perturbed 
with iid .N (0, 0.5) measurement errors. 

4.1.1 Initialization of Particles and Truth 

In this experiment the initialization of particles and the true solution of the model 
problem (7) is constructed in the following way. 

For particle .n = 1, 2, . . . , Np, we solve the (finite element discretisation of the) 
following elliptic problem on the periodic domain .[0, L] with zero boundary, 

.

{
(I − ∇2)U

0,1
n = |Wn|, n = 1, 2, . . . , Np,

(I − ∇2)U
0,j+1
n = U

0,j
n , n = 1, 2, . . . , Np, j = 1, 2,

(20) 

where . Wn is the DG0 function where each basis coefficient (i.e. constant cell value) 
is sampled from .N (0, h). We then calculate initial conditions for the particles as 
.u

p,0
n = ((αn)

2U
0,3
n + (βn)

2) for .n = 1, 2, . . . , Np, where random parameters 
.αn, βn ∼ N (0, 1) for .n = 1, 2, . . . , Np. Then, the initial condition for the truth 
. u0 is sampled from the same distributions as the particles. 

For the validation of various filtering procedures, we use the ensemble mean 
.l2-norm relative error (EMRE), the relative bias (RB) and the relative forecast 
ensemble spread (RES). These are defined as follows, 

. EMRE(ua, up) := 1

Np

Np⎲

n=1

||ua − u
p
n||2

||ua||2 ,

. RB(ua, up) := ||ua − up||2
||ua||2 , ensemble mean up := 1

Np

Np⎲

n=1

u
p
n ,

.RES(up, up) := 1

Np − 1

Np⎲

n=1

||up
n − up||2
||ua||2 .
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Fig. 2 Initialization of all 150 particles and true state (the latter shown in blue). In this experiment 
there is a broad spread of the initial ensemble, expressing a wide distribution of possible states that 
envelopes the true value 

These quantities are computed for each ensemble step. The purpose of these 
statistics is to demonstrate that the particle filters are stable (or not). 

In Fig. 2, the initialization of the ensemble of particles and the true state is 
displayed. We have coloured the ensemble of 150 particles yellow in all the figures 
depicting the trajectories of the ensemble and true values. We observe that the cloud 
of particles is diverse. The initial ensemble gives a good description of the initial 
uncertainty with .EMRE(ua, up,0) = 0.48 and .RB(ua, up,0) = 0.12. 

4.1.2 Bootstrap Filter 

Firstly, we discuss how the bootstrap filter performs for the SCH model. With 
the above initialization, trajectories of the truth and particles are displayed for the 
different observation (data assimilation) steps in Fig. 3. In this and all evaluations in 
this chapter, we focus only on stability, not accuracy. As time evolves, the ensemble 
spread reduces gradually but the cloud of particles does not track the truth. This 
phenomenon can be confirmed by Fig. 3. The statistics of the difference between 
the truth and ensemble are discussed with the lenses of EMRE, RB and RES. These 
terms are calculated and displayed in Fig. 4 against assimilation steps. One can see 
the RES gradually decreases but the mean square error EMRE and relative bias RB 
diverge and saturate, indicating filter divergence.
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Fig. 3 Comparison of the evolution of the true state vs posterior ensemble and ensemble mean at 
data grids (weather stations). In order to assimilate data we use the bootstrap particle filter and the 
outcome is displayed for the specified assimilation steps. We observe that the filter is diverging by 
the 1000th assimilation step. (a) DA step 1. (b) DA step 100. (c) DA step 500. (d) DA step 1000 

4.1.3 Tempering and Jittering 

Now, we discuss the data assimilation algorithm that uses tempering and jittering. 
The jittering parameter . δ is equal to .0.15, and there are five jittering steps per 
tempering step. Given that our framework allows for adapted tempering, the number 
of tempering steps needed for our numerical experiment falls within the range of 7 
to 10. In Fig. 5, we exhibit a few instances to emphasize the reduction of uncertainty 
resulting from applying the particle filter with tempering and jittering, as described 
in the previous section. Additionally, it is possible to compare the ensemble after 
a single DA step using the tempering-jittering filter with the outcome from the 
bootstrap filter. In particular, for the bootstrap filter, almost all particles are replaced 
by duplicates of a small number of particles, and the ensemble is not very diverse.
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Fig. 4 Evolution of the relative ensemble mean error (EMRE), relative bias (RB) and ensemble 
spread (RES) associated with bootstrap particle filter. We observe that the filter appears to be 
diverging (and then saturating) by the 1000th assimilation step 

However, the tempering allows the ensemble to be rediversified from those particles 
using the noise. 

We plot the EMRE, RB and RES in Fig. 6. One can see that the EMRE and the 
RES are comparable and stable as time evolves. In contrast to the previous case, the 
particle filter follows the truth much better. 

4.1.4 Nudging 

We will now look at the performance of the data assimilation methodology which 
includes nudging before using tempering and jittering. In Fig. 7, we exhibit a few 
instances to emphasize the reduction of uncertainty resulting from applying the 
particle filter with nudging, tempering and jittering. We plot the EMRE, RB and 
RES in Fig. 8. In these preliminary results, we observe that this particle filter is 
stable but does not yet provide a dramatic improvement over the filter without 
nudging. 

To conclude the results regarding Experiment 1, We have summarized the 
comparison of particle filters by displaying time-averaged EMRE, RB and RES 
values in Table 1.
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Fig. 5 Comparison of the evolution of the true state vs posterior ensemble and ensemble mean at 
data grids (weather stations). To assimilate data we use tempering and jittering and the outcome is 
displayed for the specified assimilation steps. We observe that the true solution is contained within 
the spread of the ensemble despite the low spread, indicating that the particle filter is dealing well 
with this filtering problem. (a) DA step 1. (b) DA step 100. (c) DA step 500. (d) DA step 1000 

4.2 Experiment 2: Half Domain Observed 

In this experiment, the observation data is taken from half of the spatial domain, 
i.e .[0, L/2], at 40 equispaced points. With this modification, we now examine the 
bootstrap filter for the SCH model. From Fig. 9, we see that truth is within the spread 
of the particles after initial data assimilation steps but particles lost track of truth 
even in the observed domain .[0, L/2]. Also, we have plotted the values of EMRE, 
RB and RES in Fig. 11, where one can observe that the error and bias (EMRE and 
RB) significantly increase as time evolves.
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Fig. 6 Evolution of the relative ensemble mean error (EMRE), relative bias (RB) and ensemble 
spread (RES) associated with the filter using tempering and jittering. We observe that the filter is 
stable 

Next, we discuss the particle filter using tempering and jittering. We have 
used the same tempering-jittering procedure as discussed in the previous example. 
From Fig. 10, we see that the ensemble surrounds the true value after some data 
assimilation steps in .[0, L/2]. This does not occur initially; this is because it is 
not possible to reach all possible states of the posterior through modifications of 
the SALT noise. The ensemble does end up surrounding the true solution in the 
displayed results from the 100, 500, 1000 and 2000th data assimilation steps in 
this figure. This shows that the particle filter is stable, and this is confirmed by the 
EMRE, RB and RES measures in Fig. 11. We conclude our comparison of particle 
filters by presenting time-averaged EMRE, RB and RES in Table 2. We leave  the  
incorporation of nudging for this example to further work. 

5 Concluding Remarks 

In this work, we investigated adaptive tempering, jittering and nudging techniques 
applied to the stochastic Camassa-Holm equation with SALT noise and viscosity, 
demonstrating our new capability that can be applied to arbitrary stochastic models
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Fig. 7 Comparison of the evolution of the true state vs posterior ensemble and ensemble mean 
at data grids (weather stations). To assimilate data we use nudging, tempering and jittering and 
outcome is displayed for the specified assimilation steps. We observe that the true solution is 
contained within the spread of the ensemble despite the low spread, indicating that the particle 
filter is dealing well with this filtering problem. (a) DA step 1. (b) DA step 100. (c) DA step 500. 
(d) DA step 1000 

written in Firedrake, made possible using MPI parallelism across particles. The 
nudging filter involves solving nonlinear optimisation problems that are enabled 
with Firedrake’s automated adjoint system. We demonstrated that these approaches 
lead to particle filters that are stable with relatively few (150) particles in cases 
where the classical bootstrap filter fails. 

In forthcoming work, we will undertake a detailed investigation of the accuracy 
of these filters when applied to 2D and 3D problems, making use of high-
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Fig. 8 Evolution of the relative ensemble mean error (EMRE), relative bias (RB) and ensemble 
spread (RES) associated with the filter using nudging, tempering and jittering. We observe that 
the particle filter is dealing well with this filtering problem. 

Table 1 Time-averaged EMRE, RB and RES associated with Experiment 1 

Time-averaged BS particle filter tempering and jittering 
tempering and jittering 
with nudging 

EMRE 0.3513 0.0485 0.0507 

RB 0.3488 0.0398 0.0401 

RES 0.0141 0.0270 0.0271 

performance computing. It is necessary to go beyond metrics such as ESS to 
properly determine the optimal value for . δ and the optimal number of jittering steps; 
the gold standard is to compare against MCMC estimates of statistics. We will also 
investigate whether the required accuracy can be more efficiently reached using 
Metropolis Adjusted Langevin (MALA) or Hybrid Monte Carlo (HMC) samplers 
in the jittering steps.



Data Assimilation for the Stochastic Camassa-Holm Equation Using Particle. . . 157

Fig. 9 Comparison of the evolution of the true state vs posterior ensemble and ensemble mean 
at signal grids. To assimilate data we use a bootstrap particle filter and the outcome is displayed 
for the specified assimilation steps. We observe that the particle filter has diverged, with a narrow 
ensemble spread that does not envelope the true solution. (a) DA step 100. (b) DA step 500. (c) 
DA step 1000. (d) DA step 2000 

We will investigate the parallel performance of our implementation, and if 
necessary will develop more sophisticated ordering or subgrouping algorithms for 
resampling to achieve better parallel scalability. 

Once we have established this capability, it is our goal to use data assimilation to 
calibrate the SALT parametrisation, modifying the Gaussian Matérn field to model 
the differences between fine grid and coarse grid simulations, to facilitate faster data 
assimilation approaches.
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Fig. 10 Comparison of the evolution of the true state vs posterior ensemble and ensemble mean 
at signal grids. To assimilate data we use tempering and jittering and the outcome is displayed for 
the specified assimilation steps. We observe that the spread of the ensemble does not include the 
true solution in the early stages. However, the filter is stable and later the spread of the ensemble 
does include the true solution. (a) DA step 100. (b) DA step 500. (c) DA step 1000. (d) DA step  
2000 

Fig. 11 Evolution of the relative ensemble mean error (EMRE), relative bias (RB) and ensemble 
spread (RES) for all signal grid points for the partially observed case. We observe that the bootstrap 
filter diverges, while the tempering and jittering filter is stable. (a) Bootstrap filter. (b) tempering 
and jittering
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Table 2 Time-averaged 
EMRE, RB and RES 
associated with Experiment 2 

Time-averaged BS particle filter tempering and jittering 

EMRE 0.5923 0.2198 

RB 0.5873 0.1997 

RES 0.0327 0.0840 
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Some Properties of a Non-hydrostatic 
Stochastic Oceanic Primitive Equations 
Model 

Arnaud Debussche, Etienne Mémin, and Antoine Moneyron 

In this chapter, we study how relaxing the classical hydrostatic balance hypothesis 
affects theoretical aspects of the LU primitive equations well-posedness. We 
focus on models that sit between incompressible 3D LU Navier-Stokes equations 
and standard LU primitive equations, aiming for numerical manageability while 
capturing non-hydrostatic phenomena. Our main result concerns the well-posedness 
of a specific stochastic interpretation of the LU primitive equations. This holds 
with rigid-lid type boundary conditions, and when the horizontal component of 
noise is independent of z, see [1, 2]. In fact these conditions can be related to the 
dynamical regime in which the primitive equations remain valid. Moreover, under 
these conditions, we show that the LU primitive equations solution tends toward the 
one of the deterministic primitive equations for a vanishing noise, thus providing a 
physical coherence to the LU stochastic model. 

1 Introduction 

Stochastic modelling for large-scale fluid dynamics is essential but challenging 
due to the intrinsic complexity of geophysical flows, as they are chaotic systems 
with fully developed turbulence. These features induce computational limitations, 
which classically require to use physical approximations. However, in the last 
years, stochastic modelling has emerged as a powerful setting for deriving suitable 
representations [4, 18, 19, 27], allowing greater variability than deterministic large-
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scale representation. These models aim for plausible forecasts together with efficient 
uncertainty quantification. 

Specifically, the location uncertainty approach (LU) has been developed in the 
past decade for deriving reliable stochastic models, using stochastic principles for 
mass, momentum, and energy conservation [30, 38]. It is applied successfully in 
geophysical and reduced-order models, and LU versions of fluid flow dynamics 
models have shown promising properties—on classical geophysical models [3, 32– 
34], stochastic reduced order models [35–37] and large eddy simulation models 
[7, 8, 24]. The LU formalism is based on transport noises, which are intensively 
investigated by the mathematical community [1, 2, 5, 10, 13, 14, 16, 17, 22, 26, 31]. 

Furthermore, the deterministic primitive equations—which assume hydrostatic 
equilibrium—are standard yet limited [39], especially in representing important 
phenomena for climate such as deep convection. Remarkably, this model is known 
to be well-posed with rigid-lid boundary conditions [6]. Moreover, a recent work 
showed that a stochastic representation of primitive equations with transport noise 
is well-posed under a “deterministic-like” hydrostatic hypothesis, using water world 
type boundary conditions [1]. However, the authors assumed that the horizontal 
noise is independent of the vertical axis, which makes the barotropic and baroclinic 
noises tractable. In this chapter, we explore weaker hydrostatic assumptions in the 
LU representation of the primitive equations to model non-hydrostatic phenomena 
more accurately. 

Our chapter investigates the well-posedness of these LU primitive equations 
under modified hydrostatic balance, offering potential models bridging stochastic 
primitive equations and 3D Navier-Stokes equations. Our main result concerns the 
global solutions and continuity under specific noise assumptions, aiming to better 
represent non-hydrostatic phenomena. 

The chapter is organised as follows: first we detail the assumptions made in 
the LU framework, then we define the function spaces to derive the abstract 
mathematical problem. Finally, we state our results on existence and uniqueness 
of solutions for the model we proposed. In particular, this model admits global 
pathwise solutions under regular enough conditions, and with an additional noise 
structure assumption. We only give a sketch of proof for our main result; a more 
complete one will be submitted subsequently. 

2 Oceans Dynamics Models in the LU Framework 

The LU formulation separates the flow displacement into large-scale dynamics and 
highly oscillating unresolved motion, as follows, 

.dXt = u(Xt , t)dt + σ(Xt , t)dWt . (2.1) 

Here, X denotes the (3D) Lagrangian displacement, defined in a bounded cylindri-
cal domain .S = SH × [0,−h] ⊂ R3, where .SH is a subset of . R2 with smooth
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boundary. In this formalism, .u : S × [0, T ] → R3 is the Eulerian velocity of 
the fluid flow. The large-scale velocity .u(Xt , t) correlates in both space and time, 
while the unresolved small-scale velocity .σ(Xt , t)dW is uncorrelated-in-time yet 
correlated-in-space. We further refer to this second component as a noise term, 
which must be interpreted in the Itō sense. 

Let us define this noise term more precisely: consider a cylindrical Wiener 
process W on the space of square integrable functions .W := L2(S , R3). 
Thus, there exists a Hilbert orthonormal basis .(ei)i∈N of . W and a sequence of 
independent standard Brownian motions .(β̂i)i∈N on a filtered probability space 
.(Ω,F , (Ft )t , P) such that, 

. W =
⎲

i∈N

β̂iei .

Note that the sum .
∑

i∈N β̂iei does not converge a priori  in . W . Hence we interpret 
the previous identity in a space . U including . W , such that the embedding . W c→
U is Hilbert-Schmidt. Typically, . U can be the dual space of any reproducing 
kernel Hilbert subspace of . W for the inner product .(·, ·)W , that is for instance 
.H−s(S , R3) with .s > 3

2 . 
Then, we define the noise through a deterministic time-dependent correlation 

operator . σt : let .σ̂ : [0, T ] → L2(S 2, R3) a bounded symmetric kernel, and define 

. (σtf )(x) =
∫

S
σ̂ (x, y, t)f (y)dy, ∀f ∈ W .

With this definition, . σt is a Hilbert-Schmidt operator mapping . W into itself, so that 
the noise can be defined as 

. σtWt =
⎲

i∈N

β̂i
t σt ei ,

where the previous series converges in the sense of .L2(Ω,W ). Here we interpret 
. W as the space carrying the process .σtWt , while the notation .L2(S , R3) is kept 
for denoting the space of tridimensional velocities. Importantly, .σtWt is an abuse 
of notation as . σt is an operator is defined on . W while . Wt does not converge on 
. W —that is to say “.σt (Wt )” is not properly defined. 

Moreover, we consider a family of eigenfunctions .(φk)k of the operator . σt , which 
we scale by their corresponding eigenvalues, and such that .(φk)k is a Hilbert basis 
of . W . By writing the previous series in terms of .(φk)k , it can be shown that there 
exists a sequence of independent standard Brownian motions .(βk

t )k , defined on the 
previously introduced filtered space .(Ω,F , (Ft )t , P), so that 

.σtWt =
⎲

k∈N

βk
t φk(t).
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As such, .(Ω,F , (Ft )t , P,W) is a stochastic basis. In addition, the previous series 
converges in . W almost surely, and in the sense of .Lp(Ω,W ) for all .p ∈ N [11, 20]. 

Furthermore, we may define the variance tensor as follows, which is the diagonal 
part of the covariance tensor, 

.a(x, t) =
∫

S
σ̂ (x, y, t)σ̂ (y, x, t)dy =

∞⎲

k=0

φk(x, t)φk(x, t)T . (2.2) 

Let us note that, in full generality—that is when . σ̂t is itself a random function—the 
operator-valued process . σt is subject to an integrability condition 

. P
( ∫ T

0
||a(·, t)||L2(S ,R3×3)dt < ∞

)
= 1,

where .||· ||L2(S ,R3×3) is the Hilbert norm associated to .L2(S , R3×3), the matrix 
space .R3×3 being equipped with the Frobenius norm. As such, the integral 
.
∫ t

0 σsdWs is a .W -valued Gaussian process with expectation zero and bounded 
variance: .E

[|| ∫ t

0 σsdWs||2L2

]
< ∞. The quadratic variation of .

∫ t

0 (σtdWs)(x) is 

given by the finite variation process . 
∫ t

0 a(x, s)ds.

In a similar way as deriving the classical Navier-Stokes equations, the LUNavier-
Stokes equations emerge through a stochastic version of the Reynolds transport 
theorem (SRTT) [30]. Let q be a random scalar, within a volume .V (t) transported 
by the flow. Then, for incompressible unresolved flows—that is .∇· σt = 0—the 
SRTT reads 

.d
( ∫

V (t)

q(x, t)dx
)

=
∫

V (t)

(
Dt q + q∇· (u − uS)dt

)
dx, . (2.3) 

Dt q = dtq + (u − uS)· ∇q dt  + σdWt · ∇q − 
1 

2
∇· (a∇q)dt, (2.4) 

involving an additional drift .uS = 1
2∇· a, coined as the Itō-Stokes drift in [3]. 

Consequently, . uS is a vector field from .S × [0, T ] to . R3, alike any trajectory of 
u. In addition, .dtq(x, t) = q(x, t + dt) − q(x, t) is the forward time increment 
at a fixed spatial point x, and .Dt q is a stochastic transport operator introduced 
in [30, 32], playing the role of the material derivative. The Itō-Stokes drift is 
directly related to the divergence of the variance tensor a, representing the effects 
of noise inhomogeneity on large-scale dynamics. Such advection terms are often 
added in large-scale ocean dynamics models —under the name of bollus velocity— 
to take account for surface waves and Langmuir turbulence [9, 23, 29]. As shown 
in [3], the LU framework holds similar features which accounts for the effects of 
the small-scale inhomogeneity on the large-scale flow. Additionally, the stochastic
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transport operator represents physically interpretable terms for large-scale flows 
representation. Namely, Eq. (2.4) gathers the following four terms 

• an evolution term . dtq, 
• a transport term .(u − uS)· ∇q dt , that is the advection of the large-scale quantity 

q by the large-scale Itō-Stokes drift corrected velocity .u − uS , 
• a transport term .σdWt · ∇q, that is the advection of q by the unresolved velocity, 
• an inhomogeneous diffusion term .− 1

2∇· (a∇q)dt representing small-scale 
mixing effects on q. 

Remarkably, the energy associated to the backscattering term .σdWt · ∇q is exactly 
compensated by the stochastic diffusion term .− 1

2∇· (a∇q)dt [32]. This equilibrium 
can be interpreted as an instance of a fluctuation-dissipation theorem. 

2.1 The LU Primitive Equations 

Let us derive the LU primitive equations. Assuming that the flow is isochoric with 
constant material density, and that the noise is divergence-free alongside with a 
divergence-free corresponding Itō-Stokes drift, i.e. 

.∇· u = ∇· uS = 0, ∇· σtdWt = 0, (2.5) 

we deduce that .Dt q = 0, for any conservative scalar quantity q. In addition, we 
model density through a linear law of state involving salinity and temperature, 

.ρ = ρ0

(
1 + βT (T − Tr) + βS(S − Sr)

)
, (2.6) 

with . ρ0 the reference density of the ocean at a typical temperature . Tr and salinity 
. Sr , assuming that the thermodynamic parameters .βT := 1

ρ0

∂ρ
∂T

and .βS := 1
ρ0

∂ρ
∂T

are 
constant. Plus, we define three anisotropic diffusion operators that is used further: 
for .i ∈ {v, T , S}, provided that the viscosities .μi, νi are given a priori, denote 

.Ai = −μi(∂xx + ∂yy) − νi∂zz. (2.7) 

Applying the SRTT to the conservation of momentum principle in rotating 
frame—see [13] in non rotating frame—we derive the following stochastic equa-
tions of motion, 

.Dt u + f k × (u dt + σdWt) = − 1

ρ0
∇(p dt + dpσ

t ) − Av(u dt + σdWt). (2.8) 

Importantly, we have introduced a martingale noise pressure term .dpσ
t in addition 

to the classical pressure term .p dt , due to stochastic modelling. Applying the SRTT
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similarly to the conservation of energy and saline mass, we find 

.Dt T = −AT T , Dt S = −ASS. (2.9) 

Now, define .u∗ = u−uS , and note that by assumption . u∗, u and . uS are divergence 
free. Therefore, if we denote by . v∗, v and . vs their respective horizontal components, 
we can express their vertical components via the integro-differential operator 

.w(·) =
∫ 0

z

∇H · (·), (2.10) 

under the hypothesis that .w = 0 when .z = 0 or .z = −h. The horizontal gradient 
operator is denoted by .∇H = (∂x ∂y)

T , and we use further . ΔH (·) = ∇H · (∇H (·))
to denote the horizontal Laplace operator. Also, write .σH dWt and .σwdWt the 
horizontal and vertical components of .σdWt , respectively. Thus, the horizontal and 
vertical momentum equations read 

.Dt v + ┌(v dt + σH dWt) = −Av(v dt + σH dWt) − 1

ρ0
∇H (p dt + dpσ

t ), . 

(2.11) 

Dtw = −Av (w dt + σw dWt) − 
1 

ρ0 
∂z(p dt + dpσ 

t ) − 
ρ 
ρ0 

gdt, (2.12) 

where .┌((a b)T ) = f (−b a)T is the horizontal projection of the Coriolis term. 
A recent study—see article [1]—derived stochastic primitive equations using a 

“deterministic-like” hydrostatic hypothesis: assuming that the vertical acceleration 
is negligible compared to the gravity term, the vertical momentum equation boils 
down to 

.∂zp + ρg = 0, and ∂zdp
σ
t = 0. (2.13) 

We further call this assumption the strong hydrostatic hypothesis. The validity 
of this hydrostatic balance corresponds to a regime with small ratio between the 
squared aspect ratio .α2 = h2/L2—with h and L denoting vertical and horizontal 
scales, respectively—and the Richardson number .Ri = N2

(∂zv)2
∼ N2h2/U2, defined 

from the ratio between the stratification given by the Brunt-Väsäilä frequency 
.N2 = − g

ρ0
∂zρ and the squared vertical shear of the horizontal velocity [28]. In the 

stochastic setting, the strong hydrostatic balance holds if the noise is small enough 
not to unbalance this regime. 

Gathering all the equations described previously and assuming that the strong 
hydrostatic hypothesis holds, we obtain the following problem 

.Dt v + ┌(v dt + σH dWt) = −Av(v dt + σH dWt) − 1

ρ0
∇H (p dt + dpσ

t ),
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Dt T = −AT T dt,  Dt S = −AS Sdt, 

∇H · v + ∂zw = 0, 

∂zp + ρg = 0, ∂zdp
σ 
t = 0, 

ρ = ρ0(1 + βT (T − Tr) + βS(S − Sr)). 

This system is closely aligned with the deterministic primitive system, since the 
stochastic transport operator is interpreted as a material derivative. The aforemen-
tioned model studied in [1] corresponds to the model above, with the stochastic 
diffusion term . 12∇· (a∇(·)) being replaced by .νσ Δ(·), where .νσ > 0 is a 
constant.Well-posedness results were established assuming that the initial condition 
is smooth enough, with periodic horizontal boundary conditions and rigid-lid type 
vertical boundary conditions—termed water world or aqua planet. Their key results 
highlighted local-in-time well-posedness, and global-in-time well-posedness when 
the horizontal component of the noise is barotropic, i.e. independent of the z-
coordinate. We are aiming to extend these well-posedness proofs to more general 
models, introducing different assumptions about the vertical momentum equation, 
which we term weak hydrostatic hypotheses. These assumptions accommodate 
relaxed hydrostatic equilibria, touching regimes at the edge of the deterministic 
hydrostatic assumption validity. This is expected to capture better non-hydrostatic 
phenomena (like wind or buoyancy-driven turbulence), and deep oceanic convec-
tion, influenced by strong noise disrupting the strong hydrostatic regime. We further 
present one possible interpretation of the weak hydrostatic hypothesis. 

To derive our new model, we neglect only the large-scale contribution of the 
vertical acceleration in the vertical momentum Eq. (2.12), 

. − 1

ρ0
∂z(p dt + dpσ

t ) − ρ

ρ0
gdt = Dtw + Av(w dt + σwdWt)

= dtw + u· ∇w dt + Av(w dt), ,, ,
≈0

−uS· ∇wdt + σdWt · ∇w

− 1

2
∇· (a∇w)dt + Av(σwdWt)

≈ −uS· ∇wdt + σdWt · ∇w − 1

2
∇· (a∇w)dt + Av(σdWt).

that is, 

. 
1

ρ0
∂zp = − ρ

ρ0
g + 1

2
∇· (a∇w) + uS· ∇wdt, and

1

ρ0
∂zdp

σ
t = −σdWt · ∇w − Av(σwdWt). (2.14)
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Notice that the stochastic advection and diffusion terms have been kept in this inter-
pretation of the hydrostatic hypothesis. In its deterministic version, this hypothesis 
neglects the whole vertical acceleration term and molecular diffusion term, arguing 
that they are negligible compared to the gravity term . ρ

ρ0
g. Transitioning to the 

stochastic case, we claim the same for the large-scale vertical terms . dtw +u· ∇wdt

and .Avwdt . However, due to stochastic modelling, three terms remain: the back 
scattering noise advection term .σdWt · ∇w, the  Itō-Stokes drift advection term 
.uS· ∇wdt , and the diffusion term . 12∇· (a∇w)dt . Differently from .u· ∇wdt , the  
term .σdWt · ∇w cannot be neglected compared to . ρ

ρ0
gdt since the latter is a pure 

bounded variation term. In addition, the terms .uS·∇wdt and .
1
2∇· (a∇w)dt are kept 

since they depend directly on the noise—if .ϒ1/2 is the noise scaling, then they scale 
like . ϒ . This formulation leads to the following problem 

. Dt v + ┌(v dt + σH dWt) = −Av(v dt + σH dWt) − 1

ρ0
∇H (p dt + dpσ

t ),

Dt T = −AT T dt, Dt S = −ASSdt,

∇H · v + ∂zw = 0,

1

ρ0
∂zp + ρ

ρ0
g = 1

2
∇· (a∇w) + uS· ∇w,

1

ρ0
∂zdp

σ
t = −σdWt · ∇w − Av(σwdWt),

ρ = ρ0(1 + βT (T − Tr) + βS(S − Sr)).

Considering such a problem, a major difficulty arises: the presence of the transport 
noise .σdWt · ∇w in the stochastic pressure term induces the following terms in 
horizontal velocity dynamics, 

. ∇H

∫ 0

z

σdWt · ∇w dz', ∇H

∫ 0

z

uS· ∇w dz' dt.

We don’t know how to make a suitable energy estimate for global pathwise existence 
with such terms, notably because three derivatives on the horizontal velocity v are 
involved—since .w(v) = ∫ 0

z
∇H · v. To tackle this issue, we propose one way to 

regularise the previous system. 

Weak Low-Pass Filtered Hydrostatic Hypothesis 

To enforce greater regularity for the vertical transport noise term, we define a 
regularising convolution kernel K , and replace Eq. (2.14) by 

. 
1

ρ0
∂zp = − ρ

ρ0
g + 1

2
∇· (aK∇w) + K ∗ [uS· ∇w],

1

ρ0
∂zdp

σ
t = −K ∗ [σdWt · ∇w] − Av(σwdWt). (2.15)
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In the previous formulae, we denote by . aK the operator . f I−→ ∑∞
k=0 φkCKC ∗

K

.(φT

k f ), and by .CK the operator .f I−→ K ∗ f . The regularising kernel only 
affects the vertical transport noise, and not potential vertical additive noises. Also, 
the stochastic diffusion operator . 12∇· (aK∇(·)) is chosen to be the covariation 
correction term associated to .K ∗ [σdWt · ∇w]. We refer to this assumption as the 
weak low-pass filtered hydrostatic hypothesis. 

This approach consists in filtering the vertical transport noise and disregarding 
the vertical acceleration of the resolved component of velocity. The noise terms, 
alongside the stochastic diffusion term, account for the deviation from a strong 
hydrostatic equilibrium. By convolving the vertical transport noise with K , we  
effectively truncate its highest frequencies. This new hypothesis relaxes the strong 
hydrostatic balance, allowing for more general stochastic pressures and extending 
the validity of the system dynamical regime beyond the strong hydrostatic case. 
Comparing this methodology to the one presented in [2], authors introduced a 
temperature noise impacting the pressure equation, that is a perturbation of ther-
modynamic origin. Unlike theirs, our model involves transport noise of the vertical 
velocity component, that is a perturbation of mechanical origin. This approach 
retains more terms linked to the vertical velocity w, accounting for the influence 
of unresolved small-scale velocity—like turbulence or submesoscale components— 
on the large-scale vertical velocity. Hence, the structure of this problem resembles 
a more genuine tridimensional problem, justifying the additional regularization 
through a filtering kernel. Using a filtering kernel is a common practice in defining 
numerical models for primitive equations. It is also prevalent in establishing well-
posedness for specific subgrid models like the Gent-McWilliam model, particularly 
in the field of mesoscale dynamics, as highlighted in [25]. Thus, assuming that 
this weak hydrostatic hypothesis holds rather than the strong one, one derives the 
following problem 

.Dt v + ┌(v dt + σH dWt) = −Av(v dt + σH dWt) − 1

ρ0
∇H (p dt + dpσ

t ), . 

(2.16) 

Dt T = −AT T dt, . (2.17) 

Dt S = −AS Sdt, . (2.18) 

∇H · v + ∂zw = 0, . (2.19) 

1 

ρ0 
∂zp + 

ρ 
ρ0 

g = 
1 

2
∇· (aK∇w) + K ∗ [uS· ∇w], . (2.20) 

1 

ρ0 
∂zdp

σ 
t + K ∗ [σdWt · ∇w] +  Av (σw dWt) = 0, . (2.21) 

ρ = ρ0
(
1 + βT (T − Tr) + βS(S − Sr)

)
. (2.22)
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In addition, decompose the boundary as .∂S = ┌u ∪┌b ∪┌l—respectively the upper, 
bottom and lateral boundaries—and equip this problem with the following rigid-lid 
type boundary conditions [5, 12] 

.∂zv = 0, w = 0, νT ∂zT + αT T = 0, ∂zS = 0 on ┌u, (2.23) 

v = 0, w  = 0, ∂zT = 0, ∂zS = 0 on  ┌b, 

v = 0, ∂nH T = 0, ∂nH S = 0 on  ┌l, 

and initial conditions 

. v(t = 0) = v0 ∈ H 1(S , R2), T (t = 0) = T0 ∈ H 1(S , R),

S(t = 0) = S0 ∈ H 1(S , R), (2.24) 

fulfilling the previous boundary conditions. We further assume that the noise, its 
variance tensor and their gradients cancel on the horizontal boundary . ┌l . Also,  
we assume that the vertical noise .σzdWt cancels on the vertical upper and bottom 
boundaries .┌u ∪ ┌b. Furthermore, the noise is assumed to be regular enough in the 
following sense, 

. sup
t∈[0,T ]

∞⎲

k=0

||φk||2H 4(S ,R3)
< ∞, uS ∈ L∞(

[0, T ],H 4(S , R3)
)
, (2.25) 

dtuS ∈ L∞(
[0, T  ],H 3(S , R3)

)
, a∇uS ∈ L∞(

[0, T  ],H 2(S , R3)
)
. 

and 

.a ∈ H 1
(
[0, T ],H 3(S , R3×3)

)
. (2.26) 

These regularity assumptions are not limiting in practice because most ocean models 
consider spatially smooth noises [38], since these are the physically observed 
ones. Also, remark that the weak low-pass filtered hydrostatic hypothesis adds a 
stochastic contribution to the pressure terms compared to the strong hypothesis— 
see Eqs. (2.20) and (2.21)— 

. 
1

ρ0
∂zp + ρ

ρ0
g = 1

2
∇· (aK∇w) + K ∗ [uS· ∇w],

and
1

ρ0
∂zdp

σ
t + K ∗ [σdWt · ∇w] + Av(σwdWt) = 0.

Therefore, this impacts the horizontal momentum equation via the horizontal 
pressure gradients, so one has
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. 
1

ρ0
∇H p = −∇H

∫ 0

z

ρ

ρ0
g dz' + ∇H

∫ 0

z

1

2
∇· (aK∇w)

+ K ∗ [uS· ∇w] dz' + 1

ρ0
∇H ps

=: −∇H

∫ 0

z

ρ

ρ0
g dz' + 1

ρ0
∇H pweak + 1

ρ0
∇H ps,

1

ρ0
∇H dpσ

t = −∇H

∫ 0

z

K ∗ [σdWt · ∇w] − Av(σwdWt) dz' + 1

ρ0
∇H dp

σ,s
t

=: 1

ρ0
∇H dp

σ,weak
t + 1

ρ0
∇H dp

σ,s
t ,

where .pweak and .pσ,weak denote respectively the bounded variation and martingale 
pressures associated to the weakening of the hydrostatic hypothesis. Introducing 
new additive noise terms does not pose a challenge for a sufficiently regu-
lar .σdWt . However, the key difficulty arises from the presence of the term 
.∇H

∫ 0
z

σdWt · ∇w dz' in the expression of . 1
ρ0

∇H dpσ
t . This term represents the 

horizontal impact of the vertical transport noise .σdWt · ∇w. Regularising this term 
using a smoothing filter inherently enlarges its spatial scale, causing the spatial 
scale of the vertical transport noise to remain above the resolution cutoff scale 
without aliasing artifacts. Likewise, .∇H

∫ 0
z

∇· (a∇w) dz' represents the horizontal 
influence of the covariation correction originating from the LU Navier-Stokes 
equations. Establishing the well-posedness of such a model, subject to appropriate 
regularisation and structural conditions, stands as our primary outcome. 

2.2 Definition of the Spaces 

In this subsection, we define the function spaces that are used further. Remind that 
the spatial domain is denoted by .S = SH × [−h, 0] ⊂ R3. First, we introduce the 
following inner products 

. (v, v#)H1 = (v, v#)L2(S ,R2), (v, v#)V1 = (∇v,∇v#)L2(S ,R2)

(T , T #)H2 = (T , T #)L2(S ,R), (T , T #)V2 = (∇T ,∇T #)L2 + αT

νT

(T , T #)L2(┌u,R),

(S, S#)H3 = (S, S#)L2(S ,R), (S, S#)V3 = (∇S,∇S#)L2(S ,R),

and let
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. (U,U#)H = (v, v#)H1 + (T , T #)H2 + (S, S#)H3 , (U,U#)V = (v, v#)V1

+ (T , T #)V2 + (S, S#)V3, (2.27) 

for all .U,U# ∈ L2(S , R4). Also we denote by .||·||H , ||·||Hi
and . ||·||V , ||·||Vi

the associated norms. With a slight abuse of notation, we may write . ||·||H , ||·||V

in place of .||·||Hi
, ||·||Vi

respectively, and similarly use .(·, ·)H , (·, ·)V rather than 
.(·, ·)Hi

, (·, ·)Vi
. Moreover, notice that we distinguished the inner products . (·, ·)H2

and .(·, ·)H3 , even if they denote the same operation. This is for consistency with the 
following definitions of the spaces . H2 and . H3. 

Then, denote by . V1 the space of functions .C∞(S , R2) with a compact support 
strictly included in . S , such that for all .v ∈ V1, .∇H · ∫ 0

−h
v = 0. Plus, define 

.V2 = V3 the space of functions .C∞(S , R). Denote by . Hi the closure of . Vi for the 
norm .||.||Hi

, and . Vi its closure by .||.||Vi
. Eventually, define .H = H1 × H2 × H3 and 

.V = V1 × V2 × V3, which are also the closures of .V1 × V2 × V3 by .||.||H and .||.||V , 
respectively. Often, by abuse of notation, we write .(·, ·)H instead of .(·, ·)V '×V . More  
generally, if K is a subspace of H and . K ' its dual space, we write .(·, ·)H instead of 
.(·, ·)K '×K . Moreover, we define .D(A) = V ∩ H 2(S , R4), where . A = (AvAT AS)T

gathers the three diffusion operators. As such, .A : D(A) → H is an unbounded 
operator. In addition, for any Hilbert spaces . H1 and . H2, we define .L2(H1,H2) the 
space of Hilbert-Schmidt operators from . H1 to . H2, and .||·||L2(H1,H2) its associated 
norm. 

Again, we distinguished the spaces .H2 and . H3, even though they formally 
denote the same space. However, . V2 and . V3 are different spaces since they are 
not equipped with the same inner products due to different boundary conditions on 
the temperature and salinity —Robin and Neumann respectively. This distinction 
allows to interpret . H2 and . V2 as temperature spaces, and . H3 and . V3 as salinity 
spaces. In addition, . H1 and . V1 are interpreted as horizontal velocity spaces —since 
their elements are .R2-valued processes. Using this formalism, the vertical velocity 
w is written as a functional of the horizontal velocity .v ∈ H1 through the continuity 
equation, namely .w(v) = ∫ 0

z
∇H · v dz'. 

Eventually, we define the barotropic and baroclinic projectors .A2 : R3 → R2, 
.A : R3 → R3 and .R : R3 → R3 of the velocity component as follows. For 
.v ∈ V1, h being the depth of the ocean, let 

. A2[v](x, y) = 1

h

∫ 0

−h

v(x, y, z')dz', A [v](x, y, z) = A2[v](x, y),

R[v] = v − A [v]. (2.28) 

Remark that . A and . R are orthogonal projectors with respect to the inner product 
.(·, · )H . To simplify notations, we may use . ̄v in place of .A2[v] or .A [v], and . ̃v in 
place of .R[v].



Some Properties of a Non-hydrostatic Stochastic Oceanic Primitive Equations Model 173

2.3 Abstract Formulation of the Problems 

In this section, we aim to express, in abstract form, the previous problem under the 
weak low-pass filtered hydrostatic hypothesis (2.14). First, define the 4D vector U , 
representing the state of the system, and the correction . U∗ of U by the Itō-Stokes 
drift, as 

. U = (v, T , S)T , U∗ = (v∗, T , S)T .

Then, denote the advection operator by 

. B(U∗, ·) = B(v∗, ·) := (v∗· ∇H )(·) + w(v∗)∂z(·).

Moreover, define two Leray type projectors . Pv and . P as follows: 

.Pv(v) = P2DA (v) + R(v), P(U) = (Pv(v), T , S)T , (2.29) 

where .P2D is the standard 2D Leray projector, which is associated to the barotropic 
component .A (v). Notice that the baroclinic component .R(v) is left unchanged 
by the projector . Pv , that is . P only affects the barotropic component of velocity. 
For notational convenience we keep the same notations for the composition of the 
following operators with the Leray projector: 

. AU = P(Avv, AT T , ASS)T , CU

= P(Cv, 0, 0)T ,

B(U∗, U) = P(B(v∗, v), B(v∗, T ), B(v∗, S))T . (2.30) 

Thus, if .U ∈ D(A), then .AU ∈ H , and we obtain the relation 

. dtU +
[
AU + B(U∗, U) + CU + 1

ρ0
P

⎛

⎝
∇H p

0
0

⎞

⎠

− 1

2
P∇·(a∇U)

]
dt = −P(σdWt · ∇U)

− (A + ┌)(σH dWt) − 1

ρ0
P

⎛

⎝
∇H dpσ

t

0
0

⎞

⎠ . (2.31) 

Now write the problem in terms of . U∗ with a change of variable, to get
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. dtU
∗ + [AU∗ + B(U∗) + CU∗ + 1

ρ0
P

⎛

⎝
∇H p

0
0

⎞

⎠

+ Fσ (U∗)]dt = Gσ (U∗)dWt − 1

ρ0
P

⎛

⎝
∇H dpσ

t

0
0

⎞

⎠ , (2.32) 

where the operators . Fσ and . Gσ are defined as 

. Fσ (U∗)dt = P
[
dtUS + [B(U∗, US) − 1

2
∇· (a∇US)]dt + AUS

+ ┌US − 1

2
∇· (a∇U∗)dt

]
,

Gσ (U∗)dWt = P
[

− (σdWt · ∇)U∗ − (σdWt · ∇)US

− A(σH dWt) − ┌(σH dWt)
]
,

with .(vs, ws)
T = uS = 1

2 (∇· a), .US = (vs, 0, 0)T . Remind that . uS is divergence 
free, so .ws = w(vs) from the definition of operator .w(v) —that is Eq. (2.10). 
In addition, we can derive the following relations for the pressure terms, using 
Eqs. (2.20) and (2.21), 

. 
1

ρ0
∇H p = −g ∇H

∫ 0

z

(βT T + βSS)dz'

+ ∇H

∫ 0

z

[
K ∗ [uS· ∇(w(v∗) + ws)]

− 1

2
∇· (aK∇(w(v∗) + ws))

]
dz'

− 1

ρ0
∇H (dpσ

t ) = ∇H

∫ 0

z

[
K ∗ [σdWt · ∇(w(v∗) + ws)]

+ A(σwdWt)
]
dz' + 1

ρ0
∇H dp

σ,s
t .

The quantities .ps dt and .dpσ,s
t are respectively the bounded variation and the 

martingale contributions to the surface pressure. As they are independent on the 
z-axis, we have for all .v# ∈ V1,
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. 

( 1

ρ0
Pv∇H ps, v#

)

H
= −

( 1

ρ0
ps,∇H · A v#

)

H
= 0,

using the boundary conditions on .A v#, which are .A v# = 0 on .SH and . A v#·n =
∂
∂n

A v# × n = 0 on .∂SH . This shows that .Pv∇H ps = 0. Similarly, we get 
.Pv∇H dp

σ,s
t = 0. Therefore, we get the following relation, 

. 
1

ρ0
Pv[∇H p] = Pv

[
− g ∇H

∫ 0

z

(βT T + βSS)dz'
]

+ Pv

[
∇H

∫ 0

z

[
K ∗ [uS· ∇(w(v∗) + ws)]

− 1

2
∇· (aK∇(w(v∗) + ws))

]
dz'

]
,

− 1

ρ0
Pv[∇H (dpσ

t )] = Pv

[
∇H

∫ 0

z

[
K ∗ [σdWt · ∇(w(v∗) + ws)]

+ A(σwdWt)
]
dz'

]
.

On the one hand , the bounded variation surface pressure . ps corresponds to a 
Lagrange multiplier associated with the constraint .∇H · A v = 0. This reminds of 
Cao and Titi’s proof in the deterministic setting [6], where they showed that, up to 
some coupling terms, the barotropic mode follows a 2D Navier-Stokes dynamics 
while the baroclinic mode follows a 3D Burgers dynamics. Crucially, the bounded 
variation surface pressure does not influence the baroclinic dynamics, given the 
divergence-free nature of the barotropic mode under vertical boundary conditions. 
On the other hand, the martingale surface pressure .ps,σ emerges from our proposed 
stochastic modelling, acting as a perturbation to the pressure . ps . This additional 
term .ps,σ may impact both the barotropic and baroclinic dynamics. However, under 
the strong hydrostatic hypothesis, the martingale pressure equation simplifies to 
.∂zdp

σ
t = 0 from equation (2.13), meaning .dpσ

t = dp
s,σ
t . Hence, the martingale 

pressure term solely affects the barotropic dynamics in this scenario, akin to the 
deterministic case, enabling the use of analogous methodologies. Our derivations 
lead to the following formulation of the filtered problem. 

Low-Pass Filtered Problem . (PK)

For any .K ∈ H 3(S , R), we define .(PK), the abstract primitive equations problem 
with weak low-pass filtered hydrostatic hypothesis, as follows,



176 A. Debussche et al.

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dtU
∗ + [AU∗ + B(U∗) + CU∗ + 1

ρ0
P∇H p + Fσ (U∗)]dt = Gσ (U∗)dWt

− 1
ρ0
P∇H dpσ

t ,

− 1
ρ0
P∇H (dpσ

t ) = P
[
∇H

∫ 0
z

[
K ∗ [σdWt · ∇(w(v∗) + ws)] + A(σwdWt)

]
dz'

]
,

1
ρ0
P∇H p = P

[
∇H

∫ 0
z

K ∗
[
uS· ∇(w(v∗) + ws)

]
dz'

−∇H

∫ 0
z

1
2∇· (aK∇(w(v∗) + ws))dz'

−g ∇H

∫ 0
z

(βT T + βSS)dz'
]
,

under the condition .
∫ 0
−h

∇H · v∗ = 0. The problem is supplemented with the 
boundary conditions (2.23) and the initial conditions (2.24). As mentioned before, 
we assume that the noise, its variance tensor and their gradients cancel on the 
horizontal boundary . ┌l , and that the vertical noise .σzdWt cancels on the vertical 
upper and bottom boundaries .┌u ∪┌b. Moreover, the noise is assumed to follow the 
regularity conditions (2.25) and (2.26). 

3 Main Results 

Our main results concern the well-posedness of the weak low-pass filtered problem 
.(PK), 

Theorem 3.1 Suppose .K ∈ H 3(S , R). Then, the following propositions hold, 

1. The problem .(PK) admits at least one global-in-time martingale solution, for 
all .T > 0, in the space 

. L2
(
Ω,L2([0, T ], V )) ∩ L2

(
Ω,L∞([0, T ],H ))

.

2. There exists a stopping time .τ > 0 such that .(PK) admits a local-in-time 
pathwise solution . U∗, which fulfils, for all .T > 0 and for all stopping time 
.0 < τ ' < τ , 

. U∗
τ '∧· ∈ L2

(
Ω,L2([0, T ],D(A)

)) ∩ L2
(
Ω,C([0, T ], V )

)
.

This solution is unique up to indistinguishability, that is for all solutions . U∗ and 
.Û∗ of .(PK) associated to the stopping times .τ, τ̃ respectively, the following 
holds, 

. P
(
sup
[0,T ]

||U∗
τ '∧· − Û∗

τ '∧·||2H = 0; ∀T > 0
)

= 1,

for all stopping time .0 < τ ' < τ ∧ τ̂ .
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Barotropic Horizontal Noise Assumption 

In addition, we propose the following assumption on the noise structure, which we 
refer to as the barotropic horizontal noise assumption (BHN). 

.σH dWt is independent of the variable z, i.e. the horizontal noise is constant over 
the z axis. 

Such assumption is used to demonstrate our results of global pathwise well-
posedness, and continuity with respect to the initial data and the noise data. Namely, 

Theorem 3.2 Assume that .(BHN) holds, and choose .K ∈ H 15/4(S , R). Then, 
the problem .(PK) admits a global-in-time pathwise solution, which is unique up to 
indistinguishability, in the space 

. L2
loc

(
[0,+∞),D(A)

)
∩ C

(
[0,+∞), V

)
.

This solution is continuous in the following sense: fix .T > 0, then 

• for a fixed noise data, . U∗ is Lispchitz with respect to the initial data in the sense 
of 

. V → L2
(
Ω,L2([0, T ],D(A)

)) ∩ L2
(
Ω,C

([0, T ], V ))
,

• define . ∑, a space of noise operators, as follows, 

. ∑ =
{
σ ∈ L2

(
W ,H 4(S , R3)

) ∣∣∣∣ a ∈ H 1
(
[0, T ],H 3(S , R3×3)

)}
;

then . U∗ is locally Lipschitz with respect to both the initial data and the noise in 
the sense of 

. V × ∑ → L2
(
Ω,L2([0, T ],D(A)

)) ∩ L2
(
Ω,C([0, T ], V )

)
.

In particular, for a fixed initial data, if we denote by .Uσ the solution of . (PK)

associated to the noise data .σ ∈ N , then 

. Uϒ1/2σ −→
ϒ→0

U0.

Here, . U0 denotes the solution to the problem .(PK) with noise zero—i.e. .σ = 0— 
that is to say the classical deterministic primitive equations. 

We only give a sketch of the proof for Theorem 3.2 below. Theorem 3.1 can be 
obtained by adapting the work proposed in [13] to the primitive equations, which 
can be considered as a simplification of the 3D Navier-Stokes equations. It relies on 
considering a Galerkin approximation of the problem, then using energy estimates
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and tightness arguments to show that these solutions converge toward a solution of 
the initial problem, see [5, 12, 13, 15]. 

Fix .T > 0. Remind that the barotropic and baroclinic modes of velocity are 
defined in equation (2.28). Assuming that Theorem 1 hold, we show that the 
following estimates hold for any stopping times .0 < η < ζ < T , there exist three 
constants .C1, C2, C3 > 0 such that: 

• Barotropic velocity estimate in “.H 1 − H 2” 

. E
[
||v̄||2V (ζ )

]
+ E

[ ∫ ζ

η

||Av̄||2H ds
]

≤ C1E
[
||v̄(η)||2V + 1

]

+ C1E
[ ∫ ζ

η

||U||2H ||U||2V ||v̄||2V + ||U||2V +
∫

S
|ṽ|2|∇3ṽ|2 + ||∂zv||2V ds

]
,

(3.1) 

• Vertical gradient of velocity estimate in “.L2 − H 1” 

. E
[
sup
[η,ζ ]

||∂zv||2H
]

+ E
[ ∫ ζ

η

||∂zv||2V ds
]

≤ C2E
[
||∂zv(η)||2H + 1

]

+ C2E
[ ∫ ζ

η

(1 + ||U||2V )(1 + ||∂zv||2H ) +
∫

S
|∇ṽ|2|ṽ|2ds

]
. (3.2) 

• Baroclinic velocity estimate in “.L4 − W 1,4” 

. E
[
sup
[η,ζ ]

|ṽ||4
L4

]
+E

[ ∫ ζ

η

∫

S
(|∇ṽ|2|ṽ|2+|∇|ṽ|2|2+|∂zṽ|2|ṽ|2+|∂z|ṽ|2|2)dS ds

]

≤ C3E
[
1+||ṽ(η)||4

L4+
∫ ζ

η

(||U||2V +1)||ṽ||4
L4

]
+ 1

16(C2 ∨ 1)
E

[ ∫ ζ

η

||∂zv||2V ds
]
.

(3.3) 

Once gathered, these estimates lead to the existence of a global pathwise solution to 
the problem .(PK), using similar arguments as in [1] —in particular the stochastic 
Grönwall’s lemma, see [21]. Moreover, using similar arguments, we may show the 
uniqueness of the solution, as well as the continuity of the solution with respect 
to the initial condition and the noise operator . σ . These estimates are related to 
the proof of the well-posedness of the deterministic primitive equations proposed 
originally in the article [6]. Essentially, the argument is that . ̄v follows a 2D Navier 
Stokes equation, while . ̃v follows a 3D Burger equation, up to some coupling terms. 
Therefore, the idea is to estimate . ̄v in the strong sense (“.H 1 −H 2”) and . ̃v in an .Lp-
space—namely . L4 and .W 1,4. Moreover, a third estimate is needed on the vertical
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velocity gradient .∂zv (“.L2 − H 1”). In addition, the noise structure constraints 
.(BHN) we applied for ensuring global existence remind of those proposed in [1, 2], 
particularly .σH dWt = (σH dWt)(x, y) and .σzdWt = (σzdWt)(x, y, z). 

However, the scheme of proof in [1] differs from ours: it initially establishes the 
existence of a maximal solution before exploring its globality-in-time. We empha-
size that the pathwise solution we derive—using the Galerkin approximation—is 
a priori  non-maximal without the assumption .(BHN). Notably, our proof accom-
modates scenarios where the vertical acceleration .Dtw is entirely neglected, which 
corresponds to choosing .K = 0 and neglecting additive noise in equation (2.15). 
Our well-posedness outcome is similar as the one of [1], except that we transitioned 
from water world to rigid-lid boundary conditions. Nonetheless, assuming that the 
noise and its gradient cancel on the boundary remains pivotal for the validity of our 
integration by parts arguments. 

A more detailed proof will be submitted subsequently. 

Remark 

The barotropic horizontal noise assumption .(BHN) aligns with the validity domain 
of the primitive equations in their deterministic form. These equations hold true 
when the squared aspect ratio .α2 := (h/L)2 is negligible compared to the 

Richardson number .Ri := N2

(∂zv)2
[28]. Here, v denotes horizontal velocity, h the 

ocean depth, L the horizontal scale (e.g., .
√|SH |), and .N2 = − g

ρ0
∂zρ the Brünt-

Väisälä frequency. This condition reads 

.
α2

Ri
⟪ 1 or equivalently (∂zv)2 ⟪ N2

α2 . (3.4) 

This particularly holds in the limit of small vertical shear of the horizontal 
component. In such case, the horizontal velocity becomes almost independent of z, 
which we call “quasi-barotropic”. In stochastic flow contexts, the horizontal noise 
models a small-scale velocity, denoted by .ϒ1/2v', where .ϒ1/2 is a scaling factor 
ensuring v and . v' share the same order of magnitude. Hence, condition (3.4) can be 
rewritten as 

.(∂z(v + ϒ1/2v'))2 ⟪ N2

α2 , or (∂zv)2, ϒ(∂zv
')2 ⟪ N2

α2 . (3.5) 

Consequently, the LU stochastic primitive equations remain physically valid under 
condition (3.5), that is when the horizontal noise modeling .ϒ1/2v' is either 
sufficiently small (.ϒ → 0) or quasi-barotropic (.(∂zv

')2 → 0). In this setup, the 
noise structure hypothesis in Theorem 1.3 is equivalent to .∂zv

' = 0. We anticipate 
that a slight deviation from this assumption—that is to say considering a noise 
with a non-zero small enough baroclinic mode—would yield similar well-posedness 
results. This is because the energy stemming from the baroclinic noise—when 
small enough—is likely to be balanced by the combined molecular and stochastic
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diffusions. However, considering a large baroclinic noise component seems to be a 
serious challenge when proving the LU primitive equations well-posedness. 
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Derivation of Stochastic Models for 
Coastal Waves 

Arnaud Debussche, Etienne Mémin, and Antoine Moneyron 

In this chapter, we consider a stochastic nonlinear formulation of classical coastal 
waves models under location uncertainty (LU). In the formal setting investigated 
here, stochastic versions of the Serre-Green-Naghdi, Boussinesq and classical 
shallow water wave models are obtained through an asymptotic expansion, which 
is similar to the one operated in the deterministic setting. However, modified 
advection terms emerge, together with advection noise terms. These terms are well-
known features arising from the LU formalism, based on momentum conservation 
principle. 

1 Introduction 

The ocean surface waves constitute an essential component of ocean dynamics, as 
they are directly related to a strong energy exchange with the underlying current. 
However, the mean current and the waves follow different dynamics, operating 
at different times and spatial scales. Moreover, they are based on significantly 
different physical assumptions: surface waves rely on potential—or irrotational— 
flow, whereas the turbulent dynamics of the current is expressed through a non-zero 
vorticity. As a result, the wave-current coupling is very complex to model numer-
ically. For this purpose, designing simplified stochastic models of surface waves 
would be advantageous to account for both dynamics. This can be achieved by 
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adding as a specific noise term in the stochastic representation of ocean circulation 
[21, 35]. 

To derive such stochastic wave models, ways to adapt the classical deterministic 
derivation to the stochastic setting have been widely investigated. It was shown for 
example that deep-ocean stochastic long waves can arise from a linearised stochastic 
shallow water system [23] or from a stochastic Hamiltonian formulation [7]. Water 
waves travelling from deep water areas to shallower regions—where the water depth 
is much less than their wavelength—undergo significant alterations. Swift variations 
in height, velocity, and direction lead to substantial modifications of the free water 
surface profiles. Initially resembling almost perfect sine waves, these profiles evolve 
into an asymmetric shape. Mathematically, coastal waves are described by different 
dynamical models corresponding to various approximations of the irrotational Euler 
equations—which are averaged along the water column ultimately. 

More specifically, we use the location uncertainty principle developed in [22], 
which is based on the addition of a noise term on the Lagrangian formulation 
of the displacement. In fact, this approach is a critical aspect in ocean stochastic 
modelling and has been widely discussed: an SDE based stochastic generalisation 
of the deterministic Lagrangian expression of the flow was proposed in [30, 31] for  
instance, from which the authors derive an Eulerian expression. Such idea also exists 
in turbulence modelling: for example McWilliam and Berloff proposed stochastic 
parametrization built upon Langevin models of turbulence in [3], devised in the 
wake of Kraichnan’s seminal work [17]. 

In this chapter, we aim to derive a location uncertainty interpretation of non-
linear coastal waves models, based on the modelling principle introduced in [22]. 
These models are naturally accompanied by some nonlinear variabilities associated 
with numerical or modelling uncertainties. More fundamentally, this stochastic 
formalism provides a way to incorporate the effect of the non-resolved vertical 
turbulent component. In this work, we focus on the family of models associated 
with the Serre-Green-Naghdi equations [12, 33], which allow capturing the non-
hydrostatic phenomena related to vertical acceleration. In particular, we aim to 
assess the behavior of the associated numerical simulations. Our main findings are 
that the LU interpretations of the Saint-Venant, Boussinesq and Serre-Green-Naghdi 
wave models allow to break the symmetry of the wave and introduce variability 
compared to their deterministic counterparts. Nevertheless, they do enjoy the same 
conservation principles with slight conditions on the noise structure. Hence, the LU 
setting would allow to explore the influence of a “conservative randomness” on the 
classical wave model dynamics. Plus, we provide some graphical observations of 
this influence using numerical simulations. 

The article is organised as follows: after a brief summary on the location 
uncertainty principle (LU), we derive a stochastic representation of the Serre-Green-
Nagdhi shallow water waves model following the same physical approximations 
used in the deterministic setting [1]. Then, we show how simpler models can 
be obtained from further approximations, and discuss the conservation of usual 
quantities such as mass, momentum and energy. The last section describes and 
assesses some numerical results associated with different models.



Derivation of Stochastic Models for Coastal Waves 185

2 Stochastic Flow and Transport 

Let .D ⊂ Rd (with .d = 2 or 3) denote a bounded spatial domain. The LU principle 
relies on a stochastic formulation of the Lagrangian trajectory .(Xt ) of the form 

.dXt (x) = v(Xt (x), t)dt + (σtdBt )(x), X0(x) = x ∈ D . (2.1) 

This stochastic differential equation (SDE) decomposes the flow in terms of 
a smooth- in-time velocity component v that is both spatially and temporally 
correlated, and a fast unresolved flow component .σdBt (called noise term in the 
following). This latter component must be understood in the Itō sense, and is 
uncorrelated in time yet correlated in space. Importantly, since the Itō integral  
is of null expectation (as a martingale), the relation (2.1) decomposes the flow 
unequivocally as a large-scale displacement component and a null mean fluctuation, 
the mean displacement corresponding to the large-scale component expectation. 

Let us now provide a precise definition of this random fluctuation component. 
The noise term takes values in the Hilbert space .H := (L2(D))d and is defined from 
the Wiener process (also called cylindrical Brownian motion) [26] on a stochastic 
basis .(Ω,Ft , (Ft )t∈[0,T ],P). By definition, this stochastic basis is composed of a 
probability space .(Ω,P) with filtration .(Ft )t∈[0,T ]—i.e. a non decreasing family 
of sigma algebras evolving in time. The noise term involves independent Wiener 
process components .(Bi

t )i=1,...,d defined on an orthogonal basis .(en)n∈N of H as 

.(Bi
t )(x) =

⎲

n∈N
βn

t ei
n(x), (2.2) 

where .(βi
t )i∈N is a sequence of independent one dimensional standard Brownian 

motions. The spatial structure of the unresolved flow component is modelled by the 
correlation operator, . σ t , defined as an integral operator on H . Let a matrix kernel 
.σ̆ = (σ̆ij )i,j=1,...,d that is bounded in space and time, then define 

.σ t f (x) =
∫

D
σ̆ (x, y, t)f (y) dy, f ∈ H, x ∈ D . (2.3) 

Here, we have assumed that this operator is deterministic. However, it is important 
to note that, if required, it could be defined as a random operator. An example of 
such a random correlation operator can be found in [20] where it is defined from the 
dynamic mode decomposition technique (DMD) [32] and a Girsanov transform. 
Girsanov transform enables in particular to introduce a drift term associated to 
a non-centred noise, through a change of probability measure. This procedure 
has proven particularly useful for noise calibration in data assimilation [10]. The 
composition of .σ t [•] and its adjoint operator .σ ∗

t [•] defines a compact self-adjoint 
positive operator, of which eigenfunctions and eigenvalues are denoted .ξn(·, t) and 
.λn(t) respectively. These eigenvalues fulfil .

∑
n∈N λn(t) < +∞ and decrease toward
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zero at infinity, and the eigenfunctions form an orthonormal basis of H . As such, the 
noise can be equivalently defined on this basis as the following spectral expression, 

.σ t dB t (x) =
⎲

n∈N
λ
1/2
n (t)ξn(x, t) dβn

t . (2.4) 

Consequently, the noise component is a H -valued Gaussian process of null 
mean and with bounded variance —that is .EP[

∫ t

0 σ s dBs] = 0,∀t > 0 and 
.EP

[|| ∫ t

0 σ s dBs||2H
]

< +∞,∀t > 0—under the probability measure . P. Moreover, 
the auto-covariance at point .x ∈ D of the unresolved flow component at each 
instant .t ∈ [0, T ] is given by the matrix kernel of the composite operator .σσ ∗, and 
denoted by .a(x, t), namely 

.a(x, t) :=
∫

D
σ̆ (x, y, t)σ̆ T (y, x, t) dy =

⎲

n∈N
λn(t)

(
ξnξ

T

n

)
(x, t). (2.5) 

The process .
∫ t

0 a(x, s) ds corresponds to the quadratic variation of . 
∫ t

0 σ s dBs(x)

[2]. 
The stochastic integral defining the noise could have been defined in terms of 

a Stratonovich integral instead of an Itō integral [2]. For a deterministic correlation 
operator, . a boils down to the local variance of the noise, due to the Itō isometry [26]. 
Hence, we referred to . a as the variance tensor, although for a random correlation 
operator this denomination is misleading since it is a random process. Physically, 
the symmetric non-negative tensor . a represents the friction coefficients of the 
unresolved fluid motions, and is physically homogeneous to a viscosity with unit 
m. 2/s. 

Consider an extensive random tracer . Θ (e.g. temperature, salinity or buoyancy) 
transported by the stochastic flow, fulfilling the following conservation property 
along the trajectories: .Θ(Xt+δt , t + δt) = Θ(Xt , t) with . δt an infinitesimal time 
variation. Thus, the evolution law of . Θ is given by the following stochastic partial 
differential equation (SPDE), 

.DtΘ = dtΘ + (v∗ dt + σdB t ) ·∇ Θ − 1

2
∇ · (a∇Θ) dt = 0, (2.6) 

where . Dt is introduced as a stochastic transport operator and . dtΘ(x) := Θ(x, t +
δt)−Θ(x, t) stands for the forward time-increment of . Θ at a fixed point .x ∈ D . This  
operator . Dt was derived in [22] using the generalized Itō formula (also called Itō-
Wentzell formula in the literature) [18] and plays the role of a transport operator in a 
stochastic setting. Remarkably, it encompasses physically meaningful terms [2, 28]: 
the two first terms correspond to the classical terms of the material derivative, while 
the third term describes the tracer advection by the unresolved flow component. 
As shown in [2, 28], the resulting (non Gaussian) multiplicative noise . σdB t ·∇
Θ continuously backscatters random energy to the system through the quadratic 
variation .1/2 (∇Θ) · (a∇Θ) of the random tracer. The last term in (2.6) represents
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the tracer diffusion due to the mixing of the unresolved scales. The energy loss by 
the diffusion term is exactly balanced with the energy brought by the noise. This 
pathwise balance (i.e for any realisation) leads to tracer energy conservation and 
highlights the parallel between the classical material derivative and the stochastic 
transport operator. This will be precised below. 

Under specific noise and/or variance tensor definitions, the resulting diffusion 
[15, 22] can be connected to the additional eddy viscosity term introduced in many 
large-scale circulation models [27, 34]. As an additional feature of interest, this 
evolution law introduces an effective advection velocity . v∗ in (2.6) defined for an 
incompressible noise term as 

.v∗ = v − 1

2
∇ · a. (2.7) 

This statistical eddy-induced velocity drift captures the action of inhomogeneity 
of the random field on the transported tracer and the possible divergence of the 
unresolved flow component. It is shown in [2] that the turbophoresis term, . vs =
1/2∇ · a, can be interpreted as a generalization of the Stokes drift associated to 
surface wave current and that it plays a key role in the triggering of secondary 
circulations such as the Langmuir circulation [6, 19]. Consequently, this velocity 
is termed Itō-Stokes drift (ISD) in [2]. Notice that, in the modified advection (2.7), 
the ISD cancels out for homogeneous random fields (since then the variance tensor 
is constant over space). 

Many useful properties of the stochastic transport operator . Dt have been explored 
by [28, 29]. In particular, if a random tracer is transported by the incompressible 
stochastic flow under suitable boundary conditions, then the pathwise p-th moment 
.(p ≥ 1) of the tracer is materially and integrally invariant, namely 

.Dt

(
1

p
Θp

)
= 0, dt

(∫

D

1

p
Θp dx

)
= 0. (2.8) 

It is worth noting that the transport Eq. (2.6) can be written in terms of 
Stratonovich integral [2], as 

.DtΘ = dtΘ + (v∗ dt + σ ◦ dB t ) ·∇ Θ = 0. (2.9) 

The Stratonovich integral has the advantage of fulfilling a “standard” chain rule, so 
that the notation . Dt for the transport operator similar to the material derivative. 
Itō calculus introduces second order terms—such as the diffusion term—which 
becomes implicit in the Stratonovich integral. Because of this, Stratonovich noise 
is not anymore a martingale and is not of null expectation. Moreover, it is possible 
to move safely from one integral to the other under some regularity assumptions. In 
the following we will use the Stratonovich notation.
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3 Non Linear Shallow Water Equations Under Location 
Uncertainty 

In this section, we derive a stochastic representation of ocean waves in the near-
shore zone, focusing on the derivation of models going from the Shallow water 
model to the Serre-Green-Nagdi model. Our stochastic derivation is similar to the 
scaling procedure described in [1]. Our derivation starts from the general 3D Euler 
equations in the LU setting, which read 

.dtv + (v − 1

2
∇ · a) · ∇vdt + (σ◦dB t · ∇)v = − 1

ρ
∇(Pdt + dhσ

t ) − gzdt, . 

(3.1) 

∇· (v − 
1 

2 
∇· a) = 0, (3.2) 

denoting .v = (u, w) the three-dimensional velocity decomposed in terms of 
horizontal, . u, and vertical, w, components. The pressure is denoted P , while . ρ
and . g stand for the density and the gravitational vector directed along the vertical 
direction, respectively. 

Shallow water conditions are characterised by a water depth h being much 
smaller than the wave length scale .L ∼ 1/|k| , where . k denotes the wave number. 
This condition is often expressed through the quantity .β = kh0 ⟪ 1, which 
informs about the predominance of dispersion. In linear theory, the amplitude A 
of the wave is small and tends to zero when the characteristic scale tends to infinity. 
Another quantity is usually introduced to measure the non-linear effects: .ϵ = A/h0. 
Shoaling processes start for .β ≤ 1 (i.e. when wavelength and depth have the same 
order) and ends when the waves break at .ϵ ≥ 1 (an illustration is provided in 
Fig. 1, which was borrowed from [16]). Thus, shoaling requires asymptotic models 
with short wavelength and high wave amplitude. These adimensional numbers are 
used to build approximated solutions of the shallow water waves system, ranging 
from weakly nonlinear Boussinesq models (small amplitude regime, .β2 << 1 and 
.ϵ = O(β2)) to the nonlinear Serre-Green-Naghdi system (large amplitude regime). 
As it will be shown in Sect. 3.1, within the modeling under uncertainty setting the 
Serre-Green-Naghdi model reads 

.D
H

t η = −h
(∇H · (u − 1

2
ϒϵus)dt + ϒ∇H · σ◦dBH

t

)
, . (3.3a) 

D H 
t u + ∇Hηdt − 

1 

h
ϵβ2∇H

(h3 

3 
(dG)

) = O(β4, ϵβ4), (3.3b) 

with 

.dG(x, t) = D
H

t (∇H · u) − ϵ∇H · ((u − 1

2
ϒϵus)dt + ϒ

1/2σ◦dBH
t

)∇H · u. (3.4)
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Fig. 1 Illustration of shoaling processes, borrowed from [16]. (a) Wave shoaling diagram. (b) 
Wave refraction diagram. Source: USACE coastal engineering Manual. As the waves approach 
the coasts, both the typical wavelength and the water depth decrease, the former much faster than 
the latter. Hence, . β decreases and . ϵ increases as the waves approach the coast. Thus, shoaling 
processes are characterised by moderately large values of the parameters . ϵ and . β—that is, away 
enough from the coast to avoid breaking waves, yet near enough for the bottom topography to 
influence the wave dynamics 

The notation .DH
t f stands for the Stratonovich transport operator with respect to 

vertically averaged stochastic flow components, 

.D
H

t f = dt f + ϵ ∇Hf ·u∗ dt + ϒ
1/2ϵ ∇Hf ·σ◦dBH

t , (3.5) 

with the depth averaged horizontal velocity 

.u(x, t) = 1

h

∫ h(x,t)

0
u(z)dz. (3.6) 

The last left-hand side term of (3.3b) can be understood as a pressure term 
associated to the vertical velocity component acceleration corrected by compress-
ibility effects. This term is quite intuitively a function of the average horizontal 
velocity divergence. Overall, the system constitutes a stochastic version of the 
Serre-Green-Naghdi equations [12, 33]: compared to the original deterministic 
model, it includes an additional transport noise term and the contribution of the 
Itō-Stokes drift induced by the inhomogeneity of the small-scale fluctuations. A 
graphical illustration of the bottom topography, water depth and surface deformation 
is provided on Fig. 2. 

3.1 Deriving the Stochastic Serre-Green-Naghdi System 

In this section, we derive a stochastic representation of the Serre-Green-Naghdi 
model.
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Fig. 2 Illustration of the bottom topography . ηb, water depth h and surface deformation . η

3.1.1 Evolution Equations 

Scaling Relations 

First, we proceed to the following adimentionalisation to define the asymptoptic 
models. Consider x = Lx̃, z = h0z̃, v = ϵ C0ṽ with C0 = √

gh0 the characteristic 
long wave velocity. Also, time is scaled as T ∼ L/C0. The notation •̃ stands 
for adimensioned variables. We will further assume the following incompressible 
assumption for the noise and the ISD, 

. ∇· σ◦dB t = 0 and ∇· vs = 0. (3.7) 

These assumptions on the noise lead to the global energy conservation—expressed 
as the sum of the potential and kinetic energies—of the shallow water system [5], as 
well as the energy conservation of transported scalar [2, 28]. The incompressibility 
condition on the flow boils down to the classical divergence-free condition 

. ∇· v = 0. (3.8) 

This incompressibility condition leads to the scaling w = ϵβC0 w̃ for the vertical 
velocity. In addition, we scale the noise term and the variance tensor a by ϒ1/2 and 
ϒ , respectively. The incompressibility condition on the noise term writes 

.σdBh
t = ϒ

1/2L~σdBh
t , (3.9) 

with a similar scaling on the horizontal noise displacement. This provides a scaling 
on the vertical noise component as 

.σ◦dBz
t = ϒ

1/2ϵβL ~σ◦dBz
t . (3.10)
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The variance tensor has the dimension of a viscosity in m2/s. For a deterministic 
correlation tensor, σ , it is related to the variance of the flow fluctuation, v' = 
(u', w')T through 

.a = E(v'v'T)τ, (3.11) 

where τ is a decorrelation time. Now denote aHH  , aHz and azz the horizontal (2D) 
matrix variance tensor, the horizontal-vertical cross vector, and the vertical variance, 
respectively. Thus, we get the following scaling relations, 

.aHH = ϒϵ2C0L ãHH
. (3.12a) 

aHz = ϒϵ2βC0L ãHz
. (3.12b) 

azz = ϒϵ2β2C0L ãzz . (3.12c) 

Note that these relations could have been inferred directly from the noise scalings 
and relation 

.adt = E(σdB t (σdB t )T). (3.13) 

Additionally, the ISD component scales as 

.1/2 ∇· a = (us , ws) = ϒϵ2C0
(∇

H̃
·ãHH + ∂z̃ã

Hz, β∇
H̃

·ãHz + β∂z̃ã
zz

)
, (3.14) 

where ∇H refers to the gradient with respect to the horizontal coordinates. As in 
the classical setting, we will assume that the large-scale component of the flow is 
irrotational and thus 

.∂ỹ ũ = ∂x̃ ṽ and ∂z̃ũ = β2∇
H̃

·w̃, (3.15) 

while the adimensional continuity equation is 

.∇
H̃

ũ = −∂z̃w̃. (3.16) 

In the long wave assumption, the pressure is scaled by the static pressure as 
follows 

.P ∼ ρgh0 and thus P = ρgh0P̃ . (3.17) 

The same scaling is assumed for the turbulent pressure, with the additional noise 
variance scaling ϒ 1/2 , 

.dhσ

t = ϒ
1/2ρgh0 ˜dhσ

t . (3.18)
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For simplicity, from now on we will drop the tilde accentuation for the adimensional 
variables in the following. 

Incompressibility Condition 

Integrating over the z axis, the incompressibility condition (3.2) gives 

.

∫ h(x,t)

0
∇H · (u − 1

2
ϒϵ us)dz = −

(
w

(
h(x)

) − 1

2
ϒϵ ws

(
h(x)

))
. (3.19) 

Using Leibniz formula and introducing the depth averaged horizontal effective 
velocity u∗, 

.u∗(x, t) = 1

h

∫ h(x,t)

0
u∗(z)dz, (3.20) 

we have 

.∇H ·
∫ h(x,t)

0
u∗dz − u∗(h)·∇Hh = ∇H · (u∗ h) − u∗(h)·∇Hh = −w∗(h). (3.21) 

In the same way, we have for the noise term 

.∇H · (h σdBH
t ) − ∇H · (

hσdBH

t (h)
) = −σdBz

t (h). (3.22) 

Adimensionned Momentum Equations 

Gathering the previous scaled relations, we obtain the following equations for the 
horizontal and vertical velocity, 

. ϵdtu+ϵ2∇H · ((u−1

2
ϒϵus)u

)
dt+ϵ2∂z

(
(w−1

2
ϒϵws)u

)
dt+ϒ

1/2ϵ2∇·(σ◦dBH

t u
)

+ ϒ
1/2ϵ2∂z

(
σ◦dBz

t u
) = −∇HPdt−ϒ

1/2∂xdh
σ

t , (3.23) 

and 

. ϵβ2dtw + ϵ2β2((u − 1

2
ϒϵus)·∇Hw

) + ϵ2β2((w − 1

2
ϒϵws)∂zw

)
dt

+ ϵ2β2ϒ
1/2(σ◦dBH

t ·∇Hw)

+ ϵ2β2ϒ
1/2(σ◦dBz

t ∂zw) = −(∂zP + 1)dt − ϒ
1/2∂zdh

σ

t . (3.24) 

The vertical momentum equation can be written in a more compact form, that is 

.ϵβ2Dtw = −∂zdP − 1dt, (3.25)
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where P represents the total pressure, sum of the finite variation and martingale 
pressures. In this formula, 1 stands for the rescaled gravity term. 

3.1.2 Boundary Conditions 

Bottom Boundary Conditions 

For the boundary conditions we will assume that w(x, z, t)  = σ◦dBz 
t = 0 on the  

bottom z = 0. Due to this last condition we have also aHz  = azz = 0 on the bottom. 
The constraint of the vertical ISD from (3.14) implies that ∂za

zz (x, 0, t)  = 0 on the  
bottom. As a consequence, 

. ∇· a(x, 0, t) = ϒϵ2C0
(∇H · aHH (x, 0, t) + ∂za

Hz(x, 0, t), 0
)
.

The divergence-free constraint of the ISD leads to following condition on the 
bottom, 

.∇H · ∇H · aHH (x, 0, t) = 0. (3.26) 

We will also consider that the noise and the ISD have the same characteristics as 
the large scale velocity near the bottom: due to the large-scale component being 
irrotational, the following hold in the vicinity of the bottom 

.∂y σ◦ dBH

t = ∂x σ◦ dBH

t , β2∇H σ◦ dBz
t = ∂z σ◦ dBH

t at z = δz, (3.27) 

and 

.∂xvs = ∂yus, β2∇Hws = ∂zus at z = δz. (3.28) 

Free Surface Boundary Conditions 

At the free surface z = h(x, t), we denote by η the surface elevation variation and 
consider the scaling 

. z = h(x, t) = h0
(
1 + ϵη(x, t)

)
,

which leads to 

.z̃ = 1

h0
h(x, t) = (

1 + ϵη(x, t)
)
. (3.29) 

The evolution of the dimensional surface elevation is given by 

.(w − ws)dt + σ◦dBz
t = Dtη, (3.30)
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where an effective vertical velocity driving the dynamics of η appears on the left-
hand side. This velocity is composed of the vertical components of the velocity, the 
ISD, and an additive noise variable linked with rapid vertical oscillations. As usual 
in long wave approximations, we assume that the whole pressure is constant at the 
interface, and for sake of simplicity we consider that this constant is null, that is 

.dPt (x, h(x, t), t) = 0. (3.31) 

The adimensional form of the free surface evolution (dropping the tilde accentua-
tion) reads, 

. 
(
w(h) − 1

2
ϒϵws(h)

)
dt + ϒ

1/2 σ◦ dBz
t (h)

= dt η + ϵ∇Hη·(u(h) − 1

2
ϒϵus(h)) dt + ϒ

1/2ϵ ∇Hη· σ◦ dBH

t (h). (3.32) 

Considering the averaged continuity Eq. (3.21) we obtain 

. dt η + ϵ ∇Hη·(u − 1

2
ϒϵus) dt + ϒ

1/2ϵ ∇Hη·σ◦dBH
t

= −h
(∇H · (u − 1

2
ϒϵus)dt + ϒ

1/2∇H · σ◦dBh
t

)
, (3.33) 

which can be written more compactly as 

.D
H

t η = −h
(∇H · (u − 1

2
ϒϵus)dt + ϒ

1/2∇H · σ◦dBH
t

)
. (3.34) 

Notice that we have introduced an operator D H 
t , that involves only depth average 

velocity components. Moreover, remark that for homogeneous noise (i.e. with no 
statistical dependence on space location), the variance tensor is constant over space 
and the ISD cancels out. In such a case, the surface elevation dynamics simplifies in 
the more intuitive form, 

.dt η+ϵ ∇Hη·u dt+ϒ
1/2ϵ ∇Hη·σ◦dBH

t = −h
(∇H · udt+ϒ

1/2∇H · σ◦dBH
t

)
. (3.35) 

Additionally, in the general case, the integrated ISD can be written in terms of 
horizontal quantities, 

. hus = ( ∫ h(x,t)

0
∇H · aHH + aHz(h)

) = ∇H · (haH ) − aHH (h)∇Hh + aHz(h)

= ∇H · (haH ) − aHH (h)∇Hh + (σ◦dBz
t (h), σ◦dBH

t (h)0

= ∇H · (haH ) − aHH (h)∇Hh − 1

2
h∇H · aHH (h). (3.36)
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3.1.3 The Wave Model 

Depth Averaged Horizontal Momentum Equation 

By taking the average of the horizontal momentum equation, and using Leibniz 
rules in time and space for stochastic processes (see Appendix 1), the continuity 
relation and the elevation evolution together with the velocity boundary conditions, 
we obtain 

. ϵh dtu + ϵ2h
(
u − 1

2
ϒϵ us)·∇H

)
u dt + ϒ

1/2ϵ2h (σ◦dBH
t ·∇H )u

− hϵ2∇H ·
∫ h(x,t)

0

(
(u − 1

2
ϒϵus)udt + ϒ

1/2(σ◦dBH

t u) − (u − 1

2
ϒϵus)udt

+ ϒ
1/2(σ◦dBH

t u)

)
dz = −

∫ h

0
∇HdPdz. (3.37) 

Now we express below the depth-averaged pressure term involved in the right-hand 
side of this equation. 

Dynamic Pressure Contribution 

Decomposing dP = pdt + dhσ 
t , we obtain from Leibniz formula 

.

∫ h(x,t)

0
∇H (dP)dz = ∇H (hdP) − dP(h)∇Hh = ∇H (hdP). (3.38) 

Moreover, remind that dP is given by integrating the vertical momentum equation 
(3.25), i.e 

. − ∂z dP = dt + ϵβ2Dtw. (3.39) 

Thus, integrating (3.38) vertically from depth z up to the surface, one has 

. − p(x, z, t)dt − dhσ

t (x, z, t) = (z − h)dt − ϵβ2
∫ h

z

Dtw(x, z', t)dz', (3.40) 

which implies 

. − h(pdt+dhσ
t ) = −1

2
h2dt − ϵβ2

∫ h

0

( ∫ h

z

Dtw(x, z', t)dz'
)
dz. (3.41) 

In the previous relation, the second right-hand side term can be simplified 
through integration by part as follows 

.−ϵβ2
∫ h

0

( ∫ h

z

Dtwdz'
)
dz = −ϵβ2

∫ h

0
z ∂z

( ∫ z

0
Dtwdz' −

∫ h

0
Dtwdz'

)
dz
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+
[
z

(∫ z 

0 
Dtwdz' −

∫ h 

0 
Dtwdz'

)]h 

0 
= −ϵβ2

∫ h 

0 
zDtwdz. 

Then, the horizontal momentum equation reads 

. dtu + ϵ
(
(u − 1

2
ϒϵus) ·∇H

)
udt + ϒ

1/2ϵ(σ◦dBH

t ·∇H )bu

+ ∇Hηdt + 1

h
ϵβ2 ∇H

∫ h

0
zDtwdz

= − ϵ

h
∇H ·

∫ h

0

[
(u − 1

2
ϒϵus)u − (u − 1

2
ϒϵus)u

]
dz

− ϵ

h
ϒ

1/2∇H ·
∫ h

0

[
(σ◦dBH

t u) − (σ◦dBH
t u)

]
dz. (3.42) 

So far, no approximation has been introduced in the derivation of this equation. In 
order to compute the different terms of this averaged equation and build simplified 
systems, we introduce now some asymptotic approximations. In particular, the 
integral terms on the right-hand side of (3.42) involve both u and its vertical average 
value u. This means the system is not closed since one cannot deduce u from u 
solely. Therefore, one needs to investigate reliable approximations of these integral 
terms, as well as of the vertical acceleration term on the left-hand side of (3.42). 

Expansion of the Velocities at the Bottom 

Since the velocity potential is harmonic and irrotational, expanding the velocity 
component through a Taylor expansion at z = 0 gives  

. u(x, z, t) = u(x, 0, t) + ∂zu(x, 0, t)z + 1

2
∂2zzu(x, 0, t)z2

+ 1

6
∂3zzzu(x, 0, t)z3 + O(β4z4)

= u(x, 0, t) + β ∇Hw(x, 0, t), ,, ,
=0

z + 1

2
β∂z∇Hw(x, 0, t)z2

+ 1

6
β∂2zz∇Hw(x, 0, t)z3 + O(β4z4)

= u(x, 0, t) − 1

2
β2∇H∇H · u(x, 0, t)z2

− 1

6
β3 ΔH ∇Hw(x, 0, t), ,, ,

=0

z3 + O(β4z4). (3.43) 

Notice that, due to both harmonicity and irrotationality conditions, the expansion 
involves only even orders terms. Hence, since z at most of the order of h0, we obtain
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.u(x, z, t) = u(x, 0, t) − 1

2
β2∇H∇H ·u(x, 0, t)z2 + O(β4). (3.44) 

Averaging this equation, the bottom horizontal velocity ub (x, t)  = u(x, 0, t)  is 
expressed as 

.ub(x, t) = u(x, t) + 1

6
β2h2∇H∇H · ub(x, t) + O(β4). (3.45) 

Using the following expansion for ub in (3.45), 

.ub = u(x, t) + ϵ x'·∇Hu, (3.46) 

we obtain 

. u(x, z, t)=u(x, t)+1

6
h2β2 ∇H∇H · u(x, t)−1

2
β2 ∇H∇H · u(x, t)z2+O(β4, ϵβ4).

(3.47) 

Remark that this expansion brings an additional error term of order O(ϵβ4). 
For the ISD, proceeding in the exact same way, and assuming it is irrotational at 

the bottom, we obtain as well 

. us(x, z, t) = us(x, 0, t) + ∂zus(x, 0, t)z + 1

2
∂2
z2

us(x, 0, t)z2

+ 1

6
∂3
z3

us(x, 0, t)z3 + O(β4z4)

= us(x, 0, t) − 1

2
β2∇H∇H · us(x, 0, t)z2 + O(β4), (3.48) 

where we used irrotationality at the bottom and incompressibility of the ISD. 
Averaging along depth, and replacing in the above expression the bottom ISD, we 
get 

.us(x, z, t) = us(x, t) + O(β2, ϵβ2). (3.49) 

Furthermore, for the vertical velocity component w we have 

.w(x, y, t) = ∂zw(x, 0, t)z + 1

2
∂2
z2

w(x, 0, t)z2 + 1

6
∂3
z3

w(x, 0, t)z3 + O(β4z4),

= −∇H · u(x, 0, t)z − β2 1

2
ΔH w(x, 0, t), ,, ,

=0

z2

+ β2 1

6
ΔH ∇H · u(x, 0, t)z3 + O(β4z4),
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= −∇H · u(x, 0, t)z  + β2 1 

6
ΔH ∇H · u(x, 0, t)z3 + O(β4z4). 

(3.50) 

Making use of the expression of the bottom velocity, we get 

.w(x, y, t) = −∇H · u(x, t)z + O(β2). (3.51) 

Similarly, for the vertical component of the ISD, one has 

. ws(x, y, t) = ∂zws(x, 0, t)z + 1

2
∂2
z2

ws(x, 0, t)z2 + 1

6
∂3
z3

ws(x, 0, t)z3 + O(β4z4),

= −∇H · us(x, 0, t)z + β2 1

6
ΔH ∇H · us(x, 0, t)z3 + O(β4z4),

(3.52) 

then 

.ws(x, y, t) = −∇H · us(x, t)z + O(β2). (3.53) 

For the noise term, following the same procedure, the horizontal component is 
expressed as 

. σ◦ dBH

t (x, z, t) = σ◦dBH
t (x, t) + 1

6
β2h2∇H∇H · σ◦dBH

t (x, t)

− 1

2
β2∇H∇H · σ◦dBH

t (x, t)z2 + O(β4, ϵβ4). (3.54) 

and the vertical one as 

. σ◦ dBz
t (x, y, t) = −∇H · σ◦dBH

t (x, t)z + O(β2). (3.55) 

From these formulae, we can approximate the variance tensor components aH , 
aHz  and azz: 

. aHdt = E(σdBH

t ⊗ σdBH

t ) = E(σdBH
t ⊗ σdBH

t ) + O(β2, ϵβ2)

= aHdt + O(β2, ϵβ2), (3.56a) 

. aHzdt = E(σdBH

t σdBz
t ) = −βE(σdBH

t ∇H · σdBH
t ) z + O(β2, ϵβ2)

= −1

2
z ∇H · aHdt + O(β2, ϵβ2), (3.56b)
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. azzdt = E(σdBz
t σdBz

t ) = E(∇H · σdBH
t ∇H · σ◦dBH

t ) z2 + O(β4, ϵβ4)

= z2 adivdt + O(β4), (3.56c) 

With the above approximations, we observe that all the quadratic integrals scale 
as 

.

∫ h

0

[
(u − 1

2
ϒϵus)u − (u − 1

2
ϒϵus)u

]
dz ∼ O(β4, ϵβ4), . (3.57)

∫ h 

0

[
(σ◦dBH 

t u) − (σ◦dBH 
t u)

]
dz ∼ O(β4, ϵβ4) (3.58) 

Besides, the ISD (3.36) reads now 

. us = 1

h

(∇H · (haH ) − aHH (h)∇Hh − 1

2
h∇H · aHH (h)

)

= 1

2
(∇H · aH ) + O(β2, ϵβ2), . (3.59) 

ws = ∇H · aHz + ∂za
zz 

= −z( 
1 

2
∇H ·∇H · aH − 2adiv) + O(β2, ϵβ2). (3.60) 

Using the approximation of the vertical velocity (3.51), the vertical acceleration 
relation (3.25) reads 

. Dtw = −z

(
dt∇H ·u+ϵ

(
(u−1

2
ϒϵus)·∇H

)∇H ·udt−ϵ
(∇H ·(u−1

2
ϒϵus)∇H ·u)

dt+

ϵϒ
1/2(σ◦dBH

t ·∇H )∇H · u − ϵϒ
1/2(∇H · σ◦dBH

t ∇H · u)

)
+ O(β2, ϵβ2). (3.61) 

Eventually, we find the evolution equations for the surface elevation and the depth 
averaged velocity, 

.D
H

t η = −h
(∇H · (u − 1

2
ϒϵus)dt + ϒ∇H · σ◦dBH

t

)
, . (3.62a) 

dtu + ϵ
(
(u − 

1 

2 
ϒϵus)·∇H

)
udt + ϒ 1/2ϵ(σ◦dBH 

t ·∇H )u 

+ ∇Hηdt − 
1 

h
ϵβ2∇H

(h3 

3 
(dG)

) = O(β4, ϵβ4) (3.62b)
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with 

. 

dG(x, t) =
(
dt∇H · u + ϵ

(
(u − 1

2
ϒϵus)·∇H

)∇H · udt

− ϵ
(∇H · (u − 1

2
ϒϵus)∇H · u

)
dt

+ ϵϒ
1/2(σ◦dBH

t ·∇H )∇H · udt − ϵϒ
1/2(∇H · σ◦dBH

t ∇H · u
))

,

(3.63) 

which can be more compactly written as 

.dG(x, t) = D
H

t (∇H · u)− ϵ∇H ·((u− 1

2
ϒϵus)dt +ϒ

1/2σ◦dBH
t

)∇H · u. (3.64) 

This last expression can readily be understood as the acceleration of the average 
horizontal velocity divergence corrected by compressibility effects. This system 
constitutes a stochastic version of the Serre-Green-Naghdi equations [12, 33]. 
Compared to the original deterministic model, additional noise terms are involved. 
Those terms correspond to small scale advection and are accompanied with a 
corresponding ISD correction term in the large scale advection. 

Let us now exhibit some simplified models that arise by neglecting higher order 
terms. 

3.2 Shallow Water Waves Approximated Models 

In this section we present two stochastic representations of classical approximations 
of the Serre-Green-Naghdi equations, namely the Shallow Water and the Boussinesq 
wave models. In addition, we briefly mention a stochastic version of the Kordeveg-
De Vries equation. Through the section, we will make use of the Stokes number 
(also called Ursel number), defined as .S = ϵ/β2. 

Shallow Water (or Saint-Venant) Long Waves Approximation 

For long waves regimes such as tidal waves, we have .β ⟪ ϵ = A/h ⟪ 1, which 
corresponds to a Stokes number .S ⟫ 1. Neglecting in system (3.62) the terms of 
order higher than . ϵ gives 

.D
H

t η = −h
(∇H · (u − 1

2
ϒϵus)dt + ϒ

1/2∇H · σ◦dBH
t

)
, . (3.65a) 

dtu + ϵ
(
(u − 

1 

2 
ϒϵus)·∇H

)
udt + ϒ 1/2ϵ(σ◦dBH 

t ·∇H )u + ∇Hηdt = 0. (3.65b)
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This system corresponds to a stochastic version of the 2D Shallow water model 
[5]. We note that the noise term is kept assuming . ϒ is of order 1 or higher. The 
diffusion term is in balance with the energy brought by the noise and must be kept 
to ensure energy conservation. For lower noise amplitude, the system boils down to 
the classical deterministic system. Notice that this system results from neglecting 
the vertical acceleration, which corresponds to the usual hydrostatic assumption. 
However, differently from the deterministic (linear) shallow water system, this 
corresponding linear stochastic system admits dispersive waves as solutions due 
to the noise term [23]. 

Boussinesq Approximation 

Assuming that .S ≈ 1 and .β ⟪ 1, we retain only the terms of order . ϵ and . β2 in 
the system (3.62). Thus, we obtain a stochastic interpretation of Boussinesq wave 
equation. This system reads 

.DH

t η = −h
(∇H · (u − 1

2
ϒϵus)dt + ϒ

1/2∇H · σ◦dBH
t

)
, . (3.66a) 

dtu + ϵ
(
(u − 

1 

2 
ϒϵus)·∇H

)
udt + ϒ

1/2ϵ(σ◦dBH 
t ·∇H )u + ∇Hηdt 

− ϵβ2(h2 

3 
∇H∇H · dtu

) = O(β4, ϵβ4) (3.66b) 

Remark that an additional dispersive term appears compared to the previous 
system. From the LU Boussinesq system, one can also derive a stochastic version 
of the Kordeveg-De Vries (KdV) equation, as developed in Appendix 3. 

3.3 Discussion on Conserved Quantities 

In this section, we discuss the conservation of the following quantities: mass, 
momentum and (mechanical) energy. We consider a bounded horizontal domain . SH

and assume that the noise term .σ◦dBH
t is zero on the boundary .∂SH . In particular, 

.σ◦dBH
t is periodic. 

Mass 

We regard mass conservation first. Notice that the total mass m fulfils . m =∫
SH

∫ h

0 ρ dz dSH , where . SH is the horizontal domain—which can be 1D or 2D 
depending on the considered problem—and .h = (1+ ϵη). Assuming that .ρ = ρ0 is 

constant, we get .m = ρ0h(|SH | + ϵ
∫
SH

η dSH ). Hence, .dtm ∝ dt

( ∫
SH

η dSH

)
. 

Moreover, in the three models studied in this chapter, the evolution equation of 
the surface elevation . η remains unchanged and reads
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. dt η + ϵ (u∗·∇H )η dt + ϒ
1/2ϵ (σ◦dBH

t ·∇H )η = −h
(∇H · u∗dt + ϒ

1/2∇H · σ◦dBH
t

)
,

(3.67) 

that is to say, in conservative form, 

.dt η + ∇H · (u∗h)dt + ϒ
1/2∇H · (σ◦dBH

t h) = 0. (3.68) 

Thus, integrating over the horizontal domain . SH and using the divergence theorem, 
Eq. (3.68) yields 

.dt

( ∫

SH

η dSH

)
+

∫

∂SH

(
u∗h dt + ϒ

1/2σ◦dBH
t h

)
·dnSH

= 0 (3.69) 

Therefore, under suitable boundary conditions—which are periodic with a 1D 
domain . SH in our study—the horizontal integral of the surface elevation . 

∫
SH

η dSH

is conserved, and consequently so is the total mass. 

Momentum 

To investigate momentum conservation, we define the total momentum . p =∫
SH

∫ h

0 ρudzdSH = ρ0
∫
SH

hudSH . Then, we derive its evolution equation: starting 
from the LU Serre-Green-Naghdi model, we get 

. dt (hu) =hdtu + udt h = hdtu + ϵudt η

= − ϵ
(
hu∗·∇H

)
udt − ϒ

1/2ϵ(hσ◦dBH
t ·∇H )u − h∇Hηdt + ϵβ2∇H

(h3

3
(dG)

)

− ϵu
(
∇H · (u∗h)dt + ϒ

1/2∇H · (σ◦dBH
t h)

)

= − ϵ∇H · (hu ⊗ u∗)dt − ϵϒ
1/2∇H · (hu ⊗ σ◦dBH

t )

− 1

2ϵ
∇Hh2

, ,, ,
=∇H

(
η+ ϵη2

2

)
dt + ϵβ2∇H

(h3

3
(dG)

)
. (3.70) 

Similarly as for the mass, for .i ∈ {x, y} in 2D, and for .i = x in 1D, Eq. (3.70) yields 

. dt

( ∫

SH

hui dSH

)
+ ϵ

∫

∂SH

(
huiu

∗ dt + ϒ
1/2huiσ◦dBH

t

)
·dnSH

+
∫

∂SH

(
(η + ϵη2

2
)dt − ϵβ2h3

3
dG

)
d(nSH

)i = 0, (3.71) 

using the gradient and the divergence theorems. Remind that . dG is defined as
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.dG(x, t) = D
H

t (∇H · u) − ϵ∇H · (
u∗dt + ϒ

1/2σ◦dBH
t

)∇H · u. (3.72) 

Again, under suitable boundary conditions—i.e periodic in our work—it is imme-
diate that 

. ϵ

∫

∂SH

(
huiu

∗ dt + ϒ
1/2huiσ◦dBH

t

)
·dnSH

+
∫

∂SH

(η + ϵη2

2
)dt d(nSH

)i = 0.

(3.73) 
Consequently, one has 

.dt

( ∫

SH

hui dSH

)
= ϵβ2

3

∫

∂SH

h3dG d(nSH
)i . (3.74) 

The water height h being periodic by assumption, it is enough to show that . dG
is periodic. In the LU Saint-Venant model, the RHS of Eq. (3.74) is completely 
neglected, which is equivalent to assuming .dG = 0. In such case, momentum 
conservation is immediate. In the LU Boussinesq model, . dG is approximated as 

. dG = dt (∇H · u) =: dGB.

Since . u is periodic, .∇H · u also is, as long as the 1st order space derivatives of . u
are well defined. Then .dt (∇H · u) is periodic as well—as long as this term is well-
defined—which proves momentum conservation. Regarding the LU Serre-Green-
Naghdi model, we use the “full” Eq. (3.72) on . dG, namely 

. dG = dGSGN : = D
H

t (∇H · u) − ϵ∇H · (
u∗dt + ϒ

1/2σ◦dBH
t

)∇H · u

= dGB + ϵ (u∗·∇H )(∇H · u) dt + ϒ
1/2ϵ (σ◦dBH

t ·∇H )(∇H · u)

− ϵ∇H · (
u∗dt + ϒ

1/2σ◦dBH
t

)∇H · u.

By similar arguments, the new terms on the RHS are periodic since the 2nd order 
space derivatives of . u are, as long as they are well-defined. Hence, .dGSGN is 
periodic as well, that is momentum is conserved. 

Energy 

For shallow water models—in particular, the LU Saint-Venant model—the total 
energy .ESW is defined as follows (using dimensioned velocities . u and water 
height . h), 

. ESW =
∫

SH

∫ h

0

1

2
ρ0||u||2 dz dSH +

∫

SH

∫ h

0
ρ0gz dz dSh

= ρ0

2

∫

SH

h||u||2dSH + ρ0g

2

∫

SH

h2dSH , (3.75)
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where the two terms on the RHS respectively correspond to the kinetic and potential 
energies. Scaling . u and h as before, we find the equation on the following rescaled 
energy equation [8, 36] 

. ESW = ϵ2

2

∫

SH

h||u||2dSH + 1

2

∫

SH

h2dSH = ϵ2

2
(hu,u)L2(SH ,R2)

+ 1

2
||h||2

L2(SH ,R)
:= Ec + Ep, (3.76) 

denoting . Ec and . Ep the scaled total kinetic and potential energies. We also denote 

.ec = ϵ2

2 h||u||2 and .ep = 1
2h

2. Now, we derive the evolution equation of this energy 
in the LU Saint-Venant model, using Einstein’s notation on i, 

. dt ec =ϵ2

2
u·dt (hu) + ϵ2

2
hu·dtu

= − ϵ3

2

⎲

j∈J

ui∂j (huiu
∗
j )dt − ϵ3ϒ

1/2

2

⎲

j∈J

ui∂j (hui (σ◦dBH
t )j ) − ϵ

2
hui∂ih dt

)

− ϵ3

2

⎲

j∈J

huiu
∗
j ∂juidt − ϵ3ϒ

1/2

2

⎲

j∈J

hui (σ◦dBH
t )j ∂jui − ϵ

2
hui∂ih dt

)

= − ϵ3

2
∇H · (hu2

i u
∗)dt − ϵ3

2
ϒ

1/2∇H · (hu2
i (σ◦dBH

t )j ) − ϵhui∂ih dt
)
,

and 

. dt ep = h·dth = −ϵh∂i(hu∗
i )dt − ϵϒ

1/2h∂i(h(σ◦dBH
t )i),

where .J = {x} is the problem is 1D and .J = {x, y} if it is 2D. Thus, the quantity 
.e = ec + ep fulfils 

. ∇·t e = − ϵ3

2
∇H · (h||u||2u∗)dt − ϵ3

2
ϒ

1/2∇H · (h||u||2σ◦dBH
t ) − ϵ∇H · (h2u)dt

(3.77) 

+ ϵϒ 
4 

h∇H · (hus) dt  − ϵϒ
1/2 h∇H · (hσ◦dBH 

t ). 

Integrating over the domain . SH , using the divergence theorem and periodic 
boundary conditions, we get by integration by parts the evolution equation of the 
total Saint-Venant energy .ESV , 

.dtESW =
∫

SH

[
− ϵϒ

8
us·∇Hh2 dt + ϵ

2
ϒ

1/2σ◦dBH
t ·∇Hh2

]
dSH (3.78)
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=
∫

SH

[ϵϒ 
8 

h2∇H · us dt − ϵ

2 
ϒ

1/2 h2∇H · σ◦dBH 
t

]
dSH . 

Consequently, for the LU Saint-Venant model—that is assuming .dG = 0— 
energy conservation is enforced by choosing the noise term .σ◦dB t such that 
.∇H · σ◦dBH

t = ∇H · us = 0. We denote this assumption (DF-BHN-ISD), 
standing for “divergence free barotropic horizontal noise and Itō-Stokes drift”. 
However, in 1D problems, this condition does not make much physical sense 
since it is equivalent to considering a constant horizontal noise over space. For 
this reason, energy conservation is not ensured in our numerical simulations, since 
they were performed with more general noises which do not fulfil this assumption. 
Nevertheless, we anticipate that performing 2D test simulations of this stochastic 
Saint-Venant equation with non trivial divergence free noise would lead to numerical 
energy conservation results. 

For the LU Serre-Green-Naghdi model, the energy is rather defined as in [8, 24], 

. ESGN = ϵ2

2
(hu,u)L2(SH ,R2) + 1

2
||h||2

L2(SH ,R)

+ ϵ3β2

6
(h3∇H · u,∇H · u)L2(SH ,R). (3.79) 

Using the same notations . ec and . ep as before, and defining .epv = 1
6h

3(∇H · u)2 and 
.e = ec + ep + epv , one has similarly 

. dtESGN =
∫

SH

[
− ϵ3β2

3
h3(∇H · u)dG + ϵ3β2

2
h2dt h(∇H · u)2

+ ϵ3β2

3
h3(∇H · u)dt (∇H · u)

]
dSH , (3.80) 

using that .∇H · σ◦dBH
t = ∇H · us = 0. Now, computing the first term in the integrand 

yields 

. − ϵ3β2

3
h3(∇H · u)dG = −ϵ4β2

3
h3(∇H · u)(u∗dt + ϒ

1/2σ◦dBH
t )·∇H (∇H · u)

− ϵ3β2

3
h3(∇H · u)dt (∇H · u) + ϵ4β2

3
h3(∇H · u)2∇H · (u∗ dt + ϒ

1/2σ◦dBH
t ),

(3.81) 

that is 

. − ϵ3β2

3
h3(∇H · u)dG + ϵ3β2

3
h3(∇H · u)dt (∇H · u)
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= − ϵ4β2 

6 
h3(u∗dt + ϒ

1/2 σ◦dBH 
t )·∇H (∇H · u)2 (3.82) 

+ ϵ4β2 

3 
h3(∇H · u)2∇H · (u∗ dt + ϒ 1/2 σ◦dBH 

t ). 

In addition, the second term in the integrand is 

. 
ϵ3β2

2
h2dt h(∇H · u)2 = −ϵ4β2

2
h2(∇H · u)2∇H · (hu∗dt + ϒ

1/2hσ◦dBH
t )

= −ϵ4β2

2
h3(∇H · u)2∇H · (u∗dt + ϒ

1/2σ◦dBH
t )

− ϵ4β2

6
(∇H · u)2(u∗dt + ϒ

1/2σ◦dBH
t )·∇Hh3. (3.83) 

Consequently, 

. dtESGN = ϵ4β2

6

∫

SH

[
h3(u∗dt + ϒ

1/2σ◦dBH
t )·∇H (∇H · u)2

]
dSH

+ ϵ4β2

6

∫

SH

[
h3(∇H · u)2∇H · (u∗ dt + ϒ

1/2σ◦dBH
t )

]
dSH

+ ϵ4β2

6

∫

SH

[
(∇H · u)2(u∗dt + ϒ

1/2σ◦dBH
t )·∇Hh3

]
dSH

= ϵ4β2

6

∫

SH

∇H ·
[
h3(∇H · u)2(u∗dt + ϒ

1/2σ◦dBH
t )

]
dSH = 0,

(3.84) 

using the divergence theorem and the periodic boundary conditions again. Notice 
that no assumptions were made in addition to the one for the Saint-Venant model, 
that is (DF-BHN-ISD). As before, this assumption leads to a space constant noise 
in the 1D case, therefore it is anticipated that the energy is not conserved in our 
simulations. Moreover, the previous calculations show that (DF-BHN-ISD) is not 
enough to enforce energy conservation in the LU Boussinesq model for both the 
energies .ESW and .ESGN , which is coherent with the deterministic Boussinesq 
model. 

4 Numerical Simulations 

In this section, we present some numerical simulations we made to test the three 
models derived. The Julia code that we produced is based on the work of Vincent



Derivation of Stochastic Models for Coastal Waves 207

Duchêne and Pierre Navarro, who proposed a variety of wave models imple-
mentations in the deterministic setting—see the documentation in the following 
link: http://waterwavesmodels.github.io/WaterWaves1D.jl/dev/ [9]. These models 
are essentially based on pseudo-spectral resolution methods, which justifies the 
use of periodic boundary conditions. We adapted their numerical framework to the 
stochastic case, introducing implementations of the noise terms and the ISDs for 
this purpose. 

Regarding the purely stochastic aspects, we consider noises with wave spatial 
structure. This is justified by the shape of solutions found in [23]: considering a 
constant noise a first, the authors showed that the system admits progressive wave 
solutions. Then, they extend the analysis to systems where the noise is itself a 
progressive wave. In the end, the 1D noise we consider is the following, 

.σ(x)dWt = A cos(kx)dβ1
t + A sin(kx)dβ2

t , (4.1) 

where A denotes the amplitude of the noise and .dβ1
t , dβ2

t denote Brownian motions. 
Using a Box-Muller argument, this shape is equivalent to 

.σ(x)dWt = A cos(kx + φt )dβt , (4.2) 

where . φt is a uniformly distributed random phase on .(−π, π), such that for all 
.t /= s, . φt and . φs are independent. Additionally, .dβt is a Brownian motion. In our 
simulations, the noise wave number is set to .k = 2π/100 , and the noise amplitude 
may take the following values: .A = 0.001, .A = 0.005 or .A = 0.01. Notice that 
the dimensioned noise scales like .Aϵ

√
gh0 as a consequence. The value of wave 

number k is chosen to be at least one order of magnitude smaller than the typical 
wave number of the deterministic wave. This is because our simulations showed 
that noise terms with too small space scale oscillations lead to numerical instability, 
and enables us to further discuss the presence of an additive noise term in the water 
elevation dynamics. The values of amplitude where chosen to be much smaller than 
the typical height of the wave. Numerically, we have observed that .A = 0.001 yields 
slight perturbations of the deterministic waves—that is typical realisations of each 
LU model is similar to its deterministic counterpart—while .A = 0.01 induces a 
more “noisy” dynamics—that is typical realisations are essentially noise driven. In 
addition, we chose .A = 0.005 as an enlightening intermediate case. 

Our tests are based on computing the evolution of the deformation surface . η, with 
a “heap of water” type initial condition. Namely, the initial surface deformation is 
set to be .η(x, t = 0) = exp(−x4), while the initial velocity is set to .u(x, t = 0) = 0. 
All of our tests were performed on a numerical 1D tank .[−L,L]with .L = 50, which 
is discretised with .N = 211 spatial points. The timestep is chosen to be .dt = 0.005s, 
and we assume periodic boundary conditions. To enforce these conditions on the 

noise terms as well, we multiply them the function .sα(x) = exp
(

1
α2

(
1− 1

1−(x/L)2

))
, 

with .α = 10, in order to make them vanish on the boundary. The initial condition 
on . η and the profile of . sα are given on Fig. 3.
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Fig. 3 Initial surface deformation (left) and boundary conditions enforcement function . sα (right, 
.α = 10) 

Moreover, we propose two sets of parameters for testing our models 

• .β = 0.01 and .ϵ = 0.1 (P1), so that the scaling conditions associated with the 
Shallow Water model hold (and in particular, they hold for the Boussinesq model 
as well). Therefore, the three models should give qualitatively similar results. 

• .β = 0.1 and .ϵ = 0.1 (P2), so that the scaling conditions of the Shallow 
Water and the Boussinesq models do not hold. Thus, these models should give 
qualitatively distinct—yet not dramatically different—results. 

Additionally, we will compare our stochastic models to the deterministic one 
dimensional Water Waves model. 

Furthermore, two options are available for simulating our models, depending on 
whether we consider a “true” Stratonovitch noise or if we rewrite it in Itō form.  
In the former case, we may adopt a stochastic Euler-Heun approach as developed 
in [38], where the computation of the stochastic diffusion becomes implicit. In the 
latter case however, one needs to give an analytical expression for the stochastic 
diffusion. Even though one can compute them in the LU Saint-Venant and the LU 
Boussinesq systems, this correction term becomes extremely complex in the LU 
Serre-Green-Naghdi model due to the term . dG. Therefore, we rather adopted the 
first approach using the stochastic Euler-Heun method. 

Moreover, for numerical stability reasons, we used a stochastic version of the 
order 4 Runge-Kutta algorithm (RK4), rather than the (simpler) Euler-Maruyama 
algorithm. For instance, the (deterministic) Saint-Venant equations are known to 
be dramatically more stable when solved with the order 4 Runge-Kutta rather than 
the Euler method. In summary, the solving algorithm we used is essentially the 
following: we treat the bounded variation term as in the classical RK4 method, and 
the martingale term as in the stochastic Euler-Heun method. Such approach has been 
studied in more details in [11, 13, 25]. 

Furthermore, since water elevation equations on . η are the same in the three 
models we study—regarding for example Eq. (3.67)—one may notice the presence 
of the term 

.ϒ
1/2h∇H · (σ◦dBH

t ) = ϒ
1/2∇H · (σ◦dBH

t ) + ϵϒ
1/2η∇H · (σ◦dBH

t ).
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Fig. 4 Realisations of the LU Saint-Venant model, with additive noise (left) and without (right). 
We only plot the solution over the domain .[−20, 20], at  .t = 5s. Parameter set: .(P1)—Wave 
number: .k = 2π/100—Amplitude: . 0.001

This shows the existence of an additive noise term .ϒ 1/2∇H · (σ◦dBH
t ) in the water 

elevation dynamics. Its effect is illustrated by Fig. 4: due to this term, the surface 
elevation is not flat “away from the wave”, which is a strong difference compared to 
the deterministic setting. To facilitate the comparison between our models and their 
deterministic counterparts, we chose to disregard this additive noise term in our 
simulations. This can be interpreted as a filtering of the lower wave numbers—i.e. 
large scale dynamics. 

4.1 Qualitative Analysis on the Effect of the Noise 

In this subsection, we give some qualitative insights about the effect of the noise 
on the dynamics of the system. For this purpose, we compare each deterministic 
solution to a solution of the associated LU interpretation, disregarding the effect of 
the additive noise term previously mentioned. 

4.1.1 Parameters (P1) 

Considering the parameters .(P1), we compared the deterministic Saint-Venant, 
Boussinesq and Serre-Green-Naghdi models (blue curves) to realisations of their 
associated LU models (orange curves), using the 1D Water Waves as a reference 
(green curves). The noise we chose has the shape of a stationary wave, with wave 
number .k = 2π/10. Figure 5 show realisations of these models at .t = 5s, for  
different noise amplitudes. 

We observe that deterministic solutions are close to the Water Waves solution. 
This is expected regarding the scaling of .β = 0.01 ⟪ 1. Moreover, the LU 
systems seem to converge to their respectively associated deterministic solution 
for a vanishing noise, thus giving consistency to the LU interpretation of the wave
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Fig. 5 Comparison between the surface deformation of the deterministic Saint-Venant (1st row), 
Boussinesq (2nd row) and Serre-Green-Naghdi (3rd row) models and realisations of their LU 
interpretations. Parameter set: .(P1)—Wave number: .k = 2π/100—Amplitude, from left to right: 
.0.001, .0.005 and . 0.01

equations. In both cases, the noise tends to break the spatial symmetry of the wave. 
This stems from the shape of the noise, which is a sum of a symmetric function— 
.A cos(kx)dβ1

t —and an antisymmetric function—.A sin(kx)dβ2
t . 

4.1.2 Parameters (P2) 

The symmetry breaking mentioned in the previous subsection is also observed 
in Fig. 6, where we use parameters .(P2). However, in this case, the parameter 
.β = 0.1 does not match the validity conditions of the Saint-Venant equations 
since .β ∼ ϵ. Therefore, the Water Waves solution is expected to differ from 
the Saint-Venant ones, in both deterministic and LU forms. This is observed in 
Fig. 6, indeed. In addition, the LU Boussinesq and LU Serre-Green-Naghdi appear 
to give an interesting variability to their deterministic versions. However, the LU 
Serre-Green-Naghdi model yields numerical instabilities when choosing larger 
values of . β—e.g. .β = 1. This is due to a periodicity default caused by the 
symmetry breaking of the wave, which does not exist in the deterministic setting. 
To tackle this issue, we think of investigating numerical models in conservative 
form—that is computing the water elevation/momentum variables .(η, hu) rather 
than the water elevation/momentum variables .(η, u). For similar reasons, our
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Fig. 6 Comparison between the surface deformation of the deterministic Saint-Venant (1st row), 
Boussinesq (2nd row) and Serre-Green-Naghdi (3rd row) models and their LU interpretations. 
Parameter set: .(P2)—Wave number: .k = 2π/100—Amplitude, from left to right: .0.001, . 0.005
and . 0.01

implementation does not enjoy conservation of physical quantities discussed earlier. 
Although it is relatively simple to translate our LU Saint-Venant algorithm into 
conservative form—which then conserves mass, momentum and energy up to 
machine accuracy—our LU Boussinesq and LU Serre-Green-Naghdi algorithms 
are more challenging to adapt due to the presence of the term . dG. We expect 
such numerical method to be more stable than the currently used one, and to allow 
investigating how multi-scale location uncertainty affects the waves dynamics. This 
is subject to further work. 

4.2 Numerical Estimation of the Noise-Induced Spreading 

In this section, we analyse the first and second order statistics of each LU wave 
model in the setting described above, at time .t = 5s. Again, we will study these 
models in the sets of parameters .(P1) for the LU Saint-Venant model, and . (P2)

for the LU Boussinesq and Serre-Green-Naghdi models. The LU models statistics 
we analyse are computed with 130 realisations of each stochastic model. 

A spreading arises from LU Saint-Venant model, which appears to grow linearly 
with the amplitude of the noise —see Fig. 7 . Also, is concentrated in the “upstream”
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Fig. 7 First and second order statistics of the LU Saint-Venant model at .t = 5s, compared to 
the associated deterministic model and the water waves one. In addition, an evaluation of the 
spreading—defined here as 3 times the empirical standard deviation—is given for different values 
of noise amplitude (orange area). We only plot the solution over the domain .[−20, 20]. Parameter 
set: .(P1)—Wave number: .k = 2π/100—Amplitude, from left to right: .0.001, .0.005 and . 0.01

Fig. 8 First and second order statistics of the LU Boussinesq (1st row) and LU Serre-Green-
Naghdi (2nd row) models at .t = 5s, compared to the associated deterministic models and the 
water waves one. In addition, an evaluation of the spreading—defined here as 3 times the empirical 
standard deviation—is given for different values of noise amplitude (orange area). We only plot 
the solution over the domain .[−20, 20]. Parameter set: .(P2)—Wave number: .k = 2π/100— 
Amplitude, from left to right: .0.001, .0.005 and . 0.01

of the wave, which is expected since it would be physically irrelevant for the 
wave to affect a region where it has not passed. In addition, the means and the 
standard deviations appear to be space symmetric—up to statistical error—which 
suggests the distribution is also space symmetric. Moreover, there exists a significant 
spreading at the peak of the wave for strong enough noise amplitudes. 

Regarding the LU Boussinesq and Serre-Green-Naghdi models, the same 
remarks on the peak spreading and the symmetry of the means and standard 
deviations apply Fig. 8. Again, the spreading is concentrated in the “upstream” 
of the wave, specifically at its peaks and troughs. In particular, the maximum 
height value of the LU models varies depending on the stochastic realisation. Such 
observation gives lines of approach for building stochastic models by selecting the 
noise . σ to data, using for instance calibration or data assimilation techniques.
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Although the Serre-Green-Naghdi and the Boussinesq models give similar results 
for the parameters .(P2), we expect that much more differences would be observed 
between the two models with .β = 1 and .ϵ = 0.1. As mentioned before, wave 
models written in conservative form should be more stable and allow to perform 
such tests in this configuration. 

5 Conclusion and Discussion 

In this work, we investigated the stochastic representation of several shallow water 
coastal wave models within the LU framework. These stochastic models maintain 
the same conservation properties formally and thus exhibit physical consistency 
with their deterministic counterparts. We demonstrated numerically that they induce 
a pathwise symmetry breaking, accompanied by a restoration of this symmetry in 
law, which is a property that should be expected in representing turbulent effects. 
For low noise amplitudes, the studied models have shown to converge toward the 
deterministic solutions. For large amplitudes, we need to transition to a numerical 
scheme in conservation form. This will be the subject of a future study. 

Appendix 1: Leibniz Formula 

We give in the following the expression of the Leibniz integral rule for a stochastic 
process. We want to evaluate the derivative of an integral of the form 

. 

∫ b(x,t)

a(x,t)

f (x, z, t)dz,

with respect to the space, x, and time, t , and where .a(x, z, t), .b(x, z, t) and 
.f (x, z, t) are continuous .C2-semimartingale. For the space variable, no time 
derivative is at play and the usual formula stands: 

. 
∂

∂x

∫ b(x,t)

a(x,t)

f (x, z, t)dz =
∫ b(x,t)

a(x,t)

∂xf (x, z, t)dz + ∂xb f (x, b(x, t), t)

− ∂xa f (x, a(x, t), t).

Differentiation with respect to time, involves now a stochastic integration. Under-
standing the stochastic integral in the Stratonovich setting, we have, 

.dt

∫ b(x,t)

a(x,t)

f (x, z, t)dz =
∫ b(x,t)

a(x,t)

dt f (x, z, t)dz + dt b f (x, b(x, t), t)
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− dt a f (x, b(x, t), t). 

The key argument of proof consists in defining the functions . F(x, y, t) =∫ y

z1
f (x, z, t)dz and .G(x, a, b, t) = ∫ b(x,t)

a(x,t)
f (x, z, t)dz, then link them with a 

functional relation, that is 

. G(x, a, b, t) =
∫ b(x,t)

0
f (x, z, t)dz −

∫ a(x,t)

0
f (x, z, t)dz

= F
(
x, b(x, t), t

) − F
(
x, a(x, t), t

)
.

Now we introduce the following chain rule for Stratonovich calculus, 

Theorem A.1.1 (Generalized Itō’s Formula—Stratonovich Form) Let . θ(x, t),

.x ∈ Ω be a continuous .C3-process and a continuous .C2-semimartingale, let . Xt

be a continuous semimartingale with values in . Ω. Then, the following formula is 
satisfied: 

.dθ(Xt , t) = dt θ(Xt , t) + ∂θ

∂xi

(Xt , t) ◦ dXi
t . (A.1.1) 

Upon applying this on .G(x, a, b, t), we obtain 

. dtG = dtF (x, b(x, t), t) + ∂bF (x, b(x, t), t)dt b

− dtF (x, a(x, t), t) − ∂bF (x, b(x, t), t)dt a

=
∫ b(x,t)

a(x,t)

dt f (x, z, t)dz + dt b f (x, b(x, t), t) − dt a f (x, b(x, t), t),

To interpret the stochastic integral in the Itō setting, we would need to adapt the 
previous chain rule as follows, 

Theorem A.1.2 (Generalized Itō’s Formula—Itō Form) Let .θ(x, t), x ∈ Ω be a 
continuous .C2-process and a continuous .C1-semimartingale, let . Xt be a continuous 
semimartingale with values in . Ω. Then, .θ(Xt , t) is a continuous semimartingale 
satisfying 

. dθ(Xt , t) = dt θ(Xt , t) + ∂θ

∂xi

(Xt , t)dX
i
t + 1

2

∂2θ

∂xi∂xj

(Xt , t)d
/
Xi,Xj

\

t

+ d
/ ∂θ

∂xi

(X, ·),Xi
\

t
. (A.1.2) 

Applying it to the process .G(x, a, b, t), we obtain
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. dtG =
∫ b(x,t)

a(x,t)

dt f (x, z, t)dz + dt b f (x, b(x, t), t) − dt a f (x, b(x, t), t)+

d(f (x, b(x, t), t), b0tdt − d(f (x, a(x, t), t), a0tdt+
1

2
d(b, b0t ∂2b2F(x, b(x, t), t) − 1

2
d(a, a0t ∂2a2F(x, a(x, t), t)dt. (A.1.3) 

This latter includes several additional quadratic variation terms, and is more 
cumbersome to use in formal developments. However, this expression is necessary 
to access to the mathematical expectation. 

Appendix 2: Quadratic Covariation 

In stochastic calculus, the quadratic covariation (or cross-variance) of two processes 
X and Y is defined as 

.(X, Y 0t = lim
n→0

pn⎲

i=1

(Xn
i − Xn

i−1)(Y
n
i − Yn

i−1), (A.2.1) 

where .0 = tn0 < tn1 < · · · < tnpn
= t is a partition of the interval .[0, t]. The previous 

limit, if it exists, is defined in the sense of convergence in probability. 
Let X and Y two continuous semimartingales, defined as . Xt = X0 + At +

Mt, Yt = Y0+Bt +Nt , .M,N being martingales and .A,B finite variation processes. 
In this context, their quadratic covariation (A.2.1) exists, and is given by 

.(X, Y 0t = (M,N0t . (A.2.2) 

In particular, the quadratic variation of a standard Brownian motion B (as a 
martingale) is .(B0t := (B,B0t = t , by definition. 

Quadratic covariations play an important role in stochastic calculus, as they arise 
in Itō’s lemma, which can be interpreted as a stochastic chain rule. In particular, 
these terms are involved in the Itō integration by parts formula, 

.dt (XY ) = Xdt Y + YdtX + d(X, Y 0t , (A.2.3) 

and in Itō’s isometry, expressing the covariance of two Itō integrals: let f and g two 
predictable processes such that .

∫ t

0 f 2d(M,M0s and .
∫ t

0 g2d(N,N0s are finite, then 

.E

[( ∫ t

0
f dMs

)( ∫ t

0
gdNs

)] = E
[ ∫ t

0
fgd(M,N0s

]
. (A.2.4)
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Appendix 3: LU Kordeveg–De Vries Equation 

To derive the LU interpretation of the Kordeveg–De Vries equation (KdV), we 
will adapt a standard procedure to the stochastic case [14]. For simplification 
purpose, we will assume homogeneity in the transverse direction and consider in 
the following a 1D version of the Boussinesq model. Assuming that the bottom is 
flat, the 1D Boussinesq model reads 

.DH

t η = −h
(
∂x(u − 1

2
ϒϵus)dt + ϒ

1/2∂xσ◦dBx
t

)
, . (A.3.1a) 

dt u + ϵ
(
u − 

1 

2 
ϒϵus

)
∂xudt 

+ ϒ 1/2ϵσ◦dBx 
t ∂xu + ∂xηdt − ϵβ2(h2 

3 
∂2 xxdt u

) = O(β4, ϵβ4) (A.3.1b) 

The solutions we consider for the above Boussinesq system are assumed to be 
waves, and we apply the following change of variable: .ξ = x − t + ϕt , where 
.ϕt = f (Bt ) is a random phase that does not depends on x. The wave shape is 
also assumed to change on a large temporal scale .τ = ϵt . The depth averaged 
horizontal velocity .u(ξ, τ, ϕ) and the surface elevation .η(ξ, τ, ϕ) are assumed to be  
smooth functions. The noise .σ◦dBx

t (ξ, τ ) is assumed to be homogeneous, and thus 
is associated to a constant variance tensor and a zero ISD. In this new formalism the 
surface elevation equation reads 

. − ∂ξη dt + ϵ∂τ η dt + ∂ϕηf '(Bt )dBt + ϵu∂ξη dt + ϒ
1/2ϵ σ◦ dBx

t ∂ξ η

+ h
(
∂ξu dt + ϒ

1/2∂ξ σ◦ dBx
t

) = 0. (A.3.2) 

After converting this equation in Itō form, terms of finite variations (ie “. dt” 
terms) and martingale terms (i.e. “. dBt” terms) can be rigorously separated by the 
Biechteller-Delacherie theorem. For the martingale terms we have 

.∂ϕη f '(Bt )dBt = −ϒ
1/2∂ξ (hσdBx

t ), (A.3.3) 

and for the finite variation terms 

. − ∂ξη + ϵ∂τ η + ϵu∂ξη − 1

2
ϒϵ2aH∂ξξ η + h∂ξu = 0. (A.3.4) 

Moreover,for the velocity equation we have
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.

− ∂ξu dt + ϵ∂τ u dt + ∂ϕuf '(Bt )dBt + ϵu∂ξu dt + ϒ
1/2ϵ σ◦ dBx

t ∂ξu

− 1

2
ϒϵ2āhh∂2ξξ u dt + ∂ξη dt

− 1

h
ϵβ2(h3

3
∂2ξξ (−∂ξu + ϵ∂τu)

)
dt = O(β4, ϵβ4).

(A.3.5) 

Then, the martingale terms yield 

.∂ϕuf '(Bt )dBt = −ϒ
1/2ϵ σ◦ dBx

t ∂ξu (A.3.6) 

and for the finite variation terms 

. − ∂ξu + ϵ∂τ u + ϵu∂ξu − 1

2
ϒϵ2aH∂ξξu + ∂ξη + 1

h
ϵβ2(h3

3
(∂3ξξξ u − ϵ∂3ξξτ u

) = 0.

(A.3.7) 

Expanding u and . η in terms of the small parameter . ϵ as .q = q0 + ϵq1 + · · · , and 
identifying the equations term by term of corresponding order, we get for the zero 
order terms, 

. ∂ξη0 = ∂ξu0 and hence η0 = u0.

At order . ϵ, for a noise of magnitude up to .ϒ ∼ O(1), we obtain the system 

. − ∂ξu1 + ∂τ η0 + η0∂ξη0 + ∂ξη1 + 1

3
∂3ξξξ η0 = 0,

− ∂ξη1 + ∂τ η0 + 2η0∂ξη0 + ∂ξu1 = 0,

from which one gets immediately the classical KdV equation with random phase 

.∂τ η0 + 3

2
η0∂ξη0 + 1

6
∂3ξξξ η0 = 0. (A.3.8) 

This equation has the structure of a Burger equation with an additional dispersive 
term. A modified KdV equation is obtained by considering a stronger noise of 
amplitude .ϒ ∼ 1/ϵ. In that case the second order terms must be kept in the 
Taylor development of terms at . ϵ order. Eventually, one obtains the dissipative KdV 
equation (with random phase) 

.∂τ η0 + 3

2
η0∂ξη0 − 1

2
aH∂ξξ η0 + 1

6
∂3ξξξ η0 = 0. (A.3.9) 

The random phase of both KdV equation is determined by (A.3.3) and (A.3.6). 
From the latter, we notice immediately that .f '(B) and . ϵ must share the same order
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for the solution not to be trivial. At order . ϵ from (A.3.6), one has 

. ∂ϕη0 f '(Bt )dBt = −ϒ
1/2∂ξη0σdB

0,x
t .

A simple way to choose f is to impose .f (Bt ) = −kϒ
1/2ϵkσ Bt and .σ = kσ , where 

. kσ is associated to the waves form 

.η0 = h0e
i(kx−ωt−ϵϒ

1/2kkσ Bt ). (A.3.10) 

This solution corresponds to stochastic linear waves solutions as derived in [7]. Note 
that the derivations above have been done using the strong hypothesis of u and . η
being smooth functions of time—more precisely of finite variation. Looking now 
for more general stochastic solutions, one considers the following variables 

.u(ξ, τ ), σ◦dBH

t (ξ, τ ), η(ξ, τ ), (A.3.11) 

which are not differentiable with respect to . τ (i.e. they are semi-martingale 
stochastic processes). Making the same assumptions and deriving the equations in 
Stratonovich form in the same way as previously, we obtain two coupled SPDE’s, 

. − ∂ξηdt + ϵdτ η + ϵu∂ξη dt + ϒ
1/2ϵ σ◦ dB t ∂ξ η

+ h
(
∂ξu dt + ϒ

1/2∂ξ σ◦ dBx
t

) = 0, (A.3.12) 

and 

.

− ∂ξudt + ϵdτ u + ϵu∂ξu dt + ϒ
1/2ϵ σ◦ dBx

t ∂ξu

+ ∂ξη dt − 1

h
ϵβ2(h3

3
∂2ξξ (−∂ξu + ϵ∂τ u)

)
dt = O(β4, ϵβ4).

(A.3.13) 

At zeroth order the system reads 

. ∂ξη0 = ∂ξu0, hence η0 = u0 together with ∂ξ σ◦ dB0,x
t = 0.

At order . ϵ, one has 

. − ∂ξu1dt + dτ η0 + η0∂ξη0dt + ϒ
1/2 σ◦ dB0,x

t ∂ξ η0 + ∂ξη1dt + 1

3
∂3ξξξ η0dt = 0,

− ∂ξη1dt + dτ η0 + ϒ
1/2 σ◦ dB0,x

t ∂ξ η0 + 2η0∂ξη0dt + ∂ξu1dt

+ ϒ
1/2∂ξ σ◦ dB1,x

t = 0.

Assuming that the noise terms .σ◦dB1,x
t does not depend on space, yet making no 

assumption on .σ◦dB0,x
t , one obtains a stochastic KdV equation with transport noise,
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.dτ η0 + 3

2
η0∂ξη0dt + ϒ

1/2 σ◦ dB0,x
t ∂ξ η0 + 1

6
∂3ξξξ η0dt = 0. (A.3.14) 

Relaxing the spatially constant noise assumption on .σ◦dB1,x
t would add an additive 

stochastic forcing .
1
2ϒ

1/2∂ξ σ◦ dB1,x
t . In such a case, we would get a stochastic KdV 

equation forced by an additive white noise of the form studied in [4], and for which 
existence and unicity of solution have been shown in the Sobolev space .H 1(R). 

Without this additive forcing term, we face a simpler system that boils down 
to the deterministic one. As a matter of fact, proceeding to the change of variable 
suggested by Wadati [37], one has 

.X = ξ − 2

3
ϒ

1/2

∫ t

0
σ◦dBs

0,x, (A.3.15) 

with . σ being constant over time and space. Now reparametrising .η(ξ, τ ) as .η'(X, t), 
we obtain the unperturbed KdV equation 

.dt η
'
0 + 3

2
η'
0∂Xη'

0dt + 1

6
∂3XXXη'

0dt = 0, (A.3.16) 

using the chain rules .∂ξη = ∂Xη'∂ξX = ∂Xη' and .dτ η = ∂Xη'dtX + dt η
'. Such an 

equation admits a solitary travelling wave solution given by 

.η'
0(X, t) = A sech2

(
/
3

4
A(X − (1 + 1

2
A)t

)
. (A.3.17) 

Note that considering a solution with a random phase would lead to the presence 
of a new additive noise term .∂ϕη0 ϵf '(Bt )dBt . Plus, the noise .σ◦dB0,x

t may not be 
constant in space anymore. 
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The Effects of Unresolved Scales on 
Analogue Forecasting Ensembles 

Paul Platzer and Bertrand Chapron 

1 Introduction 

Analogues are nearest neighbors of a system’s state according to a given similarity 
measure. The term “analogue” originally refers to the idea that certain geophysical 
systems are likely to undergo similar states at distant times, a notion close to the 
recurrence theorem of Poincaré [1] which states that certain dynamical systems will 
almost surely return infinitesimally close to any initial condition in the attractor. 
The term “analogue” was coined by Lorenz [2] who built a proxy of atmospheric 
predictability from the time-growth of the Euclidean distance between any observed 
geopotential height field and its closest neighbour (analogue) in other years of 
record. Since then, analogues have been used in other contexts and can be more 
broadly understood as similar observations of a system’s state occurring at distant 
times either within a given long trajectory of the system, or within independent 
simulations of the same system. 

More specifically, analogues are found in a database of events often called 
a “catalogue”, such as a long series of observations [3], a reanalysis [4], past 
deterministic forecasts [5], one long numerical simulation [6], or ensemble sim-
ulations [7, 8]. One key advantage of analogue methods is that they are fast and 
therefore allow a cheap generation of ensembles. As far as forecasting is concerned, 
analogues have been used for post-processing of deterministic forecasts with 
“the Analogue Ensemble (AnEn)” [9], in weather generators with the “Analogue 
Weather Generator (AnaWEGE)” [10], in data assimilation with “the Analog Data 
Assimilation (AnDA)” [11], and finally for the forecast of dynamical systems with 
“Kernel Analog Forecasting (KAF)” [12]. 
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There are several mechanisms driving uncertainties of analogue forecasts. First, 
analogue forecasting generally assumes that the distance between the analogues 
and the target1 image is small, however these distances are never zero [13]. These 
non-trivial distances introduce forecasting errors. Depending on the nature of the 
system under study and on the target image, this initial dissimilarity may increase 
or decrease with time. In a chaotic system, the mismatch in initial conditions 
grows according to scaling laws given by Lyapunov exponents [14]. This type of 
deterministic analogue forecasting error was studied thoroughly [15–17]. 

Second, for real systems one does not have access to the full state of the 
system, and the similarity measure used to find analogues is bound to be under-
representative of the system’s complexity. That is, analogues and corresponding 
distances are computed on observables of the system, not in the system’s true state-
space. In particular, fine-scale structures of atmospheric or ocean flows are generally 
unknown, and these may impact the time-evolution of the system. Therefore, even if 
the analogues were at distance zero to the target initial large-scale image according 
to the chosen similarity measure, their time-evolution would likely differ from the 
one of the target. In the present study we focus on this second source of uncertainty, 
referred to here as the effect of unresolved spatial scales on analogue forecasting 
ensembles. 

In real-life case studies, these two sources of uncertainty are non-linearly 
combined and hard to disentangle. Here, we use numerical simulations to separate 
the effect of unresolved spatial scales from the effect of initial analogue-to-target 
distance. We base our analysis on numerical simulations of a stochastic version 
[18] of the well-known three-variable chaotic Lorenz system [19]. In this set of 
stochastic ordinary differential equation, the effects of unresolved spatial scales on 
the low-order model of Lorenz are rigorously derived from a reformulated material 
derivative, and expressed as stochastic multiplicative noise terms. This gives a 
physically consistent yet numerically affordable multi-scale system which can easily 
be used to understand the effects of unresolved spatial scales on analog forecasting 
ensembles. 

Section 2 details the numerical simulations of the stochastic Lorenz system under 
location uncertainty as well as the different ensemble forecasting procedures and 
statistical tests considered in this work. Section 3 outlines numerical experiments 
and their results. Section 4 draws conclusion and gives perspectives for future work.

1 The “target”, also called “query” in machine-learning terminology, is the (vector of) value(s) of 
the observed variable(s) of which analogues are sought for. In the example of this article, the target 
is the three-dimensional vector of values of the coordinates of the stochastic Lorenz at a given 
time t . 
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2 Methods 

2.1 Lorenz System Under Location Uncertainty 

Flow modelling under location uncertainty introduces errors through the assumption 
that Lagrangian fluid particle displacement results from a smooth deterministic 
component and another component which is uncorrelated in time but correlated in 
space [20, 21]. This framework allows to derive the Lorenz system under location 
uncertainty [18] (hereafter “stochastic Lorenz”) as a stochastic representation of 
the classical Lorenz-63 model [19] (hereafter “deterministic Lorenz”) describing 
incompressible flow undergoing Rayleigh–Bénard convection in a simplified 2D 
atmospheric convection scenario. 

Traditionally, large-scale geophysical flow representations rely on Reynolds 
decomposition and eddy viscosity models, which dissipate energy without con-
sidering local backscattered energy or inhomogeneous turbulence. In contrast, the 
stochastic approach from which we borrow decomposes the flow into a large-scale, 
smooth component and a small-scale, fast oscillating velocity component modeled 
as a random field. It is derived rigorously from physical conservation principles 
and offers efficient exploration of the attractor at low computational cost [18]. 
The derivation of the stochastic Lorenz follows closely the original derivation of 
the deterministic Lorenz, except that the location uncertainty framework allows 
to express the effects of truncated higher-order spatial modes (i.e., small spatial 
scales) on the dominant large-scale modes through multiplicative stochastic terms. 
Therefore, the noise terms in the model represent the effects of small spatial scales 
on the three large-scale variables, and will be loosely referred to as “small-scale 
variables” in the following. 

Stochastic differential equations for this system are as follows: 

.
dx

dt
= Pra (y − x) − 2

Υ
x , . (1) 

dy =
(

(ρ − z)x −
(

1 + 
2 

Υ

)
y

)
dt + 

ρ − z 
Υ 1/2 

dBt , . (2) 

dz =
(

xy −
(

b + 
4 

Υ

)
z

)
dt + 

y 
Υ 1/2 dBt . (3) 

It comprises a deterministic differential equation for the velocity variable x 
and two coupled stochastic differential equations associated with the small-scale 
temperature fluctuations, written in Itô formulation. Scalar parameters include the 
ones from the deterministic Lorenz model, which are here set to the usual chaotic 
values .Pra = 10, .ρ = 28, .b = 8/3, and one parameter that controls noise 
amplitude, set to .Υ = 10 (this value is labelled “strong noise” by [18]). The noise 
terms .dBt are Wiener processes, which can be viewed heuristically as independent,
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identically distributed, centered normal random variables with variance . dt , where 
. dt is the time-increment of the numerical scheme. 

Here, this system is numerically simulated with Euler–Maruyama integration for 
the stochastic differential equations with time step .10−5 as in [18]. 

In the following, we will use a parallel between the non-dimensional time of the 
stochastic Lorenz system and the typical time of evolution of atmospheric synoptic 
circulation. We will consider, as in [11], that 0.08 non-dimensional time intervals 
of the stochastic Lorenz system correspond to 6 hours of atmospheric time. This 
choice is close to the one of [22] who set non-dimensional time intervals of length-1 
of the Lorenz system to correspond to 5 days. This parallel is a rough estimation for 
comparison purposes and should be interpreted with care. 

2.2 Ensemble Forecasts 

We place ourselves in the context of the forecast of a “true” trajectory, which 
corresponds to the numerical integration of the stochastic Lorenz system ((1)–(3)) 
with time step .10−5, from a given initial condition .xt = (xt , yt , zt ) on the large-
scale variables, and with a given sequence of noises .{dBt , . . . , dBt+h} from time t 
to time .t + h, where h is the forecast horizon. 

. - True trajectory :

Large-scale variables (initial condition) = xt ,

Small-scale variables = {dBt , . . . , dBt+h} .

To forecast this true trajectory using analogues, we assume that one is given 
a “catalogue” which is here a sub-sampling of a long numerical resolution of the 
stochastic Lorenz system ((1)–(3)), generated with one particular realization of 
the noises. Each catalogue has a set of elements .

{
xt ' , t ' ∈ C

}
in which analogues 

are sought for, and a corresponding set of elements .
{
xt '+h, t

' ∈ C
}

in which the 
successors of the analogues can be found. To generate the different catalogues 
used in this study, fixed-size random subsamples were drawn from the same long 
numerical solution of ((1)–(3)) from time .t ' = 0 to .t ' = 7008 in non-dimensional 
time-unit. The notation . t ' is here to emphasis that the time of the catalogue is 
different from the time of the true trajectory (typically, analogues are sought for 
in a catalogue of past observations). As the catalogues are random subsamples, the 
time-difference between different analogues are irregular, but each analogue . xt ' is 
associated to its successor .xt '+h with the same horizon h. 

We employ the simplest type of analogue ensemble forecasting where the 
forecast is given by an ensemble of K successors .xt 'i+h of analogues . xt 'i of the true 

initial point . xt , and each successor is given the same weight . 1
K

. In all numerical 
experiments, the number of analogues is set to 50. Analogues are computed as K-
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nearest neighbours, in terms of Euclidean distance, of the large-scale variables’ 
initial value . xt , which are assumed to be observed, while the noises .dBt are 
unknown. Other similarity measures could be envisaged (see e.g., [23–25]), but this 
is beyond the scope of this study. The analogue ensemble forecast is then made of 

the set successors .
{
xt '1+h . . . , xt 'K+h

}
. Therefore, although . xt 'i should be close to 

. xt , the sequence of noises .

{
dBt 'i , . . . , dBt 'i+h

}
is completely different (independent) 

from .{dBt , . . . , dBt+h}. 

. - Analogue ensemble forecast :

Large-scale variables (initial conditions) =
[
xt '1 , . . . , xt 'K

]

Small-scale variables =
[{

dBt '1 , . . . , dBt '1+h

}
, . . . ,

{
dBt 'K , . . . , dBt 'K+h

}]

All catalogues are sub-samples of a long trajectory from time .t ' = 0 to . t ' =
7008 in non-dimensional time-unit, which corresponds to 60 years in atmospheric 
time. Note that our stochastic Lorenz system does not include seasonality, while 
in practice one must search for analogues in historical data within a seasonality 
condition, typically . ±2 months, and therefore our 60-years “season-less” catalogue 
will allow us to emulate the amount of data that one can access with . ∼180 years of 
data. Sub-catalogues of different sizes will be drawn from this large initial catalogue 
to asses the effect of catalogue size on analogue ensemble. For each catalogue size, 
different catalogues can be drawn from the original large catalogue, allowing to 
assess the uncertainties in analogue ensemble forecasts even when the catalogue 
size is known. 

To understand the contribution of different types of uncertainty to the analogue 
ensemble forecast, we also compute two other ensemble forecasts. 

First, we build what we refer to as the “small-scale ensemble forecast”. This 
ensemble is given the same size as the analogue ensemble : .K = 50 members. Every 
member is initiated from the same true initial condition on the large-scale variables 
. xt (i.e., for horizon .h = 0 the ensemble is a Dirac-delta function centered on . xt ). 
Each member is propagated with numerical simulations of the stochastic Lorenz 
and randomly generated noises .

{
dB '

t , . . . , dB '
t+h

}
that are independent, different 

realizations of the same process as the true noises .{dBt , . . . , dBt+h}. Each member 

i corresponds to a particular realization .

{
dB

'(i)
t , . . . , dB

'(i)
t+h

}
of the noises. Members 

are given equal weights . 1
K

. 

.- Small-scale ensemble forecast :

Large-scale variables (initial conditions) = [xt , . . . , xt ]

Small-scale variables =
[{

dB
'(1)
t , . . . , dB

'(1)
t+h

}
, . . . ,

{
dB

'(K)
t , . . . , dB

'(K)
t+h

}]
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This ensemble represents the effect of uncertainty associated with the unresolved 
small spatial scales modelled by the noises. Since analogue forecasting is based only 
on the knowledge of resolved large-spatial-scale variables, one desired property of 
analogue forecasting ensemble is that it resembles the small-scale ensemble. 

Second, we build what we call the “large-scale ensemble forecast”. We compute 
ensemble forecasts from numerical simulations of the stochastic Lorenz starting at 

the analogues’ positions in large-scale variables space .
[
xt '1 , . . . , xt 'K

]
, but using the 

same noise .{dBt , . . . , dBt+h} as the “ground truth” trajectory. Therefore, while each 
member of the small-scale ensemble differs by the realization of the noises, on the 
contrary each member of the large-scale ensemble differs by the initial condition 
which corresponds to the initial value of the analogue ensemble. Members are again 
given equal weights . 1

K
. 

. - Large-scale ensemble forecast :

Large-scale variables (initial conditions) =
[
xt '1 , . . . , xt 'K

]

Small-scale variables = [{dBt , . . . , dBt+h} , . . . , {dBt , . . . , dBt+h}]

This large-scale ensemble allows to assess what the analogues would have 
evolved to if they were forced by the same small-scale as the ground truth 
trajectory. This ensemble allows to isolate the effect of mismatch in large-scale 
initial condition, also called “analogue-to-target distance” [13]. 

The properties of the different ensembles with respect to the ground truth and 
the analogues are summarized in Table 1 and Fig. 1. Figure 2 shows a schematic 
example of ensemble forecast trajectories in large-scale and small-scale space 
compared to the ground-truth. This figure is only illustrative and was not generated 
using the real stochastic Lorenz system. It highlights that the large-scale ensemble 
shares large-scale initial conditions with the analogue ensemble, while the small-
scale ensemble shares large-scale initial condition with the ground truth. Conversely, 
the large-scale ensemble shares small-scale trajectory with the ground truth, while 
the analogue ensemble and the small-scale ensemble have different, independent 
small-scale trajectories. 

Note that this procedure would be hardly feasible with a real physical model 
where spatial and temporal scales are not separated but intertwined. The stochastic 
Lorenz model not only allows to perform numerical simulations at a low cost, but 

Table 1 Properties of the different forecast ensembles considered 

Initial condition on resolved 
large-scale variables . (x, y, z)

Trajectory of unresolved small-scale 
variables . dBt

Analogue ensemble Past large-scale analogues of 
ground-truth 

Past realizations associated with 
large-scale analogues of ground truth 

Small-scale ensemble Same as ground-truth (“present”) Random (“that could have been”) 

Large-scale ensemble Same as analogues (“past”) Same as ground truth (“present”)
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Fig. 1 Schematic of the shared properties of the different forecast ensembles considered and the 
ground truth trajectory 

Fig. 2 Schematic of the 
trajectories of the different 
forecast ensembles 
considered and the ground 
truth trajectory, with only two 
ensemble members (.K = 2) 
for readability purposes 

also facilitates the separation between the effects of small-scale and large-scale 
components of the flow. 

The ground truth to which these ensemble forecasts is compared is made of 
one long trajectory of 1168 non-dimensional time steps which corresponds to 
10 years in atmospheric time-scale. The noises .dBt associated with this ground-
truth trajectory are saved in memory to allow for the generation of the large-scale 
ensemble forecasts.
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2.3 Statistical Tests to Compare Ensembles 

In Sect. 3.2, we will make use of three statistical tests to assess the potential 
differences between two given forecast ensembles. The tests will be performed on 
each large-scale variable separately, either x, y or z. 

The first test is called Welch’s t-test [26], and is used to test the null hypothesis 
that the two ensembles’ background distributions have the same mean value without 
necessarily having the same variance. It is based on the assumption that the two 
samples are normally distributed. 

The second test is called Levene’s test [27] and is used to test the null hypothesis 
that the two ensembles’ background distributions have the same variance. This test 
does not make assumption of normality. 

The third test is called the Kolmogorov-Smirnov test [28] and is used to test the 
null hypothesis that the two ensembles’ background distributions are equal. It does 
not make assumption of normality, and can also be used for complex distributions 
such as multi-modal distributions, for which the notions of mean and variance are 
inoperative. 

For all three tests, we used built-in functions from Python’s SciPy package, 
namely “ttest_ind”, “levene” and “kstest”. We use the p-value as an indicator, 
compared to the reference values 0.01, 0.05 and 0.1. p-values below 0.05 indicate 
that the distributions are different (high confidence if below 0.01), while p-values 
above 0.05 indicate that the distributions are equal (high confidence if above 0.1). 

3 Numerical Experiments 

3.1 Small-scale and Large-scale Variability 

Figure 3 shows an example of the three different forecast ensembles outlined in the 
previous section, along with the ground truth trajectory, for a given initial condition 
inside the attractor, with forecast ensembles of size .K = 20 (we use a smaller value 
for visualization purposes only). The forecast horizon of 0.1 corresponds to between 
7 and 8 hours in atmospheric time scale. The large-scale ensemble is less dispersed 
as the two other ensembles, and is close to the ground truth. The fact that this 
ensemble appears to shrink with time for small forecast horizon is a consequence of 
the dissipative nature of the Lorenz system. The analogue and small-scale ensembles 
are close to each other at horizon .h =0.1, which is a desired property of analogue 
ensemble forecasting because it is based only on the knowledge of large-scale 
variables .x, y, z, and it is not informed by the values of the small-scale variables 
(here, the noises). However, for smaller time horizon one can witness that the small-
scale ensemble tends to the initial position, which is not the case of the analogue 
and large-scale ensembles. This undesired property of analogue forecasting errors 
for very short forecast-horizon was described previously in [17].
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Fig. 3 Showing an example of three types of ensemble forecasts: small-scale (black lines and 
crosses), large-scale (green lines and circles) and analogue forecasting (red lines and squares) 
ensembles, versus ground truth trajectory (blue line and empty triangle). Final positions are given 
by the symbols. The forecast horizon is 0.1. We show only 20 members out of 50 for readability 
purposes 

Focusing on ensemble spread, we now define the generalized variance (GV) as 
the determinant of the ensemble covariances, noted .|Σs | (small-scale), .|Σl | (large-
scale), and .|Σa| (analogues). 

Depending on the initial point, the situation may differ from Fig. 3. To test  
this assertion, Fig. 4 shows the ratio .(|Σs |/|Σl |)1/2 in log-scale, depending on the 
position of the initial point in the attractor, using 1000 points from the 10-years 
ground truth trajectory. Figure 4 shows that the relative spread of the large-scale and 
small-scale ensembles strongly depends on the values of the large-scale variables 
at the initial point. In particular and at this forecast horizon, small-scale variability 
dominates for values of .z < 20, and large-scale variability dominates at the wing’s 
borders for .z > 25 and .−5 < y < 5. Investigating the variability of .|Σs | and . |Σl |
with initial point position shows that what drives high values of the ratio . |Σs |/|Σl |
for low values of z is .|Σs |, with a strong influence of small-scale noises in this area 
(not shown), while the smaller values of the ratio .|Σs |/|Σl | at the wings’ borders are
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Fig. 4 Showing the ratio of small-scale to large-scale generalized standard-deviation ensemble 
variability (square-root of the covariance matrix’s determinant), for forecast horizon 0.06 (equiv-
alent to 4.5 hours in atmospheric time-scale), as a function of the initial point’s position, in 
logarithmic scale 

Fig. 5 Showing the attractor-averaged ensemble variability (given by the square root of the covari-
ance matrix’s determinant), against forecast horizon, for small-scale, large-scale and analogue 
ensemble forecasts. Left: zoom on small forecast horizon (<0.2). Right: forecast horizon up to 
2.24 

due to a larger values of .|Σl | which are caused by a smaller density of points (not 
shown). This experiment shows that analogue forecasting ensemble spread may be 
influenced both by the varying intensity of perturbation by unresolved spatial scales 
and by the varying density of points in the attractor (and therefore of analogue-to-
target distances), both of which highly depend on the position in the attractor. 

As shown in the particular case of Fig. 3, the ration between these ensemble 
GV depends not only the initial large-scale position but also on forecast horizon. 
The square root of GVs (which can be viewed as a generalized standard-deviation) 
.|Σs |1/2, .|Σl |1/2 and .|Σa|1/2, are averaged over 1000 points in the attractor 
(randomly drawn from the 10-year ground truth trajectory), and plotted against 
forecast horizon in Fig. 5. By construction, the small-scale ensemble GV tends to 
zero for small forecast horizon. Large-scale GV decreases as a function of time for 
small time-horizons because the Lorenz system is dissipative, however it remains
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non-zero. The analogue and large-scale ensemble GV are equal at horizon-zero by 
construction, and then the analogue ensemble GV grows similarly to small-scale 
ensemble GV. This shows that the analogue ensemble variability is highly linked to 
the small-scale ensemble variability, although it naturally overestimates the latter for 
short forecast-horizon because of the non-zero distance between the analogues and 
the initial point. Therefore, the only way that analogues can adequately represent 
the small-scale driven variability is to decrease analogue-to-target distance by 
increasing the catalog size. 

3.2 Convergence of Analogues Towards the Small-scale 
Ensemble 

In Figs. 6 and 7, two examples of convergence of the distribution of analogues to 
the small-scale ensemble distribution are shown, at fixed forecast horizon 0.1 (7– 
8 hours). The analogue forecast ensembles converge the small-scale ensembles in 
the limit of large catalogue size. In addition to showing quantiles of distribution as 
a function of catalogue size, we also show p-values for three statistical tests where 
the null hypothesis is that the analogue and small-scale ensembles are drawn from 
the same background continuous probability distribution. The catalog size needed 
for convergence depends on the point of reference and on the chosen variable. For 
instance it is fastest for variable z and Fig. 6, and slowest for variable z and Fig. 7. 
This is because in the second example the initial point is in an area of smaller 
attractor density. In Fig. 6, the average of the distribution converges faster than the 
standard deviation, while in the second example all three statistical tests indicate a 
convergence for approximately the same catalogue size. When the initial point is in 
an area of large attractor density, the analogue ensemble is likely to have a precise 
mean even for small catalogue size, although it will necessarily overestimate the 
variance of the small-scale ensemble. On the contrary, for small catalogue sizes 
and in areas of small attractor density such as the tail of the butterfly’s wings, the 
analogue average is biases towards the attractor’s average. 

The features highlighted in the particular cases of Figs. 6 and 7 allow to better 
understand the general law given in Fig. 8. In the latter, we test the convergence of 
the analogue ensemble to the small-scale ensemble (for horizon 0.13, . ∼10 hours, 
and horizon 0.43, . ∼32 hours) according to the three statistical tests. The p-values 
are stored for 10 catalogues for each catalogue size and for 1000 points in the 
attractor taken from the ground truth trajectory, and quantiles are extracted for 
each catalogue size. The observed behaviour for the top plots (a-c, horizon 0.13, 
. ∼10 hours) resembles the one of Fig. 6, which is the case where forecast horizon is 
small, and the attractor density is high at the initial point. This shows that for short 
forecast horizon the analogue ensemble demands a high catalogue size to adequately 
represent the standard-deviation while the average can be well represented even 
with small catalogue size. However, this must be tempered by the fact that the



Fig. 6 One example of analogue ensemble forecast versus small-scale perturbed forecast, at 
forecast horizon 0.1. Top (a)–(d): forecast trajectories, unzoomed (left) and zoomed (right). Middle 
(e)–(g): analogue ensemble distribution (red) as a function of catalogue size, and small-scale 
ensemble distribution (black) shown for comparison, for each variable (x: (a), y: (b),  z: (c)),  
showing quantiles 0.05-0.25-0.5-0.75-0.95. Bottom (h)–(j): p-value for Welch’s t-test (full blue 
line and circles), Levene’s test (dashed orange line and squares), and the Kolmogorov-Smirnov 
test (dash-dotted green line with triangles), versus catalogue size, where the null hypothesis is that 
the analogue ensemble and the small-scale ensemble are drawn from the same distribution, for 
each variable (x: (a), y: (b),  z: (c)), showing quantiles 0.05-0.25-0.5-0.75-0.95 for different draws 
of catalogues for each catalogue size. Reference p-values of 0.01-0.05-0.1 are shown (dotted gray 
lines)
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Fig. 7 Same as Fig. 6 but for a different initial condition
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Fig. 8 Same as bottom plots of Fig. 6h–j and Fig. 7h–j, but quantiles of p-values are derived from 
statistics over the whole attractor (1000 points from a long trajectory) rather than for one point. 
Top (a)–(c): forecast horizon=0.13. Bottom (d)–(f): forecast horizon=0.43. Left (a,d): x. Middle 
(b,e): y. Right (c,f): z 

quantiles around the median p-value are highly scattered, indicating the need to 
adapt analogue forecasting strategies beyond the simple brute-force ensemble when 
dealing with extreme or rare events. 

For larger forecast horizon (bottom plots of Fig. 8), Welch’s test converges more 
slowly while the Levene test converges faster with catalogue size. It indicates that 
the forecasting of the average is more challenging for such horizons, which can 
be attributed to the chaotic growth of small initial errors at these time scales (as 
can be witnessed in the beginning of the growth of the large-scale GSTD around 
horizon 0.5, see Fig. 5). On the contrary, the analogue ensemble’s spread is closer 
to the small-scale ensemble spread, as the latter grows with time, and the effect 
of analogue-to-target distance starts to fade at these horizons (see again in Fig. 5 
how the small-scale and analogue ensemble GSTD get closer to each other at large 
forecast horizon). 

Building from the results of Fig. 8, we define a minimum catalogue size for 
each statistical test and large-scale variable, as the catalogue size for which a 
given quantile of p-value exceeds the threshold value of 0.1, where quantiles of 
p-value are calculated over 1000 points on the attractor and for 10 catalogues of 
equal size. To make this computation, we consider 40 different catalogue sizes
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Fig. 9 Minimum catalogue size so that the quantile (0.3,0.5,0.7) of p-value over the attractor 
(1000 points from a long trajectory) exceeds the threshold value of 0.1, versus forecast horizon, 
for three tests (Welch: left, Levene: middle, Kolmogorov-Smirnov: right) and variables (x: blue, y: 
orange, z: green) 

ranging from 700 to 700,000 independent elements, equally-spaced on a log-scale. 
Results for each variable (.x, y, z) and for three quantiles of p-value (0.3,0.5,0.7) 
are shown in Fig. 9. To interpret these minimum catalog sizes, we make the parallel 
with atmospheric circulation data. We assume that one can find 60 independent 
circulation patterns as “analogue candidates” per year of data, if one restricts the 
search to a “season” of 4 months and if two circulation patterns are uncorrelated 
after 2 days on average. 

The minimum catalogue size for Welch’s t-test is highest around forecast horizon 
0.4, for which a catalogue size of 10. 3 is needed for the median p-value to exceed 0.1. 
Using our interpretation in terms of atmospheric data, a catalog size of 10. 3 elements 
amounts to 20 years of data, which is reasonable with respect to nowadays’s typical 
length of observational records. The minimum catalogue size for Welch’s t-test then 
decreases with time horizon, which would not be the case for a deterministic system. 
Here, since the unresolved small-scale induce inevitable uncertainty in the forecast, 
the mismatch in initial condition due to the finite catalogue size has a lesser influence 
on the analogue ensemble average for larger forecast horizon. We consider horizons 
up to 2.24 which is equivalent to 1 week in atmospheric time-scale. For such large 
forecast horizons it appears that one does not require perfect knowledge of the 
large-scale initial condition in order to evaluate the average forecast under small-
scale perturbation, which is due to the fact that the uncertainty due to the unknown 
small-scale features has more influence on the forecast than the initial large-scale 
perturbation due to the analogue-to-target distances. This particular experiment 
shows that, for chaotic multi-scale systems, analogue forecasting may actually be 
more successful in predicting the average of the stochastic large-scale system, than 
to predict the deterministic multi-scale system altogether. 

The curves for the Levene and Kolmogorov-Smirnov tests are very similar to 
each other, but very different from the curves of Welch’s t-test, indicating that 
what the analogue ensemble struggles to estimate is not the average but the spread
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of the small-scale distribution. As we have seen, for small horizons and small 
catalogue size the analogue ensemble overestimates the ensemble spread attributed 
to the unresolved small-scales. According to Fig. 9, this effect cannot be neglected 
until horizon 1.2, which corresponds to . ∼4 days in atmospheric time-scale. Taking 
this analogy further, for a 1-day (horizon 0.4) analogue ensemble forecast one 
would need a catalogue of 6000 independent elements, which would correspond 
to 120 years of data, in order for the analogue ensemble spread to correspond to the 
small-scale perturbed ensemble spread. Indeed, if one uses a smaller catalogue size, 
there is a risk that although the average would be well estimated, the spread would 
not, which is an unwanted property. 

This result urges for the development of new ways of estimating the forecast 
spread based on the analogue ensemble, beyond using directly the spread of the 
analogue ensemble. Although optimizing the value of K might help in reducing 
the analogue ensemble spread, it will not be able to reduce the non-zero analogue-
to-target distance due to finite catalogue size. Indeed, analogue-to-target distances 
depend on the analogue rank K as .(K/L)1/d where d is the local dimension of 
the attractor and L is the catalogue size [13]. Therefore the distance between 
two analogues is lower-bounded by a constant proportional to .L−1/d , which 
gives a lower-bound for the analogue ensemble spread as well. Moreover, for 
moderately high-dimensional systems such as large-scale atmospheric circulation, 
the dimension ranges from 10 to 20 [29], and therefore analogue-to-target distances 
increase very slowly with the number of analogue K , therefore decreasing the 
number of analogues is likely not to reduce efficiently the analogue ensemble 
spread. 

4 Conclusion and Perspectives 

We have studied the effects of unresolved spatial scales on analogue forecast 
ensembles, using numerical simulations of a set of stochastic differential equations 
that emulate the effects of small-scales on the three large-scale variables of the 
chaotic Lorenz system in a physically consistent way. We have interpreted the 
behaviour of analogue ensemble forecasts based on two other ensembles, the 
large-scale ensemble which has the same noises (i.e. the same small-scale) as 
the ground truth but the same large-scale initial conditions as the analogues, and 
the small-scale ensemble which has the same large-scale initial condition as the 
ground truth but different noises (i.e. different small-scales). We have shown that 
the ratio of large-scale to small-scale ensemble spread strongly depends on the 
initial position in the attractor and on forecast horizon. In particular, the large-scale 
(respectively, small-scale) spread dominates for short-term (respectively, long-term) 
forecasts. The analogue ensemble spread is dominated by large-scale effects for 
short term forecasts and gradually tends to the small-scale forecast spread for larger 
time-horizons. The analogue ensemble converges in distribution to the small-scale 
ensemble in the limit of large catalogue size, which is a desired property of analogue
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ensemble forecasts. The rate of convergence depends on the position in the attractor 
and on the forecast horizon. The convergence of the analogue ensemble average to 
the small-scale ensemble average is rather fast, while the convergence of ensemble 
spread is slow. In particular, for short-term forecast of 1–2 days in atmospheric 
time-scale, our results in this idealized setup suggest that the catalogue size needed 
for the analogue ensemble to adequately represent the small-scale driven spread 
might exceed hundreds of years of data. In order for analogue ensembles to reliably 
estimate uncertainties associated to unresolved small-scales, one might benefit from 
the development of methodologies that go beyond the simple spread of the analogue 
ensemble. 

This work should be extended to higher-dimensional physical systems with scale 
separation, and systematic tests of the adequacy between the analogue ensemble 
spread and the uncertainty of the analogue ensemble forecast with respect to the 
ground truth trajectory should be performed using atmospheric and ocean circula-
tion data such as reanalysis products. We advocate for an adaption of uncertainty 
quantification from analogue ensembles using leave-one-out procedures, famous 
in the machine-learning community [30], which could also be used to produce 
unbiased analogue ensemble average forecasts in data-scarce areas of the attractor. 
Finally, proper tuning of the distance using metric-learning algorithms could help 
calibrate the analogue ensemble towards the desired distribution. 
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Particle-Based Algorithm for Stochastic 
Optimal Control 

Sebastian Reich 

1 Introduction 

We consider controlled nonlinear diffusion processes of the form 

.dXt = b(Xt )dt + G(Xt)utdt + σ(Xt )dBt , X0 = x0. (1) 

Here .Xt ∈ R
dx denotes the random state variable at time .t ≥ 0 and . Bt ∈ R

db

standard .db-dimensional Brownian motion. Furthermore, the functions .b(x) ∈ R
dx , 

.G(x) ∈ R
dx×du , and .σ(x) ∈ R

dx×db are all assumed to be given. 
The cost to optimize via an appropriate choice of the time-dependent control 

.u0:T = {ut }t∈[0,T ] is given by 

.JT (x0, u0:T ) = E

[∫ T

0

(
c(Xt ) + 1

2
uT

t R−1ut

)
dt + f (XT )

]
. (2) 

Expectation is taken with regard to the path measure generated by the stochastic 
differential equation (SDE) (1) conditioned on the initial .X0 = x0 and a given 
control law .u0:T , which we assume to be state-dependent. Here 

.c(x) = 1

2
h(x)TS−1h(x) (3) 

denotes the running cost and 
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.f (x) = 1

2
ξ(x)TV −1ξ(x) (4) 

the terminal cost. The matrices .R ∈ R
du×du , .S ∈ R

dh×dh , .V ∈ R
dξ ×dξ as well as the 

functions .h(x) ∈ R
dh , .ξ(x) ∈ R

dξ are again all assumed to be given. See [19] for  
an introduction to diffusion processes and [5, 18] for an introduction to stochastic 
control. 

Inspired by the success of the ensemble Kalman filter (EnKF) for very high-
dimensional data assimilation problems, which relies on ensemble-based linear 
estimation, we aim in this chapter at finding control laws of the form 

.ut (x) = RG(x)T(Atx + ct ) (5) 

to provide robust approximations to the optimal feedback control law denoted 
here by .u∗

t (x). While the optimal control law can be found via the associated 
Hamilton–Jacobi–Bellman (HJB) equation [5]; solving such a PDE is computation-
ally demanding [10]. Popular alternatives include those based on forward-backward 
SDEs [6] in combination with machine learning techniques [9, 10]. Here we follow 
the work of [16] instead, which in turn has been inspired by [2, 17, 21], to 
reformulate the problem in terms of two McKean–Vlasov SDEs over state space 
.R

dx . Those SDEs need to be solved in forward and reverse time, respectively, only 
once and are related to generative models using diffusion processes [23, 24]. 

While the work [16] is restricted to control problems for which the Cole–Hopf 
transformation linearizes the associated HJB equation, we consider a more general 
class of control problems for which the HJB equation cannot be linearized. See 
Remark 1 below. Furthermore, in order to obtain robust and easy to compute 
approximations, we employ the EnKF methodology to approximate the arising 
McKean–Vlasov interaction terms [4, 11]. A related EnKF-based approach to 
optimal control has been considered in [14] and is based on a direct approximation 
of the HJB equation via a McKean–Vlasov SDE. We use stabilization of an inverted 
pendulum position [18] to demonstrate the efficiency of our method. While the 
numerical experiments in [16] and [14] utilize ensemble sizes on the order of . 103, 
our method has been implemented with an ensemble of size .M = dx + 1 = 3. We  
also propose a more general methodology which combines the EnKF methodology 
with diffusion map approximations for the arising grad-log density terms [7, 8]. 
This extension is useful whenever the underlying densities cannot be approximated 
well by Gaussian distributions. We will illustrate this aspect through a controlled 
nonlinear Langevin dynamics process. 

The remainder of this chapter is structured as follows. The mathematical back-
ground on the HJB equation for stochastic optimal control problems is summarized 
in Sect. 2. We demonstrate in Sect. 3 how the value function defined by the HJB 
equation can be expressed as the ratio of two probability density functions. Here we 
extend previous work [16] to the wider class of optimal control problems defined 
by (1) and (2). Both the associated forward and reverse time evolution equations 
can be expressed in terms of McKean–Vlasov SDEs in the state variable, x. Before
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discussing numerical approximations of those McKean–Vlasov equations in Sect. 5, 
we demonstrate in Sect. 4 how our formulation is related to generative modeling 
using diffusion processes [23, 24]. We first discuss numerical approximations using 
EnKF-type methodologies [4, 11] in Sect. 5.1. Next we also employ diffusion 
maps [7, 8] in order to approximate grad-log density terms in Sect. 5.2. Numerical 
implementation details are discussed in Sect. 5.3, while numerical results for an 
inverted pendulum and nonlinear Langevin dynamics are presented in Sect. 6. 
Possible extension of the proposed methodology to infinite horizon optima control 
problems are discussed in Appendix. 

2 Mathematical Problem Formulation 

In this section, we recap the essential aspects of finding the optimal control 
law, .u∗

t (x), for controlled SDE (1) with cost (2). See [5, 18] for more detailed 
expositions. 

The law, . πt , of the diffusion process, . Xt , defined by the SDE (1) satisfies the 
Fokker–Planck equation 

.∂tπt = −∇x · (πt (b + Gut)) + 1

2
∇x · (πtΣ) . (6a) 

= −∇x ·
(

πt

(
b + Gut − 

1 

2
∇x · Σ − 

1 

2 
Σ∇x log πt

))
, (6b) 

where 

.Σ(x) = σ(x)σ (x)T. (7) 

We introduce the weighted norm .|| · ||R via 

.||u||2
R = uTR−1u (8) 

and the Frobenius inner product .A : B = tr (ABT) of two .dx × dx matrices A and 
B. The optimal feedback control is provided by 

.u∗
t (x) = −RG(x)T∇xy

∗
t (x), (9) 

where the optimal value function .y∗
t (x) satisfies the HJB equation 

. − ∂ty
∗
t = b · ∇xy

∗
t + 1

2
Σ : D2

xy
∗
t + c + min

u

(
Gu · ∇xy

∗
t + 1

2
||u||2

R

)
. (10a) 

= b · ∇xy
∗
t + 

1 

2 
Σ : D2 

xy
∗
t + c − 

1 

2
||RGT∇xy

∗
t ||2 

R (10b)
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with terminal condition .y∗
T = f . Here .D2

xy
∗
t (x) ∈ R

dx×dx denotes the Hessian of 
.y∗

t (x). 
We apply the Cole–Hopf transformation and introduce the new function 

.v∗
t (x) := exp(−y∗

t (x)) (11) 

in order to obtain the transformed HJB equation 

. − ∂tv
∗
t = b · ∇xv

∗
t + 1

2
Σ : D2

xv
∗
t . (12a) 

−
(

c + 
1 

2
||σT∇x log v∗

t ||2 + min 
u

(
1 

2
||u||2 

R − Gu · ∇x log v∗
t

))
v∗
t . 

(12b) 

= b · ∇xv
∗
t + 

1 

2 
Σ : D2 

xv
∗
t . (12c) 

−
(

c + 
1 

2
||σT∇x log v∗

t ||2 − 
1 

2
||RGT∇x log v∗

t ||2 
R

)
v∗
t . (12d) 

The terminal condition is .v∗
T = exp(−f ). Here we have used  

.∂ty
∗
t = −1

v∗
t

∂t v
∗
t , ∇xy

∗
t = −1

v∗
t

∇xv
∗
t , (13) 

and 

.Σ : D2
xy

∗
t = −1

v∗
t

Σ : D2
xv

∗
t + ||σT∇x log v∗

t ||2. (14) 

The optimal control is now characterized by 

.u∗
t (x) = RG(x)T∇x log v∗

t (x). (15) 

Remark 1 The transformed HJB equation (12) simplifies to 

. − ∂tv
∗
t = b · ∇xv

∗
t + 1

2
Σ : D2

xv
∗
t − cv∗

t (16) 

for the special case .G = σ and .R = I and (12) becomes linear in . v∗
t . This well-

known fact has been exploited in the numerical work of [16]. Furthermore, the 
transformed HJB equation arising from the further simplification .c(x) ≡ 0 leads 
to the standard backward Kolmogorov equation [19].
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3 McKean–Vlasov Formulation 

In this section, we extend the McKean–Vlasov forward-reverse time approach to 
optimal control from [16] to more general control problems defined by (1) and (2). 
The first step is to choose an appropriate, potentially time-dependent convex cost 
function .αt (x) and to formulate a suitable evolution equation for the density 

.π̃t := Z−1
t v∗

t π̄t , (17) 

where . v∗
t satisfies (12) and . π̄t the forward evolution equation 

.∂t π̄t = −∇x · (
π̄t b̄t

) − π̄t (αt − π̄t [αt ]) (18) 

with initial distribution .π̄0 = δx0 and modified drift function 

.b̄t (x) := b(x) − 1

2
(∇x · Σ(x) + Σ(x)∇x log π̄t (x)) . (19) 

The normalization constant . Zt is given by 

.Zt = π̄t [v∗
t ] (20) 

and . δx0 denotes the Dirac delta function centered at . x0. We note that 

. − ∇x · (
π̄t b̄t

) = −∇x · (π̄t b) + 1

2
∇x · (∇x · (π̄tΣ)). (21) 

We next need to find an evolution equation for the probability density . π̃t defined 
by (17). Relying on 

.∇x log π̃t (x) = ∇x log v∗
t + ∇x log π̄t , (22) 

we introduce the modified drift 

.b̃t (x) := −b̄t (x) − 1

2
Σ(x)∇x log v∗

t (x). (23a) 

= −b̄t (x) − 
1 

2 
Σ(x)  (∇x log π̃t (x) + ∇x log π̄t (x)) . (23b) 

= −b(x) + ∇x · Σ(x)  + Σ(x)∇x log π̄t (x). (23c) 

− 
1 

2 
(∇x · Σ(x)  + Σ(x)∇x · log π̃t (x)) . (23d)
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We note that 

.−∇x ·(π̃t b̃t ) = ∇x ·(π̃t (b − ∇x · Σ − Σ∇x log π̄t ))+ 1

2
∇x ·(∇x ·(π̃tΣ)), (24) 

which leads naturally to the interpretation in terms of a reverse time SDE with 
McKean–Vlasov-type drift function. Before investigating this aspect in more detail, 
we state the following lemma, which links the modified drift . b̃t with the time 
evolution of the probability density . π̃t defined by (17). 

Lemma 1 Given the forward evolution Eq. (18) and the HJB equation (12), the 
probability density defined by (17) satisfies the reverse time evolution equation 

. − ∂t π̃t = −∇x ·
(
π̃t b̃t

)
. (25a) 

− π̃t

(
c − αt + 

1 

2
||σT∇x log v∗

t ||2 − 
1 

2
||RGT∇x log v∗

t ||2 
R − ζt

)

(25b) 

with terminal condition .π̃T = Z−1
T exp(−f )π̄T , where . ζt is an appropriate 

normalization constant. 

Proof Since (23) and 

.∇x · (Σ∇xv
∗
t ) = ∇xv

∗
t · (∇x · Σ) + Σ : D2

xv
∗
t , (26) 

and assuming that (17) holds, it follows that 

. − ∇x · (π̃t b̃t ) = ∇x ·
(

π̃t

(
b̄t + 1

2
Σ∇x log v∗

t

))
. (27a) 

= 
v∗
t 

Zt 
∇x · (π̄t b̄t ) + 

π̄t 
Zt 

(Σ∇xv
∗
t ) · b̄t + 

1 

2Zt 
∇x · (π̄tΣ∇xv

∗
t ). 

(27b) 

= 
v∗
t 

Zt 
∇x ·

(
π̄t b̄t 

) + 
π̄t 
Zt

(
b · ∇xv

∗
t + 

1 

2 
Σ : D2 

xv
∗
t

)
. (27c) 

Hence it holds indeed that 

.∂t π̃t = v∗
t

Zt

∂t π̄t + π̄t

Zt

∂tv
∗
t − π̃

Zt

dZt

dt
(28) 

for the partial time derivatives given by (25), (18), and (12), respectively. Further-
more, .π̃T = v∗

T π̄T /ZT at final time and, hence, (17) holds for all times .t ∈ (0, T ]. 
Lemma 1 implies that we can solve the forward evolution Eq. (18) together with 
the backward evolution Eq. (25) instead of the HJB equation (12). Throughout the
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remainder of this chapter, we use 

.αt (x) = c(x) (29) 

in line with the previous work [16]. However, other choices could be explored. See, 
for example, [22], which allows one to incorporate the terminal cost .f (x). 

Remark 2 While [17] and [16] form the basis for our work, we mention the 
alternative approach put forward in [14], where .v∗

t is viewed directly as an 
unnormalized probability density. This approach leads to the interpretation of the 
HJB equation (12) in terms of a nonlinear Fokker–Planck equation which in turn can 
be approximated using interacting particles and EnKF-type approximations as in our 
work. Only deterministic control problems are considered in [14]. Furthermore, it 
is not obvious whether the value function . v∗

t is always normalizable with respect to 
the Lebesgue measure on .Rdx . 

The final step is to turn (18) and (25), respectively, into forward and reverse 
McKean–Vlasov SDEs [17]: 

.dX̄t = f̄ ∈
t (X̄t )dt + √

∈σ (X̄t )dB+
t , X̄0 = x, . (30a) 

−d X̃t = f̃ ∈ 
t ( X̃t )dt + √

∈σ (  ̃Xt)dB−
t , X̃T ∼ π̃T . (30b) 

Here .B+
t denotes Brownian motion adapted to forward time, .B−

t Brownian motion 
adapted to reverse time, and .∈ ∈ [0, 1] is a free parameter determining the noise 
level added to the McKean–Vlasov equations. 

The drift functions are defined as follows: 

.f̄ ∈
t (x) := b(x) − ḡt (x) − 1 − ∈

2
(∇x · Σ(x) + Σ(x)∇x log π̄t (x)) (31) 

with .ḡt (x) satisfying 

.∇x · (π̄t ḡt ) = −π̄t (c − π̄t [c]), (32) 

and 

.f̃ ∈
t (x) := −b(x) + ∇x · Σ(x) + Σ(x)∇x log π̄t (x) − g̃t (x). (33a) 

− 
1 − ∈ 

2 
(∇x · Σ(x) + Σ(x)∇x log π̃t (x)) (33b) 

with .g̃t (x) satisfying 

.∇x · (π̃t g̃t ) = −π̃t

(
1

2
||σT∇x log v∗

t ||2 − 1

2
||RGT∇x log v∗

t ||2
R − ζt

)
. (34)
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Lemma 2 The two diffusion processes defined by (30) satisfy .X̄t ∼ π̄t and . X̃t ∼
π̃t , respectively. Given . π̃t and . π̄t , the optimal control law .u∗

t (x) is provided by 

.u∗
t (x) = RG(x)T (∇x log π̃t (x) − ∇x log π̄t (x)) . (35) 

Proof The lemma follows immediately from writing down the associated (nonlin-
ear) Fokker–Planck equations for the two McKean–Vlasov SDEs (30). The stated 
formula for the optimal control follows from (17). 

The choice .∈ = 0 leads to fully deterministic evolution equations and the following 
intriguing representation of (30): 

.
dX̄t

dt
= b(X̄t ) − ḡt (X̄t ) − 1

2

(∇x · Σ(X̄t ) + Σ(X̄t )∇x log π̄t (X̄t )
)
. (36a) 

−d X̃t 
dt 

= −g̃t ( X̃t ) − ḡt ( X̃t ) − 
d X̄t 
dt 

( X̃t ) + 
1 

2 
Σ(  ̃Xt)∇xy

∗
t ( X̃t ). (36b) 

We will return to this formulation in Appendix. 

4 A Brief Diversion: Diffusion-Based Generative Modeling 

Before discussing numerical implementation of the proposed forward-reverse 
McKean–Vlasov equations (30), we demonstrate how the core idea of diffusion-
based generative modeling [23, 24] arises as a special instance of (30). Recall that 
the goal of diffusion-based generative modeling is to use given samples from an 
unknown distribution .πdata to produce more samples from that distribution. Instead 
of density estimation, diffusion-based generative models are built upon grad-log 
density estimation and SDEs. 

We start from the control SDE formulation 

.dXt = −1

2
Xtdt + utdt + dBt (37) 

with initial conditions .X0 ∼ π0 = N(0, I ). The cost function (2) is implicitly given 
by 

.e−f (x) ∝ πdata(x)

π0(x)
(38) 

with running cost .c = 0 and .R = I . We also note that . π0 is the invariant distribution 
of (37) for .ut = 0 and that our forward SDE (30a) simply becomes 

. dX̄t = −
(

1

2
X̄t − 1 − ∈

2
C̄−1

t (X̄t − m̄t )

)
dt + √

∈dB+
t , X̄0 ∼ N(0, I ).

(39)
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with .C̄t = I and .m̄t = 0 for all .t ≥ 0. Furthermore, setting .∈ = 0, leads to 

.
dX̄t

dt
= 0. (40) 

Similarly, the reverse SDE (30b) reduces to 

.−dX̃t = −
(

1

2
X̃t + 1 − ∈

2
∇x log π̃t (X̃t )

)
dt+√

∈dB−
t , X̃T ∼ πdata, (41) 

which is of the standard form used in diffusion modeling for .∈ = 1. The desired 
control term is finally provided by 

.u∗
t (x) = ∇x log π̃t (x) + x (42) 

and the generative SDE model (37) turns into 

.dXt = 1

2
Xtdt + ∇x log π̃t (Xt )dt − 1 − ∈

2
∇x log πt (Xt )dt + √

∈dBt , (43) 

.X0 ∼ N(0, I ), which again reduces to the standard diffusion-based generative 
model for .∈ = 1. A more detailed discussion on the connection between diffusion-
based generative modeling and stochastic optimal control can be found in [3]. 

5 Numerical Implementations 

In this section, we discuss the numerical implementation of the proposed forward-
reverse McKean–Vlasov SDEs (30). We start with Gaussian and EnKF-type 
approximations [4, 11] before also utilizing diffusion maps [7, 8] in order to 
approximate the required grad-log density terms. 

5.1 EnKF Approximation 

We develop a numerical implementation of (30) based on the EnKF methodology 
[4, 11]. In particular, we approximate a drift . gt , which should satisfy 

.∇x · (πtgt ) = −πt (||ψ||2
B − πt [||ψ||2

B ]) (44) 

for given function .ψ(x) and density . πt , in the following manner. We introduce the 
mean, . mψ

t , of .ψ(x) and the covariance matrix, .Cxψ
t , between x and .ψ(x) under . πt . 

Then an approximative drift term .gKF
t is defined by
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.gKF
t (x) := 1

2
C

xψ
t B−1

(
ψ(x) + m

ψ
t

)
. (45) 

This approximation becomes exact for Gaussian density . πt and linear function 
.ψ(x). See, for example, [20, 21] for the general methodology and [14] for an 
application to optimal control. 

We assume that the running cost .c(x) is of the form (3). Hence, following (32) 
and (45), the drift term . ḡt is approximated by 

.ḡKF
t (x) := 1

2
C̄xh

t S−1
(
h(x) + m̄h

t

)
. (46) 

Here .C̄xh
t denotes the covariance matrix between x and .h(x) with respect to . π̄t and 

.m̄h
t the mean of .h(x) under the same distribution. 
The transformation from .X̄T to .X̃T under the terminal cost (4) is performed by 

the stochastic EnKF [4, 11]; that is, 

.X̃T = X̄T − C̄
xξ
T

(
C̄

ξξ
T + V

)−1
(ξ(X̄T ) + V 1/2Ξ), Ξ ∼ N(0, I ). (47) 

Following the desired control ansatz (5), we also approximate .∇x log v∗
t as a 

linear function using the first two moments of . π̃t and . π̄t , respectively; that is, 

.∇x log vKF
t (x) := C̄−1

t (x − m̄x
t ) − C̃−1

t (x − m̃x
t ). (48a) 

= ( C̄−1 
t − C̃−1 

t )x +
(
C̃−1 

t m̃x 
t − C̄−1 

t m̄x 
t

)
= Atx + ct (48b) 

with 

.At := C̄−1
t − C̃−1

t , ct := C̃−1
t m̃x

t − C̄−1
t m̄x

t . (49) 

This approximation leads to the further approximation 

.g̃KF
t (x) := 1

2
C̃tAt

(
Σ(m̃x

t ) − G(m̃x
t )RG(m̃x

t )
T
) (

Atx + Atm̃
x
t + 2ct

)
(50) 

for the drift term . g̃t arising from (34). 
We now summarize our approximations to the drift terms in the forward-reverse 

McKean–Vlasov equations (30): 

.f̄ ∈
t (x) := b(x) − 1 − ∈

2

(
∇x · Σ(x) − Σ(x)C̄−1

t (x − m̄x
t )

)
. (51a) 

− 
1 

2 
C̄xh 

t S−1
(
h(x) + m̄h 

t

)
(51b) 

and
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.f̃ ∈
t (x) := −b(x) + ∇x · Σ(x) − Σ(x)C̄−1

t (x − m̄x
t ). (52a) 

− 
1 − ∈ 

2

(
∇x · Σ(x) − Σ(x)  ̃C−1 

t (x − m̃x 
t )

)
. (52b) 

− 
1 

2 
C̃tAt

(
Σ(  ̃mx 

t ) − G( m̃x 
t )RG( m̃x 

t )
T
) (

Atx + At m̃
x 
t + 2ct 

) 
. 
(52c) 

The forward Eq. (30a) is solved from the initial condition .X̄0 = x0. The terminal 
.X̄T is transformed into the terminal condition .X̃T using (47). Equation (30b) is 
solved from .t = T to .t = 0. The desired approximation to the optimal control 
. u∗

t is provided by (5) with . At and . ct given by (49). We note that . At is symmetric 
negative-definite whenever .C̃t C̄

−1
t < I . In other words, the covariance matrix of the 

reverse process has to be strictly smaller than the covariance matrix of the forward 
process in order for the associated control (5) to act in a stabilizing manner. 

We also note that the McKean–Vlasov contribution (52c) stabilizes the reverse 
dynamics provided 

.Σ(x) > G(x)RG(x)T (53) 

and destabilizes it otherwise. The overall reverse dynamics can still be stable due to 
the contributions from (52a). 

5.2 Combined Diffusion Map and EnKF Approximation 

In this subsection, we propose another implementation of the McKean–Vlasov 
formulation (30) combining the EnKF-type approximations for the drift terms . ḡt (x)

and .g̃t (x), respectively, while using diffusion maps [7, 8] for estimating grad-log 
density terms. 

We first consider the forward McKean–Vlasov equations 

.dX̄t = b(X̄t )dt − 1

2
C̄xh

t

(
h(X̄t ) + m̄h

t

)
dt + σ(X̄t )dB+

t . (54) 

The law . π̄t of . X̄t induces the generator . L̄t at time t , which is defined by 

.L̄t f := 1

π̄t

∇x · (π̄tΣ∇xf ). (55) 

Here we assume that .Σ(x) has full rank. It is easy to verify that 

.L̄t Id = ∇x · Σ + Σ∇x log π̄t , (56)
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where .Id : Rdx → R
dx denotes the identity map; that is, .Id(x) = x. Equation (56) 

suggests the approximation 

.∇x · Σ(x) + Σ(x)∇x log π̄t (x) ≈ exp(εL̄t )Id − Id

ε
(x) (57) 

for .ε > 0 sufficiently small, where the semi-group .exp(εLt ) will be later replaced by 
the normalized diffusion map approximation as investigated in [25]. We introduce 
the conditional mean 

.m̄ε
t (x) := exp(εL̄t )Id(x) (58) 

and obtain the compact representation 

.
exp(εL̄t )Id − Id

ε
(x) = ε−1(m̄ε

t (x) − x). (59) 

Approximation (57) is plugged into the reverse McKean–Vlasov equation to 
yield 

. − dX̃t = −b(X̃t )dt + ε−1(m̄ε
t (X̃t ) − X̃t )dt − g̃KF

t (X̃t )dt . (60a) 

− 
1 − ∈ 

2

(
∇x · Σ(  ̃Xt) − Σ(  ̃Xt) C̃−1 

t ( X̃t − m̃x 
t )

)
. (60b) 

+ 
√

∈σ (  ̃Xt)dB−
t , (60c) 

where .g̃KF
t (x) is defined by (50) as before and .∈ ∈ [0, 1]. 

Approximation (57) can also be used in the forward McKean–Vlasov equation 
and (54) gets replaced by 

.dX̄t = b(X̄t )dt − 1

2
C̄xh

t

(
h(X̄t ) + m̄h

t

)
dt . (61a) 

− 
1 − ∈ 

2ε 
( m̄ε 

t ( X̄t ) − X̄t )dt + √
∈σ (  ̄Xt)dB+

t . (61b) 

Furthermore, the law . π̃t of . X̃t induces the generator . L̃t at time t , which is defined 
by 

.L̃t f := 1

π̃t

∇x · (π̃tΣ∇xf ), (62) 

and which can be used to approximate 

. ∇x · Σ(x) + Σ(x)∇x log π̃t (x) ≈ ε−1(m̃ε
t (x) − x), m̃ε

t (x) := exp(εL̃t )Id(x),

(63)
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in the reverse SDE drift function (33b). In other words, (60) gets replaced by 

. − dX̃t = −b(X̃t )dt + ε−1(m̄ε
t (X̃t ) − X̃t )dt − g̃KF

t (X̃t )dt . (64a) 

− 
1 − ∈ 

2ε 
( m̃ε 

t ( X̃t ) − X̃t ) + √
∈σ (  ̃Xt)dB−

t . (64b) 

We note that the McKean–Vlasov equations (61) and (64) become deterministic 
under the choice .∈ = 0. 

5.3 Numerical Implementation Details 

We numerically implement the McKean–Vlasov equations (30) with drift terms 
given by (51) and (52) using a Monte Carlo approach; that is, we propagate an 
ensemble of M particles .X̄(i)

t , .i = 1, . . . , M , forward in time, .t ∈ [0, T ], and an 
equally sized ensemble of particles .X̃

(i)
t backward in time. The required mean values 

and covariance matrices are replaced by their empirical estimators. A covariance 
inflation of . δI , .δ > 0, is added to the empirical covariance matrices in order to 
ensure that they remain non-singular [11]. For the purpose of this chapter, we apply 
a simple Euler–Maruyama time-stepping method with step-size . Δt both in forward 
and reverse time [15]. More robust time-stepping methods can be based on the 
formulations proposed and investigated in [1]. 

When running the EnKF-type formulation from Sect. 5.1, we set the initial 
conditions to .X̄(i)

0 = x0 in the forward equation and use .∈ > 0 for the first time-
step in order to diffuse these identical particles. All subsequent time-steps employ 
then .∈ = 0 (deterministic dynamics). The terminal ensemble .X̃(i)

T , .i = 1, . . . ,M , is  

computed using the forward ensemble .X̄(i)
T at final time and a standard ensemble 

implementation of the EnKF update (47) [4, 11]. The reverse McKean–Vlasov 
equations are solved with .∈ = 0 (deterministic dynamics). 

The reverse McKean–Vlasov equation (60) also requires the approximation of 
the semi-group .exp(∈L̄t ). We now describe an implementation which follows ideas 
from [13]. Let us assume, for simplicity, that .Σ(x) has full rank. Based on the 
forward-in-time samples .{X̄(i)

t }, we first define the diffusion map approximation 

.P ε
t = D(vε

t )R
ε
t D(vε

t ), (65) 

where the matrix .Rε
t ∈ R

M×M has entries 

. (Rε
t )ij = exp

(−1

2ε
(X̄

(i)
t − X̄

(j)
t )T

(
Σ(X̄

(i)
t ) + Σ(X̄

(j)
t )

)−1
(X̄

(i)
t − X̄

(j)
t )

)
,

(66)
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.D(v) ∈ R
M×M denotes the diagonal matrix with diagonal entries given by the 

vector .v ∈ R
M , and the vector .vε

t ∈ R
M+ is chosen such that 

.

M⎲
i=1

(P ε
t )ij =

M⎲
j=1

(P ε
t )ij = 1

M
. (67) 

The vector . vε
t can be computed efficiently using the iterative algorithm from [25]. 

More precisely, one iterates the fixed point formulation 

.uε
t = 1/(MRε

t v
ε
t ), vε

t = √
uε

t /(MRε
t u

ε
t ) (68) 

to self-consistency, where division and taking square root have to be performed 
entry-wise. 

We define a probability vector .pε
t (x) ∈ R

M for all .x ∈ R
dx as follows. First we 

introduce the vector .r∈
t (x) ∈ R

M with entries 

.(rε
t )i(x) = exp

(−1

2ε
(X̄

(i)
t − x)T

(
Σ(X̄

(i)
t ) + Σ(x)

)−1
(X̄

(i)
t − x)

)
(69) 

for .i = 1, . . . , M . Next we compute the vector . vε
t in (65), which in turn is used to  

define 

.pε
t (x) = D(vε

t )r
ε
t (x)

(vε
t )

Tr∈
t (x)

. (70) 

Setting .∈ = Δt , we finally obtain the approximation 

.m̄Δt
t (x) = exp(ΔtL̄t )Id(x) ≈ X̄tp

Δt
t (x) (71) 

with 

.X̄t =
(
X̄

(1)
t , X̄

(2)
t , . . . , X̄

(M)
t

)
∈ R

dx×M. (72) 

The reverse McKean–Vlasov equation (60), here with .∈ = 1 for simplicity, is 
integrated backward in time using the following split-step scheme: 

.X̃
(i)
tn−1/2

= X̃
(i)
tn

− Δtb(X̃
(i)
tn

) − Δtg̃KF
tn

(X̃
(i)
tn

)dt + √
Δtσ(X̃

(i)
tn

)Ξ
(i)
tn

, . (73a) 

X̃ (i) tn−1 
= X̄tn−1p

Δt 
tn−1 

( X̃ (i) tn−1/2 
), (73b) 

.i = 1, . . . , M , where .Ξ(i)
tn

denote independent standard Gaussian random variables 
with mean zero and identity covariance matrix, and .tn+1 = tn + Δt . This  
implementation guarantees that any reverse time solution .X̃tn is contained in the
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convex hull generated by the forward samples .{X̄(i)
tn

} [13], which is a desirable 
property in terms of .π̃t ∝ v∗

t π̄t ⟪ π̄t . The approximation (71) can also be applied 
in the forward McKean–Vlasov equation (61) in case .∈ < 1. 

Please note that we propose to still approximate the optimal control .u∗
t (x) by (5) 

with . At and . ct given by (49). However, diffusion map approximations could also be 
used in this context. See also [17]. 

It should be noted that the diffusion map approximation requires .M ⟫ dx , 
which is in contrast to the EnKF-type approximation from Sect. 5.1, which can 
be implemented with as little as .M = dx + 1 particles in order to render 
the empirical covariance matrices non-singular and, hence, to obtain well-defined 
evolution equations at the particle level. This desirable property is verified in the 
following section. However, EnKF-type approximations can fail due to stability and 
accuracy reasons and need to then be augmented by diffusion map approximations 
as we also demonstrate in the following section. 

6 Numerical Examples 

In this section, we discuss numerical findings for two simple control problems. 
The first control problem is to stabilize the unstable equilibrium position of a 
mathematical pendulum. This control problem is nonlinear in nature and linear 
feedback control laws will be suboptimal. However, we find that (5) is nevertheless 
able to drive the pendulum from the stable to the unstable equilibrium in finite time. 
The second control problem concerns the stabilization of an unstable equilibrium 
point of one-dimensional nonlinear Langevin dynamics. Here the computational 
challenge arises from the fact that the drift term .b(x) becomes strongly destabilizing 
when integrated backward in time which requires a diffusion map approximation of 
the stabilizing grad-log density term in the reverse McKean–Vlasov dynamics. 

6.1 Inverted Pendulum 

As a first example, we consider the inverted pendulum with control [18]. The state 
variable is .x = (θ, θ̇ )T ∈ R

2 with equations of motion 

.dθ = θ̇dt, . (74a) 

dθ̇ = sin(θ)dt − cos(θ)udt + ρdBt , (74b) 

and .ρ = 1. Consider the running cost 

.c(x) = 10

2
||θ̇||2 (75)
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over a finite time window .t ∈ [0, 1] with final cost 

.f (x) = 103

2
||x||2. (76) 

The control is scalar-valued and the penalty term in the cost function uses .R = 10. 
Note that .G(x) is position dependent and that .(0, 0) is an unstable equilibrium point 
of the deterministic pendulum (.ρ = 0). The noise acts only on the momentum 
equation. We seek a control law of the form (5) that leads us from the stable 
equilibrium .(π, 0) to the unstable one .(0, 0) at time .T = 1. We initialize . X̄0 =
(π, 0.1); that is, we give the stable equilibrium a small initial kick. 

The numerical experiment uses .M = 3 ensemble members in the EnKF-type 
formulation from Sect. 5.1. The time-step is set to .Δt = 10−4 and .∈ = 0.01 for 
the first time-step of the forward dynamics. The additive covariance inflation factor 
is set to .δ = 10−4. The results from the forward and reverse McKean–Vlasov 
equations can be found in Fig. 1. It can be seen that the forward dynamics stays 
close to the stable equilibrium point .(π, 0) over the whole time interval . [0, 1]. The  
stiff final cost implied by (76) transforms the ensemble .X̄(i)

T to an ensemble .X̃(i)
T , 

.i = 1, . . . ,M , which is tightly clustered about the unstable equilibrium .(0, 0) at 

.T = 1. Solving the reverse McKean–Vlasov equations leads us gradually back to 
the unstable equilibrium, which is reached at time .t = 0. 

We then apply the computed control (5) to the inverted pendulum Eq. (74) with 
the noise set to zero (.ρ = 0). The time evolution of the resulting solution is 
displayed in Fig. 2. The computed time-dependent affine control is able to drive the 
solution from the stable to the unstable equilibrium point over a unit time interval. 
The time evolution of the associated velocity indicates that strong acceleration terms 
are required and indeed provided by the computed control law. 
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Fig. 1 Time evolution of the ensemble mean from the forward evolution (left panel) and the 
reverse evolution (right panel) both in terms of pendulum position and velocity. It can be seen 
that the reverse evolution connects the stable and unstable equilibrium points while the forward 
dynamics stays close to the stable equilibrium
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Fig. 2 Time evolution of the position and velocity of the pendulum under the computed affine 
control law. The pendulum leaves its initial stable solution to reach the unstable equilibrium at 
time .T = 1. The initial and final velocities are essentially zero 

6.2 Controlled Langevin Dynamics 

As a second example, we consider the controlled Langevin dynamics 

.dXt = −(X3
t − Xt)dt + ut (Xt )dt + dBt (77) 

with unstable equilibrium at .x = 0 and two stable equilibria at . x = ±1. The  
imposed running cost is .c(x) = 100x2/2 and the terminal cost at .T = 30 is 
.f (x) = x2/2. We implement the combined diffusion map and EnKF scheme from 
Sect. 5.2 with step-size .Δt = 0.01, .M = 8 ensemble members, and .∈ = 0 in the 
forward (61) and reverse (60) dynamics except for the first ten steps of the forward 
dynamics (61) where we set .∈ = 1. We also employ additive ensemble inflation with 
.δ = 10−4. 

The diffusion map approximation of the grad-log density term in the reverse 
dynamics is essential for counterbalancing the strongly unstable contribution stem-
ming from the drift term in (77) when integrated backward in time. We also find that 
the Gaussian approximation to the grad-log density term in the forward dynamics is 
insufficient and that the diffusion map approximation in (61) significantly improves 
the behaviour of the deterministic formulation (.∈ = 0). The scale parameter in the 
diffusion map approximation is set to .ε = Δt .
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Fig. 3 Computed control gain . At and shift . ct from the forward and reverse McKean–Vlasov 
evolution equations. The control is time-independent except for brief transition periods at the 
beginning and end of the simulation interval 

Except for brief transition periods at initial and final time, the control law (5) 
is essentially time-independent. This behaviour corresponds to the well-known 
turnpike in optimal control [12]. See Fig. 3 and Appendix for a related discussion 
of infinite horizon optimal control problems. The effectiveness of the control is 
demonstrated in Fig. 4. 

7 Conclusions 

Solving the HJB equation numerically constitutes a challenging task. Here we have 
provided a new perspective by combining forward and reverse evolution McKean– 
Vlasov equations with the tremendously successful EnKF methodology. We have 
done so by building on the previous work [16] and have generalized it to a wider 
class of forward and reverse McKean–Vlasov equations. In order to keep those 
equations computationally tractable we have employed EnKF-type approximations 
to the McKean–Vlasov interaction terms. While not delivering optimal control 
laws, the resulting time-dependent affine control laws can either be sufficient 
in themselves or, alternatively, may provide the starting point for more accurate 
approximations such as the diffusion map approach outlined in Sect. 5.2. We have  
applied the proposed methodology to a two-dimensional nonlinear control problem 
using only .M = dx + 1 = 3 particles. Such a small ensemble size constitutes a
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Fig. 4 Comparison of the controlled and uncontrolled Langevin dynamics. Displayed is the time 
evolution of a single realisation of the SDE (77) with and without control 

significant improvements over the results presented in [16] and [14]. It remains to 
be demonstrated that the methodology can be further extended to high-dimensional 
control problems in the spirit of EnKF applications to data assimilation, which 
deliver useful approximations even with .M ⟪ dx ensemble members [11]. At the 
same time, strongly nonlinear Langevin dynamics (77) requires more sophisticated 
approximations of the grad-log terms in terms of diffusion maps. Still the ensemble 
size could be kept at a moderate level (.M = 8) in order to recover the linear control 
law (5) robustly. 

Acknowledgments This work has been funded by Deutsche Forschungsgemeinschaft (DFG) -
Project-ID 318763901 - SFB1294. The author thanks Manfred Opper for insightful discussions on 
the subject of this work. 

Appendix 

In this appendix, we discuss an extension of the proposed methodology to infinite 
horizon control problems with cost function 

.J∞(x0, u0:∞) = E

[∫ ∞

0
e−γ t

(
c(Xt ) + 1

2
||ut||2

R

)
dt

]
. (78)
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Here .γ ≥ 0 denotes the discount factor. The associated transformed HJB equation 
becomes 

. − ∂tv
∗
t = b · ∇xv

∗
t + 1

2
Σ : D2

xv
∗
t . (79a) 

−
(

c + γ log v∗
t + 

1 

2
||σT∇x log v∗

t ||2 − 
1 

2
||RGT∇x log v∗

t ||2 
R

)
v∗
t 

(79b) 

with terminal condition .v∗∞ = 1. 
The only modification to the finite horizon formulations from Sect. 3 concerns 

the drift function (33), where .g̃t (x) has to now satisfy the Poisson equation 

. ∇x · (π̃t g̃t ) = −π̃t

(
γ log v∗

t + 1

2
||σT∇x log v∗

t ||2 − 1

2
||RGT∇x log v∗

t ||2
R − ζt

)

(80) 
and the EnKF-based approximation of . g̃t becomes 

. g̃KF
t (x) := 1

2
C̃t

{
γ I + At

(
Σ(m̃x

t ) − G(m̃x
t )RG(m̃x

t )
T
)} (

Atx + Atm̃
x
t + 2ct

)
.

(81) 
Please note that .C̃tAt = C̃t C̄

−1
t −I < 0 under the assumption that .C̃t < C̄t . Hence, 

the additional drift term stabilizes the time evolution of the reverse covariance 
matrix . C̃t towards . C̄t . 

One expects the forward process (36a) to reach an equilibrium distribution with 
mean .m̄eq and covariance matrix .C̄eq for .t > 0 sufficiently large. Furthermore, upon 
setting .∈ = 0 in (30) and since we are in equilibrium, the time derivative . dX̄t /dt

will either be zero or can be assumed to be relatively small. One may then fix these 
quantities in the reverse process (36b)–(36c), which, in turn, is integrated backward 
in time till an equilibrium distribution is reached with mean .m̃eq and covariance 
matrix . C̃eq. The optimal control is provided by 

.u∗
t (x) = RG(x)T

(
C̄−1

eq (x − m̄x
eq) − C̃−1

eq (x − m̃x
eq)

)
. (82) 

Such a methodology provides an approximation to the stationary solution of the 
HJB equation (79). 

The combined EnKF and diffusion map approximation formulation from 
Sect. 5.2 can be generalized to the infinite horizon optimal control problem in 
a similar fashion. Please note that the numerical results from Sect. 6.2 already 
implied an essentially time-independent control law. 

Alternatively, one can follow the actor-critic methodology to stochastic optimal 
control [18] and introduce a family of control laws .uθ (x) parametrized by . θ ∈ R

dθ

and set .γ = 0 in (78). For example, using a (stationary) linear control law of the
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form (5), the adjustable parameters, . θ , would be given by the (constant) matrix . At

and the (constant) vector . ct . 
More specifically, the actor chooses parameters, . θ , and considers the controlled 

SDE 

.dXt = b(Xt )dt + G(Xt)uθ (Xt )dt + σ(Xt )dBt . (83) 

The generator of this SDE is denoted by . Lθ . It is assumed that the SDE possesses 
an invariant density . πθ ; that is, 

.L†
θπθ = 0, (84) 

where . L†
θ denotes the adjoint of . Lθ [19]. The optimal . θ∗ is determined by 

.θ∗ = arg min
θ

πθ [cθ ] (85) 

with cost 

.cθ (x) = c(x) + 1

2
||uθ (x)||2

R. (86) 

The critic provides the value function . yθ , which satisfies the stationary HJB equation 

.Lθ yθ + cθ − πθ [cθ ] = 0. (87) 

Given the value function .yθ (x), the chosen parameter, . θ , can now be improved using 
the gradient [18] 

.∇θπθ [cθ ] = πθ [(∇θLθ )yθ ] + πθ [∇θ cθ ] = πθ

[
∇θu

T
θ

(
GT∇xyθ + uθ

)]
(88) 

and the optimal parameter value satisfies .∇θπθ∗ [cθ∗ ] = 0. 
In order to extend our McKean–Vlasov approach to this control setting, we 

replace the stationary HJB equation (87) by the forward-in-time HJB equation 

.∂tyt = Lθ yt + cθ − πθ [cθ ] (89) 

and apply the transformation .vt (x) = exp(−yt (x)) to obtain the modified HJB 
equation 

.∂tvt = Lθ vt −
(

cθ + 1

2
||σT∇x log vt||2 − ζt

)
vt (90) 

for .t ≥ 0 with initial condition .v0(x) = 1 and . ζt an appropriate normalization 
constant.
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Adapting our previously developed methodology, we introduce the density 

.π̃t (x) := Z−1
t vt (x)πθ (x) (91) 

with .Zt = πθ [vt ] and find that 

.∇xyθ = ∇x log πθ − lim
t→∞ ∇x log π̃t . (92) 

Furthermore, the density . π̃t satisfies the forward evolution equation 

.∂t π̃t = −∇x · (π̃t b̃θ ) + 1

2
∇x · (∇x · (π̃tΣ)). (93a) 

− π̃t

(
cθ + 

1 

2
||σT∇x log vt||2 − ζ̃t

)
. (93b) 

= −Lθ π̃t + ∇x · (π̃t∇x log vt ) − π̃t

(
cθ + 

1 

2
||σT∇x log vt||2 − ζ̃t

)
, 

(93c) 

with modified drift function 

.b̃θ (x) := −b(x) − G(x)uθ (x) + ∇x · Σ(x) + Σ(x)∇x log πθ (x) (94) 

and normalisation constant . ̃ζt . The associated forward McKean–Vlasov evolution 
equation is for .∈ = 0 given by 

.
dX̃t

dt
= b̃θ (X̃t ) − g̃t (X̃t ) − 1

2
(∇x · Σ(x) + Σ(x)∇x log π̃t (x)) , (95) 

with initial .X̃0 ∼ πθ and and the McKean–Vlasov drift term .g̃t (x) has to now satisfy 

.∇x · (π̃t g̃t ) = −π̃t

(
cθ + 1

2
||σT∇x log vt||2 − ζ̃t

)
. (96) 

We may assume that (93) possesses an invariant density . π̃θ . Then (92) reduces to 

.∇xyθ = ∇x log πθ − ∇x log π̃θ . (97) 

Using (92), the chosen parameters can be improved via standard gradient descent 
based upon the gradient (88) giving rise to time-dependent parameters, . θt , which, 
under suitable assumptions, converge to the optimal . θ∗. Furthermore, provided the 
parameters are adjusted slowly enough in time, one can make the assumption that 
.Lθt πθt ≈ 0. These assumptions suggest the coupled set of forward McKean–Vlasov 
evolution equations
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.
dXt

dt
= b(Xt ) + G(Xt)uθt (Xt ) − 1

2
∇x · Σ(Xt) − 1

2
Σ(Xt)∇x log πt (Xt ), . 

(98a) 

d X̃t 
dt 

= −b( X̃t ) − G( X̃t )uθ ( X̃t ) + 
1 

2
∇x · Σ(  ̃Xt) + Σ(  ̃Xt)∇x log πt ( X̃t ). (98b) 

− g̃t ( X̃t ) − 
1 

2 
Σ(  ̃Xt)∇x log π̃t ( X̃t ), . (98c) 

dθt 
dt 

= −δ
(
πt

[
(∇θLθt )yt

] + πt

[∇θ cθt

])
. (98d) 

= −δ πt

[
∇θu

T 
θt

(
GT∇xyt + uθt

)]
(98e) 

where .δ > 0 is sufficiently small, .g̃t (x) satisfies (96), and 

.∇xyt (x) := ∇x log πt (x) − ∇x log π̃t (x). (99) 

Here . πt denotes the law of . Xt and . π̃t the law of . X̃t . The numerical approximations 
introduced in Sect. 5 can now be applied to this system of McKean–Vlasov SDEs as 
well. 

In line with the previously stated (36), we note that (98b) can be rewritten in the 
form 

.
dX̃t

dt
= −g̃t (X̃t ) − dXt

dt
(X̃t ) + 1

2
Σ(X̃t )∇xyt (X̃t ). (100) 

In this context, it is worthwhile to consider the special case .G = R = I , .Σ = 2I , 
.b(x) = −∇xU(x), and .uθ (x) = −∇xΨθ (x) in more detail. Here . U(x) : Rdx → R

and .Ψθ(x) : Rdx → R are given functions. Under these assumptions, the density . πθ

is explicitly known and 

.∇x log πθ (x) = −∇xU(x) − ∇xΨθ (x). (101) 

Furthermore, we may assume that (98a) is in equilibrium and we can set 

.
dXt

dt
≡ 0 (102) 

in (100). Let .g̃t (x) = ∇xVt (x) denote the solution of (96) for appropriate potential 
.Vt (x), then it follows from (100) and .dX̃t /dt ≈ 0 that 

.∇xyt (x) ≈ ∇xVt (x). (103) 

Hence,
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.πt

[
(∇θLθt )yt

] + πt

[∇θ cθt

] ≈ πθt

[
∇θ (∇xΨθt )

T (∇xVt + ∇xΨθt

)]
(104) 

and the optimal parameter choice, . θ∗, satisfies 

.0 = πθ∗
[
∇θ (∇xΨθ∗)

T (∇xVθ∗ + ∇xΨθ∗
)]

(105) 

subject to the potential .Vθ∗(x) satisfying the Poisson equation 

.∇x · (π̃θ∗∇xVθ∗) = −π̃θ∗
(
cθ∗ + ||∇xVθ∗||2 − ζ∗

)
(106) 

with .π̃θ∗ ∝ e−Vθ∗ πθ∗ . The approach proposed in this chapter can now be viewed as 
providing a dynamic particle-based algorithm for solving the nonlinear Eqs. (105)– 
(106). It is also worth noting that (106) is equivalent to 

.Lθ∗Vθ∗ = −cθ∗ + πθ∗ [cθ∗ ], (107) 

which implies .∇xyθ∗ = ∇xVθ∗ as desired. 
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Maximum Likelihood Estimation of 
Subgrid Flows from Tracer Image 
Sequences 

Valentin Resseguier 

1 Model and Assumptions 

1.1 Objectives 

Let us consider several observed oceanic tracers . qi : 

.
Dqi

Dt
= Q̇i, (1.1) 

where . Q̇i is a source term smooth in time (e.g. .Q̇i = νiΔqi). For instance, . q1 would 
be the SST and . q2 the SSS on a bounded spatial domain .Ω ⊂ R

2. We can probably 
use Ocean colour or SSH as well. We assume that we can observe a set of snapshots 
of these tracers .(qi(x, tk))1<k<N . We aim at estimate the two-dimensional velocity 
field . v—which transports the tracer—from those tracer snapshots. 

First, we use a classical method [e.g. optical flow 8, 11, 13, 35] to estimate a 
(two-dimensional) velocity field from the tracer snapshots . qi . Note that the velocity 
estimate is probably different for each tracer . qi , that is why we denote it . wi . Say 
that we have S tracers, we can compute the mean drift estimate .w̃ = 1

S

∑
i wi . This  

estimate is hopefully accurate but limited in resolution, typically by the resolution of 
tracer images and by the optical flow algorithm efficiency. Therefore, we refer to this 
term as large-scale velocity component. This optical flow procedure is obviously of 
main importance but we do not address it here. A large literature already deals with 
it. We assume that an optical flow algorithm—says the most efficient optical flow 
algorithm of the literature—is applied before our method comes into play. 
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Then, we note that the tracer is also transported by a small-scale velocity . v' =
v − w̃. The chapter focuses on this residual velocity field. We aim at estimating it or 
at least estimating its statistics. For this purpose, we make use of modern machine 
learning and statistics informed by physics. Specifically, we consider maximum 
likelihood estimation, stochastic calculus, and processes statistics [27, 34, 36] 
guided by stochastic fluid dynamics [14, 16, 19, 25, 31, 38]. At long term we expect 
that our work will benefit for the recent advances in processes statistics for linear 
and linear SPDE with additive and multiplicative noises [1–3, 12, 15, 23]. 

1.2 Simplifications of the Problem 

Then, we neglect the time correlations of the residual velocity field. This assumption 
is supported by the fact that this velocity is small scale. The time step . Δt between 
two tracer snapshots is finite, and possibly larger that the small-scale velocity 
correlation time. Therefore, it is probably hopeless to estimate a time-correlated 
small-scale velocity field. The best we can do is probably estimating the statistics of 
a time-subsampled version of the small-scale velocity (subsampled at the time step 
. Δt). And this time-subsampling version is time-uncorrelated if . Δt is larger than the 
correlation time of the true small-scale velocity. 

We will also assume that . v' is Gaussian, homogeneous and isotropic in space. 
Therefore, we can parameterize . v' as the spatial convolution of space-time white 
noise: 

.v' = σ̆ ∗ Ḃ, (1.2) 

where . ∗ denotes the 2-dimensional spatial convolution, . σ̆ is a 2-dimensional vector 
of spatial filters and . Ḃ is space-time white noise. The spatial filter imposes a spatial 
correlation. The covariance of . v' is: 

.E{v'(x, t1)v
'(y, t2)} = 1

dt1
δ(t1 − t2)(σ̆ ∗ ˜̆σ )(x − y), (1.3) 

where . ˜̆σ (x)
Δ= σ̆ (−x). To simplify the notations, we will denote: 

.a(x − y)
Δ= 1

dtE
{
(σ̆ ∗ dBt ) (y + x) (σ̆ ∗ dBt )

T (y)
} = (σ̆ ∗ ˜̆σ )(x − y). (1.4) 

Under some assumptions on the filter . σ̆ , we can show that : .a(0) = a0Id where 
.a0 = 1

2 tr(a(0)) = 1
2||σ̆||2L2(Ω)

is a positive constant, sometimes called absolute 
diffusivity, Kubo-type formula or variance tensor [19]. It is equal to the variance of 
the small-scale velocity multiplied by its correlation time.



MLE of Subgrid Flows 271

1.3 Stochastic Transport 

Since . v' is assumed time-uncorrelated, the transport Eq. (1.1) can be interpreted as a 
dynamic under Location Uncertainty (LU) [19, 29] or Stochastic Advection by Lie 
Transport (SALT) [14]. With Itō notations, it reads: 

.∂tqi + (w̃ + v') ·∇qi ≈ ∂tqi + (wi + v') ·∇qi = a0
2 Δqi + Q̇i . (1.5) 

The term .v' · ∇qi acts as a time-uncorrelated random forcing. Eulerian stochastic 
transport equations always involve the Lagrangian displacement Stratonovich drift 
as advecting velocity. This is true for both Itō and Stratonovich notations of 
the Eulerian SPDEs and for both SALT and LU [32]. That Stratonovich drift 
corresponds to the Itō drift plus a possible correction. Since the optical flow will 
estimate the advecting velocity, we identify . wi as the Lagrangian displacement 
Stratonovich drift. Note that all stochastic differential equations of this chapter are 
expressed with Itō notations. We refer to [32] for a comparison between SALT and 
LU, and to [31] for a review of SALT/LU models and calibration methods. Note 
that [16, 25] and references therein have also studied in details stochastic transport 
of passive tracers by delta-correlated velocities. 

2 Quadratic Co-variation for Turbulence Amplitude 
Estimation 

We aim at estimating the statistics of . v'. In this section, we treat the estimation of 
the variance tensor . a0. The random forcing v' · ∇qi being delta-correlated, we can 
estimate the variance tensor from the following algorithm. 

We compute for every point x of the grid: 

1. dqi(x, t)  = qi(x, t  + Δt) − qi(x, t),  the tracer time increments, 
2. wi (x, t)  from an optical flow algorithm, 
3. dq̃i (x, t)  = dqi(x, t) − wi ·∇qiΔt, , 

At this step, we can also subtract some known source terms Q̇i if any. 
4. dq̃i (x, t)  a local time average of dq̃i (x, t),  
5. dq '

i (x, t)  = dq̃i (x, t) − dq̃i (x, t). 
This step should subtract the effect of the unknown smooth forcing Q̇i . It  

acts as a high-pass filter to keep only the highly oscillating components of dq̃i . 
According to the stochastic transport Eq. (1.5), we should have: 

.dq '
i (x, t) ≈ −(σ ∗ ΔB) ·∇qi + (something small) × Δt (2.1) 

with ΔB = Bt+Δt − Bt ∝
√

Δt a Brownian increment.
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6. At this point, we may check—by usual statistical tests—that the increments 
dq '

i (x, t)  is approximately time uncorrelated. 
In the LU-SALT theoretical framework, the delta correlation of these incre-

ments comes from the delta correlation of the subgrid velocity v'. This model 
assumption is consistent with the fact that the subgrid velocity has short 
correlation time. However, in practice, the subgrid velocity correlation time is 
finite. It is a recurrent issue for the data driven modeling of systems combining 
fast and slowly evolving components [4, 5, 9, 22, 24, 28]. If spurious correlations 
remain among the increments, we can down-sample the data to force the noise 
terms to be as decorrelated as possible. The literature proposes several time 
subsampling rate, generally related to the correlation time of those increments. 
Resseguier et al. [33] applied this method in a LU context. They estimate a 
minimal time subsampling rate from the empirical time correlation function 
of the subgrid velocity. Here, the empirical time correlation function of the 
increments dq '

i could be used instead. 
7. Now, we can compute what is called the quadratic co-variation of qi and qj , 

denoted < qi, qj >, in stochastic calculus: 

. < qi, qj > (x) =
⎲

k

dq '
i (x, tk)dq

'
j (x, tk). (2.2) 

8. We also compute the tracer gradients cross-correlations: 

.cij =
∫ NΔt

0
∇qi ·∇qjdt. (2.3) 

9. Finally, we obtain the variance tensor by a simple (overdetermined) linear 
system: 

.a0 ≈
∑

ijp cij (xp) < qi, qj > (xp)
∑

ijq c2ij (xp)
. (2.4) 

Indeed, the decorrelation between two time increments yields: 

. < qi, qj > ≈
∫ NΔt

0
∇qT

i (σ ∗ ΔB)(σ ∗ ΔB)T ∇qj

≈
∫ NΔt

0
∇qT

i a(0)∇qjdt = a0 cij . (2.5) 

Theoretically, only one tracer is needed here, even though we expect a higher 
accuracy with several observed fields.
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3 Parametric Model for the Small-scale Velocity Statistics 

The variance tensor, . a0, gives the “amplitude” of the small-scale velocity. But, 
we may want more information (e.g. correlation length, covariance or spectrum). 
For this purpose, we propose in this section a parametric model for the spatial 
“covariance”, .a(x − y), of that velocity introduced in Eq. (1.4). This model will 
depend on the variance tensor . a0 (the “variance”) and on some other parameters . θ . 
Sect. 4 will propose a method to estimate these parameters by maximum likelihood. 
Several choices of parametric covariance are possible (e.g., Gaussian or Matérn 
covariance). Here, we propose a self-similar model for turbulence statistics inline 
with previous work related to stochastic transport [16, 19, 30, 32]. 

A representation in Fourier space will be convenient for our ultimate estimation 
procedure. Hence we limit the present study to fields with periodic boundary con-
ditions and we introduce the unitary Fourier transform ζ̂ (k) = ∫

Ω
dx ζ (x)e−2iπk·x 

for any function ζ . 

3.1 Spectrum Matrix for Divergence-Free Velocity 

In order to simplify the homogeneous model (1.2) while enforcing the divergence-
free and spatial stationarity constraints, we can define the small-scale velocity . σdBt

with its streamfunction: 

.σdBt = ∇⊥ψσdBt = ∇⊥ψ̆σ ∗ dBt , (3.1) 

where . ∗ denote a spatial convolution and .∇⊥ the two-dimensional curl. Further-
more, we consider a Matérn for the streamfunction covariance: 

. γψσ (x) = 1
dtE {(ψσ (y + x)dBt) (ψσ (y)dBt)}

=
(
ψ̆σ ∗ ψ̆σ

)
(x) = Dgβ+1

2
(2πκm||x||) , (3.2) 

where .gν(r) = rνKν(r), . Kν is the modified Bessel function of second kind, . 1/2πκm

is the correlation length, and D is a constant defined in Appendix. We will show 
further below that .−β is the velocity spectrum slope. This covariance choice is 
physically relevant since it highlights an important symmetry of turbulence: the self-
similar distribution of energy. Indeed, the corresponding streamfunction spectrum is 
[17, 37]: 

.Sψσ (k) =
∣
∣
∣
̂̆
ψσ (k)

∣
∣
∣
2 = γ̂ψσ (k) = Sψσ (0)

(

1 +
(

k

κm

)2
)− β+3

2

(3.3)
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with a constant .Sψσ (0) defined in Appendix and the wavenumber .k = ||k||. The  
small-scale velocity spectrum matrix is 

. ̂a(k) = 1

dt
E

{
~(σdBt)(k) ~(σdBt)

H
(k)

}

= (2πik⊥)(2πik⊥)H Sψσ = J (2πk)(2πk)T J T Sψσ , (3.4) 

where . J is the matrix which performs a .π2 -rotation. Equations (3.3) and (3.4) 
confirm that the velocity spectrum slope is . −β. Note that .̂a(k) is of rank 1. 
Therefore, it is not invertible and even its pseudo inverse, .̂a(k)†, is not defined. 
This singularity will induce major difficulties in the following estimation procedure 
(see Sect. 4 below). In other words, our methodology cannot be applied with solely 
a solenoidal small-scale velocity. A workaround is the consideration of a divergent 
component. 

3.2 Spectrum Matrix from Helmholtz Decomposition of the 
Small-scale Velocity 

Now, we do not impose divergence free anymore. From Helmholtz-Hodge theorem, 
we can write the hidden small-scale velocity as a sum of a solenoidal and a potential 
components: 

.σḂ = ∇⊥ψ̆σ ∗ Ḃ∇⊥ + ∇φ̆σ ∗ Ḃ∇ , (3.5) 

where .Ḃ∇⊥
and .Ḃ∇ are two independent white noises. Here, we have implicitly 

assumed that the two components are independent from one another. We stick to 
Matérn covariances, using it from both components: 

.Sψσ (k) = Sψσ (0)

⎛

⎝1 +
(

k

κ∇⊥
m

)2
⎞

⎠

− β∇⊥ +3
2

, . (3.6) 

Sφσ (k) = Sφσ (0)

(

1 +
(

k 
κ∇
m

)2
)− β∇+3 

2 

. (3.7) 

To simplify, we may choose .κ∇⊥
m = κ∇

m = κm and set .2πκm to be the smallest well 
resolved scale contained in the large-scale velocities . w̃. Then, the diagonalization 
of the spectrum matrix is straightforward : 

.̂a(k) = (2πk⊥)(2πk⊥)T Sψσ + (2πk)(2πk)T Sφσ = KSKT , (3.8)
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denoting .K =
[
k̃ k̃

⊥]
, .S =

[
S∇ 0

0 S∇⊥

]

=
[
(2πk)2Sφσ 0

0 (2πk)2Sψσ

]

, with 

.k̃ = k/k, .S∇ = (2πk)2Sφσ , and .S
∇⊥ = (2πk)2Sψσ , the normalized wave-vector, 

the divergent and the solenoidal subgrid velocity spectra respectively. Note that the 
spectrum matrix is now full rank. 

3.3 Velocity Covariance 

Once the parameters optimized, we can use of the known subgrid spectra (3.8) and 
covariance: 

.a(x) = JH γψσ
J T + H γφσ

, . (3.9) 

= (2πκm)2D∇⊥
(

g
β∇⊥−1 

2 

(2πκm||x||) Id 

−g
β∇⊥ −3 

2 

(2πκm||x||)
(
(x⊥)(x⊥)T

))

+(2πκm)2D∇
(

gβ∇−1 
2 

(2πκm||x||) Id − gβ∇−3 
2 

(2πκm||x||) (
xxT

)
)

, 

(3.10) 

with constants .D∇⊥
,D∇ defined in Appendix as functions of the respective variance 

tensors .a∇⊥
0 and . a∇

0 , turbulence kinetic energy spectrum slope .β∇⊥
and . β∇ , and the 

correlation length .1/κm. For synthetic notations, we also introduce . eα = a∇⊥
0 /a∇

0
the variance ratio between the solenoidal and potential components. 

3.4 Parametric Model Summary 

We have introduced a parametric model for the subgrid velocity depending on 
the variance tensor . a0 and 3 other parameters .θ = (β∇⊥

, β∇⊥
, α). Finally, our 

parametric model can be summarized as follow: 

.̂a(k) = KSKT =
[
k̃ k̃

⊥]
[
S∇(k) 0

0 S∇⊥
(k)

]
[
k̃ k̃

⊥]T

, . (3.11) 

S∇(k) = a0
(

1 

1 + eα

)(
2π((β∇)2−1) 

(2πκm)2

) (
k 
κm

)2
(

1+
(

k 
κm

)2
)− β∇+3 

2 

, . (3.12)
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S∇⊥ 
(k) = a0

(
eα 

1 + eα

)(
2π((β∇⊥ 

)2 − 1) 
(2πκm)2

) (
k 
κm

)2
(

1 +
(

k 
κm

)2
)− β∇⊥ +3 

2 

. 

(3.13) 

Such parametrization naturally ensures that the total variance is always . a0 and that 

the solenoidal and potential variances are .a∇⊥
0 = a0

(
eα

1+eα

)
and . a∇

0 = a0

(
1

1+eα

)

respectively, both restricted to .[0, a0]. 

4 Maximum Likelihood Estimation of Turbulence 
Correlations 

The variance tensor . a0 (the “variance”) can be estimated by quadratic variation 
as explained in Sect. 2. The other parameters . θ will be estimated by maximum 
likelihood. However, due to the multiplicative structure of the random forcing 
in (1.5), the tracers qi are not Gaussian. So, the tracers likelihood is not trivial. 
Fortunately, the Girsanov theorem gives the expression of the mutual likelihood 
of the whole set (qi(xq, tk))1<q<M 

1<k<N 
. Note that most of the results of this section 

are relatively general. They can be applied to most homogeneous subgrid spatial 
covariance parametrisations in stochastic transport contexts. 

Piterbarg and Rozovskii [25, 26] have already proposed surface current esti-
mations from satellite image by maximum likelihood estimation. However, their 
algorithm estimates a constant velocity field only. Then, they repeat the operation 
on a multitude of patches to eventually obtain a gridded velocity field. We believe 
that such coarse-grid velocity field is probably better estimated by state-of-the-
art optical flow methods, and we do not address this issue here. We rather try to 
extract additional statistical information from the residue of coarse-scale current 
estimations. 

4.1 Girsanov Theorem 

In the literature of processes statistics, a lot of parametric estimation methods rely 
on likelihood. Indeed, denoting . θ the parameters, even for a non-Gaussian process 
.Q(t), such as 

.
d

dt
Q(t) = F (Q(t)|θ) + G(Q(t)|θ)Ẇ , (4.1)
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where . Ẇ is a vector of independent white noise, there is a simple expression of 
the joint likelihood, .p

({Qt |0 < t < NΔt}|θ)
. Here above . Ẇ is to be interpreted 

in a Itō sense. We assume that .GGT is invertible where .G = G(Q(t)|θ). We will 
discuss the validity of this assumption later in the chapter. The Girsanov theorem 
[21] leads as explained in [27] (Eq. (3.3.2) page 147) to the following log-likelihood: 

. l ({Q(t)|0 < t < NΔt}|θ) =
∫ NΔt

0
log |Σ(Q(t)|θ)|− 1

2 dt

+
∫ NΔt

0

(
F T Σ−1

)
(Q(t)|θ)dQ(t)

− 1
2

∫ NΔt

0

(
F T Σ−1F

)
(Q(t)|θ)dt. (4.2) 

where 

. Σ−1 = G[[GT G]†]2GT = G[[GT G]†]2GT [GGT ][GGT ][GGT ]−2

= GGT [GGT ]−2 = [GGT ]−1, (4.3) 

i.e. .Σ = GGT = [GGT ](Q(t)|θ) is the noise conditional covariance given the 
current state .Q(t) and the parameter . θ . Here, we have added the normalizing 

constant logarithm, .
∫ NΔt

0 log |Σ |− 1
2 dt , since . Σ depends on the parameters . θ to be 

estimated. 
Note that the Girsanov theorem does not give us the conditional probability 

density function of .Q(t) at time t but only the joint probability density function 
of .{Q(t)|0 < t < t}. The above formula is widely used to perform maximum 
likelihood estimations and Bayesian estimations in finance [27, 34, 36] and more 
recently to linear and nonlinear SPDE in biology and reaction-diffusion systems 
with additive noise [1–3, 12, 23] and multiplicative noise [15]. Note that the 
Girsanov theorem is also valid in infinite dimension [10, 18]. Janák and Reiß [15] 
treat the variance estimator aside, before performing MLE. This prevents theoretical 
estimation issues. That is why we operate similarly here: first estimating the variance 
tensor and then estimating the other covariance parameters. 

As already discussed in Sect. 2, another important issue to deal with is the finite 
time correlation time of the observed increments. It is a common problem that biases 
MLE [4, 5, 9, 22, 24, 28]. As explained Sect. 2, we address this issue by subsampling 
the data. 

An alternative estimation method can also be derived from the discretized-in-
time version of the stochastic differential Eq. (4.1). . Q is not Gaussian but . dQ(t)

and thus .Q(t + dt) are conditionally Gaussian given .Q(t) and . θ . By factorizing 
the conditional Gaussian distribution from .t = 0 to .t = NΔt , we obtain a similar 
likelihood expression.
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4.2 Application of the Girsanov Theorem 

After spatial discretization, the stochastic Eq. (1.5) reduces to the form (4.1). 
A sequence of satellite images of a tracer could hence be used to estimate a 
parametrization of the stochastic model. In this case, 

.Qpi(t) = qi(xp, t), . (4.4) 

Fpi(t) =
(−wi ·∇qi + a0 2 Δqi + Q̇i

)
(xp, t), . (4.5) 

(G Ẇ )pi(t) =
(−v' ·∇qi

)
(xp, t), . (4.6) 

Σpi,rj (t) = (GGT )pi,rj (t) = ∇qT 
i (xp, t)a(xp − xr )∇qj (xr , t), .(4.7) 

∀Q', (ΣQ')pi(t) = ∇qT 
i (xp, t)  

⎛ 

⎝a ∗ 

⎛ 

⎝
⎲

j 
∇qjq

'
j 

⎞ 

⎠ 

⎞ 

⎠ (xp, t)  

where q '
j (xr )

Δ= Q'
jr  

(4.8) 

In practice, we shall use finite-dimensional approximations for every calculations 
steps. For any d-dimensional vector fields . ζ , we must define spatially-discretized 
version.We represent . ζ by .M×d-dimensional vectors, . Z. More precisely, we denote 
.Zpi = ζi(xp), We may also give a matrix notation .A = A(θ) to the convolution 
and – with a slight abuse of notations – we identify: 

.∀Z, A(θ)Z = a(θ) ∗ ζ (4.9) 

To simplify, we will consider periodic boundary conditions and a discretisation 
over a uniform spatial grid. It prevents technical problems with convolutions and 
Fourier transform. Then, we introduce the local matrix .Y is (x, t) = ∂xs qi(x, t) and 
the associated block-diagonal matrix . Y for the point-wise application of the small 
matrix . Y : 

.Yrj,pi = Yrj,pi(Q(t)) = Yji(xr , t)δrp = ∂iqj (xr , t)δrp. (4.10) 

We can eventually rewrite the operator .Σ = Σ(Q(t)|θ) as : 

.∀Q', ΣQ' = YA(θ)YT Q', (4.11) 

i.e. .Σ = YA(θ)YT where .Y = Y(Q(t)).
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4.3 Inversion of the Operator Σ 

If the matrix . Y is everywhere sufficiently well conditioned (in particular if we 
observe enough tracers and if the fronts of different tracers are not aligned), we 
can locally consider the pseudo-inverse of . Y , that we will denote . Y †. Accordingly, 
we can obtain a approximate inverse of the operator . Σ : 

.Σ−1 = (Y†)T A−1(θ)Y†. (4.12) 

where .A−1(θ) is a deconvolution operation. It can be computed in Fourier space 
or using other usual deconvolution methods. Needless to say that . Y†

rj,pi =
Y
†
j i(xr , t)δrp is also block-diagonal, enabling such large matrix computation is 

reasonable time. Using a given parametric form for . a (see Sect. 3), we can compute 
.A−1 in Fourier space. For continuous Fourier transform, it would read: 

.∀ζ , ~[a∗]−1ζ = ~[a∗]−1ζ̂ = â−1ζ̂ , (4.13) 

assuming that the small-scale spectrum matrix . ̂a has full rank. From (3.8), we have  
an explicit expression of the inverse: 

.̂a−1 = KS−1KT . (4.14) 

In practice, we shall use the Fast Fourier Transform (FFT). For an uniform spatial 
grid of M points, we represent . ̂ζ by .̂Z = P H Z. More precisely, we denote . ̂Zpi =
ζ̂i (kp), .Ppi,rj = δij e

2iπxp ·kr and .P H = P
T
its conjugate transpose, i.e. . P H

rj,pi =
δij e

−2iπxp ·kr . The inverse discrete Fourier transform is defined by matrix .
1
M

P since 
.(P H )−1 = 1

M
P . We can now express the deconvolution (4.13) with the block-

diagonal matrix . ̂A
−1

(θ) = P −1A−1(θ)P

.∀Z, P H (A−1(θ)Z) = (P −1A−1(θ)P )Ẑ (4.15) 

where .
(
Â

−1
(θ)

)

rj,pi
= (P −1A−1(θ)P )rj,pi = 1

M
(̂a−1)ji(kr , θ))δrp. Finally, 

from (4.12) we obtain a simple matrix form for the inverse covariance: 

.Σ−1 = 1

M
(Y†)T PÂ

−1
(θ)P H

Y
†. (4.16) 

The efficiency of the FFT algorithm together with the block-diagonal structures of 
the other matrices ensure a low computational cost. With the expression of . F and 
.Σ−1, we can now compute the expression of the log-likelihood (4.2).
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4.4 Gradient of the Likelihood 

In order to estimate the parameters . θr , we will need to maximize the log-likelihood, 
by e.g. gradient descent. Such algorithm necessitates the log-likelihood derivative 
along each parameters. Since . F does not depend on . θ , we have  . ∂θr l = ∫ NΔt

0 d∂θr l

with : 

.d∂θr l = −1

2
∂θr log |Σ |dt + F T ∂θr (Σ

−1)dQ(t) − 1

2
F T ∂θr (Σ

−1)Fdt, (4.17) 

where 

.∂θr (Σ
−1) = 1

M
(Y†)T P ∂θr (Â

−1
)P H

Y
†, . (4.18) 

∂θr

(
Â

−1
)

rj,pi 
= 

1 

M 
∂θr (̂a

−1)ji(kr )δrp, . (4.19) 

∂θr

(
â−1

)
= K∂θr (S

−1)KT = K

[
∂θr (1/S

∇) 0 

0 ∂θr (1/S
∇⊥ 

)

]

KT (4.20) 

The normalizing constant can be differentiate with Jacobi formula: 

.∂θr log |Σ | = tr
(
Σ−1∂θr Σ

)
, . (4.21) 

= tr

((
1 

M 
(Y†)T PÂ

−1 
P H 

Y
†
) (

1 

M 
YP ∂θr (Â)P H 

Y
T

))

, .(4.22) 

= tr
(
Â

−1 
∂θr (Â)

)
, . (4.23) 

= 
1 

M

⎲

ir 
(̂a−1∂θr â)ii (kr ), . (4.24) 

= 
1 

M

⎲

r 
tr

(
(KS−1KT )(K∂θr (S)KT )

)
, . (4.25) 

= 
1 

M

⎲

r

(
∂θr log S

∇(kr ) + ∂θr log S
∇⊥ 

(kr )
)

, (4.26) 

which can evaluate analytically from (3.12)–(3.13). We skip these straightforward 
calculations for concision and readability. We now gather the different terms 
to obtain the full the log likelihood gradient to be used in the gradient descent 
algorithm, to eventually find the optimal covariance parameters . θ : 

.d∂θr l = − 1

2M

⎲

r

(
∂θr log S∇(kr ) + ∂θr log S∇⊥

(kr )
)
dt
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+
(

F (Q(t)|θ)T 1 

M 
(Y†(t))T P K∂θr (S

−1)KT P H 
Y
†(t)

)

×
(

dQ(t) − 
1 

2 
F (Q(t)|θ)dt

)

, (4.27) 

where . K and .S
−1 are the block-diagonal versions of . K and .S−1 : 

.S
−1
rj,pi = (1/Sjj (kr )) δjiδrp and Krj,pi = Kji(kr )δrp. (4.28) 

Since all matrices except . P are block diagonal, their evaluations have a complexity 
.O(M). Only  . P necessities a complexity .O(M log2(M)) (Fast Fourier Transform 
algorithm along two dimensions). Evaluating one gradient step requires the time 
integration of the above formula over N time steps. The computational cost of one 
gradient is hence .O(NM log2(M)) only. 

5 Conclusion 

We have proposed a new approach to estimate statistics of a hidden subgrid velocity 
field from a sequence of tracer images. The first contribution of the chapter 
is to convert LU-SALT into (4.1) to then apply standard MLE techniques. The 
second important contribution is an efficient method to solve the MLE optimization 
problem through a fast log-likelihood gradient evaluation algorithm (4.27). We  
rely on a parametric model and Fourier-based representations of that velocity 
to tackle the curse of dimensionality of the problem. As statistics tools, we 
choose quadratic co-variation and maximum likelihood estimation for their reliable 
theoretical grounds. Notably, if the subgrid velocity component is solenoidal, its 
spectrum matrix has rank 1 locally and cannot be inverted. As such, we cannot 
apply our method. We have to consider both divergent and rotational terms to obtain 
full rank spectrum matrix, evaluate the joint tracers series distribution, and perform 
MLE. 

Measurement errors are neglected here. True measurement errors are generally 
weak for satellite images of the oceanic tracers (e.g., SST) even though the image 
resolution is always limited. Fake measurement errors are sometimes considered to 
mimic the effect of observed aliased geophysical signals (e.g., nugget in altimetry 
optimal interpolation (i.e. kriging)). This aliasing is often filtered out by regulariza-
tion. We do not consider it explicitly here, but this preprocessing could be pursued 
before applying our method. If we work on L4 satellite products, this would be the 
case. Nevertheless, by forgetting resolution issues we may increase model errors. 
These errors may be large and may lead to statistics robustness issues (e.g., when 
estimating quadratic variations, correlation times, and other parameters through 
MLE). Indeed, even though erroneous advection—and thus structure mislocation— 
is well modeled by SALT-LU, we may debate about the dynamics assumed for the
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partially-resolved geophysical observables. Errors in the dynamics itself may not be 
negligible. To alleviate this issue together with regularizing the statistics, we could 
probably add an additive noise in the modeled dynamics on top of the multiplicative 
noise. We could try to jointly learn this additional stochastic forcing terms following 
[26]. Alternatively, the additive white noise forcing variance could be inferred from 
the tracer quadratic variation (2.2). This statistic would contain the information 
of both the forcing variance and the subgrid velocity variance. The number of 
available statistics being large (one by grid point), the least square problem can be 
solved easily. Considering additive noise complexifies the evaluation of the inverse 
covariance matrix . Σ but the Woodbury identity can probably yields a tractable 
solution. 

In future work, we could combine our approach with stochastic optical flow 
algorithms [6, 7]. Furthermore, we will adapt our algorithm to deal with non-
periodic boundary conditions. Then, we shall apply this methodology to synthetic 
and real satellite images of tracers like SSS or SST. Our method may also be 
generalized to treat not only 0-form like SSS or SST, but also more complex 
differential forms through stochastic geometric fluid dynamics [14, 38]. As such, 
we will be able to directly treat surface currents observations from high-frequency 
radars or wind observations from Doppler radars. More generally, we hope that 
our work will enable new calibration methods for SALT and LU, but also new 
observation capabilities from current and future satellite observations, and better 
physical understanding of tracer budgets from them [e.g. 20]. 

Acknowledgments We thank Bernard Delyon for pointing out the issues arising in estimating the 
variance tensor directly from MLE. We also thank Bertrand Chapron and the reviewers for helpful 
discussions, comments and inspiring references. 

Appendix: Variance Parameters for Streamfunction, Potential 
and Velocity Covariances 

From properties of the modified Bessel function of second kind, we get the 
following formula: 

.∂rgν(r) = −rgν−1(r), . (A.1) 

∂2 r gν(r) = −gν−1(r) + r2gν−2(r), . (A.2) 

∇ (gν(||x||)) = −xgν−1(||x||), . (A.3) 

H (gν(||x||)) = −gν−1(||x||)Id + gν−2(||x||)xxT , . (A.4) 

gν(r) →
r→0 

Γ (ν)  
21−ν , (A.5)
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with . Γ is the Gamma function. From the last equation, we obtain the normalization 
factor of the streamfunction and potential covariances: 

.D = 2
1−β
2

Γ (
β+1
2 )

γψσ (0). (A.6) 

From the other formula above, we can evaluate the divergence-free velocity 
covariance: 

.a∇⊥
(x) = 1

dt
E

{(
σ∇⊥

dBt

)
(y + x)

(
σ∇⊥

dBt

)T

(y)

}

, . (A.7) 

= JH γψσ J
T , . (A.8) 

= D∇⊥ 
(2πκm)2

(

g
β∇⊥−1 

2 

Id − g
β∇⊥−3 

2 

(Jx)(Jx)T

)

. (A.9) 

Finally, the variance tensor is .a∇⊥
(0) = a∇⊥

0 Id with 

.a∇⊥
0 = (2πκm)2

β∇⊥ − 1
γψσ (0) and D∇⊥ = 2

1−β∇⊥
2

Γ

(
β∇⊥+1

2

)
β∇⊥ − 1

(2πκm)2
a∇⊥
0 , (A.10) 

About the amplitude spectrum .Sψσ (0), we know from [17, 37] that: 

. Sψσ (0) =
4πΓ

(
β∇⊥+3

2

)

2πκmΓ

(
β∇⊥+1

2

)γψσ (0) = 2π(β∇⊥ + 1)

(2πκm)2
γψσ (0), (A.11)

= 2π((β∇⊥
)2 − 1)

(2πκm)4
a∇⊥
0 .

The formula for the potential component are similar, replacing .∇⊥ by . ∇, . J by . Id , 
and . ψσ by . φσ . 
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Transport Noise Defined from Wavelet 
Transform for Model-based Stochastic 
Ocean Models 

Francesco L. Tucciarone, Long Li, Etienne Mémin, and Louis Thiry 

1 Introduction 

The global climate system is strongly depending on the Ocean’s state, as the 
interaction with the Atmosphere in the forms of mutual exchange of energy fluxes 
of different natures and global heat redistribution plays a crucial role in the climate 
regulation [1]. While observations are crucial for understanding the current state 
of the global ocean, numerical simulation remains the only way to forecast the 
system and assess future states. This is fundamental for predicting meteorological 
and climatological events and related hazards. Large-scale simulations of the Ocean 
(as well as of the Atmosphere) remain the primary tool of investigation while 
high resolution simulations can be obtained only for small geographical domains 
or short integration periods. The complex interdependence of mesoscale and sub-
mesoscale dynamics, however, is lost in state-of-the-art simulations when performed 
at scales that are too large to capture these phenomena. Most of the modeling 
challenges arise from the representation of these effects in a parametrized manner 
[2]. A novel research trend involves incorporating perturbations and noise terms 
into the dynamics. The goal is to enhance the variability and parameterize sub-
grid processes, turbulence, boundary value uncertainty, and account for numerical 
and discretization errors. Along this path, two companion methodologies have 
been introduced by Mémin [3] and Holm [4], providing rigorously justified 
methodologies to define stochastic large scales representations of the Navier-Stokes 
equations [5] conserving energy and circulation, respectively. These two models 
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rely on a stochastic decomposition of the Lagrangian trajectory into a smooth-in-
time component induced by the large-scale velocity and a random fast-evolving 
uncorrelated displacement noise, following ideas proposed by [6–8]. The solid 
theoretical background allows the definition of a large-scale representation with a 
stochastic component representing the subgrid contribution, introducing additional 
degrees of freedom to be exploited in the modelling of specific phenomena (such 
as large scale components [10, 11], small-scale turbulence [12, 13], boundary 
layer effects [14] or convection processes [15]) or to devise intermediate models 
[13, 14, 17–19]. The Location Uncertainty (LU) model [3] has been applied to the 
barotropic quasi-geostrophic model [17, 20], the baroclinic quasi-geostrophic model 
[9], the single-layered shallow water model [22], the surface quasi-geostrophic [21], 
hydrostatic primitive equations [10, 11] and recently non hydrostatic Boussinesq 
equations [16], proving its efficacy in structuring the large-scale flow [17], repro-
ducing long-term statistics [20] and providing a good trade-off between model 
error representation and ensemble spread [21, 22]. In this work, the efficacy of a 
wavelet representation [23, 24] for the small scale turbulence is assessed in the 
context of stochastic hydrostatic primitive equations following [10, 11] and in a 
novel stochastic multi-layered shallow water model, based on the derivation of [22] 
and a modified implementation of [25]. 

2 Location Uncertainty (LU) 

Location Uncertainty is based on a stochastic decomposition of the Lagrangian 
trajectory . Xt of the fluid particle, so that the displacement is represented by means 
of the stochastic differential equation (SDE) 

.dXt = vt dt + σ tdBt , (1) 

where .X : S × R+ → Ω is the fluid flow map, i.e. the trajectory followed 
by fluid particles starting at initial map .X|t=0 = x0 of the bounded domain 
.S ⊂ Rd (d = 2, 3). The trajectory is thus split into a smooth-in-time (Lagrangian) 
velocity, . vt , and a stochastic contribution .σ tdBt , referred to as noise, that is non-
smooth in time. The first component in Eq. (1) is associated to the resolved velocity 
in the integration of the equations of motions, while the second component accounts 
for processes that are either neglected or not representable at a given resolution. 
In order to specify the characteristic of this last (martingale) term, let H be the 
Hilbert space, .H = (

L2 (S) ,Rd
)
, the space of square integrable functions over . S

with value in . Rd , with inner product .(f ,g)H = ∫
S(f Tg) dx and induced norm 

.||f ||H = (f ,f )1/2
H and let T be a finite time, .T < +∞. In this context, . {Bt }0≤t≤T

is a cylindrical Wiener process defined on H [26]: 

.Bt =
⎲

i∈N
β̂iei , (2)
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where .(ei )i∈N is a Hilbertian orthonormal basis of the space H and . (β̂i)i∈N
is a sequence of independent standard Brownian motions on a stochastic basis 
.(Ω,F , (Ft )t∈[0,T ],P). The application of a Hilbert-Schmidt symmetric integral 
kernel .σ tf (x) = ∫

S σ̆ (x, y, t) f (y) dy to the Wiener process . B on H constitutes 
the theoretical definition of the noise term: 

. (σ tdBt )
i (x) =

∫

S
σ̆ik (x, y, t) dBk

t (y) dy, (3) 

where the Einstein convention for summation over repeated indices is adopted. 
The kernel . σ̆ is a Hilbert-Schmidt integration kernel, assumed to be bounded in 
space and time. It follows that the convolution of . σ̆ with . Bt is Hilbert-Schmidt, 
compact, self-adjoint, positive definite and thus, by Mercer’s theorem, it admits 
eigenfunctions and eigenvalues decreasing toward zero. This defines a centred 
Gaussian process 

.

∫ t

0
σ sdBs (Xs) ∼ N

(
0,

∫ t

0
Q (Xs ,Xs , s, s) ds

)
, (4) 

where the covariance tensor . Q is defined as 

. Qij (x, y, t, s) = E
[
(σ tdBt (x))i (σ tdBs (y))j

]

= δ (t − s) dt

∫

S
σ̆ik (x, z, t) σ̆kj (z, y, s) dz,

with the integral kernel . σ̆ modelled in such a way that a spatial correlation to the 
fast/small scale components is imposed. The strength of the noise is measured by the 
diagonal components of the covariance tensor per unit of time, . a(x, t)δ(t − t ')dt =
Q(x, x, t, t '), also referred to as the variance tensor. Notably, the variance tensor 
has the dimension of a viscosity in .m2s−1 and is symmetric and positive definite. 
Furthermore, the covariance operator . Q is a compact self-adjoint positive definite 
operator on H , that thus admits a set of orthonormal eigenfunctions . {ξn (·, t) , n ∈
N} with (strictly) positive eigenvalues .λn (t) decreasing toward zero and satisfying 
.
∑

n∈N λn (t) < +∞. Consequently, the noise term and the variance tensor can be 
expressed with respect to the basis provided by the eigenfunctions randomized by a 
series of scalar Brownian variables, . βt,n, as  

.σ tdBt (x) =
⎲

n∈N
λ1/2 (t) ξn (x, t) dβt,n, . (5) 

a (x, t) =
⎲

n∈N 

λ (t) ξn (x, t) ξT 
n (x, t) . (6)
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The noise term defined above is centred, but as introduced in [9, 27] and applied in 
[11, 28], a modification can be applied through Girsanov transformation in order to 
consider a Lagrangian displacement of the form 

.dXt = [vt − σ tYt ] dt + σ tdBt , (7) 

where a correlated component .σ tYt can be introduced to model phenomena 
displaying a non-zero time average like in the case of ocean eddies and gyres. 

The transition from the Lagrangian point of view to the Eulerian point of view 
is provided by the stochastic Reynolds transport theorem (SRTT), introduced in [3]. 
It describes the rate of change of a random scalar q transported by the stochastic 
flow (1) within a flow volume . Vt : 

.d
∫

Vt

q (x, t) dx =
∫

Vt

{
Dt q + q∇·[v* dt + σ tdBt

]}
(x, t) dx, (8) 

with the operator 

.Dt q = dt q + [
v* dt + σ t dBt

] ·∇q − 1

2
∇·(a∇q) dt, (9) 

defining the stochastic transport operator. Each term of this operator has a physical 
interpretation. Proceeding in order, the first term of the right-hand side of (9) is  
the increment in time at a fixed location of the random process q, that is . dt q =
q (x, t + dt)− q (x, t). This contribution plays the role of the partial time derivative 
for a process that is not time differentiable. In the square brackets it is enclosed the 
stochastic advection displacement. It involves a time correlated modified advection 
velocity, 

.v* = v − 1

2
∇·a + σ T

t (∇·σ t ) , (10) 

and a fast evolving, uncorrelated noise .σ t dBt . The advection of the process q by 
this term leads to a multiplicative noise which is non Gaussian. This noise is referred 
to as transport noise in the literature. The second term in Eq. (10) represents the 
effective transport velocity induced by statistical inhomogeneities of the noise term, 
and it is referred to as Itô-Stokes drift in [17]. In the following it is denoted as 
.vs = 1

2∇·a. The last term of the transport operator is a dissipation term that depicts 
the mixing mechanism due to the unresolved scales. In the following, the Location 
Uncertainty principle will be applied to a set of two-dimensional equations, the 
Shallow Water system, and to a set of three-dimensional equations, the Primitive 
Equations model. The stochastic transport operator . Dt has thus to be intended as 
built with two-dimensional differential operators in the former case, and with three 
dimensional differential operators in the latter.
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3 Noise Modelling with Wavelets 

The modelling of the noise is chosen to enhance the accuracy and the variability of 
a (large-scale) simulation in representing the effect of the truncated scales through 
random variables. Many data-driven approaches referenced previously have been 
proposed to that end (see for instance [9–11, 21]). Here, our goal is to propose a 
model-based approach for the noise definition relying only on the current state of 
the simulation. Opposite to data-driven technique, the noise hence depends only 
on the solution. It is important to outline that this does not violate any principle 
of the LU derivation. Let us note however, that the noise needs to remain smooth 
enough in space to guarantee the existence of martingale solution [5]. A wavelet is a 
compactly supported wave-like oscillation that is localized in time [23, 24]. Wavelet 
processing has the characteristic of combining data processing in the time domain 
and in the frequency domain, with a reasonable trade-off. The forward wavelet 
transform decomposes the signal . u from the time domain to its representation in 
the wavelet basis, an oscillatory waveform that reveal many signal properties and 
provide a sparse representation. Conversely, the inverse transform reconstructs the 
signal from its wavelet representation back to the time domain. The result of this 
operation is a set of details .(u,ψj,k)L2 and a large scale component .(u,φC,k)L2 . 
These fields are then randomised with a Brownian field . Bt defined on each point of 
the computational wavelet coefficients grid, so that the noise wavelet ansatz can be 
defined as 

. σ tdBt (x) =
2C−1⎲

k=0

(u(n),φC,k)L2 dBt,C,k φC,k (x)

+
F⎲

j=C

2j −1⎲

k=0

(u(n),ψj,k)L2 dBt,j,k ψj,k (x) . (11) 

In the previous equation, F and C are indexes that divide the details and the large 
scale component. The superscript .(n) emphasizes that the wavelet processing is 
applied to the current-state n of the simulation. The first component of the noise 
represents the randomised large scale dynamics, and is set to zero to represent 
the small scale features only and perform a spatial Reynolds-like decomposition. 
The definition of the variance tensor can then be based on the definition of the 
details. Such type of noise terms can easily be shown to be well defined. They are 
spatially regular and their regularity is given by the choice of the wavelet basis. The 
wavelet transform conveys a natural multi-resolution structure to the noise as well 
as a natural notion of spatial scale at each level of the multi-resolution hierarchy.



292 F. L. Tucciarone et al.

4 Stochastic Shallow Water Model 

A sketch of the stacked shallow water system is depicted in Fig. 1. In the framework 
of location uncertainty, the governing equations for the k-th layer (.k = 1, . . . , N) 
are formulated as follows: 

. Horizontal momentum:

Dtuk + f u⊥
k dt = (−∇Pk + F k) dt, . (12) 

Mass conservation : 
Dt hk + hk∇ ·  uk dt = 0, (13) 

where .uk = (uk, vk) denotes the horizontal velocity with .u⊥
k = (−vk, uk), . hk stands 

for the variable layer thickness, f is the Coriolis frequency, .Pk = ∑k−1
𝓁=0 g'

𝓁η𝓁 is the 

Montgomery potential, .η𝓁 = ηb + ∑N
j=𝓁+1 hj represents the vertical position of 

interface . 𝓁 with . ηb indicating the position of the bottom topography, . g'
𝓁 = g(ρ𝓁+1 −

ρ𝓁)/ρ1 is the reduced gravity with layer density . ρ𝓁 and gravity value g, and . F k =
∂zτ |k ≈ (τ k−1 − τ k)/hk is the vertical stress divergence. In particular, we consider 
only a steady surface wind stress . τ 0 and a linear bottom drag stress . τN . Moreover, 
when discussing the shallow water model the stochastic transport operator has to be 
understood as a two-dimensional operator. Derivation of this model can be found in 
[22] while a discussion of its analytical properties has been done in [29]. 

Fig. 1 Illustration of a three-layer ocean shallow water model. Each layer k has a uniform density 
. ρk and background height . Hk , a horizontal momentum . uk and a variable thickness .hk = ηk−1 −ηk , 
where . ηk represents the position of the interface between layers k and .k + 1
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Table 1 Common parameters for all the models 

Parameters Value Description 

.X × Y (5120,5120) km Domain size 

.Hk (400,1100,2600) m Mean layer thickness 

.g'
k (0.025,0.0125) m s.−2 Reduced gravity 

.f0 .9.375 × 10−5 s.−1 Mean Coriolis 

.β .1.754 × 10−11 m. −1 s.−1 Coriolis gradient 

.τ0 0.08 Pa Wind stress magnitude 

.δek 2 m Bottom Ekman layer thickness 

For numerical studies, we consider a three-layer shallow water system with a 
steady symmetric zonal wind stress .τx

0 = (τ0/ρ1)cos(2π(y − Y/2)/Y ), a flat 

bottom .ηb = −∑N
k=1 Hk , and a linear bottom drag .τN = (δekf0/2)uN . The  

common parameters for all the simulations are listed in Table 1. Time integration 
is performed with a third order Strong Stability Preserving Runge-Kutta (SSPRK3) 
method [30] for the deterministic part and a Milstein scheme (without Levy area) 
for the stochastic part [31, 32]. The time step is set to .0.6Δx/

√−gηb for a given 
grid spacing . Δx. The unresolved external gravity waves are filtered using the 
method proposed by [33]. Advection of deterministic fluxes is performed with a 
fifth order Weighted Essentially Non-Oscillatory (WENO) scheme, while a second 
order centred scheme is applied to transport noise. The numerical implementation 
of this configuration follows tightly that of MQgeometry-1.0 [25]. 

Three simulation are performed following a spin-up run as described below: 
a deterministic high resolution simulation at 5 km, filtered and subsampled at 
10 km resolution, is taken as a reference (and thus named REF); a deterministic 
coarse simulation at 10 km (named DET) is taken as a reference for the low 
resolution model. Finally, a stochastic simulation (named STO) is performed at 
10 km. Considering Fig. 2 it is noticeable that the proposed localised basis enhances 
the presence of filaments and small eddies along the meandering eastward jet. 

This result can be further highlighted by the temporal standard deviation of the 
surface relative vorticity (.ω1 = ∇ × u1), as shown in the top row of Fig. 3. We  
observe that the STO model produces greater low-frequency variability in the most 
energetic zonal jet region than the DET model at the same resolution. However, 
the latter allows the jet to extend further east than the former. To maintain the jet 
further east for the STO model, a time-correlated unresolved flow component can be 
added onto the uncorrelated noise through Girsanov transformation, as successfully 
demonstrated in our previous works [9–11, 27]. This could be performed in future 
work. Additionally, as illustrated in the bottom row of Fig. 3, we also observe a 
homogenization effect of the ocean middle layer potential (PV) in the central area 
for both models, which corresponds well to oceanographic theory [37, 38]. Note that 
the PV in the middle layer is defined as .q2 = H2(ω2 +f )/h2, and the magnitude of 
the gradient of its temporal mean (.|∇q2|) is evaluated to measure the homogeneity.
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Fig. 2 Comparison of instantaneous surface vorticity (top) with the zoomed version in the jet 
region (bottom) provided by different models at 10 km 

We then investigate the ensemble statistical properties of the proposed stochastic 
model by performing 20 random realizations. Figure 4 shows the establishment of 
an enstrophy transfer mechanism from the large scale mean flow towards the small 
scale turbulent eddies. This can be seen from the top row where the progressive 
decrease of the ensemble average of surface vorticity is associated to an increase of 
its ensemble variance. 

We next focus on the ensemble decomposition of kinetic energy (KE) and 
available potential energy (APE) for the random shallow water system. Recall that 
the KE and APE densities for the k-th layer (.k = 1, . . . , N) and .𝓁-th interface 
(.𝓁 = 0, . . . , N − 1) are defined as follows: 

.KEk = 1

2
hk|uk|2, APE𝓁 = 1

2
g'

𝓁ζ
2
𝓁 , ζ𝓁 =

𝓁+1⎲

j=N

(hj − Hj), (14) 

where . ζ𝓁 represents the deviation of the interface. We decompose the random 
thickness into .hk = hk +h'

k , where .h = E[h] denotes the ensemble mean thickness. 
Consequently, .ζ𝓁 = ζ𝓁 + ζ '

𝓁, allowing us to define the mean potential energy (MPE)



Transport Noise Defined from Wavelet Transform 295

Fig. 3 Comparison of the (top row) temporal standard deviation of surface layer relative vorticity 
and (bottom row) homogenization of time-averaged potential vorticity in the middle layer, using 
10-year data provided by different models (grouped by columns). The area-integrated values of 
.σ(ω1)/f0 in the most energetic zonal jet regions (highlighted by red boxes) for the DET, STO and 
REF models are 0.024, 0.025 and 0.032, respectively 

Fig. 4 Time evolution (from left to right) of ensemble mean (top) and standard deviation (bottom) 
of surface vorticity provided by the stochastic model at 10 km with 20 realizations
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Fig. 5 Ensemble energy decomposition. Left: integrated over the whole domain; Right: integrated 
over the jet region 

and eddy potential energy (EPE) densities as follows: 

.MPE𝓁 = 1

2
g'

𝓁ζ𝓁
2
, EPE𝓁 = 1

2
g'

𝓁(ζ
'
𝓁)

2. (15) 

Decomposing next the momentum by .uk = ûk + u''
k with .̂uk = hkuk/hk the 

thickness-weighted momentum, we define the mean kinetic energy (MKE) and eddy 
kinetic energy (EKE) densities by 

.MKEk = 1

2
hk |̂uk|2, EKEk = 1

2
hk|u''

k |2. (16) 

Figure 5 shows the behaviour in time of these energy components. Both KE and 
PE (MPE is not shown as it has a different order of magnitude, but follows similar 
profile to MKE) are first transferred from the mean to the eddy components within 
the initial integration period (2 years approximately). After this balancing time, the 
mean and eddy components exchange energy with each other (as can be observed 
from their opposite phases). This phenomenon is found to be valid both locally in 
the jet region and globally across the entire domain. 

Figure 6 shows that the ensemble generated by the proposed stochastic model 
covers efficiently (within a short time) the reference solution (as checked at different 
spatial locations), even though the ensemble forecasts and reference start from 
different states (which is a normal occurrence when comparing simulation of 
different resolution, due to the different levels of energy sustained). 

5 Stochastic Primitive Model 

Within the stochastic framework of location uncertainty the Boussinesq equations 
can be written as



Transport Noise Defined from Wavelet Transform 297

Fig. 6 Spread of moderate-term forecast for ensemble runs (20 members, 10 km) compared to 
reference run (5 km) 

. Horizontal momentum:

Dtu + f e3 × (
u dt + σ tdBH

t

) = ∇H

(
−p' + ν

3
∇·v

)
dt − ∇H dpσ

t , . (17) 

Vertical momentum: 

Dtw = 
∂ 
∂z

(
−p' + 

ν 
3
∇·v

)
dt − 

∂ 
∂z 

dpσ 
t + b dt, . (18) 

Temperature and salinity: 

Dt T = κT ΔT dt, . (19) 

Dt S = κSΔS dt, . (20) 

Incompressibility: 

∇·[v − vs
] = 0, ∇·σ tdBt = 0, . (21) 

Equation of state: 

b = b (T ,  S,  z) , (22) 

with the convention .v = (u, w) and with the buoyancy defined as .b = −g
ρ−ρ0

ρ0
. 

As opposed to the shallow water model, within the discussion of the primitive 
equations the stochastic transport operator has to be intended as three-dimensional. 
These equations where derived in [10] using asymptotic analysis starting from the 
stochastic Navier-Stokes of [3]. A more recent derivation starting from compressible 
Navier-Stokes is provided in [16]. Temperature T and Salinity S are considered 
active tracers transported by the stochastic flow, impacting the momentum equation 
through the (deterministic) equation of state. Consistency between the left hand side 
and the forcing is provided by the term .dpσ

t in Eqs. (17) and (18), a martingale
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Table 2 Parameters of the model experiments 

R27d R9d R9LU 

Horizontal resolution 1/27. ◦ (3.9 km) . ∼ 1/9. ◦ (11.8 km) . ∼ 1/9. ◦ (11.8 km) 

Horizontal grid points 540. ×810 160. ×256 160. ×256 

Vertical levels 30 30 30 

Time step 5 min 15 min 15 min 

Eddy viscosity 5. ×10.−9 m4 s−1 5. ×10.−9 m4 s−1 5. ×10. −9 m4 s−1

Eddy diffusivity 5. ×10.−10 m4 s−1 5. ×10.−9 m4 s−1 5. ×10. −9 m4 s−1

correction corresponding to a zero-mean turbulent pressure related to the noise, 
termed stochastic pressure. Primitive equations are then obtained from Boussinesq 
equations introducing the hydrostatic hypothesis on the vertical acceleration, that 
provides 

.
[
σ tdBt − us dt

] · ∇w − 1

2
∇ · (a∇w) dt = −∂p

∂z
dt − ∂dpσ

t

∂z
+ b (23) 

so that the pressure and stochastic pressure can be defined in relation to the vertical 
component of the diagnosed large scale velocity as 

.p' (x) =
∫ z

ηb

b + us · ∇w + 1

2
∇ · (a∇w) dζ, . (24) 

dpσ 
t (x) =

∫ z 

ηb 
σ tdBt · ∇w dζ. (25) 

The implementation of the stochastic Primitive Equations has been done in the 
level-coordinate free-surface primitive equations model NEMO [34] in a wind-
forced double-gyre configuration. This setting, that has already been used in 
previous works on stochastic parameterization [10, 11], consists of a .45◦ degrees 
rotated beta plane centred at .∼ 30◦N, .3180 km long, .2120 km wide and .4 km deep, 
bounded by vertical walls and with a flat bottom and is fully described in [35, 36]. 
Table 2 summarizes the physical parameters used in the simulation, in agreement 
to the parameters of original chapters. It has to be noticed that the resolution of 
the R9 simulation is slightly different from that of the original chapter [35] as  
the wavelet noise requires the domain to be a multiple of a power of 2 when an 
MPI z-pencil domain decomposition strategy is employed. To assess the benefits 
of the stochastic parametrization two purely deterministic simulations were run at 
two different resolutions: 1/27. ◦ (R27d), a high resolution reference, and 1/9. ◦ (R9d), 
the deterministic reference. These two deterministic simulations are compared to 
a stochastic 1/9. ◦ simulation (R9LU). The R27d simulation has been spun-up for 
100 years before collecting data for the LU framework. An initial condition for R9 
has been generated starting from this simulation by filtering, downsampling and
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Fig. 7 Snapshot of vorticity (top) and strain rate (bottom) 

running a 10 years adjustment period. Each simulation consists of 5 years of data, 
collected every 5 days and averaged over the 5 days. 

The effect of the stochastic parametrization is assessed on the gradient of 
horizontal velocity. Considering Fig. 7 it can be noticed that there is an increase 
of the small scale structures along the jet structure and in the southern gyre, where 
the turbulence generated by the boundary is more intense. This effect, which is 
a consequence of the stochastic parametrization and the associated enhancement 
of the small scales variability, can be assessed with the symmetric part of the 
velocity gradient, the strain tensor. Recall the classical decomposition of the velocity 
gradient as .∇u = 1

2 (∇u + (∇u)T) + 1
2 (∇u − (∇u)T). From the symmetric part, 

the normalised strain rate can be defined for the mean flow and the fluctuations
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Table 3 Experimental values for total strain rate and turbulent strain rate 

R27d R9d R9LU I 

.||S|| t
6.7295 .×10−5 2.0773 .×10−5 2.5314 .×10−5 9.7% 

.||s|| t
6.7295 .×10−5 1.7570 .×10−5 2.2328 .×10−5 9.5% 

Fig. 8 Comparison of turbulent kinetic energy spectra over (left) spatial scales and (right) 
temporal scales, provided by different models 

respectively, as 

.||S|| = 1

||u||∞

(I
III
∂u

∂x

I
III +

I
III
∂v

∂x
+ ∂u

∂y

I
III +

I
III
∂v

∂y

I
III

)
, . (26)

||s|| =  
1

||u'||∞

(IIII
∂u'

∂x

IIII +
IIII
∂v'

∂x 
+ 

∂u'

∂y

IIII +
IIII
∂v'

∂y

IIII

)
. (27) 

The integrated total strain rate .||S|| t
and turbulent strain rate .||s|| t

provide a metric to 
assess the effects of the parametrization along the total duration of the simulation. 
Table 3 summarizes the numerical estimation of this improvement, that is of the 
order of 10% when bounded by the two deterministic formulations: 

.I (f ) = fR9LU − fR9d

fR27d − fR9d

. (28) 

The left panel of Fig. 8 shows that this increase in variability is well captured by the 
model across a wide range of spatial scales, leading to an increase of the turbulent 
energy content of the flow. Additionally, the stochastic model with the proposed 
noise parameterization enhances the intrinsic variability of the flow at different 
temporal scales, as demonstrated in the right panel of Fig. 8. The deterministic 
large-scale simulation exhibits prominent peaks at certain frequencies (around 20 
and 25 days), indicative of an over-representation of certain eddies. Additionally, 
the inertial slope appears to be steeper, suggesting a poor representation of the 
eddies’ distribution within the inertial range. These aspects are clearly rectified in 
the stochastic simulation: the slope is significantly weaker, almost reaching the slope
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of the reference. Furthermore, the anomalous peaks are attenuated, indicating a more 
balanced distribution of eddies within the inertial range. Eddies of larger frequencies 
are also better represented, suggesting a more pronounced inverse cascade since no 
energy is injected at this scale by the noise. 

6 Conclusions 

A novel, wavelet based, stochastic parametrization has been implemented in two 
different models to test its strengths and weaknesses. The general outcome of this 
study is that the addition of this model-based noise term, (that depends on the current 
state of the simulation and not on external data), can be beneficial in facilitating 
the energy transfer from large scale to small scale. Both the hydrostatic primitive 
equations model and the shallow water model appear to support turbulent dynamics 
at scales smaller than those sustained by the deterministic model. This enhancement 
of variability is shown to be successfully exploited in ensemble-run simulations 
to create a larger envelope for the spread of the shallow water model. Similar 
ensemble experiments with the primitive equations model will be considered in the 
future. For future research, we plan to investigate and incorporate a time-correlated 
unresolved barotropic flow component by applying Girsanov transformation to the 
uncorrelated noise. This addition, coupled with available observational data, aims 
to further enhance the accuracy and reliability of the current random model. 
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6. Brzeźniak, Z., Capiński, M., Flandoli, F.: Stochastic partial differential equations and turbu-
lence. Mathematical Models and Methods in Applied Sciences 1, 41–59 (1991). 
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Stochastic Fluids with Transport Noise: 
Approximating Diffusion from Data 
Using SVD and Ensemble Forecast 
Back-Propagation 

James Woodfield 

1 Introduction 

1.1 History and Motivation 

Motivated by the need to model the effect of viscosity not present in the inviscid 
vortex method, Chorin [10] proposed a constant (Itô) noise in the particle trajectory 
map. Chorin’s stochastic parameterisation represented the diffusion effect present 
in the corresponding Fokker-Plank equation (the deterministic Navier-Stokes equa-
tion). Numerical methodology based on the idea of a stochastic particle trajectory 
map was later proven convergent in [33], and are sometimes called computational 
vortex methods [34]. 

Computational vortex methods are numerical methods based on tracking the 
particle trajectories of a finite number of discrete points of (potential) vorticity, 
making use of the Biot-Savart Law to both close the system and define the velocity 
elsewhere. Typically, one requires the approximation of an integral, the regularisa-
tion of a kernel, and the closure as a collocation method [34]. Possible advantages 
to computational vortex methods include not needing to allocate computational 
resources to regions with little or no vorticity, the absence of a pressure solve, little 
to no numerical viscosity, a less stringent timestep requirement, and access to the 
velocity globally. 

More recently, in 2015, Holm proposed a different type of stochastic parame-
terisation of the particle trajectory map [25], rather than modelling diffusion, the 
introduced stochastic parameterisation aims at representing uncertainty associated 
with additional transport. In this setting a family of spatially dependent vector fields 
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.{ξp(x)}Pp=1 act (stochastically) on the particle trajectory map. The basis of vector 
fields are integrated (in the Stratonovich sense) against a P dimensional Brownian 
motion, as to remain consistent with the variational principle, preserve Kelvin’s 
theorem, and preserve infinite integral quantities known as Casimir’s, such ideas 
are presented in [4, 25, 26]. In practice one still requires methods for estimating 
the vector-fields .{ξp(x)}Pp=1, as to take into account the uncertainty associated with 
unresolved or unrepresented transport, doing so is the problem we tackle in this 
chapter. This task will colloquially be described as calibration or as an offline batch 
data assimilation technique, the aim is to present a calibrated stochastic forward 
model capable of producing an ensemble which represents statistics of the data, 
or more generally the statistics of the hidden distribution from which the data was 
sampled. 

In Cotter et al. [11] and Crisan et al. [13], vector fields are calibrated from 
weather station positional data using an SVD/PCA/EOF decomposition of a Data-
Anomaly-Matrix (DAM) formed in the context of stochastic coarsegraining of a 
high-resolution deterministic model, see also [37, 38] for application and variants 
of this methodology to other stochastic fluid models. In these works [11, 13, 37, 38] 
stochastic parameterisation of the coarse-graining operator have been proposed in 
the context of stochastic model reduction. We instead consider parameterisation 
between a reference dataset and the proposed stochastic forward model, including 
when the data arises as a realisation of another stochastic model, not necessarily 
the proposed stochastic forward model. In this work we use a similar truncated 
SVD approach to calibrating a basis from weather-station data, however amongst 
other minor details we differ in the construction of the data anomaly matrix, the 
resulting calibrated proposed stochastic equation, and the numerical methods used. 
We test the new calibration technique using a twin experiment framework where the 
reference data is a known parameterised SDE/SPDE realisation (whose parameters 
are known). We also test in an extended twin experiment in which the distribution 
from which the data is sampled is known, and more SPDE/SDE realisations are 
generated for hidden testing datasets. 

We also introduce preliminary results regarding, a loss-based approach to the 
calibration problem. The motivation for another calibration method stems from 
the need for the calibration/assimilation of other types of data such as drifter 
data or simply state-valued data in the forward model, and is motivated by trying 
to alleviate the expensive interpolation from weather-station cost in the forward 
ensemble model. 

1.2 Outline 

1. Section 1 contained the motivation and history. 
2. Section 2 contains a review of the stochastic fluid modelling assumptions 

(Sect. 2.1) and the 2D computational vortex methods of interest (Sect. 2.2).
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3. Section 3 introduces several approaches to calibration. 

(a) Section 3.1 contains the two proposed calibration methodologies. The first 
calibration approach focuses on the SVD decomposition of a space-time 
data anomaly matrix. In the second calibration approach, we treat an entire 
forecast ensemble method (over a space-time window) as a function, and a 
Continuous Ranked Probability Score estimator is used as a loss. The loss is 
minimised with respect to the parameterised basis of vector fields. 

(b) Section 3.3 contains a list of the different ensemble forwards models that we 
will test, including benchmark ensembles. 

4. Section 4 contains the details and results of several numerical experiments. 

(a) We describe a twin experiment in which the reference data comes from a 
parameterised SDE approximation of an SPDE, with a fixed known single 
basis and a single known Brownian motion. 

(b) We describe a twin experiment in which the data comes from a parameterised 
SDE approximation of an SPDE, with 5 fixed known single basis functions 
and 5 i.i.d. Brownian motion realisations. 

(c) We describe a twin experiment in which the synthetic data is generated from 
a realisation of a parameterised SDE approximation of an SPDE with an 
additional Ito-Stratonovich drift. 

(d) We describe a twin experiment in which the synthetic data is generated as a 
realisation of an SDE system with a larger physical drift term representing 
the effect of unrepresented dynamics. 

(e) We finally present results comparing Continuous Rank Probability Score 
(CRPS) and relative skill scores (CRPSS) for various calibration techniques 
proposed in this chapter against some proposed benchmarks. 

5. Section 5 concludes and summarises key results and preliminarily discusses the 
application of this calibration methodology to less idealised data. 

2 Governing Equations and Numerical Method 

2.1 Governing Equations 

Various stochastic parameterisations of the particle-trajectory mapping in fluid 
mechanics have been proposed [10, 12, 25]. In this work, we are interested in the 
two-dimensional case where the initial label .X = (X, Y )T ∈ R

2 is evolved to 
current configuration .x = (x, y)T by the parameterised Stratonovich stochastic 
ordinary differential equation 

.x(X, t) = x(X, 0) +
∫ t

0
u(x(X, s), s)ds
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+ 
P⎲

p=1

∫ t 

0 
θpξp(x(X, s))  ◦ dWp (s); x(X, 0) = X. (1) 

Where .u(x, t) is the drift velocity, and .{θpξp(x)}Pp=1, is a set of velocity fields 
associated with the stochastic component of the flow. .◦dWp denotes Stratonovich 
integration against the p-th component of a P -dimensional Brownian motion, (see 
[30]). Each vector field basis is multiplied by a parameter value .θp ∈ R. We assume 
that the drift stream function . ψ is related to vorticity . ω by a yet specified differential 
relationship, solvable by convolving the Green’s functions against the vorticity as 
follows 

.ψ(x, t) =
∫
R2

G(x − x')ω(x')dx'. (2) 

and that the negative skew gradient .u = −∇⊥ψ relates the velocity . u to the vorticity 
. ω by another convolution against the kernel K 

.u(x, t) =
∫
R2

K(x − x')ω(x')dx', (3) 

this relationship is known as the Biot-Savart law, and when substituted into 
Eq. (1) describes the particle trajectory map integrodifferentially. Many fluid models 
have such a formulation, some important examples are discussed in the appendix 
Examples B.3–B.1, and the ones used explicitly in this chapter are discussed below 
(Examples 2.1 and 2.2). To completely define the above infinite dimensional SDE 
system, (equivalent to the solution of an SPDE fluid model) one typically defines 
an initial vorticity field . ω0, and notes that this quantity is invariant along solution 
trajectories. See [15] for additional information about deriving such a model from a 
variational principle. 

Example 2.1 (2D Euler) Euler on .R
2 has the following differential relation-

ship between the drift stream function and vorticity, .ψ = (−Δ)−1ω, with 
Green’s function given by .G(x) = −(2π)−1log(||x||2), and kernel by . K(x) =
(2π)−1x⊥||x||−2. The corresponding SPDE is a stochastic version of Euler’s 
equation given below in vorticity form 

. dωt + (u · ∇)ωtdt +
P⎲

p=1

(θpξp · ∇)ωt ◦ dWp, u = −∇⊥ψ, ψ = (−Δ)−1ω,

(4) 

where .ω = curl(u), is the vorticity.
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Example 2.2 (Regularised Euler) It is often the case that the kernel K possesses 
a singularity (at .x = 0), making numerical methods approximating the velocity 
field from a delta function initial condition ansatz and the Biot-Savart kernel 
Eq. (3) inaccurate.1 The kernel K is instead typically regularised by component-
wise convolution with a parameterised mollifier function . φδ , .δ ∈ R

>0, such that the 
resulting kernel 

.Kδ = K ∗ φδ =
∫
R2

K(x − y)φδ(y)dy, (5) 

is desingularised, and the regularised Biot-Savart law is given by 

.uδ(x, t) =
∫
R2

Kδ(x − x')ω(x')dx' =
∫
R2

K(x − x')ωδ(x
')dx'. (6) 

Where in the last line, the associative property of convolution has been used to give 
interpretation as a regularised Euler vorticity .ωδ = ω ∗ φδ . 

In this work, we are interested in a manner of determining sensible proposals 
for .{θpξp}Pp=1 from data, such that a forward model numerical method can 
produce a probabilistic forecast with skill. More specifically in this work, we are 
interested in parameterising the difference between reference data and the forward 
model, a Stochastic Advection by Lie Transport (SALT) inviscid vortex dynamics 
solver. We will test on idealised reference data arising from realisations of similar 
known stochastic forward models. This is an idealised setting in which we can 
test the calibration methodologies, without modelling error concerns. However, 
the application of the methodology can be speculated to be applicable in other 
modelling scenarios such as stochastic model reduction as in [11, 13, 37, 38]. We 
will also do testing in the setting in which there is a known modelling discrepancy. 
Namely, we suppose that there exists an additional constant drift velocity between 
the forward model and the data. One example of such a model discrepancy would be 
interpreting the stochastic integration in a different setting, i.e. Itô-Stratonovich, or 
Wong-Zakai anomaly type drift [15]. Another likely motivation is the assumption 
that in a time-averaged scenario, models simply differ by a drift from real-world 
data.

1 In particular, Beale and Majda 1985 [7], show that the point vortex method for the Euler equation 
has poorer convergence properties as the number of points increases, as compared with methods 
employing a regularised kernel. Furthermore, they show point vortex methods have a larger error 
when evaluating velocities not on point vortex trajectories, as compared with their vortex blob 
counterparts. 
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2.2 Numerical Method 

Point vortex methods model the initial vorticity by a field whose vorticity is 
concentrated at a finite sum of delta functions whose strength is denoted . ┌i ∈ R

as follows 

.ω(x) =
⎲

i

┌iδ(x − xi ). (7) 

If the vorticity is assumed a finite sum of delta functions, using a regularised kernel 
. Kδ , is equivalent to approximating the vorticity with “vortex-blobs” with finite 
width .ω(x) = ∑

i ┌iφδ(x − xi ), .φδ = φδ ∗ δ and using the unregularised Euler 
kernel K . The mollifier . φδ used in vortex blob regularisation’s are typically con-
structed with specific smoothness and moment boundedness properties (pg227)[34] 
(pg190)[7], required for convergence and stability estimates (sec 6.4 and sec 6.6 
[34]). In this work, we consider inviscid vortex methods, which approximate 
the regularised stochastic integrodifferential equation for 2d Euler on . R2, and 
essentially use a stochastic version of the deterministic discretisation strategy 
proposed in [7], outlined below. 

Let the multi-index .i = (i1, i2), belong to a finite index set .∧i
0 spanning 

(labelling) the dynamically evolving points .xi = (x(i1,i2), y(i1,i2)) with non zero 
initial vorticity, these points will initially be defined on a Cartesian mesh in 
.[xmin, xmax] × [ymin, ymax] with uniform width and height .hx, hy . One assumes 
that the deterministic part of the regularised vorticity field .ωδ(x, t), velocity field 
.uδ(x, t) and stream function .ψδ(x, t) can be reconstructed globally on . R2, . ∀t ∈
[0, T ] in the following way 

.ωδ(x, t) =
⎲
i∈∧i

0

φδ(x − xi(t))ω0(Xi)hxhy, . (8) 

uδ (x, t)  =
⎲
i∈∧i 

0 

Kδ(x − xi(t))ω0(Xi)hxhy, . (9) 

ψδ (x, t)  =
⎲
i∈∧i 

0 

Gδ(x − xi(t))ω0(Xi)hxhy, (10) 

from the finite set of evolving points .xi(t) ∈ ∧0(t). Where .Gδ = G ∗ φδ , denotes 
the convolution of the Green’s function with the mollifier, .Kδ = K ∗ φδ denotes 
the convolution of the Euler kernel with the mollifier, and in Eq. (8) the molifier 
convolves a delta function to define the vortex blob function .φδ = φδ ∗ δ at the 
positions . xi . Noting that (potential)vorticity is preserved along solution trajectories 
.ω0(Xi ) = ω(xi (t)), it is possible to interpret Eqs. (9) and (10), as discretisations 
of the convolutions in Eqs. (2) and (3), with either vortex blob initial conditions, or 
with regularised convolutions.
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Numerically, in practice Eqs. (8)–(10) are not evaluated globally, but will be 
evaluated at fixed weather-station positions for data denoted .xd ∈ ∧d , and moving 
vortex positions .xi(t) ∈ ∧0(t). 

Upon appropriate vectorisation of the initial mesh . ∧0, and identification of the 
“point” vortex strength .┌i = ω0(Xi)hxhy, ∀i ∈ ∧i

0, one can use Eq. (9) to close 
the system as a finite-dimensional system, 

.xi(t) = xi(0) +
∫ t

0
uδ(xi(s), s)ds +

P⎲
p=1

∫ t

0
θpξp(xi(s)) ◦ dW

p
s , ∀i ∈ ∧0, . 

(11) 

uδ (xi(s), s) =
⎲

j∈∧i 
0,j /=i

┌jKδ(xi(s) − xj (s)), (12) 

where each vortex does not self-induce a velocity. 
Various mollifiers can be used in inviscid vortex methods. For the simulation of 

the Euler equation example (2.1), Rosenhead [39], Krasney [32] and Chorin [10], all 
introduced mathematical equivalents to mollification of the Euler kernel, preventing 
division by zero and cutting off the singularity. In 1979 Hald [22] proved second 
order convergence for 2D deterministic vortex methods when using a specific 
mollifier over an arbitrary time interval. However, the specific form of mollifier 
(compact locally three times differentiable) required the regularisation parameter . δ
to be larger than the mesh spacing h. Beale and Majda in [6] introduce smoother 
mollifiers allowing smaller regularisation parameter .δ = O(h) and proved arbitrary 
order convergence. In [7] Beale and Majda introduce convenient additional explicit 
higher order kernels, we adopt one such family of mollifiers in this work, and the 
effect on the Biot-Savart kernel can be described in the following manner, 

. (uδ(x, y), vδ(x, y))T =
⎲
i∈∧0

┌i(−(y − yi), (x − xi))
T

2π ||x − xi ||22
× (1 − Lp(||x − xi ||22/δ2)exp(−||x − xi ||22/δ2)),

(13) 

where .Lp is the p-th order Laguerre polynomial, and can be found in [7]. This 
scheme (in the deterministic setting) has been shown to have the property that if 
.δ = hq for .q ∈ (0, 1), the order of convergence to the solution of the Euler Equation 
is given by .O(h(2p+2)q) see [7] (or sec 6[34]). 

To deal with the stochastic Stratonovich term, we discretise in time with the 
stochastic generalisation of the SSP33 scheme of Shu and Osher (can be found in 
[43]), where the forward Euler scheme is replaced with Euler Maruyama scheme in 
the Shu Osher representation. This time-stepping is applied to Eq. (11), the scheme 
is weak order 1, strong order 0.5, as can be found by Taylor expanding (see [40] for  
the strict generalisation of this result) and ([31] for definitions of convergence).
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3 Calibration Methodology 

3.1 Procedures and Methodology: In the Estimation of Basis 
Functions and Parameters 

This section details two methods used in the estimation of .{θp}Pp=1, the recovery 

of basis functions .{σp ξ̃}Pp=1, the recovery of the time mean difference . vr and the 

recovery of paths .{ΔWr
p}Pp=1. 

The first method takes inspiration from the coarse-graining parameterisation 
approaches taken in [11, 13] in the use of the SVD. However, the aim of the model 
here is to parameterise the difference from the reference data and the forward model. 
This is done by using the Biot-Savart kernel to “access” the drift component of the 
velocity directly in the creation of a data anomaly matrix. In practice the details of 
the algorithm are given below. 

Method 3.1 (TSVD. ◦WSD) Truncated Singular Value Decomposition of weather-
station data. 

1. Data Collection; We assume that over the discrete time interval .T := {tn}nt

n=0, 
we have recorded a velocity field .um

d = um(xd), measured at the fixed weather 
station positions .xd = (xd, yd)T ∈ ∧d , and have a record of the positions of the 
dynamically evolving point vortices .xi ∈ {∧0(tn)}nt

n=0, with know vorticity . ┌i . 
This is the reference solution and data. 

2. The drift components of velocity .uδ(xd , tn) are estimated at weather stations by 
the Biot-Savart kernel Eq. (9) using known observed positions .xi ∈ ∧0(tn) of the 
point vortices at times . tn. 

. uδ(xd , tn) =
⎲
i∈∧0

Kδ(xd − xi(tn))ω0(Xi)hxhy, ∀tn ∈ T , ∀xd ∈ ∧d .

(14) 

3. The difference .(um
d −uδ(xd , tn))Δt between the measured velocity, and the drift 

reconstructed velocity at weather stations is taken .∀t ∈ Tn. Upon appropriate 
(invertible) vectorisation this is turned into a .nt × nd matrix .M ∈ R

nt×nd where 
there are . nd weather stations, and . nt observation instances in time. Our specific 
vectorisation in space is the following operation, 

. Mn,: = [vec(vec(um
d (xd , tn)), vec(vm

d (xd , tn)))

− vec(vec(uδ(xd , tn)), vec(vδ(xd , tn)))]Δt.

This M is the data anomaly matrix, representing the effect of the stochastic 
velocity and driving signal on the weather stations. 

4. A common post-processing step in an SVD/PCA/EOF procedure is the removal 
of the row or column mean, such that the matrix has zero row sum or column



Stochastic Fluids with Transport Noise: Approximating Diffusion from Data. . . 313

sum. Since we are working with a .nt × nd matrix, we remove the column(time 
mean) .T M(M) := ent M/nt , from the data matrix in the following manner . M ' =
M − ent ⊗ (ent M/nt ). The time mean difference observed from data will be 
denoted by . ̄vr . 

5. One performs the truncated SVD([23]) of the time mean removed data anomaly 
matrix 

. M ' = Ut∑tV
T
t = (c−1Uc

t )(c∑t (V
c
t )T ).

We have re-scaled the construction by a constant .c ∈ R, such that the k-th column 
of .U = c−1Uc

t has variance aligning with the timestep between observations, 
and the removal of time mean has normalised the data. For incremental data 
.var(U) = Δt , and .E(U) = 0. 

Here the p-th row of .V T
t ∈ R

nt×nd , forms the  p-th vectorised spatial 
eigenvectors .ξ̃p(xd) effect on weather station data . ∧d . The .(p, p)-th element 
of . ∑t denotes the corresponding singular value . σp. The matrix product . Ut =
M 'V T

t ∑−1
t , gives  U whose p-th column is the pth recovered path .ΔWr

p over the 
time window . T . For information about the SVD see Remark B.3. 

6. Output: .{σp ξ̃p}p∈[P ], . ̄vr , .{Wr
p}p∈[P ], are recovered from .∑V T , ent M/nt , U , 

respectively. 

In practice, reconstruction is performed as to transform the discrete set of points 
.xd ∈ ∧d and their reconstructed evaluation .σp ξ̃p(xd), . ̄vr (xd), at .∀xd ∈ ∧d into 

continuous fields .σp ξ̃p(x, y), v̄r (x, y). This interpolation step is required for the 
evolution of unstructured points in the calibrated inviscid vortex method. We use 
Fourier interpolation in the understanding, that specific to this work we expect 
periodic smooth basis functions and assume the data remains within the weather 
station grid, see Remark B.4 for specifics in such an interpolation procedure. We 
propose two ensemble forward methods based on Method 3.1, one including the 
time mean drift (Method 3.5), and one without (Method 3.4). 

One does not always have access to Eulerian weather-station data. It may 
be desirable to estimate parameters only from “tracer” positional values such as 
evolving buoys or inherent state values in the evolving forward model. Furthermore, 
the values at weather stations need to be constructed into continuous fields, which 
require evaluation by interpolation in the forwards ensemble model during runtime, 
the cost of such a procedure scales badly (squared) with the number of weather-
stations used see Remark B.4. 

It may be advantageous to avoid this computational runtime problem (particu-
larly for large number of stochastic basis functions) or lack of weather-station data 
by setting the problem as a minimisation problem with a predefined basis. This will 
turn interpolation into evaluation in the forward model, resulting in a much faster 
ensemble method. However, the calibration problem is phrased as a significantly 
more costly nonlinear optimisation problem, described below (in the specific context 
of an inviscid vortex method).
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Method 3.2 (B(SPDEE)wrtFM) Backpropagation through SPDE Ensemble with 
respect to diffusion parameters as to minimise a forecasting metric. 

1. Data Collection; Record the positions of the dynamically evolving point vortices 
as data .{x∗

i ∈ ∧0(tn)}nt

n=0. Here the astrix superscript denotes data. This can be 
stored as a .nt × 2nv matrix (positions in 2d have two components). 

2. Generate an entire ensemble run, over the time window of interest, recording all 
state variables aligning with observation instances in time, using . Eo number of 
proposed Ensemble members over an observation window . To. This is defined as 
a vectorised ensemble function denoted . FE , defined by going forwards in time 
with a forward discrete model of the following type, 

. d txi(t) = uδ(xi(t), t)dt

+
P⎲

p=1

θpξp(xi(t)) ◦ dW
p
e (t), ∀i ∈ ∧0,∀tn ∈ To,∀e ∈ [Eo].

(15) 

This is done for all time steps in an observation window .∀tn ∈ To, and for 
.Eo realisations of P -dimensional Brownian motion from the initial condition. 
The output of the vectorised ensemble function .FE is a .2nv × nTo

× Eo matrix, 
generated by the input of a .nTo

× Eo × P sized Gaussian random variable “fed” 
as a component into a stochastic ensemble forecast model. This can be described 
heuristically as follows 

.FE : RP × R
nTo×Eo×P × R

2nv × R × R × X(R2)P × . . . I→ R
2nv×nTo×Eo . 

(16) 

FE({θp}P 
p=1; {ΔW p 

e,n}e,p,n∈[Eo],[P ],[nt ]; {xi}i∈∧0(t0); δ, h, {ξp}p∈[P ], . . .)  

= ensemble forecast, (17) 

Where we have suppressed additional inputs in this function, as all but the first 
component (and perhaps the second) does not improve clarity. 

3. We then define the following observation averaged continuous rank probability 
score loss function, taking in the space-time observations and the ensemble 
forecast forward model 

. L : R2nv×nt × R
2nv×nt×Eo I→ R,

L := 1

nt2nv

⎲
∀n∈T

⎲
∀xi (tn)∈∧0(tn)

ˆcrps(x∗
i,tn

; (FE)i,tn ) (18) 

Where . ˆcrps : R2nv×nt ×R
2nv×nt×Eo I→ R

2nv×nt denotes a vectorised continuous 
rank probability score estimator approximating the regular CRPS value over 
the space and time observations. The notation .(FE)i,tn is used to indicate we
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compare the . Eo sized ensemble forecast at the position . xi , at time . tn, to the data 
point .x∗

i,tn
at the same location and temporal instance. For a single observation 

in space-time .x ∈ R, z ∈ R
Eo this is done using the following formula 

. ˆcrps(y, z) = 1

Eo

⎲
e∈[Eo]

|y − ze| − 1

Eo(Eo − 1)

⎲
(i,j)∈[Eo]×[Eo]

|zi − zj | (19) 

see [21, 46], and [17], for more insights into this estimator and its relationships 
to other estimators of the CRPS. See Remark B.2 for further insights and 
more detailed references as to the importance of the CRPS score in forecast 
verification. 

4. It is assumed that the discrete ensemble forecast model .FE and the loss function 
is differentiable with respect to the parameters .{θp}, so one can compute 
the gradient, and perform (nonlinear) optimisation (e.g. gradient descent) to 
minimise the Loss(CRPS estimate using . To, . Eo), through back-propagation. 
Should this converge, this is a methodology to minimise the CRPS average of 
an ensemble forecast, it is open to whether this can recover parameters such as 
.{θ}p∈[P ] due to non-uniqueness. 

Remark 3.1 When .Eo = 1 Remark 3.2 is equivalent to minimising the mean 
absolute error, between a proposed solution path and the data. It is possible to 
interpret the above method as a stochastic version of an ensemble 4DVAR with a 
CRPS estimator loss. 

3.2 Methodology Justification 

Mathematical motivation for the generation of the DAM (in Method 3.1), and adding 
the time mean back in (ensemble Method 3.5), can be justified by considering 
Method 3.1 applied in the context of a twin experiment described below. 

1. In the context of a twin experiment where the data is generated by observing a 
stochastic model with known parameters .{θ∗

p}p∈[P ], using a normally distributed 
driving signal .W ∗ assumed free of measurement error. The recorded total 
velocity field . ud that would be seen by an observer at a weather station . xd at 
time . tn is assumed to be measurable in the following form 

. ud(xd , tn) = uδ(xd; {xi}i∈∧i
0(tn))

+
P⎲

p=1

θ∗
pξp(xd)ΔW ∗

n /Δt + D(xd), ∀xd , ∀tn ∈ Tn. (20) 

Where the Biot-Savart kernel Eq. (9) is used for the computation drift component 
of velocity .uδ(xd) induced by the point vortices at .xi ∈ ∧0(tn), and direct
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evaluation is assumed on . ξp. Here we have divided the stochastic contribution to 
the velocity by . Δt as to represent how such a wind field would be measured in 
practice. We have also included the presence of an additional (time-independent) 
drift term . D. 

2. Method 3.1, forms rows of the DAM from .Δt(ud(xd , tn)−uδ(xd; {xi}i∈∧i
0(tn)), 

which in the context of a twin experiment represents the discrete effect of . DΔt +∑P
p=1 θ∗

pξp(xd)ΔW ∗
n for all measurement times (see Eq. (20)). 

3. Let .ΔW ∗
n ∈ R

P×nt , be a .(P, nt )-matrix made up of the P dimensional sampled 
Brownian motion over .{tn}nt

n=1 used to generate the data. Let .𝚵 ∈ R
d×P , be  

a matrix whose p-th column is defined by the vertically stacked components of 
(vectorised) stochastic velocity contribution evaluated at the .d = nc×nc weather 
stations of interest. Let .D̂ ∈ R

d , denote the vectorised drift effect on particle 
positions. Let .ent denote a vector of ones length . nt , and . ⊗ the outerproduct. 
Then .M = Δtent ⊗ D̂ + (ΔW ∗)T 𝚵T ∈ R

nt×d is the DAM observed in the 
twin experiment whose nth column is the stochastic contribution of velocity at 
the weather stations. 

4. The SVD procedure in Method 3.1 finds an alternative representation of the effect 
of 

.Δtent ⊗ D̂ + (ΔW ∗)T 𝚵T = M = ent ⊗ (ent M/nt ) + U∑V T , (21) 

interpretable through PCA as the reconstruction of an efficient basis to explain 
the covariance structure over the time window of interest. 

5. A Stratonovich-Taylor expansion of the stochastic particle trajectory map, when 
evaluated at the weather stations reveals 

.xn+1
d

= xn+1
d

+ uδ(xn
d , tn)Δt + DΔt + (ΔW T (tn)𝚵T )T + H.O.T , (22) 

where .ΔW (tn) is the n-th collumn. The substitution of the alternative represen-
tation in the other experiment Eq. (21) gives 

. xn+1
d

= xn+1
d

+ uδ(xn
d , tn)Δt + (ent ⊗ (ent M/nt ) + Un∑V T )T + H.O.T .

(23) 

Where .Un denotes the n-th row of U . Upon appropriate time rescaling we 
observe justification for the addition of a time mean, seen in Eq. (25) and 
Method 3.5. 

The time mean drift term from data .(ent M/nt ) can be well motivated to represent 
drifts . D̂ not present in the underlying model. One could foresee application in 
compensating systematic measurement error in sensing devices, or correcting for 
an unrepresented Itô-Stratonovich correction. The time mean drift term from data 
.(ent M/nt ) could also be seen as a parameterisation technique for representing 
unresolved drift terms, arising from fast dynamics [15] or unresolved physics. 
However, if the model has no .D = 0, one does not necessarily get .(ent M/nt ) = 0.
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An additional nonphysical drift can be observed, associated with a statistical error 
from sampling from the data distribution. The inclusion of the observed time mean 
drift term may bias towards a specific realisation of the data distribution, and not 
necessarily improve forecast skill. 

One of the objectives of this chapter will be to numerically test the potential 
benefit for using an observed time mean drift .(ent M/nt ) = 0 attained from 
Method 3.1. In the context of data arising from no time mean drift . D = 0. In  
the context where D represents an Itô-Stratonovich sized drift term. In the context 
of data with a drift D representing the effect of physical processes. These ideas will 
be tested using datasets(1,2), datasets 3 and datasets 4 respectively, introduced later. 
We use a twin experiment in which the aim is to re-simulate the training data, as 
well as computing forecast verification metrics on hidden testing data to account for 
statistical error associated with sampling the data distribution. 

Mathematical motivation for Methods 3.2 and 3.6 is fairly transparent. The 
Continuous Ranked Probability Score (CRPS) is an example of a probabilistic 
forecast metric commonly used to assess ensemble forecast skill, a lower CRPS 
score indicates better forecast skill. The CRPS is probabilistic and compares the 
cumulative distribution function of the forecast with the observation values. In 
the context of an ensemble forward model, a lower CRPS score serves as an 
indicator of enhanced forecasting skill. In practice, this requires estimation over 
many observations, as taken into account with the loss in Method 3.2. For additional 
detail motivation and references regarding the CRPS see Remark B.2. 

3.3 Ensemble Methods 

This section contains a list of ensemble methods that will be tested, these are 
forward models, some requiring estimation of .{θp}∀p, some require generation of 
a basis .{ ˜ξp}∀p. Methodology for such estimation has been described in the previous 
Sect. 3.1. 

Ensemble Method 3.1 (Persistence) We predict an ensemble whose particles 
remain at their initial conditions .∧0(t) = ∧0 for the entire time interval of interest. 

Ensemble Method 3.2 (RIC (Random Initial Condition Perturbation)) We ini-
tially perturb each particle position by scaled samples from the normal distribution, 
then we run forwards with the deterministic model to generate an ensemble. (A 
sensible magnitude (giving small CRPS) perturbation was searched for through trial 
and error and found to be of the type .0.001N(0, I).) 

Ensemble Method 3.3 (Perfect Model) We propose the SPDE used to generate 
the synthetic data, as a forecast model. This involves knowing true parameters 
.{θ∗}p∈[P ] and running an ensemble forecast with new samples from the normal 
distribution. 

Ensemble Method 3.4 (TSVDWDWithout TimeMean) We perform Method 3.1 
to obtain a basis for noise .{σp ξ̃p(x)}∀p. We then use the SSP33 stochastic integrator
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to run the regularised integrodifferential model for particle trajectories 

.d txi(t) = uδ(xi(t), t)dt +
P⎲

p=1

σp
˜ξp(xi(t)) ◦ dWp(t), ∀i ∈ ∧0, (24) 

Where .uδ(xi(t), t), is computed as before using Eq. (13), and Fourier interpolation 
(Remark B.4) is used to evaluate . ̃ξ , at points. 

Ensemble Method 3.5 (TSVDWD with Time Mean) We perform Method 3.1 to 
obtain a basis for noise .{σp ξ̃p(x)}∀p, and a time mean effect .v̄(x). We then use the 
same SSP33 stochastic integrator to run the regularised integrodifferential model for 
particle trajectories 

. d txi(t) = uδ(xi(t), t)dt + v̄(xi(t))dt +
P⎲

p=1

σp
˜ξp(xi(t)) ◦ dWp(t), ∀i ∈ ∧0,

(25) 

where .uδ(xi(t), t), is computed as before using Eq. (13), and the Fourier interpola-
tion described in Remark B.4 is used is used in the evolution of the points by the 
additional deterministic drift term . ̄v and stochastic terms .{ξ̃}p∈[P ]. 

Ensemble Method 3.6 (Backpropagation Ensemble Approach) We take the 
parameters .{θp}p∈[P ] that minimise the CRPS mean loss after Method 3.2 is 
performed over . To with .Eo ensemble members, and run the trained ensemble 
method .FE forward 

. d txi(t) = uδ(xi(t), t)dt

+
P⎲

p=1

θpξp(xi(t)) ◦ dW
p
e (t), ∀i ∈ ∧0,∀tn ∈ T ,∀e ∈ [E]. (26) 

Where .uδ(xi(t), t), is computed as before using Eq. (13), and the vectorfields 
.{ξp}p∈[P ] are directly evaluated rather than Fourier interpolated. This could poten-
tially be interpreted as a stochastic ensemble version of 4DVAR with a CRPS loss. 

4 Numerical Experiments 

4.1 Twin Experiment Frameworks 

In operational practice (in, say, weather prediction), the state values such as tem-
perature come from an unknown distribution and are recorded using measurement 
devices with the addition of measurement noise. However, to assess the proposed
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data assimilation methodology a known reference dataset should be predefined 
beforehand. This naturally leads to the concept of a twin experiment framework, 
a common practice in both weather forecasting and inverse modelling communities. 
We will now (in the next paragraph) describe how by fixing the driving path, we can 
perform a twin experiment for the SVD calibration of a stochastic fluid system. 
We then, in the proceeding paragraph describe another method of validation, in 
which the underlying distribution of the observation signal is assumed known. This 
type of testing can alleviate errors associated with sampling data from the unknown 
distribution. 

A reference trajectory is assumed known, and computed by fixing all parameters 
.{θ∗

p}p=P

p=0 , .{{ΔWp(tn)}p=P

p=0 }Nn=0 and running the stochastic forward model over 
a time window .t ∈ [0, T ]. Synthetic measurements (at weather-stations) are 
then collected by sampling values from this reference trajectory. Finally, the data 
assimilation technique of interest Method 3.1 is implemented as to attain .{σ r

p}p=P

p=0 , 

.{{ΔW̃p(tn)}p=P

p=0 }Nn=0, and .{v̄r}. Using these “recovered” parameters, we generate a 
new output trajectory, for the evolution of points. We then can compare the output 
trajectory to the reference trajectory. This allows the SVD calibration accuracy to 
be assessed. These tests will be performed and assessed using datasets 1,3,4 and 2, 
using .P = {1, 5} respectively. In this setting the twin experiment is not viewed in the 
context of verifying the calibration of a stochastic model, but as an assessment of the 
method viewed as a data assimilation procedure in which the reference “training” 
trajectory is aimed at being captured as accurately as possible. 

Going further than this, suppose for testing/validation purposes that we know 
more than just a single reference trajectory, but the entire reference distribution. 
Namely, we know the stochastic forward model used to generate data and its 
parameters (not necessarily the one proposed for modelling). In this setting, we 
can account for the additional sampling error associated with drawing data from the 
underlying distribution. To do so in practice we generate 1000 realisations of the 
stochastic forward model used for data. These 1000 realisations of the stochastic 
forward model will be treated as hidden testing datasets for which ensemble forecast 
verification metrics can be employed. In this scenario, CRPS scores arise for data 
for which the model has not been trained, this can help distinguish stochastic sample 
path model error associated with sampling the data distribution. This can be thought 
of as the verification/validation of unseen/hidden test data. 

4.2 Setup: Generation of Synthetic Data 

This subsection contains specific details about the generation of four reference 
datasets we wish to calibrate from. Dataset 1 is made with a realisation of a 
parametrised stochastic model with one basis function. Dataset 2 is made with a 
realisation of a parametrised stochastic model with 5 basis functions. Dataset 3 
is made with a realisation of a stochastic model, but the model has a predefined
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additional drift, replicating model-data mismatch. Dataset 4 contains the same set-
up as Dataset 3 but with a different predefined drift, larger in magnitude replicating 
more realistic model data mismatch. Per dataset, we also compute an additional 
1000 corresponding realisations for testing purposes. 

The initial condition .ω0(x, y), is constructed from two compactly supported 
circular regions with radius .R = 1/8 of non zero vorticity in the following way 

. ω0(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

1/2 + 1/2
(
1 − ( r1

R
)2

)3
, r1 = ((x − 1

2 − R)2 + (y − 1
2 )2)1/2 ≤ R,

1/2 + 1/2
(
1 − ( r2

R
)2

)3
, r2 = ((x − 1

2 + R)2 + (y − 1
2 )2)1/2 ≤ R,

0 else.

(27) 

We use a initial .n × m = 128 × 128 mesh over the domain .[0, 1] × [0, 1]. Resulting 
in a mesh spacing of .h = hx = hy = 0.0078125 and regularisation parameter . δ =
1.5h3/4 = 0.03941702. We remove the point vortices with non-zero vorticity from 
the flattened .(x, y)-meshgrid of points. Resulting in .Nv = 1216 points remaining 
from the 16384 initially specified on the mesh. We use .nt = 256 timesteps on the 
time interval .t ∈ [0, 32], with .Δt = 0.125. 

In dataset 1, we consider idealised data generated from a parametrised run of the 
SPDE, with a single .P = 1 basis function .θ1 = 0.003, given by 

.θ1(ξ
x
1 , ξ

y

1 )T = 0.003(2π cos(2πy),−2π cos(2πx))T . (28) 

In dataset 2, we consider data generated from a parametrised run of the SPDE with 
5 basis functions given by 

.θp(ξx
p , ξ

y
p)T = 0.0001(2π cos(2πpy),−2π cos(2πpx))T , p ∈ [5]. (29) 

In dataset 3, we create the data as a single realisation of the time mean included 
system described by Eq. (25), where we prescribe the same basis function as dataset 
1 Eq. (28), however we choose the following Stratonovich-Itô correction drift 

.v̄ = −0.00324π3(sin(2πy) cos(2πx), sin(2πx) cos(2πy))T , (30) 

in the underlying stochastic model that generates the data. To test the importance 
or non-importance of the Itô-Stratonovich correction in the generation of the data 
anomaly matrix. 

In dataset 4, we create the data as a single realisation of the time mean included 
stochastic system with the same basis function Eq. (28) to that of datasets 1 and 3 
but use the following drift 

.v̄ = 0.0003(8π cos(8πy),−8π cos(8πx))T , (31)
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replicating some small-scale unresolved drift velocities not proposed in the stochas-
tic forward model, but observed by the data. 

We either use .{ΔW1(tn)}n∈[nt ] a . nt sized sample from the normal distribution 
or .{ΔWp(tn)}n∈[nt ],p∈[5] a .(nt × 5) sized sample from the normal distribution for 
datasets (1,3,4) and 2 respectively. The resulting set of evolving points . ∧0(t), do  
not remain a Cartesian mesh after initial time. We also consider a .64 × 64 Cartesian 
meshgrid . ∧d , of fixed weather centers in a closed subdomain .[0, 1] × [0, 1] of . R2

for all time. Where the additional subscript d denotes “data”, and indicates that this 
is a weather-station in which velocity data .um(xd , tn) is measured and recorded (see 
e.g. Eq. (20)). 

Snapshots at .t = (0, 16, 32) of the stochastic solution dataset 1 is plotted in the 
first row of Fig. 1, generated with the addition of a single basis function Eq. (28). 
In the second row of Fig. 1, we plot snapshots of dataset 2, generated with five 
parametrised basis functions Eq. (29). In the third row of Fig. 1 we plot snapshots 
of dataset 3, generated with a single basis function Eq. (28) and a Stratonovich-Itô 
correction drift Eq. (30). In the fourth row of Fig. 1 we plot snapshots of dataset 4, 
generated with a single basis function Eq. (28) and a pre-prescribed drift function 
Eq. (31) representing physical unresolved processes. Not plotted are an additional 
1000 hidden testing/validation datasets per the above dataset. 

4.3 Results and Discussion 

We apply the SVD approaches based on Method 3.1, to datasets 1,2,3,4 in a context 
of a twin experiment for the re-simulation of data. We apply the ensemble backprop-
agation Method 3.2 to only datasets 1,2, as we have not described the extension of 
the Methods 3.6 and 3.2 to actively include explicit drift parameterisation. We then 
compute ensemble forecast verification metrics on the hidden test data, to see if the 
underlying distribution is well represented. 

4.3.1 Results: Dataset 1 

Twin Experiment Synthetic dataset 1 . {{xi(tn)}i∈∧i
0(tn), {um(xd , tn)}xd∈∧d

}n=nt

n=0
described in Sect. 4.2 was generated using a single basis of noise (Eq. (28)), whose 
snapshot (at .t = 0, 16, 32) of vortex positions is shown in the first row of Fig. 1. 

Figure 2a contains a plot of the basis vector-field .θ1ξ1(xd), used (in combination 
with the forward model) to generate synthetic dataset 1. Over 99.99 percent of 
covariance was explained by one basis function. Figure 2b contains the time average 
velocity field drift from the data. Figure 2c contains the recovered vector field 
.σ1ξ̃1 by Method 3.1. Visually Fig. 2a and c appear similar, and have agreement 
to .0.0467482 in the relative . L2 norm. The next recovered basis .σ2ξ̃2 has machine 
precision magnitude plotted in Fig. 2d. Figure 2e contains a plot of the recovered
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Fig. 1 Shown in each row is a scatter plot of point vortex positions whose vortex strength is 
indicated by the non-perceptually uniform colourmap jet, as to highlight finer structures in the 
flow. Black square dots denote weather stations from which data is collected. In row one we plot 
snapshots of the point vortex (at t = 0,16,32) for dataset 1 generated with one basis function. Row 
two corresponds to dataset 2 driven with five basis functions. Row three corresponds to dataset 3, 
generated with one basis function and an additional Stratonovich-Itô drift. Row four corresponds 
to dataset 4, generated with one basis function and a prescribed deterministic drift, representing 
additional unresolved processes. These datasets contain the effect of different prescribed physical 
processes (Stochastic diffusion and drift terms). This work aims to extract and parameterise the 
effects of these hidden processes, for use with a stochastic ensemble forward model 

time increments .ΔWr
1 , and the driving signal increments .ΔW ∗

1 , .ΔWr
1 and .ΔW ∗

1 are 
nearly indistinguishable apart from a small difference in magnitude. They differ 
in the relative .L2-norm by 0.03818701. With the addition of the time mean it 
is possible to recover the data anomaly matrix to 2.00982e-13 using only one
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Fig. 2 Predefined basis of noise (a), recovered time mean (b), recovered first basis (c), second 
recovered basis (d), recovered first increment (e), after Method 3.1 is applied on dataset 1 

singular value, one singular vector and the recovered driving signal. Note the SVD 
decomposition could equivalently result in an opposite signed . ξ1, and opposite 
signed .ΔWr

1 increments. 
We have presented evidence indicating that the methodology in Method 3.1 

identified a Data anomaly matrix related to the effect of .θ1ξ1(xd) from the synthetic 
data. We speculate the small difference between .σ1ξ̃1 and .θ1ξ1(xd), is in part related 
to the removal of the time average, specific to the realisation of Brownian motion 
.ΔW ∗

1 used in the synthetic data. This motivates the next test where we shall drive 
the solution with the recovered increments, recovered basis functions, and with or 
without the recovered time mean drift, all in comparison to dataset 1. We shall call 
this the re-simulation of data. 

Figure 3 contains the solution of the SPDE when driven by the recovered signal 
.ΔWr

1 with recovered basis function .σ1ξ̃1 as compared with the original data using 
.ΔW ∗

1 and . θ∗
1 ξ∗

1. In Fig. 3 the first 3 images in row one do not have the addition of 
the time mean, where as row two contains the time mean drift velocity. The relative 
(L2-spacetime) error of the reproduced time mean included solution is . 0.01265
the relative error of the recovered time mean not included solution is .0.05499. 
As seen in Fig. 3 and measured by relative error of the reproduced solution the 
inclusion of the time mean was found to be significantly helpful in the re-simulation 
of the synthetic data in the context of a twin experiment. The remaining non-zero 
difference in relative error norm .0.01265 could be speculated to be caused by many 
things, such as small inaccuracies in Fourier interpolation growing over the course 
of the simulation run. 

Verification of Learning During Training We train the ensemble back-
propagation approach Method 3.2 using a Eo ∈ {1, 5} sized member ensemble
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Fig. 3 Dataset 1 .(P = 1), reconstruction of data. Grey data points are the data. The red points are 
the recovered increment driven system. In the first row, the red points are evolved without using the 
additional time mean contribution using Method 3.4. The second row contains the same experiment 
but with the additional time mean drift using Method 3.5. We observe that the time mean velocity 
drift has notable effect, in the context of this re-simulation of data twin experiment 

forecast over a smaller time window To = [8]/8 such that the forward model 
creates a Eo sized ensemble in which 8 SSP33 Runge Kutta steps are taken for 
each ensemble member. The CRPS-loss of the Eo sized ensemble forecast over the 
time window To is denoted crpso. The parameters in the gradient descent algorithm 
used, are learning rate 1e-7, acceleration = true, max iterations 500, tolerance 
1e-15, implemented using the “jaxopt.GradientDescent” algorithm. We take the 
initial guess of parameters to be θ g 

1 = 10−12ep, such that the initial CRPS score 
before training is essentially a measure of the forecast skill of an ensemble with Eo 
deterministic models. 

In Fig. 4 we plot the Relative improvement in CRPSSo over the initial Determin-
istic ensemble forecast (30–40% improvement), and the relative error in parameter 
estimation magnitude, for Eo ∈ {1, 5} respectively. For Eo ∈ {1, 5}, the true 
parameter value was θ∗

1 ∈ {0.003, 0.003}, the initial guess is θ g 
1 = 10−12, after  

500 iterations we have learned parameter value θr 
1 ∈ {−0.00208943, 0.00360890} 

respectively. The initial CRPS estimate is crpso = {0.0101590, 0.0101590}, the  
after training the final CRPS estimate over the time interval To is crpso ∈ 
{0.00809122, 0.00608491} respectively, this CRPS is computed on a subset of the 
training data, To. 

Forecast Verification for Underlying Distribution For dataset 1, an additional 
1000 hidden validation/testing datasets were created, each testing dataset is the exact 
stochastic model used for the production of dataset 1, but run forwards with new 
normally distributed sampled increments. We then compute a 30-member ensemble 
forecast using a stochastic forward model trained/calibrated on dataset 1. Per hidden 
dataset, we estimate the CRPS over all space-time observations (using Eq. (18)) 
representing the likelihood of observing the test dataset from the ensemble forecast.
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Fig. 4 The green line is the relative CRPSS improvement as compared to the initial deterministic 
proposed ensemble. The blue line is the relative error associated with the magnitude in parameter 
estimation on training data. The figures are plotted for Eo = 1, Eo = 5, respectively. Both 
figures show a 30–40% increase in forecast skill over the deterministic proposed ensemble. Learned 
parameters are closer in magnitude to the true parameters used for the generation of synthetic data. 
However, there are situations in which the true parameter does not necessarily give a better CRPSS 

We then take the mean CRPS over the entire 1000 test datasets. A lower mean CRPS 
value informally indicates a better likelihood that the hidden testing dataset comes 
from the trained ensemble methods 30-member ensemble forecast prediction. 

The raw averaged CRPS scores are displayed in the first column of Table 5, 
and the percent relative improvements in average CRPSS (calculable as 100(1 − 
CRPS(model 1)/CRPS(model 2))) are displayed in Table 1, we observe the follow-
ing. The Without-time-mean ensemble (calibrated with Method 3.1) outperformed 
the perfect model by 0.04%. The Perfect model outperformed the With-time-mean 
model by 2.039%. The With-time-mean model outperformed randomised initial 
conditions by 8.071%. The Randomised initial condition outperformed persistence 
by 49.44%. 

We conclude that the underlying distribution is best represented by the Perfect 
model and the Without-time-mean model performed similar in CRPS score. The 
With-time-mean model performed marginally worse, we speculate that this is 
because the observed drift was a sampling error rather than a systematic modelling 
error. Correcting for a sampling error, biased the solution towards the reference 
training data as seen in Fig. 3, but was not helpful for representing (on average) the 
hidden 1000 testing datasets i.e. the underlying distribution. 

In summary, Tables 1 and 5 indicate that using the time mean drift is not helpful 
in representing the underlying distribution when the underlying distribution (e.g. 
hidden SPDE/SDE model) does not have an explicit time mean drift. This is fairly 
transparent as the time mean drift occurs only as a result of sampling data from the 
underlying distribution, and adding in the small observed drift biases towards the 
training dataset rather than compensating for a model-data drift mismatch. However, 
in practice one may not be able to tell the difference between model error and 
statistical sampling error, as one normally cannot resample from the underlying 
distribution. Biasing the model towards matching observed data with a time mean 
drift could be seen as a valid modelling assumption to make, and only decreased
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Table 1 Hidden dataset 1, “Percent improvement” table of row scheme over the column scheme 
for representing the distribution, i.e. hidden datasets. Readable as follows, the With-time-mean 
ensemble is 8.071% better at representing the underlying distribution than the RIC ensemble. In 
practice this is the relative skill, hidden dataset averaged, observation averaged CRPS estimate, of 
the row scheme against the column scheme multiplied by a factor of 100 

Scheme RIC With-time-mean Without-time-mean Perfect Persistence 

RIC 0 -8.779 -11.09 -11.04 49.44 

With-time-mean 8.071 0 -2.123 -2.081 53.52 

Without-time-mean 9.982 2.079 0 0.0413 54.48 

Perfect 9.945 2.039 -0.04132 0 54.47 

Persistence -97.77 -115.1 -119.7 -119.6 0 

Fig. 5 The first row contains the vector fields and magnitude of the predefined basis . {θ∗
pξp}p=5

p=1
used in the generation of dataset 2, when evaluated at the weather stations .xi ∈ ∧d . The second row 
shows .{σp(ξ̃ x

p , ξ̃
y
p )T }p=5

p=1 the recovered basis from truncated SVD at weather stations, generated by 
the algorithm described in Method 3.1, not shown here is the 6th recovered principle component, 
a machine precision zero vector-field similar to Fig. 2d 

relative CRPSS by about 2% for this case. It should be noted that a sensible random 
perturbation of the initial condition performed remarkably well (10% worse CRPSS) 
at representing SALT-type data. Both Methods 3.5 and 3.4 (with and without the 
time mean) outperformed both RIC and Persistence, and approached the CRPS score 
of the perfect model. 

4.3.2 Results: Dataset 2 

Twin Experiment For synthetic dataset 2 described in Sect. 4.2 we used . P = 5
velocity fields as a basis of noise Eq. (29) for the generation of data, whose snapshot 
(at .t = 0, 16, 32) of vortex blobs is shown in the second row of Fig. 1. 

In the first row of Fig. 5 we display the five basis functions used to generate the 
synthetic dataset 2, while in the second row, we plot the recovered 5 basis functions 
obtained through Method 3.1. Approximately 99.99% of covariance was explained 
by these five basis functions, with the sixth having machine precision magnitude. 
The recovered basis was not found unique or ordered (SVD is non-unique), but the 
vectorfields recovered exhibit some similarity in magnitude and shape to those used
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Fig. 6 Dataset 2 .(P = 5). In the first row, the red points are evolved using recovered increment 
and recovered basis functions from Method 3.1 without the time mean contribution, and the grey 
points are the data. The second row contains the same experiment but with the additional time 
mean drift in 

to generate dataset 2. Figure 6 contains the SPDE driven by the recovered signal 
.{ΔWr

p}p∈[5] using the Fourier interpolated recovered 5 components .{σp
˜ξp}p∈[5], as  

compared with the original data. The relative . L2 error of the recovered increment 
time mean included driven solution from the data is .0.0531869, the relative . L2

relative error of the recovered time mean not included solution is .0.0629821. This  
indicates an improvement in the re-simulation of data by the inclusion of the time 
mean. 

We test that recovered increments are normal. The Shapiro-Wilk test [42] tests  
gives a score of 0.99863, and p-value of 0.421952. The two-sample goodness of 
fit Kolmogorov-Smirnov test ([8]) between .ΔW ∗ and, .U/Δt = ΔWr gives a test 
statistic of 0.0390625, with p-value 0.990. This is not below the threshold of 0.05, 
so we cannot reject the null hypothesis that this sample is distributed according to 
the standard normal with confidence level 95%. We perform the Anderson test, the 
value of the test statistic was 0.317 and doesn’t exceed the critical values [0.574, 
0.654, 0.785, 0.915, 1.089], indicating the null hypothesis of normality cannot 
be rejected at the associated percent significance levels .[15, 10, 5, 2.5, 1.]. The  
recovered noise has moments displayed in the second column of Table 6. Hypothesis 
testing indicates that the recovered increments are likely sampled from a normal 
distribution, justifying the basis .{σp ξ̃}p∈[P ] as a reasonable choice for modelling 
new normal increments. 

Verification of Learning We observe that the CRPS loss on training 
data decreases drastically (initially), indicating improved forecast skill in 
comparison to a deterministic forecast for training dataset 2. The proposed 
initial parameter guess is 10−12e5 (essentially a deterministic proposal), the 
synthetic data was generated with “true” parameter values θ∗ = 10−5e5. 
After 500 iterations of gradient descent, the estimated parameter values are
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Table 2 Hidden dataset 2, “Percent improvement” table of row scheme over the column scheme 
for representing the distribution, i.e. hidden datasets 

Scheme RIC With-time-mean Without-time-mean Perfect Persistence 

RIC 0 −2.921 −5.631 −6.704 81.46 

With-time-mean 2.838 0 −2.634 −3.676 81.98 

Without-time-mean 5.331 2.566 0 −1.016 82.45 

Perfect 6.283 3.546 1.006 0 82.62 

Persistence −439.3 −455.1 −469.7 −475.5 0 

[0.0001621, −0.00001877, −0.00002568, 0.00003455, 0.0001050] indicating 
identification of the rough sizes of the parameters, but not sign or exact size. 
We found examples of new parameters not equalling the true parameters used to 
generate the training data, but giving improved CRPS skill scores during training. 

Forecast Verification for Underlying Distribution For dataset 2, an additional 
1000 hidden testing datasets were created, with the same P = 5 basis functions 
with same parameter values θ∗ = 10−5e5, but with different driving increments. 
We tabulate the CRPS average scores in the second column of Table 5. We note 
that the backpropagation approach ensemble Method 3.6 had an unusually low 
CRPS average indicating good forecast skill. We tabulate the relative CRPSS 
scores in Table 2. From which we conclude that in terms of relative CRPSS. The 
perfect model ensemble on average outperformed the Without-time mean ensemble 
by 1.0%. The Without-time-mean ensemble on average outperformed the With-
time-mean ensemble by 2.5%. The With-time-mean ensemble outperformed the 
randomised initial condition ensemble by 2.8%. The randomised initial condition 
ensemble outperformed the Persistence ensemble by 81.5%. 

From Table 2, and Fig. 6 we conclude that in the instance when the data comes 
from a model without a time mean drift. Adding on the observed time mean drift 
was not helpful in representing the hidden model, despite predicting the training data 
more accurately. We speculate this occurs because the observed drift is a statistical 
error associated with sampling a unknown distribution rather than a systematic 
modelling error. 

4.3.3 Results: Dataset 3 

Twin Experiment Synthetic dataset 3 described in Sect. 4.2 was generated using a 
single basis of noise (Eq. (28)) and a predefined drift Eq. (30) (Fig. 7a) mimicking 
unresolved small scale drift dynamics, the snapshot (at .t = 0, 16, 32) of vortex  
positions is shown in the third row of Fig. 1. 

Using Method 3.1, we recover a time mean drift (plotted in Fig. 7b), a basis 
function (not plotted indistinguishable to Fig. 2c) and a driving signal, such that the 
DAM can be reconstructed to .1.90113e − 13. The recovered .ΔWr gives a Shapiro-
Wilk test W score of 0.989228 with p-value 0.0538488, and a Shapiro statistic of
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Fig. 7 Predefined Itô-Stratonovich drift (a), recovered time mean drift (b), attained by Method 3.1 
applied on dataset 3. The difference is plotted in (c), indicating the recovered time mean drift is 
a contribution from both the predefined difference from the proposed forward model and the data 
(Itô-Stratonovich correction) as well as the specific Brownian motion realisation associated with 
sampling from underlying hidden data distribution 

Fig. 8 Dataset 3, reconstruction of data. Grey data points are the data. The red points are the 
recovered increment driven system. In the first row, the red points are evolved without using the 
additional time mean contribution using Method 3.4. The second row contains the same experiment 
but with the additional time mean drift using Method 3.5. We observe that the time mean velocity 
drift has a significant effect, in the context of this re-simulation of data in this twin experiment 

0.989228 with p value 0.0538488. The two-sample goodness of fit Kolmogorov-
Smirnov test gives a KS statistic of 0.03515625, with p-value 0.997513 not below 
the threshold of 0.05. This indicates some evidence that the recovered increments 
are normal and the basis function is appropriate for use with different normal 
increments. 

In Fig. 8 we plot the re-simulation of data with the recovered increments .ΔWr , 
and the recovered basis function . ̃ξ1 with and without the inclusion of the recovered 
time mean drift. The relative (spacetime L2) error of the time mean included solution 
is 0.0160130, whereas the relative error of the recovered time mean not included 
solution is 0.0864620. We observe in both the relative L2 spacetime error and 
Fig. 8 that the recovered time mean is significantly helpful in the re-simulation of 
the observed dataset 3 training data. Demonstrating that the observed time mean 
drift can compensate for both the Itô-Stratonovich modelling deficiency and the
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Table 3 Hidden dataset 3, “Percent improvement” table of row scheme over the column scheme 
for representing the distribution, i.e. hidden datasets 

Scheme RIC With-time-mean Without-time-mean Perfect Persistence 

RIC 0 −10.29 −11.51 −12.52 47.9 

With-time-mean 9.326 0 −1.11 −2.029 52.76 

Without-time-mean 10.32 1.098 0 −0.9087 53.28 

Perfect 11.13 1.989 0.9005 0 53.7 

Persistence −91.96 −111.7 −114.1 −116 0 

unphysical drift observed in the DAM from statistical sampling error, in the re-
simulation of data. 

The interesting feature of dataset 3, is that the recovered drift (plotted in Fig. 7), 
is visibly affected by model inadequacy by missing an Ito-Stratonovich correction 
drift term Fig. 7a, and also by statistical sampling error (associated with the specific 
Brownian motion realisation used for data). This is highlighted in Fig. 7c, where 
the difference between the predefined time mean drift and recovered time mean 
drift, appears to be the same shape as the basis function Eq. (28) for noise. This 
motivates computing the CRPSS on hidden data, to see whether the time mean drift 
is important in terms of representing the Itô-Stratonovich model deficiency despite 
the addition of an unphysical statistical drift bias observed by the data anomaly 
matrix. 

Forecast Verification for Underlying Distribution In the third column of Table 5 
we tabulate the averaged CRPS score over the hidden datasets. We turn this into the 
improvement in relative CRPSS displayed in Table 3. From this, we conclude that 
the Perfect ensemble model on average represented the hidden 1000 datasets 0.9% 
better than the Without-time-mean ensemble. The Without-time-mean ensemble on 
average represented the 1000 hidden datasets 1.1% better than the With-time-mean 
ensemble. The With-time-mean ensemble on average represented the 1000 hidden 
datasets 9.3% better than the RIC ensemble. The RIC ensemble outperformed the 
persistence ensemble by 47%. 

We conclude that the inclusion of a drift term from data, even when well moti-
vated from modelling deficiencies may not necessarily improve the calibrated model 
in terms of CRPS score. We speculate (based on the previous two experiments) that 
this occurs because the finite realisation of the ξdW  term in the generation of the 
synthetic training data resulted in an unphysical time mean drift observed in the 
DAM. Whose inclusion in a calibrated model with drift (e.g. ensemble Method 3.5) 
can dominate the potential benefit of modelling a small but well-motivated drift. 

4.3.4 Results: Dataset 4 

Twin Experiment Synthetic dataset 4 described in Sect. 4.2 was generated using a 
single basis of noise (Eq. (28)) and a predefined drift Eq. (31) (Fig. 9a) mimicking
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Fig. 9 Predefined time mean drift (a), recovered time mean drift (b), after method Method 3.1 is 
applied on dataset 4. The difference is plotted in (c), indicating the recovered time mean matrix is 
a contribution from both the physical predefined difference from the proposed forward model and 
specific Brownian motion realisation associated with sampling from the underlying hidden data 
distribution 

the effect of unresolved small scale drift dynamics, the snapshot (at .t = 0, 16, 32) 
of vortex positions is shown in the fourth row of Fig. 1. 

Using Method 3.1, we recover a time mean drift (plotted in Fig. 9b), a basis 
function and a driving signal, such that the DAM can be reconstructed to 1.98225e-
13. On the recovered increments we perform the Shapiro-Wilk test to evaluate the 
null hypothesis that the data was drawn from a normal distribution and get a score 
of 0.989228, and p-value of 0.0538488. We perform the two-sample goodness of fit 
Kolmogorov-Smirnov test for the recovered increments to test the null hypothesis 
that the recovered increments are distributed according to the appropriately scaled 
normal distribution. The p-value of 0.997513 is not below the threshold of 0.05, 
so we cannot reject the null hypothesis that this sample is distributed according to 
the standard normal with a confidence level 95%. Giving evidence that . ̃ξ1 is an 
appropriate basis for stochastic parametrisation. 

The interesting feature of dataset 4 is that the recovered time mean drift is made 
up from both real model inadequacies from missing a physical drift term in the 
underlying model (plotted in Fig. 9a) and specific sampling error. This is highlighted 
in Fig. 9c, where the difference between the recovered and predefined drift is plotted 
and appears to be in the same shape as the stochastic basis velocity Eq. (28). 

Snapshots (at t=8,16,24) of the re-simulation of data with and without the time 
mean drift are plotted in the first and second row of Fig. 10 respectively. The relative 
spacetime error of re-simulating data with the time mean included is 0.0672719 
whereas the relative error without the time mean included solution is 0.214116. 
We conclude that the inclusion of the time mean drift term is helpful in the re-
simulation of the training dataset 4. Since this model-data mismatch in drift is larger 
in magnitude than the Itô-Stratonovich correction, it is well motivated to consider 
whether the observed time mean drift can be used in an ensemble forecast and 
improve the forecast skill. Despite the potential for a statistical bias associated with 
the sampling of the Brownian motion. 

Forecast Verification of Underlying Distribution In the fourth column of Table 5 
we tabulate the averaged CRPS score of each model over the hidden data. This
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Fig. 10 Dataset 4, reconstruction of data. Grey data points are the data. The red points are the 
recovered increment driven system. In the first row, the red points are evolved without using the 
additional time mean contribution using Method 3.4. The second row contains the same experiment 
but with the additional time mean drift using Method 3.5. We observe that the time mean velocity 
drift has significant effect, in the context of this re-simulation of data in this twin experiment 

Table 4 Hidden dataset 4, “Percent improvement” table of row scheme over the column scheme 
for representing the distribution, i.e. hidden datasets 

Scheme RIC With-time-mean Without-time-mean Perfect Persistence 

RIC 0 −16.96 −12.46 −19.04 42.41 
With-time-mean 14.5 0 3.849 −1.776 50.76 

Without-time-mean 11.08 −4.003 0 −5.85 48.79 

Perfect 15.99 1.745 5.527 0 51.62 

Persistence −73.64 −103.1 −95.28 −106.7 0 

is presented in terms of a relative improvement in average CRPSS in Table 4. 
We conclude that in terms of representing the 1000 hidden realisations from the 
underlying SPDE/SDE, as compared by relative space-time averaged CRPSS. The 
RIC ensemble was on average 42.41% better than Persistence. Without-time-mean 
was on average 11.08% better than RIC. With-time-mean was on average 3.849% 
better than Without-time-mean. The Perfect model was on average 1.745% better 
than With-time-mean. These are indicated with bold values in Table 4. 

We make the following important conclusion from dataset 4. If the data is 
generated with a model with a notable time mean drift, using Method 3.1 the time 
mean can be captured. Furthermore the inclusion of the measured drift (ensemble 
Method 3.5) improved the re-simulation of data as in Fig. 10. The inclusion of the 
measured drift also improved the average CRPS of hidden testing datasets as seen 
in Tables 4 and 5, even in the presence of statistical sampling error. 

We hypothesise that observed time mean drifts are likely to be significant and 
expected in realistic modelling scenarios, there are likely unresolved drift processes 
between the forward model and observed data. In which case including the observed 
time mean as in ensemble Method 3.5, can be seen as an essential modelling step
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Table 5 Each column contains the average CRPS scores associated with attaining hidden test 
datasets, from an ensemble(denoted in a row) calibrated on the corresponding training dataset 

Average CRPS Average CRPS Average CRPS Average CRPS 

Scheme Dataset 1. Dataset 2. Dataset 3. Dataset 4. 

Persistence 1.501e-01 1.223e-01 1.509e-01 1.520e-01 

RIC 7.591e-02 2.268e-02 7.859e-02 8.755e-02 

Perfect 6.836e-02 2.126e-02 6.985e-02 7.354e-02 

Without-time-mean 6.834e-02 2.147e-02 7.048e-02 7.785e-02 

With-time-mean 6.979e-02 2.204e-02 7.126e-02 7.485e-02 

Learned forward model: 
Eo = 5 

6.944e-02 1.789e-02 NA NA 

Table 6 Moments of the recovered increments 

Moment Dataset 1 Dataset 2 Expected value 

.E(ΔWr) −6.349e−16 −2.325e−16 0 

.E(ΔW 2
r )/Δt 1.000e+00 1.000e+00 1 

.E(ΔW 3
r ) 8.875e−04 −1.478e−03 0 

.E(ΔW 4
r )/Δt2 2.727e+00 2.878e+00 3 

.E(ΔW 5
r ) −5.641e−03 −2.375e−03 0 

.E(ΔW 6
r )/Δt3 1.224e+01 1.336e+01 15 

unless one has access to diagnostics tools capable of ruling out the data observed 
drift as a modelling error and classifying it as a statistical error. Such situations are 
unlikely, one does not necessarily get to resample from the underlying distribution 
from which the data was generated as we have in this idealised testing scenario. 

4.4 Summary of Results 

Under the assumption that the data comes from an SPDE realisation, the new SVD 
calibration technique Method 3.1 captures the same number of basis functions used 
to generate the data for .P = 1 and for .P = 5. The basis recovered are in some 
objectionable sense reasonable in magnitude and shape in comparison to the basis 
used to generate the data. The recovered noise increments have passed several 
hypothesis tests indicating normality. In the specific instance of one basis function, 
the recovered basis function was shown to be in agreement with the basis function 
used to generate the data, both visually and agreeing to .10−2 in the relative error 
norm. 

We speculated that the .10−2 relative .L2 discrepancy in both recovered path 
(Table 6) and basis function in part came from the time mean removal in the 
SVD decomposition, and proposed adding this term back in as a deterministic drift
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velocity in the equation without violating the geometric structure of the model. To 
test the addition of this term we proposed the resimulation of data, by driving the 
SPDE with recovered increments, and recovered basis functions. In the resimulation 
of data, driving the solution of the model could more accurately represent the 
training dataset by the inclusion of the time mean drift velocity, for all datasets. 

We also estimated the Continuous Rank Probability Score (CRPS) for each 
model, the persistence forecast (ensemble Method 3.1), the new SVD algorithm 
with the time mean (ensemble Method 3.5), and without it (ensemble Method 3.4), 
the perfect model (ensemble Method 3.3), the and the model rerun with learned 
parameter values (ensemble Method 3.6). This was done by estimating CRPS over 
all time and all state space values for a 30-member ensemble forming a global 
estimate of the CRPS score to quantify how likely the observations come from 
the ensemble. This is performed on 1000 hidden datasets and averaged to help 
distinguish the sampling error associated with sampling from the data distribution. 

From which we concluded. Should data come from an SPDE/SDE realisation 
with a physical drift term, using the time mean from the DAM to evolve the 
ensemble is an important modelling step for improving the skill of the forecast. The 
potential drawback of adding a time mean drift term is that, if the data arises from 
a SPDE/SDE realisation with a small or insignificant drift term, sampling from the 
data distribution may result in an observed non-physical drift in the DAM matrix. 
The appearance of a nonphysical drift is typically small in magnitude (arising 
from the statistical error of sampling Brownian motion not having mean zero) 
and may justify ignoring small drifts such as the higher order (typically smaller) 
Itô-Stratonovich correction in the context of calibration. However, the possibility 
of a nonphysical drift in the DAM does not justify neglecting a drift of larger 
magnitude arising from model-data mismatches. Overall both SVD approaches 
ensemble Method 3.5 and ensemble Method 3.4 (with and without the time mean) 
outperformed both RIC and Persistence, and approached the CRPS score of the 
perfect model. 

Regarding Method 3.2, evidence points towards a decreasing CRPS score 
with increased training time, and showed a 40% CRPSS improvement from the 
initial deterministic proposed ensemble. The lack of interpolation lead to a drastic 
improvement in compute speed in the forward model. With a fixed number of 
basis functions the SVD approaches produced ensemble forward models that 
took approximately 1 hour to run, whilst the parameter estimated model took 
approximately 1 minute to run, this scaling gets more drastic with the more weather-
stations used in the model. It is also worth remarking the backpropagation approach 
Method 3.2 did not use any Eulerian weather station data in the training, and only 
trained on approximately 3% of available data Lagrangian path data, so direct 
comparison to SVD methodology may not be appropriate. 

There are many free parameters involved, .nc,Eo, To, nv, P, nt . . ., in which 
the effectiveness of both calibration methods could be studied. For example, we 
plot the CRPSS and parameter magnitude estimation error for .Eo = {1, 10, 100}, 
trained over the entire time window .To = [256]/32 in Fig. 12, for a smaller dataset
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to illustrate the effect of .Eo size during training. Back-propagation through an 
ensemble costs vastly more than an SVD approach. Nevertheless, in the context 
of offline approaches to data assimilation, it may be beneficial to incur the cost of 
the offline training, to improve the forward ensemble model speed (due to the lack 
of interpolation in the forward model). 

5 Conclusion and Future Outlook 

A methodology for the calibration of stochastic vector-fields was proposed using 
the combination of the Biot-Savart kernel and vortex positional data in combina-
tion with a SVD approach Method 3.1. The Eulerian vector-fields recovered are 
demonstrated relevant to the stochastic forward model proposed and we provided 
evidence Method 3.1 parameterised the difference between the proposed forward 
model and the synthetic data. The methodology has been shown consistent by the 
use of a twin experiment and using the CRPS skill score as compared relative to 
several benchmarks including the “perfect” model (ensemble Method 3.3). 

The inclusion of a time mean drift velocity was motivated and shown important in 
the context of a twin experiment. This term was shown consistent with the geometric 
modelling assumptions (Kelvin theorem, coadjoint action section A, Hamiltonian 
and Poisson structure section B). The forecast verification results presented here 
suggest the addition of the time mean drift term is an advantageous modelling step, 
except in the setting when the data does not have a large difference in drift from 
the model. Realistic data may have a significantly larger time mean drift velocity 
from the proposed forward model than in the idealised experiments presented here, 
making this arguably an essential modelling step. 

Using the Biot-Savart kernel to create a data anomaly matrix is not necessarily 
restricted to the setting of inviscid vortex methods, using the Biot-Savart kernel 
is likely applicable for the calibration of other fluid mechanics models. For the 
point of testing and to distinguish between model error data sample error and 
calibration error, we have biased all tests towards SPDE/SDE realisation data for 
which we know the parameters. The application of the calibration methodology 
proposed in this chapter could be adapted in the context of less idealised (and less 
testable) synthetic data. For example, the vorticity equation can be solved (Eq. (4), 
Example 2.1), using a finite volume discretisation, with passive tracer drifters (with 
an initially measured known vorticity) in the flow shown in Fig. 11. These tracers 
could be treated as analogues of the point vortices in the inviscid vortex method, and 
vector fields could be calibrated using Method 3.1. One could equally treat this as a 
reference dataset to calibrate an inviscid vortex method, serving as another example 
of stochastic coarse-grained model reduction. 

Using a tangent linear model approach to auto differentiate through the ensemble 
forecast, as to minimise the CRPS Skill score Method 3.2. We were able to 
consistently propose basis functions with an improved relative CRPS skill score
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Fig. 11 Passive tracers carried by the Fourier reconstructed velocity field within a unlimited 
upwind bias high order flux form mimetic finite volume method (plotted grey) (solving strategy 
uses ideas from [1, 19, 28, 45]), the passive particle tracer are coloured by the initial vorticity 
(plotted jet) 

0 100 200 300 400 500 
Iterations 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

V
al
ue
 

Relative Ensemble CRPS score improvement, 
and Parameter estimation error 

|||θ| − |θ∗|||2 2/||θ∗||2 2 error 
Relative CRPSS 

0 100 200 300 400 500 
Iterations 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

V
al
ue
 

Relative Ensemble CRPS score improvement, 
and Parameter estimation error 

|||θ| − |θ∗|||2 2/||θ∗||2 2 error 
Relative CRPSS 

0 100 200 300 400 500 
Iterations 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

V
al
ue
 

Relative Ensemble CRPS score improvement, 
and Parameter estimation error 

|||θ| − |θ∗|||2 2/||θ∗||2 2 error 
Relative CRPSS 

Fig. 12 On a different dataset generated with fewer dimensions (using much less points), we were 
able to run the ensemble training over the full 256 time intervals, with 1,10,100 ensemble members 
respectively. The effect of increasing the ensemble size appeared to improve the parameter 
estimation error 

as compared to a near deterministic forecast, and did not require weatherstation 
data. The minimisation of the CRPS of an ensemble forecast did go someway to 
propose reasonable estimation of the true parameters magnitude (better than the 
initial guess). However, we found cases in which a decreases in CRPS did not 
necessarily lead to a more accurate estimation of parameter values. Parameters 
converged to roughly the correct magnitude of the proposed parameters, but not 
the right sign or exact same number (Fig. 12). 

The inconsistency in the calibration problem as posed as minimisation of a 
CRPS score and as a parameter estimation problem, could be a barrier for reliable 
methodology but also a potential opportunity for model-specific calibration. One 
could foresee calibration vector fields chosen to produce a good (in a probabilistic 
sense) forecast of a specific event. Providing an event-informed approach to the 
choice of vector fields. One could potentially achieve such a task using an approach 
similar to Method 3.2 but with the minimisation of a Brier skill score of a single 
observed important event, e.g. hurricane hitting a specific location, sea surface 
height under a satellite track. 

Acknowledgments I would like to acknowledge Darryl Holm for continued support and insight. 
I would like to acknowledge Wei Pan, Ruiao Hu for valuable insights into existing calibration 
methodology. I would like to acknowledge Theo Diamantakis and Darryl Holm regarding various 
geometric insights into point vortices and the SALT framework in the variational principle. I would



Stochastic Fluids with Transport Noise: Approximating Diffusion from Data. . . 337

like to acknowledge Wei Pan, Oliver Street, Alex Lobbe for interesting discussions in weather 
forecast verification techniques. I would like to acknowledge discussions regarding numerical 
methods with Ruiao Hu, Wei Pan as well as Aythami Bethencourt de Leon, and James Micheal 
Leahy regarding specifics in the JAX coding environment. I would also like to acknowledge two 
particularly helpful and thorough anonymous reviewers for comments leading to the improvement 
of this manuscript. 

The work of JW is supported by the European Research Council (ERC) Synergy grant 
“Stochastic Transport in Upper Ocean Dynamics’ (STUOD) – DLV-856408. 

Appendix 1: A Geometric Structure 

It may be worth noting that although Eq. (25) appears to have an additional drift not 
present in the original Stochastic Advection by Lie Transport(SALT) chapter [25]. 
The modelling remains faithful to the geometric framework in the following way. 
An additional deterministic drift velocity acting at the level of the particle trajectory 
map, gives a stochastic Kelvin theorem akin to [25] but with the additional feature 
of a data informed deterministic drift moving the loop 

.d

∮
C(udt+v̄dt+ξp◦dWP )

u · dx = 0. (32) 

An Euler Poincaré equation(see [26]) with a modification to the Lie algebra resulting 
in a coadjoint operator of the form .ad∗

udt+v̄dt+ξp◦dWP . In the Euler equation an 

additional deterministic drift term appears in the velocity of the Lie derivative 
operator, in 2D this appears as additional transport of vorticity by a time mean drift 
velocity as follows 

.dωt + (u + v̄ · ∇)ωtdt +
P⎲

p=1

(θpξp · ∇)ωt ◦ dWp = 0. (33) 

Appendix 2: Hamiltonian and Poisson Structure 

The finite dimensional regularised Stratonovich system has a “Hamiltonian” struc-
ture, when the vectorfield basis is assumed to have a streamfunction representation 
.ξp = −∇⊥ψp, ∀p ∈ [P ], and when the time mean drift has a streamfunction 
representation .v̄ = −∇⊥ψ̄ . We first define the operators .∇⊥

i := (−∂yi
, ∂xi

), 
.∇i := (∂xi

, ∂yi
), denoting derivatives with respect to specific particle positions. 

Then the Hamiltonian system can be written as the following
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. ┌idxi = −∇⊥
i

⎛
⎝Hδdt +

⎲
i∈∧0

┌iψ̄(xi)dt +
⎲
i∈∧0

P⎲
p=1

┌iθpψp(xi) ◦ dWp

⎞
⎠ ,

∀i ∈ ∧0, (34) 

where . Hδ is the deterministic regularised Kirchhoff Hamiltonian 

.Hδ =
⎲

i,j∈∧i
0,i /=j

┌i┌jGδ(xi − xj ). (35) 

For a function of particle positions .F(t, {xi}i∈∧i
0
), the time derivative reveals the 

following Poisson structure 

. 0 = ∂tF + {F,Hδ}dt + {F, ψ̄}dt +
P⎲

p=1

{F, θpψp} ◦ dWp,

{F,Hδ} :=
⎲
i∈∧i

0

1

┌i
(∇iF) · (−∇⊥

i Hδ). (36) 

Example B.1 (Surface Quasi-Geostrophic) Surface Quasi-Geostrophic on . R2

has the following differential relationship between deteministic stream function 
and vorticity, .ψ = (−Δ)−1/2ω, with Greens function given by . G(x) =
−(2π)−1||x||−1

2 , and kernel by .K(x) = (4π)−1x⊥||x||−3. This two dimensional 
model bears analogy to the three dimensional Euler Equation and kernel. 

Example B.2 (Quasi-Geostrophic Shallow Water) Quasi-Geostrophic Shallow 
Water on . R2 has the following differential relationship between deterministic stream 
function and vorticity, .ψ = (Δ − λ2)−1ω, with Greens function given by . G(x) =
−(2π)−1K0(λ||x||), and kernel by .K(x) = λ(2π)−1K1(λ||x||), where .Kn is the 
modified Bessel function of second kind, and satisfies .K '

0 = −K1. Numerically, the 
modified Bessel function of the second kind requires approximation, typically done 
via numerical integration either through trapesium rule [27] or peicewise Chebyshev 
quadrature, additional computational time or computational resources are required. 

Example B.3 (Euler-. α (Model of Turbulence)) Euler-. α (model of turbulence)on 
.R

2 has the following differential relationship .ψ = (1 − α2Δ)−1(−Δ)−1ω. 
Using the fundamental solutions to the Helmholtz and Laplace operator D. D. 
Holm, M. Nitsche and V. Putkaradze [27] deduce the following Greens func-
tion .G(x) = −1

2π
(log(||x||2) + K0(||x||2/α)) and Biot-Savart kernel . K(x) =

(2π)−1x⊥||x||−2
2 (1 − ||x||2/αK1(||x||2/α)). Here one observes a regularisation of 

the Euler kernel, taking a similar but distinct form to that of the regularised vortex 
blob approximations. There is exponential decay for large values of .||x||2, but unlike 
the vortex blob method the Greens function remains unbounded at the origin. The 
reconstructed velocity is bounded, but the vorticity is not.
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Remark B.1 (Different Domains) Various modifications to the Greens functions 
have been proposed to deal with different domains. Point vortices have been 
proposed on a singularly periodic strip [32, 39] using the method of images, a doubly 
periodic square see [44] [36], for toroidal see [41], for gaps in walls see [14], for 
inclusion of islands see [29]. Milne-Thompson theorem for a cylinder can be used 
to take into account the introduction of a cylinder [10], and the conformal Schwarz– 
Christoffel mapping could be proposed more generally. Embedded closed surfaces 
conformal to the unit sphere are considered in [16], and for additional literature 
review see [5] [2]. 

Remark B.2 (CRPS) The CRPS is a continuous version of the Rank probability 
score, and can be interpreted as a Brier score but integrated over all possible 
thresholds. The CRPS is a strictly proper scoring rule [35]. The CRPS measures 
differences between the predicted and occurred cumulative density functions and 
gives a score indicating how good the ensemble is at matching observations. 0 is 
accurate, and 1 is inaccurate. For a deterministic forecast, the CRPS reduces to the 
mean absolute error. We use an estimator of the representation (pg8 eq 11 in [21]) 
in the loss function with an additional fairness modification see [17, 46], see same 
reference for the equivalence to other formulations of the CRPS. For discussion, 
literature review and details regarding the Continuous Rank Probability Score, and 
relationship to other skill scores (such as Breir skill score [9], and RPS) and other 
diagnostic tools such as (Rank Histogram/Talagrand diagram) see [21, 24], and [20]. 
For further insights into the Candille–Talagrand (2005), Brier score, Quantile score, 
Hersbach and more decompositions of the CRPS score see [3]. In the context of 
postprocessing of ensemble forecasting in the forecast verification community, the 
CRPS score has been found to produce sharper better-calibrated forecasts than with 
maximum likelihood estimation [18]. 

Remark B.3 (SVD) The SVD of the real .m × n matrix M is a decomposition into 
two orthogonal matrices .U,V and a diagonal matrix . ∑, such that .M = U∑V T , for  
.U,∑, V T ∈ R

m×m,Rm×n,Rn×n. The diagonal entries .σi = ∑ii of the diagonal 
matrix .∑ ∈ R

m×n, are known as the singular values of M , they are uniquely 
defined by M up to ordering and there are .rank(M) of them. .U,V are orthonormal 
(rotation) matrices, interpreted as forming an orthonormal basis from columns or 
rows. The SVD is typically ordered such that the singular values are decreasing in 
size, while the matrix . ∑ is unique in this ordering, matrices U and V are not unique. 
The columns of U and the columns of V (rows of . V T ) are called the left-singular 
vectors and right-singular vectors of M . A left singular value of M is a non-negative 
real number . σ , such that .Mv = σu for .v ∈ R

n,.u ∈ R
m, a right singular value of M 

as a non-negative real number . σ , such that .MT v = σv for .v ∈ R
n,.u ∈ R

m. We are  
interested in a truncated SVD, where we retain only the first t singular values along 
with their corresponding t column vectors in U , and t row vectors in . V T . Such that 
.Mt = Ut∑tV

T
t , for .Ut,∑t , V

T
t ∈ R

m×t ,Rt×t ,Rt×n approximates M , we use the  
Truncated SVD algorithm in Halko [23].
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Remark B.4 (Fourier Interpolation) Fourier interpolation of an unstructured 
grid of points using a structured 2d regular grid of data on .[0, 1] × [0, 1] (weather 
stations) can be performed in the following manner. Let .q ∈ R

nc×nc , denote the 
discrete field at . ∧d , where . nc is even, and .q̂ = FxFy(q) its discrete 2d Fourier trans-
form. Then .q(xl, yl) = Re(

∑
−nc/2≤j,k≤nc/2 q̂exp(2πijxl/Δx)exp(2πikyl/Δy)), 

. ∀l, is Fourier interpolation at .(xl, yl). This is performed on the x, and y components 
of (deterministic and stochastic) velocity fields, at discrete time evolving points 
.xl ∈ ∧0(t) in the methods Methods 3.5 and 3.4. Typically the error of Fourier 
interpolation is related to the continuity of the field. The reconstruction and 
evaluation of interpolating polynomials or other basis functions from weather 
stations has an inherent error and computational cost. Two dimensional Fourier 
interpolation from .nc × nc weather stations to . nv points has roughly the following 
computational cost, in floating point operations .CPn4

c2log(nc)nv . 

Remark B.5 (Notation, Initialisation and Weather Stations) Let 
.∧m,n

[xmin,xmax]×[ymin,ymax] = Xm[xmin,xmax] × Yn[ymin,ymax], denote the .m × n Cartesian 
product mesh defined from the following two sets . Xm[xmin,xmax] := {xi |xi = xmin +
hx(i + 1/2),∀i ∈ {0, . . . , m − 1}}, .hx := (xmax − xmin)/m, . Yn[ymin,ymax] :={
yj |yj = ymin + hy(j + 1/2),∀j ∈ {0, . . . , n − 1}}, .hy := (ymax − ymin)/n of 

equally spaced cell center points. Such that the .(i, j)-th element . (xi,j , yi,j ) =
(xi, yj ) ∈ ∧m,n

[xmin,xmax]×[ymin,ymax], denotes the .(i, j)-th cell center position of a 
Cartesian product mesh on .[xmin, xmax] × [ymin, ymax]. We denote the vectorisation 
of an arbitrary .A ∈ R

m×n matrix by 

. vec(A) = [
a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n

]T ∈ R
nm×1.

We denote the outer product by . ⊗. We denote the vector of ones length m by . em. 
We denote the set of natural numbers from 1 to M by .[M] := {1, . . . ,M}. We  
denote the vector .xm ∈ R

m, as the vector of increasing points in .Xm[xmin,xmax], and 
.yn ∈ R

n as the vector of increasing points in .Yn[ymin,ymax]. Such that we can construct 
coordinate matrices in the following manner .xi,j = (en ⊗ xm) ∈ R

n×m, . yi,j =
(yn ⊗ em) ∈ R

n×m. And evaluate the initial vorticity . ω as a function of coordinate 
matrices in the following manner .┌i,j = ω(xi,j , xi,j )hxhy , .∀(i, j) ∈ [m] × [n]. 
We consider a .n × n uniform Cartesian meshgrid .∧n,n

[xmin,xmax]×[ymin,ymax], of initial 

points in a closed subdomain of . R2. With initial condition .ω0(x, y), evaluated at 
the positions of this uniform mesh such that . ┌i,j = ω0(xi, yj )hxhy ∀(i, j) ∈
{1, . . . , n}×{1, . . . , m}. We define the following set of dynamically evolving points 
.∧0 := {(xi,j , yi,j )|(Xi,j , Xi,j ) = (Xi,Xj ) ∈ ∧m,n, ω0(Xi,Xj ) /= 0}, as those with 
nonzero initial vorticity on the initial mesh, assumed .nv ≤ nm dimensional. Note 
that we have defined the initial condition mesh of points on the dual mesh to that in 
[7, 34]. We consider a .nc×nc Cartesian meshgrid .∧d := ∧nc,nc[xmin,d ,xmax,d ]×[ymin,d ,ymax,d ], 
of fixed weather stations in a closed subdomain of .R2 for all time. Where the 
subscript d denotes “data”, and indicates that this is a weather-station position in 
which (velocity) data can be collected.
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