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1 Introduction 

Analogues are nearest neighbors of a system’s state according to a given similarity 
measure. The term “analogue” originally refers to the idea that certain geophysical 
systems are likely to undergo similar states at distant times, a notion close to the 
recurrence theorem of Poincaré [1] which states that certain dynamical systems will 
almost surely return infinitesimally close to any initial condition in the attractor. 
The term “analogue” was coined by Lorenz [2] who built a proxy of atmospheric 
predictability from the time-growth of the Euclidean distance between any observed 
geopotential height field and its closest neighbour (analogue) in other years of 
record. Since then, analogues have been used in other contexts and can be more 
broadly understood as similar observations of a system’s state occurring at distant 
times either within a given long trajectory of the system, or within independent 
simulations of the same system. 

More specifically, analogues are found in a database of events often called 
a “catalogue”, such as a long series of observations [3], a reanalysis [4], past 
deterministic forecasts [5], one long numerical simulation [6], or ensemble sim-
ulations [7, 8]. One key advantage of analogue methods is that they are fast and 
therefore allow a cheap generation of ensembles. As far as forecasting is concerned, 
analogues have been used for post-processing of deterministic forecasts with 
“the Analogue Ensemble (AnEn)” [9], in weather generators with the “Analogue 
Weather Generator (AnaWEGE)” [10], in data assimilation with “the Analog Data 
Assimilation (AnDA)” [11], and finally for the forecast of dynamical systems with 
“Kernel Analog Forecasting (KAF)” [12]. 
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There are several mechanisms driving uncertainties of analogue forecasts. First, 
analogue forecasting generally assumes that the distance between the analogues 
and the target1 image is small, however these distances are never zero [13]. These 
non-trivial distances introduce forecasting errors. Depending on the nature of the 
system under study and on the target image, this initial dissimilarity may increase 
or decrease with time. In a chaotic system, the mismatch in initial conditions 
grows according to scaling laws given by Lyapunov exponents [14]. This type of 
deterministic analogue forecasting error was studied thoroughly [15–17]. 

Second, for real systems one does not have access to the full state of the 
system, and the similarity measure used to find analogues is bound to be under-
representative of the system’s complexity. That is, analogues and corresponding 
distances are computed on observables of the system, not in the system’s true state-
space. In particular, fine-scale structures of atmospheric or ocean flows are generally 
unknown, and these may impact the time-evolution of the system. Therefore, even if 
the analogues were at distance zero to the target initial large-scale image according 
to the chosen similarity measure, their time-evolution would likely differ from the 
one of the target. In the present study we focus on this second source of uncertainty, 
referred to here as the effect of unresolved spatial scales on analogue forecasting 
ensembles. 

In real-life case studies, these two sources of uncertainty are non-linearly 
combined and hard to disentangle. Here, we use numerical simulations to separate 
the effect of unresolved spatial scales from the effect of initial analogue-to-target 
distance. We base our analysis on numerical simulations of a stochastic version 
[18] of the well-known three-variable chaotic Lorenz system [19]. In this set of 
stochastic ordinary differential equation, the effects of unresolved spatial scales on 
the low-order model of Lorenz are rigorously derived from a reformulated material 
derivative, and expressed as stochastic multiplicative noise terms. This gives a 
physically consistent yet numerically affordable multi-scale system which can easily 
be used to understand the effects of unresolved spatial scales on analog forecasting 
ensembles. 

Section 2 details the numerical simulations of the stochastic Lorenz system under 
location uncertainty as well as the different ensemble forecasting procedures and 
statistical tests considered in this work. Section 3 outlines numerical experiments 
and their results. Section 4 draws conclusion and gives perspectives for future work.

1 The “target”, also called “query” in machine-learning terminology, is the (vector of) value(s) of 
the observed variable(s) of which analogues are sought for. In the example of this article, the target 
is the three-dimensional vector of values of the coordinates of the stochastic Lorenz at a given 
time t . 
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2 Methods 

2.1 Lorenz System Under Location Uncertainty 

Flow modelling under location uncertainty introduces errors through the assumption 
that Lagrangian fluid particle displacement results from a smooth deterministic 
component and another component which is uncorrelated in time but correlated in 
space [20, 21]. This framework allows to derive the Lorenz system under location 
uncertainty [18] (hereafter “stochastic Lorenz”) as a stochastic representation of 
the classical Lorenz-63 model [19] (hereafter “deterministic Lorenz”) describing 
incompressible flow undergoing Rayleigh–Bénard convection in a simplified 2D 
atmospheric convection scenario. 

Traditionally, large-scale geophysical flow representations rely on Reynolds 
decomposition and eddy viscosity models, which dissipate energy without con-
sidering local backscattered energy or inhomogeneous turbulence. In contrast, the 
stochastic approach from which we borrow decomposes the flow into a large-scale, 
smooth component and a small-scale, fast oscillating velocity component modeled 
as a random field. It is derived rigorously from physical conservation principles 
and offers efficient exploration of the attractor at low computational cost [18]. 
The derivation of the stochastic Lorenz follows closely the original derivation of 
the deterministic Lorenz, except that the location uncertainty framework allows 
to express the effects of truncated higher-order spatial modes (i.e., small spatial 
scales) on the dominant large-scale modes through multiplicative stochastic terms. 
Therefore, the noise terms in the model represent the effects of small spatial scales 
on the three large-scale variables, and will be loosely referred to as “small-scale 
variables” in the following. 

Stochastic differential equations for this system are as follows: 
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It comprises a deterministic differential equation for the velocity variable x 
and two coupled stochastic differential equations associated with the small-scale 
temperature fluctuations, written in Itô formulation. Scalar parameters include the 
ones from the deterministic Lorenz model, which are here set to the usual chaotic 
values .Pra = 10, .ρ = 28, .b = 8/3, and one parameter that controls noise 
amplitude, set to .Υ = 10 (this value is labelled “strong noise” by [18]). The noise 
terms .dBt are Wiener processes, which can be viewed heuristically as independent,
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identically distributed, centered normal random variables with variance . dt , where 
. dt is the time-increment of the numerical scheme. 

Here, this system is numerically simulated with Euler–Maruyama integration for 
the stochastic differential equations with time step .10−5 as in [18]. 

In the following, we will use a parallel between the non-dimensional time of the 
stochastic Lorenz system and the typical time of evolution of atmospheric synoptic 
circulation. We will consider, as in [11], that 0.08 non-dimensional time intervals 
of the stochastic Lorenz system correspond to 6 hours of atmospheric time. This 
choice is close to the one of [22] who set non-dimensional time intervals of length-1 
of the Lorenz system to correspond to 5 days. This parallel is a rough estimation for 
comparison purposes and should be interpreted with care. 

2.2 Ensemble Forecasts 

We place ourselves in the context of the forecast of a “true” trajectory, which 
corresponds to the numerical integration of the stochastic Lorenz system ((1)–(3)) 
with time step .10−5, from a given initial condition .xt = (xt , yt , zt ) on the large-
scale variables, and with a given sequence of noises .{dBt , . . . , dBt+h} from time t 
to time .t + h, where h is the forecast horizon. 

. - True trajectory :

Large-scale variables (initial condition) = xt ,

Small-scale variables = {dBt , . . . , dBt+h} .

To forecast this true trajectory using analogues, we assume that one is given 
a “catalogue” which is here a sub-sampling of a long numerical resolution of the 
stochastic Lorenz system ((1)–(3)), generated with one particular realization of 
the noises. Each catalogue has a set of elements .

{
xt ′ , t ′ ∈ C}

in which analogues 
are sought for, and a corresponding set of elements .

{
xt ′+h, t

′ ∈ C}
in which the 

successors of the analogues can be found. To generate the different catalogues 
used in this study, fixed-size random subsamples were drawn from the same long 
numerical solution of ((1)–(3)) from time .t ′ = 0 to .t ′ = 7008 in non-dimensional 
time-unit. The notation . t ′ is here to emphasis that the time of the catalogue is 
different from the time of the true trajectory (typically, analogues are sought for 
in a catalogue of past observations). As the catalogues are random subsamples, the 
time-difference between different analogues are irregular, but each analogue . xt ′ is 
associated to its successor .xt ′+h with the same horizon h. 

We employ the simplest type of analogue ensemble forecasting where the 
forecast is given by an ensemble of K successors .xt ′i+h of analogues . xt ′i of the true 

initial point . xt , and each successor is given the same weight . 1
K

. In all numerical 
experiments, the number of analogues is set to 50. Analogues are computed as K-
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nearest neighbours, in terms of Euclidean distance, of the large-scale variables’ 
initial value . xt , which are assumed to be observed, while the noises .dBt are 
unknown. Other similarity measures could be envisaged (see e.g., [23–25]), but this 
is beyond the scope of this study. The analogue ensemble forecast is then made of 

the set successors .
{
xt ′1+h . . . , xt ′K+h

}
. Therefore, although . xt ′i should be close to 

. xt , the sequence of noises .

{
dBt ′i , . . . , dBt ′i+h

}
is completely different (independent) 

from .{dBt , . . . , dBt+h}. 

. - Analogue ensemble forecast :

Large-scale variables (initial conditions) =
[
xt ′1 , . . . , xt ′K

]

Small-scale variables =
[{

dBt ′1 , . . . , dBt ′1+h

}
, . . . ,

{
dBt ′K , . . . , dBt ′K+h

}]

All catalogues are sub-samples of a long trajectory from time .t ′ = 0 to . t ′ =
7008 in non-dimensional time-unit, which corresponds to 60 years in atmospheric 
time. Note that our stochastic Lorenz system does not include seasonality, while 
in practice one must search for analogues in historical data within a seasonality 
condition, typically . ±2 months, and therefore our 60-years “season-less” catalogue 
will allow us to emulate the amount of data that one can access with . ∼180 years of 
data. Sub-catalogues of different sizes will be drawn from this large initial catalogue 
to asses the effect of catalogue size on analogue ensemble. For each catalogue size, 
different catalogues can be drawn from the original large catalogue, allowing to 
assess the uncertainties in analogue ensemble forecasts even when the catalogue 
size is known. 

To understand the contribution of different types of uncertainty to the analogue 
ensemble forecast, we also compute two other ensemble forecasts. 

First, we build what we refer to as the “small-scale ensemble forecast”. This 
ensemble is given the same size as the analogue ensemble : .K = 50 members. Every 
member is initiated from the same true initial condition on the large-scale variables 
. xt (i.e., for horizon .h = 0 the ensemble is a Dirac-delta function centered on . xt ). 
Each member is propagated with numerical simulations of the stochastic Lorenz 
and randomly generated noises .

{
dB ′

t , . . . , dB ′
t+h

}
that are independent, different 

realizations of the same process as the true noises .{dBt , . . . , dBt+h}. Each member 

i corresponds to a particular realization .

{
dB

′(i)
t , . . . , dB

′(i)
t+h

}
of the noises. Members 

are given equal weights . 1
K

. 

.- Small-scale ensemble forecast :

Large-scale variables (initial conditions) = [xt , . . . , xt ]

Small-scale variables =
[{

dB
′(1)
t , . . . , dB

′(1)
t+h

}
, . . . ,

{
dB

′(K)
t , . . . , dB

′(K)
t+h

}]
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This ensemble represents the effect of uncertainty associated with the unresolved 
small spatial scales modelled by the noises. Since analogue forecasting is based only 
on the knowledge of resolved large-spatial-scale variables, one desired property of 
analogue forecasting ensemble is that it resembles the small-scale ensemble. 

Second, we build what we call the “large-scale ensemble forecast”. We compute 
ensemble forecasts from numerical simulations of the stochastic Lorenz starting at 

the analogues’ positions in large-scale variables space .
[
xt ′1 , . . . , xt ′K

]
, but using the 

same noise .{dBt , . . . , dBt+h} as the “ground truth” trajectory. Therefore, while each 
member of the small-scale ensemble differs by the realization of the noises, on the 
contrary each member of the large-scale ensemble differs by the initial condition 
which corresponds to the initial value of the analogue ensemble. Members are again 
given equal weights . 1

K
. 

. - Large-scale ensemble forecast :

Large-scale variables (initial conditions) =
[
xt ′1 , . . . , xt ′K

]

Small-scale variables = [{dBt , . . . , dBt+h} , . . . , {dBt , . . . , dBt+h}]

This large-scale ensemble allows to assess what the analogues would have 
evolved to if they were forced by the same small-scale as the ground truth 
trajectory. This ensemble allows to isolate the effect of mismatch in large-scale 
initial condition, also called “analogue-to-target distance” [13]. 

The properties of the different ensembles with respect to the ground truth and 
the analogues are summarized in Table 1 and Fig. 1. Figure 2 shows a schematic 
example of ensemble forecast trajectories in large-scale and small-scale space 
compared to the ground-truth. This figure is only illustrative and was not generated 
using the real stochastic Lorenz system. It highlights that the large-scale ensemble 
shares large-scale initial conditions with the analogue ensemble, while the small-
scale ensemble shares large-scale initial condition with the ground truth. Conversely, 
the large-scale ensemble shares small-scale trajectory with the ground truth, while 
the analogue ensemble and the small-scale ensemble have different, independent 
small-scale trajectories. 

Note that this procedure would be hardly feasible with a real physical model 
where spatial and temporal scales are not separated but intertwined. The stochastic 
Lorenz model not only allows to perform numerical simulations at a low cost, but 

Table 1 Properties of the different forecast ensembles considered 

Initial condition on resolved 
large-scale variables . (x, y, z)

Trajectory of unresolved small-scale 
variables . dBt

Analogue ensemble Past large-scale analogues of 
ground-truth 

Past realizations associated with 
large-scale analogues of ground truth 

Small-scale ensemble Same as ground-truth (“present”) Random (“that could have been”) 

Large-scale ensemble Same as analogues (“past”) Same as ground truth (“present”)
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Fig. 1 Schematic of the shared properties of the different forecast ensembles considered and the 
ground truth trajectory 

Fig. 2 Schematic of the 
trajectories of the different 
forecast ensembles 
considered and the ground 
truth trajectory, with only two 
ensemble members (.K = 2) 
for readability purposes 

also facilitates the separation between the effects of small-scale and large-scale 
components of the flow. 

The ground truth to which these ensemble forecasts is compared is made of 
one long trajectory of 1168 non-dimensional time steps which corresponds to 
10 years in atmospheric time-scale. The noises .dBt associated with this ground-
truth trajectory are saved in memory to allow for the generation of the large-scale 
ensemble forecasts.
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2.3 Statistical Tests to Compare Ensembles 

In Sect. 3.2, we will make use of three statistical tests to assess the potential 
differences between two given forecast ensembles. The tests will be performed on 
each large-scale variable separately, either x, y or z. 

The first test is called Welch’s t-test [26], and is used to test the null hypothesis 
that the two ensembles’ background distributions have the same mean value without 
necessarily having the same variance. It is based on the assumption that the two 
samples are normally distributed. 

The second test is called Levene’s test [27] and is used to test the null hypothesis 
that the two ensembles’ background distributions have the same variance. This test 
does not make assumption of normality. 

The third test is called the Kolmogorov-Smirnov test [28] and is used to test the 
null hypothesis that the two ensembles’ background distributions are equal. It does 
not make assumption of normality, and can also be used for complex distributions 
such as multi-modal distributions, for which the notions of mean and variance are 
inoperative. 

For all three tests, we used built-in functions from Python’s SciPy package, 
namely “ttest_ind”, “levene” and “kstest”. We use the p-value as an indicator, 
compared to the reference values 0.01, 0.05 and 0.1. p-values below 0.05 indicate 
that the distributions are different (high confidence if below 0.01), while p-values 
above 0.05 indicate that the distributions are equal (high confidence if above 0.1). 

3 Numerical Experiments 

3.1 Small-scale and Large-scale Variability 

Figure 3 shows an example of the three different forecast ensembles outlined in the 
previous section, along with the ground truth trajectory, for a given initial condition 
inside the attractor, with forecast ensembles of size .K = 20 (we use a smaller value 
for visualization purposes only). The forecast horizon of 0.1 corresponds to between 
7 and 8 hours in atmospheric time scale. The large-scale ensemble is less dispersed 
as the two other ensembles, and is close to the ground truth. The fact that this 
ensemble appears to shrink with time for small forecast horizon is a consequence of 
the dissipative nature of the Lorenz system. The analogue and small-scale ensembles 
are close to each other at horizon .h =0.1, which is a desired property of analogue 
ensemble forecasting because it is based only on the knowledge of large-scale 
variables .x, y, z, and it is not informed by the values of the small-scale variables 
(here, the noises). However, for smaller time horizon one can witness that the small-
scale ensemble tends to the initial position, which is not the case of the analogue 
and large-scale ensembles. This undesired property of analogue forecasting errors 
for very short forecast-horizon was described previously in [17].
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Fig. 3 Showing an example of three types of ensemble forecasts: small-scale (black lines and 
crosses), large-scale (green lines and circles) and analogue forecasting (red lines and squares) 
ensembles, versus ground truth trajectory (blue line and empty triangle). Final positions are given 
by the symbols. The forecast horizon is 0.1. We show only 20 members out of 50 for readability 
purposes 

Focusing on ensemble spread, we now define the generalized variance (GV) as 
the determinant of the ensemble covariances, noted .|Σs | (small-scale), .|Σl | (large-
scale), and .|Σa| (analogues). 

Depending on the initial point, the situation may differ from Fig. 3. To test  
this assertion, Fig. 4 shows the ratio .(|Σs |/|Σl |)1/2 in log-scale, depending on the 
position of the initial point in the attractor, using 1000 points from the 10-years 
ground truth trajectory. Figure 4 shows that the relative spread of the large-scale and 
small-scale ensembles strongly depends on the values of the large-scale variables 
at the initial point. In particular and at this forecast horizon, small-scale variability 
dominates for values of .z < 20, and large-scale variability dominates at the wing’s 
borders for .z > 25 and .−5 < y < 5. Investigating the variability of .|Σs | and . |Σl |
with initial point position shows that what drives high values of the ratio . |Σs |/|Σl |
for low values of z is .|Σs |, with a strong influence of small-scale noises in this area 
(not shown), while the smaller values of the ratio .|Σs |/|Σl | at the wings’ borders are
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Fig. 4 Showing the ratio of small-scale to large-scale generalized standard-deviation ensemble 
variability (square-root of the covariance matrix’s determinant), for forecast horizon 0.06 (equiv-
alent to 4.5 hours in atmospheric time-scale), as a function of the initial point’s position, in 
logarithmic scale 

Fig. 5 Showing the attractor-averaged ensemble variability (given by the square root of the covari-
ance matrix’s determinant), against forecast horizon, for small-scale, large-scale and analogue 
ensemble forecasts. Left: zoom on small forecast horizon (<0.2). Right: forecast horizon up to 
2.24 

due to a larger values of .|Σl | which are caused by a smaller density of points (not 
shown). This experiment shows that analogue forecasting ensemble spread may be 
influenced both by the varying intensity of perturbation by unresolved spatial scales 
and by the varying density of points in the attractor (and therefore of analogue-to-
target distances), both of which highly depend on the position in the attractor. 

As shown in the particular case of Fig. 3, the ration between these ensemble 
GV depends not only the initial large-scale position but also on forecast horizon. 
The square root of GVs (which can be viewed as a generalized standard-deviation) 
.|Σs |1/2, .|Σl |1/2 and .|Σa|1/2, are averaged over 1000 points in the attractor 
(randomly drawn from the 10-year ground truth trajectory), and plotted against 
forecast horizon in Fig. 5. By construction, the small-scale ensemble GV tends to 
zero for small forecast horizon. Large-scale GV decreases as a function of time for 
small time-horizons because the Lorenz system is dissipative, however it remains
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non-zero. The analogue and large-scale ensemble GV are equal at horizon-zero by 
construction, and then the analogue ensemble GV grows similarly to small-scale 
ensemble GV. This shows that the analogue ensemble variability is highly linked to 
the small-scale ensemble variability, although it naturally overestimates the latter for 
short forecast-horizon because of the non-zero distance between the analogues and 
the initial point. Therefore, the only way that analogues can adequately represent 
the small-scale driven variability is to decrease analogue-to-target distance by 
increasing the catalog size. 

3.2 Convergence of Analogues Towards the Small-scale 
Ensemble 

In Figs. 6 and 7, two examples of convergence of the distribution of analogues to 
the small-scale ensemble distribution are shown, at fixed forecast horizon 0.1 (7– 
8 hours). The analogue forecast ensembles converge the small-scale ensembles in 
the limit of large catalogue size. In addition to showing quantiles of distribution as 
a function of catalogue size, we also show p-values for three statistical tests where 
the null hypothesis is that the analogue and small-scale ensembles are drawn from 
the same background continuous probability distribution. The catalog size needed 
for convergence depends on the point of reference and on the chosen variable. For 
instance it is fastest for variable z and Fig. 6, and slowest for variable z and Fig. 7. 
This is because in the second example the initial point is in an area of smaller 
attractor density. In Fig. 6, the average of the distribution converges faster than the 
standard deviation, while in the second example all three statistical tests indicate a 
convergence for approximately the same catalogue size. When the initial point is in 
an area of large attractor density, the analogue ensemble is likely to have a precise 
mean even for small catalogue size, although it will necessarily overestimate the 
variance of the small-scale ensemble. On the contrary, for small catalogue sizes 
and in areas of small attractor density such as the tail of the butterfly’s wings, the 
analogue average is biases towards the attractor’s average. 

The features highlighted in the particular cases of Figs. 6 and 7 allow to better 
understand the general law given in Fig. 8. In the latter, we test the convergence of 
the analogue ensemble to the small-scale ensemble (for horizon 0.13, . ∼10 hours, 
and horizon 0.43, . ∼32 hours) according to the three statistical tests. The p-values 
are stored for 10 catalogues for each catalogue size and for 1000 points in the 
attractor taken from the ground truth trajectory, and quantiles are extracted for 
each catalogue size. The observed behaviour for the top plots (a-c, horizon 0.13, 
. ∼10 hours) resembles the one of Fig. 6, which is the case where forecast horizon is 
small, and the attractor density is high at the initial point. This shows that for short 
forecast horizon the analogue ensemble demands a high catalogue size to adequately 
represent the standard-deviation while the average can be well represented even 
with small catalogue size. However, this must be tempered by the fact that the



Fig. 6 One example of analogue ensemble forecast versus small-scale perturbed forecast, at 
forecast horizon 0.1. Top (a)–(d): forecast trajectories, unzoomed (left) and zoomed (right). Middle 
(e)–(g): analogue ensemble distribution (red) as a function of catalogue size, and small-scale 
ensemble distribution (black) shown for comparison, for each variable (x: (a), y: (b),  z: (c)),  
showing quantiles 0.05-0.25-0.5-0.75-0.95. Bottom (h)–(j): p-value for Welch’s t-test (full blue 
line and circles), Levene’s test (dashed orange line and squares), and the Kolmogorov-Smirnov 
test (dash-dotted green line with triangles), versus catalogue size, where the null hypothesis is that 
the analogue ensemble and the small-scale ensemble are drawn from the same distribution, for 
each variable (x: (a), y: (b),  z: (c)), showing quantiles 0.05-0.25-0.5-0.75-0.95 for different draws 
of catalogues for each catalogue size. Reference p-values of 0.01-0.05-0.1 are shown (dotted gray 
lines)
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Fig. 7 Same as Fig. 6 but for a different initial condition
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Fig. 8 Same as bottom plots of Fig. 6h–j and Fig. 7h–j, but quantiles of p-values are derived from 
statistics over the whole attractor (1000 points from a long trajectory) rather than for one point. 
Top (a)–(c): forecast horizon=0.13. Bottom (d)–(f): forecast horizon=0.43. Left (a,d): x. Middle 
(b,e): y. Right (c,f): z 

quantiles around the median p-value are highly scattered, indicating the need to 
adapt analogue forecasting strategies beyond the simple brute-force ensemble when 
dealing with extreme or rare events. 

For larger forecast horizon (bottom plots of Fig. 8), Welch’s test converges more 
slowly while the Levene test converges faster with catalogue size. It indicates that 
the forecasting of the average is more challenging for such horizons, which can 
be attributed to the chaotic growth of small initial errors at these time scales (as 
can be witnessed in the beginning of the growth of the large-scale GSTD around 
horizon 0.5, see Fig. 5). On the contrary, the analogue ensemble’s spread is closer 
to the small-scale ensemble spread, as the latter grows with time, and the effect 
of analogue-to-target distance starts to fade at these horizons (see again in Fig. 5 
how the small-scale and analogue ensemble GSTD get closer to each other at large 
forecast horizon). 

Building from the results of Fig. 8, we define a minimum catalogue size for 
each statistical test and large-scale variable, as the catalogue size for which a 
given quantile of p-value exceeds the threshold value of 0.1, where quantiles of 
p-value are calculated over 1000 points on the attractor and for 10 catalogues of 
equal size. To make this computation, we consider 40 different catalogue sizes
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Fig. 9 Minimum catalogue size so that the quantile (0.3,0.5,0.7) of p-value over the attractor 
(1000 points from a long trajectory) exceeds the threshold value of 0.1, versus forecast horizon, 
for three tests (Welch: left, Levene: middle, Kolmogorov-Smirnov: right) and variables (x: blue, y: 
orange, z: green) 

ranging from 700 to 700,000 independent elements, equally-spaced on a log-scale. 
Results for each variable (.x, y, z) and for three quantiles of p-value (0.3,0.5,0.7) 
are shown in Fig. 9. To interpret these minimum catalog sizes, we make the parallel 
with atmospheric circulation data. We assume that one can find 60 independent 
circulation patterns as “analogue candidates” per year of data, if one restricts the 
search to a “season” of 4 months and if two circulation patterns are uncorrelated 
after 2 days on average. 

The minimum catalogue size for Welch’s t-test is highest around forecast horizon 
0.4, for which a catalogue size of 10. 3 is needed for the median p-value to exceed 0.1. 
Using our interpretation in terms of atmospheric data, a catalog size of 10. 3 elements 
amounts to 20 years of data, which is reasonable with respect to nowadays’s typical 
length of observational records. The minimum catalogue size for Welch’s t-test then 
decreases with time horizon, which would not be the case for a deterministic system. 
Here, since the unresolved small-scale induce inevitable uncertainty in the forecast, 
the mismatch in initial condition due to the finite catalogue size has a lesser influence 
on the analogue ensemble average for larger forecast horizon. We consider horizons 
up to 2.24 which is equivalent to 1 week in atmospheric time-scale. For such large 
forecast horizons it appears that one does not require perfect knowledge of the 
large-scale initial condition in order to evaluate the average forecast under small-
scale perturbation, which is due to the fact that the uncertainty due to the unknown 
small-scale features has more influence on the forecast than the initial large-scale 
perturbation due to the analogue-to-target distances. This particular experiment 
shows that, for chaotic multi-scale systems, analogue forecasting may actually be 
more successful in predicting the average of the stochastic large-scale system, than 
to predict the deterministic multi-scale system altogether. 

The curves for the Levene and Kolmogorov-Smirnov tests are very similar to 
each other, but very different from the curves of Welch’s t-test, indicating that 
what the analogue ensemble struggles to estimate is not the average but the spread
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of the small-scale distribution. As we have seen, for small horizons and small 
catalogue size the analogue ensemble overestimates the ensemble spread attributed 
to the unresolved small-scales. According to Fig. 9, this effect cannot be neglected 
until horizon 1.2, which corresponds to . ∼4 days in atmospheric time-scale. Taking 
this analogy further, for a 1-day (horizon 0.4) analogue ensemble forecast one 
would need a catalogue of 6000 independent elements, which would correspond 
to 120 years of data, in order for the analogue ensemble spread to correspond to the 
small-scale perturbed ensemble spread. Indeed, if one uses a smaller catalogue size, 
there is a risk that although the average would be well estimated, the spread would 
not, which is an unwanted property. 

This result urges for the development of new ways of estimating the forecast 
spread based on the analogue ensemble, beyond using directly the spread of the 
analogue ensemble. Although optimizing the value of K might help in reducing 
the analogue ensemble spread, it will not be able to reduce the non-zero analogue-
to-target distance due to finite catalogue size. Indeed, analogue-to-target distances 
depend on the analogue rank K as .(K/L)1/d where d is the local dimension of 
the attractor and L is the catalogue size [13]. Therefore the distance between 
two analogues is lower-bounded by a constant proportional to .L−1/d , which 
gives a lower-bound for the analogue ensemble spread as well. Moreover, for 
moderately high-dimensional systems such as large-scale atmospheric circulation, 
the dimension ranges from 10 to 20 [29], and therefore analogue-to-target distances 
increase very slowly with the number of analogue K , therefore decreasing the 
number of analogues is likely not to reduce efficiently the analogue ensemble 
spread. 

4 Conclusion and Perspectives 

We have studied the effects of unresolved spatial scales on analogue forecast 
ensembles, using numerical simulations of a set of stochastic differential equations 
that emulate the effects of small-scales on the three large-scale variables of the 
chaotic Lorenz system in a physically consistent way. We have interpreted the 
behaviour of analogue ensemble forecasts based on two other ensembles, the 
large-scale ensemble which has the same noises (i.e. the same small-scale) as 
the ground truth but the same large-scale initial conditions as the analogues, and 
the small-scale ensemble which has the same large-scale initial condition as the 
ground truth but different noises (i.e. different small-scales). We have shown that 
the ratio of large-scale to small-scale ensemble spread strongly depends on the 
initial position in the attractor and on forecast horizon. In particular, the large-scale 
(respectively, small-scale) spread dominates for short-term (respectively, long-term) 
forecasts. The analogue ensemble spread is dominated by large-scale effects for 
short term forecasts and gradually tends to the small-scale forecast spread for larger 
time-horizons. The analogue ensemble converges in distribution to the small-scale 
ensemble in the limit of large catalogue size, which is a desired property of analogue
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ensemble forecasts. The rate of convergence depends on the position in the attractor 
and on the forecast horizon. The convergence of the analogue ensemble average to 
the small-scale ensemble average is rather fast, while the convergence of ensemble 
spread is slow. In particular, for short-term forecast of 1–2 days in atmospheric 
time-scale, our results in this idealized setup suggest that the catalogue size needed 
for the analogue ensemble to adequately represent the small-scale driven spread 
might exceed hundreds of years of data. In order for analogue ensembles to reliably 
estimate uncertainties associated to unresolved small-scales, one might benefit from 
the development of methodologies that go beyond the simple spread of the analogue 
ensemble. 

This work should be extended to higher-dimensional physical systems with scale 
separation, and systematic tests of the adequacy between the analogue ensemble 
spread and the uncertainty of the analogue ensemble forecast with respect to the 
ground truth trajectory should be performed using atmospheric and ocean circula-
tion data such as reanalysis products. We advocate for an adaption of uncertainty 
quantification from analogue ensembles using leave-one-out procedures, famous 
in the machine-learning community [30], which could also be used to produce 
unbiased analogue ensemble average forecasts in data-scarce areas of the attractor. 
Finally, proper tuning of the distance using metric-learning algorithms could help 
calibrate the analogue ensemble towards the desired distribution. 
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