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A B S T R A C T

The possibility of predicting the occurrence of wave breaking and the intensity of the breaking
events using linear wave models is investigated. For this purpose, a new linear breaking
onset criterion is proposed, based on the definition of a linear-equivalent wave, which has
the same energy and impulse as the associated nonlinear wave. The strength of breaking
is characterized by the 𝛤 parameter introduced by Derakhti et al. (2018) and we derive an
empirical law to estimate the breaking strength from the linear-equivalent wave model. The
predictive ability of this criterion is assessed through comparisons with results of fully nonlinear
potential flow simulations, for focused wave packets of various characteristics. For the considered
configurations, the proposed approach is able to predict the onset and strength of breaking with
good accuracy.

This work is licensed under CC BY 4.0

1. Introduction
Wave breaking is a complex phenomenon which, for a long time, has attracted the attention of scientists from

many disciplines, due to its importance in different physical processes, from gas exchanges at the air-sea interface
(e.g., Deike and Melville, 2018) to the critical hydrodynamic loads that breaking waves may induce on coastal and
marine structures (e.g., Paulsen et al., 2019). Despite significant research efforts and progress made in the last decades
(see Banner and Peregrine, 1993; Perlin et al., 2013; Deike, 2022), some aspects of this phenomenon still remain
rather poorly understood. Predicting the breaking onset of a wave, i.e. whether or not the wave will evolve towards
breaking, is difficult yet very important for different applications in ocean science and engineering. One common goal
of many past research investigations was to identify a universal and consistent breaking onset criterion, applicable
to any wave conditions, e.g., in terms of water depth, frequency content, mechanism leading to breaking, breaking
strength, bathymetry... In this context, the various breaking onset criteria that have been proposed may be classified
into three main categories: (i) geometric, (ii) dynamic, and (iii) kinematic criteria. To date, the likely most promising
breaking onset criterion was proposed by Barthelemy et al. (2018) based on energy arguments (dynamic criterion).
However, the authors showed that it reduces to a kinematic condition at the crest of the wave. The criterion states that
waves will inevitably break when the fluid particle horizontal velocity at the crest, 𝑢, exceeds 85% of the crest celerity,
𝑐. This criterion, also referred to as the 𝐵 = 𝑢∕𝑐 criterion, was validated for a wide range of breaking conditions
and mechanisms such as frequency focusing (Barthelemy et al., 2018; Derakhti et al., 2018), modulational instability
(Derakhti et al., 2020; Saket et al., 2017) and shoaling over a bar or a beach (Derakhti et al., 2020; Varing et al., 2021;
Mohanlal et al., 2023). On the basis of numerical simulations with a Navier-Stokes model aimed at validating the
𝐵 criterion, Derakhti et al. (2018) further showed that the breaking-induced energy dissipation rate 𝑏 (e.g., Duncan,
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1981) could be expressed as a function of a non-dimensional breaking strength parameter, 𝛤 , defined as the non-
dimensionalized time derivative of 𝐵 at breaking onset:

𝛤 = 𝑇𝑏
d𝐵
d𝑡

|

|

|

|𝐵=0.85
, (1)

where 𝑇𝑏 is a characteristic breaking wave period. Moreover, the authors observed that 𝛤 could be related to the
breaking type, with small values of 𝛤 corresponding to spilling breakers and large values of 𝛤 corresponding to
plunging breakers. This property was later confirmed in shallow water by Mohanlal et al. (2023) based on Fully
Nonlinear Potential Flow (FNPF) simulations. Quantifying the 𝐵 and 𝛤 parameters in specific situations requires
accurately simulating the flow field, particularly in the wave crest region. This can be done, for instance, based on
FNPF solvers, which have long been shown to predict accurately wave geometry and kinematics up to and into the
early stages of the breaking process (e.g., Grilli et al., 1994, 1997; Guyenne and Grilli, 2006; Barthelemy et al., 2018)
or multiphase Navier-Stokes solvers (e.g., Derakhti et al., 2018). In all the earlier studies, it was noted that both 𝑢 and
𝑐 needed to be carefully and accurately computed to prevent oscillating values of the 𝐵 parameter. This is particularly
critical for computing 𝛤 , which involves the time-derivative of 𝐵.

Recently, under the auspice of the DIMPACT project, which was led by France Énergies Marines and was
dedicated to the design of floating offshore wind turbines with respect to the water impacts induced by breaking waves,
experimental and numerical investigations showed a clear correlation between wave slamming forces on a vertical
cylinder and the 𝛤 parameter of the undisturbed incoming waves (Batlle Martin et al., 2023; Hulin, 2024). These
results suggest that 𝛤 could be used to predict such forces and, hence, help in the design of marine structures exposed
to breaking wave impact loads. However, the computational time and resources necessary to simulate a breaking wave
event with high-fidelity numerical approaches precludes their use in practical engineering applications. For instance,
the design of offshore wind turbines relies on simulating multiple 3-hour extreme sea states in order to evaluate the
Ultimate Limit State (ULS). In this context, linear or weakly nonlinear approaches are most often used for such
simulations. Moreover, probabilistic methodologies for the design of marine structures need statistics on the wave
characteristics which are easily obtained when considering linear irregular waves, that is to say Gaussian waves. For
these reasons, having a methodology based on linear wave theory that could predict the occurrence of extreme breaking
wave events, their strength and the characteristics of the breaking waves (e.g., crest height, crest celerity,...) would be
desirable. These parameters could, indeed, be used as inputs for breaking wave impact load models. Developing and
validating such a method is the overall goal of this work. For this purpose, the breaking onset criterion, 𝐵, and the
breaking strength, 𝛤 , need to be estimated from linear wave theory. This research follows previous efforts by Stringari
et al. (2021) who attempted to predict the probability of breaking based on the frequency wave energy spectrum of
the sea state of interest. To do so, they derived a linear-equivalent breaking onset criterion by comparing the ratio
𝑢∕𝑐 of a regular fully nonlinear deep-water wave to that of a regular linear wave of similar mechanical energy, in the
same spirit as Filipot et al. (2010). They found that the ratio 𝑢∕𝑐 of a linear regular wave with the same energy as that
of a nearly breaking fully nonlinear wave was equal to 𝑢∕𝑐 = 0.3817. This result is consistent with the findings of
Ardag and Resio (2020), who reported that 𝑢∕𝑐 ≃ 0.4 was relevant to distinguish breaking from non-breaking waves
in Duncan (1981)’s seminal experimental dataset. This result was achieved by computing the linear-equivalent to the
foil-generated breaking waves in the latter experiments.

The present study has two main goals. First, we propose and investigate the validity of a novel linear-equivalent
breaking onset criterion, based not only on energy conservation, but also on the conservation of wave impulse. The
validation of this criterion is carried out through comparisons with FNPF simulations of focused breaking wave packets,
performed with the two-dimensional (2D) model of Grilli et al. (1989) (see also Grilli and Subramanya (1996); Grilli
and Horrillo (1997)). The focused wave packets were chosen so as to display a wide range of breaking strengths,
characterized by the 𝛤 parameter. These 2D-FNPF simulations are validated through comparison of the free-surface
profiles measured in a wave flume for the same cases. Second, we propose an empirical formula, which relates the
breaking strength parameter 𝛤 of a wave to its linear equivalent. The validity of the linear-equivalent breaking onset
criterion and breaking strength parameter will be investigated for a wide variety of individual focused breaking wave
events featuring different levels of breaking strength (𝛤 ∈ [0.82; 3.92]), from mild spilling breakers to strong plunging
breakers. A careful comparison of the linear and nonlinear results will show that, in most cases, the wave that breaks is
not the fully focused wave, but instead one that is partially focused and breaks earlier and upstream of the theoretical
focusing time and location. A monotonic evolution of the breaking strength as a function of the steepness of the
particular wave crest that breaks will be observed. As indicated earlier, the magnitude of the slamming force was
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found to be closely related to the 𝛤 parameter. As engineers use hydro-aero-servo-elastic solvers that generally rely
on linear waves and disregard the effect of the structure on the wave field to estimate the wave slamming loads (see
for instance Wienke and Oumeraci (2005); Hansen and Kofoed-Hansen (2017); Ghadirian and Bredmose (2019); Ma
et al. (2024)), the current model would allow to predict the occurrence and strength of the breaking events, and thus to
estimate the wave impact loads. Besides this, the present results could be used in spectral wave propagation models to
estimate the energy dissipated by breaking events. As a first step, the current study is restricted to long-crested breaking
waves, although it has been shown that wave directionality affects the breaking process (e.g., McAllister et al., 2019).

The paper is organized as follows. Section 2 presents in details the waves and the wave generation process. The free-
surface profiles simulated with the 2D-FNPF model are compared with the experimental profiles. Section 3 presents
the wave properties computed based on these nonlinear simulations, including the 𝐵 and 𝛤 parameters. In Section 4, a
linear-equivalent of the breaking onset criterion is derived, by considering a regular wave. The validity of this criterion
is assessed in Section 5 for the focused waves. In Section 6, we propose an empirical formula to compute the breaking
strength of the focused waves using their linear equivalent. The values obtained with the linear-equivalent criterion are
compared to the values obtained with the 2D-FNPF model. Finally, conclusions are drawn in Section 7.

2. Generation and measurement of the breaking waves
In this section, we present the procedure used to generate the different breaking and non-breaking wave packets

considered in the work, both in the numerical model and in the laboratory wave flume. Waves are simulated using a
2D-FNPF model, whose results are validated based on experiments carried out in the wave flume of Ifremer, Brest.
The flume is 40.5 m long from the wave generator to the absorbing beach, 2 m deep and 4 m wide, and is equipped
with a segmented piston-type wavemaker. The flume bottom has a -0.5% slope in the longitudinal and transversal
directions. Breaking waves are generated through frequency focusing. They have a wide variety of parameters, in
particular in terms of breaking strength. In the following, the breaking location, 𝑥𝑏, is defined as the point at which
the wave free-surface profile first reaches a vertical slope and the breaking time, 𝑡𝑏, as the instant at which this event
occurs.

2.1. Numerical wave tank modeling and generation of focused breaking waves
A numerical wave tank (NWT) based on 2D-FNPF theory is used to simulate the generation through frequency

focusing of several breaking waves in the wave flume of Ifremer. The choice of a potential flow model has been
motivated by the ability of such models to accurately propagate waves along important distances (see Paulsen et al.
(2014) for instance.) The geometry of the NWT is similar to that of the wave flume, except that it is 45 m long. It was
deemed unnecessary to add a numerical absorbing beach at its far end, since the simulation times were sufficiently
short, up to 𝑡𝑏, to prevent waves from propagating to the tank far end and back to the breaking location. To verify this,
the NWT length was increased to 50 m and no changes in free-surface elevation at the breaking location were observed.
In the NWT, at any given time 𝑡, FNPF equations are solved with a higher-order boundary element method (BEM),
whose results are used to update both the free-surface geometry and boundary conditions to the next time level (Grilli
et al., 1989; Grilli and Subramanya, 1996; Grilli and Horrillo, 1997). In the BEM, the boundary of the fluid domain,
which consists in the free surface, the wave paddle, the far end of the flume, and the bottom, is discretized using 𝑁
nodes; higher-order elements are used to interpolate both the geometry and the field variables in between nodes. The
discretization, which is detailed in Appendix A, is finer in and around the breaking area, to achieve a more accurate
description of the fluid flow close to the breaking point. A convergence study is also presented in Appendix A. Note
that the slope of the physical tank is taken into account in the FNPF computations, but not in the linear computations
presented in sections 4 and 5. Figure 14 in Appendix A shows that, for wave A7, taking the slope into account leads
to a difference of less than 4% on the value of 𝛤 compared to a simulation with a flat bottom (see table 2). For the
breaking waves, the computation stops at the instant at which the tongue of the wave impinges the free surface. For the
non-breaking waves, the computation is stopped a few seconds after the focalization.

Breaking is obtained using the frequency focusing method of Rapp and Melville (1990), with the focused wave
energy spectral density 𝑆(𝑓 ) being a standard JONSWAP spectrum, in which high frequency components are truncated
beyond some frequency cut-off 𝑓𝑐 to prevent early breaking of shorter waves. The wave focusing method assumes linear
wave theory, with the corresponding linear dispersion relationship. Thus, the free-surface elevation, 𝜂(𝑥, 𝑡), at location
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𝑥 and time 𝑡, is defined as:

𝜂(𝑥, 𝑡) =
𝑀
∑

𝑚=1
𝑎𝑚 cos(𝑘𝑚𝑥 − 𝜔𝑚𝑡 − 𝜙𝑚), (2)

in which 𝑎𝑚 =
√

2𝑆(𝑓 ) Δ𝑓 are the wave constituent amplitudes, 𝑘𝑚 their wavenumbers, 𝜙𝑚 their phases and
𝜔𝑚 = 2𝜋𝑓𝑚 their angular frequencies. The𝑀 constituents of frequency 𝑓𝑚 are evenly spaced byΔ𝑓 over the frequency
range [0 , 𝑓𝑐]. For each constituent, the angular frequency and wavenumber satisfy the so-called linear dispersion
relationship:

𝜔2
𝑚 = 𝑔𝑘𝑚 tanh(𝑘𝑚ℎ), (3)

in which ℎ is the water depth. To achieve wave focusing, the phases 𝜙𝑚 are selected such that the wave constituents all
reach their maximum elevation at a focusing location 𝑥𝑓 and focusing time 𝑡𝑓 , i.e.:

𝜙𝑚 = 𝑘𝑚𝑥𝑓 − 𝜔𝑚𝑡𝑓 . (4)

The paddle stroke time series, 𝑠𝑝(𝑡), is then obtained by applying the Biésel transfer function 𝑇 (𝑘𝑚 ℎ) to the free-surface
elevation constituents at 𝑥 = 0, while phase-shifting them by 𝜋∕2 (Andersen and Frigaard, 2014):

𝑠𝑝(𝑡) =
𝑀
∑

𝑚=1

𝑎𝑚
𝑇 (𝑘𝑚 ℎ)

sin(𝜔𝑚𝑡 + 𝜙𝑚). (5)

Following Derakhti et al. (2018), we define the linear prediction of the wave packet global steepness as:

𝑆𝐿 =
𝑀
∑

𝑚=1
𝑎𝑚𝑘𝑚. (6)

On this basis, waves of different breaking strengths can be generated by varying the linear steepness, i.e. by varying the
amplitude 𝑎𝑚 of the wave components. For a JONSWAP spectrum, the latter are calculated using the spectral density:

𝑔(𝑓 ) = 𝛼𝐻2
𝑠 𝑓

4
𝑝 𝑓

−5𝑒
− 5

4

(

𝑓
𝑓𝑝

)−4

𝛾𝑏, (7)

where

𝑏 = 𝑒
−

(𝑓−𝑓𝑝)2

2𝜎2𝑓2𝑝 , (8)

in which 𝜎 = 0.07 if 𝑓 < 𝑓𝑝 and 𝜎 = 0.09 if 𝑓 > 𝑓𝑝, with 𝑓𝑝 = 1∕𝑇𝑝 denoting the spectral peak frequency. In Eq. (7),
the coefficient 𝛼 is selected such that:

𝐻2
𝑠 = 16∫

∞

0
𝑔(𝑓 )d𝑓. (9)

Note that, here, 𝐻𝑠 is only used as a parameter of the spectrum and does not represent the significant wave height
of a sea state, in which the obtained focused breaking wave would be likely to occur. In the following, the value of
parameter 𝐻𝑠 was varied to adjust the amplitude of the components and the resulting focused wave characteristics.

To illustrate the influence of 𝑆𝐿 on the breaking mechanism, the generation methodology was applied using a
particular JONSWAP spectrum with a peak period 𝑇𝑝 = 2.25 s, peak enhancement factor 𝛾 = 3.3, a cut-off frequency
𝑓𝑐 = 0.8 Hz, and a frequency resolution Δ𝑓 = 0.01 Hz (hence 𝑀 = 80). The depth of the tank being ℎ = 2 m, we
find 𝑘𝑝ℎ = 1.70, which corresponds to an intermediate water depth. The focusing time is set to 𝑡𝑓 = 50 s and the
focal point to 𝑥𝑓 = 21 m. Based on this spectrum, we generated 9 breaking and non-breaking waves, with a linear
steepness in the range 𝑆𝐿 ∈ [0.286; 0.442]. The free-surface profiles at the breaking time (or when the wave elevation
reaches its maximum for the first two non-breaking wave packets) obtained for different 𝑆𝐿 values are shown in Fig.
1. Their simulated breaking times and locations (𝑡𝑏, 𝑥𝑏), and other parameters, are listed in Table 1. The height of the

crest at focusing obtained from linear wave theory, 𝐴 =
𝑁
∑

𝑛=1
𝑎𝑛, is also provided. Based on the NWT results, the 7

waves that are actually breaking can be classified into three groups, labeled 1, 2 and 3 in Table 1. The breaking group
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Figure 1: Free-surface profiles of 9 frequency-focused waves of increasing linear steepness 𝑆𝐿 simulated in the 2D-FNPF
NWT at the time of breaking (or maximum elevation for the first two non-breaking waves 𝑆𝐿 = 0.286, 𝑆𝐿 = 0.299). The
wave parameters are listed in Table 1.

𝑆𝐿 [1] 𝐴 =
𝑁
∑

𝑛=1
𝑎𝑛

[m]

𝐻𝑠 [m] 𝑥𝑓 [m] 𝑡𝑓 [s] Breaking Breaking
group

𝑥𝑏 [m] 𝑡𝑏 [s]

0.286 0.242 0.11 21 50 No
0.299 0.253 0.115 21 50 No
0.312 0.264 0.12 21 50 Yes 1 23.07 50.49
0.338 0.286 0.13 21 50 Yes 2 19.01 47.25
0.351 0.297 0.135 21 50 Yes 2 18.42 46.95
0.364 0.308 0.14 21 50 Yes 2 18.10 46.78
0.390 0.330 0.15 21 50 Yes 2 17.80 46.60
0.442 0.374 0.17 21 50 Yes 3 15.27 44.12
0.520 0.440 0.20 21 50 Yes 3 14.19 43.47

Table 1
Parameters of 9 frequency-focused waves of increasing linear steepness 𝑆𝐿 simulated in the NWT (see Fig. 1). Parameters
𝑥𝑓 and 𝑡𝑓 are respectively the theoretical location and time of focusing given by the linear theory; 𝑥𝑏 and 𝑡𝑏 are the breaking
location and time obtained with the NWT. All simulations are run with 𝑇𝑝 = 2.25 s, 𝛾 = 3.3, 𝑓𝑐 = 0.8 Hz and Δ𝑓 = 0.01 Hz.
Note, here, 𝐻𝑠 is only a spectral parameter and not the significant wave height of a sea state in which the focused breaking
wave would be likely to occur.

1, composed of only one wave, corresponds to the case where the focused wave breaks. This occurs slightly beyond
the theoretical focal point, but close to the theoretical focusing time. In group 2, breaking occurs around 𝑥 = 18 m and
𝑡 = 47 s, and it is no longer the focused wave crests that break, but waves that are only partially focused. For group
3, breaking occurs around 𝑥 = 15 m and 𝑡 = 44 s, and the breaking waves are even less focused than those of group
2. We will show later in Sec. 5 that the breaking group to which a breaking wave belongs can be determined based on
linear theory. However, within a given group, the actual breaking location and time are affected by nonlinear effects.
We observe in Fig. 1 that, within a given group, an increase of the linear steepness leads to a seemingly more violent
breaking event, which occurs earlier in time and space. At some point, further increasing the linear steepness will lead
to a much larger shift in both breaking time and location: this corresponds to a change of the wave crest that breaks.
It should be noted that, with the different considered wave spectra, we never obtained strong plunging breakers in the
breaking group 1 (see Table 1), i.e., when the fully focused wave breaks. The strongest plunging breakers that were
obtained corresponded to partially focused waves (breaking groups 2 and 3).

Progressively increasing 𝑆𝐿 for the focused wave packets simulated in the NWT allows simulating different
breaking wave strengths, but these waves break at different times and locations. For the flume experiments, however, it
was necessary that all waves break at about the same location, here set to 𝑥𝑡 = 21 m. This was achieved by iteratively
modifying the theoretical focusing location 𝑥𝑓 in the NWT simulations, while keeping 𝑡𝑓 = 50 s. More specifically,
in the iterative NWT simulations, the first iteration, 𝑖 = 1, corresponds to the earlier simulations, i.e., with the focal
point set to 𝑥𝑓 = 𝑥𝑡 = 21 m. As shown in Fig. 1, this produces waves that break at various locations, from 𝑥𝑏 = 14.19
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Figure 2: Free-surface profiles of seven frequency-focused breaking waves (groups 1 to 3 in Table 1) at the instant they break
in the NWT simulations. Their theoretical focusing location, 𝑥𝑓 , was iteratively adjusted (Eq.10) to achieve 𝑥𝑏 ≃ 𝑥𝑡 = 21 m.
See parameters listed in Table 2 for waves A3-A9.

to 23.07 m. In subsequent iterations, the theoretical focal point is adjusted as:

𝑥𝑖+1𝑓 = 𝑥𝑖𝑓 − (𝑥𝑖𝑏 − 𝑥𝑡), (10)

where 𝑥𝑖𝑏 is the breaking location observed in the NWT at the 𝑖th iteration. Simulations are repeated with the new
focal point until a satisfactory convergence to the desired breaking location 𝑥𝑡 is reached. For all the simulated cases,
only 3 to 4 iterations were required to obtain a breaking location within ± 0.1 m of 𝑥𝑡. Figure 2 shows the converged
free-surface profiles of the waves obtained by applying this iterative method to the last seven waves listed in Table 1
(groups 1 to 3). The profiles are shown at the instant of breaking.

The theoretical focusing locations of the frequency-focused breaking waves used in the following were all identified
based on NWT simulations, using this iterative method. These are listed in Table 2 along with the spectral parameters.
All the focused wave packets have a focusing time 𝑡𝑓 = 50 s and are based on JONSWAP spectra with a cut-off
frequency 𝑓𝑐 = 0.8 Hz. This cut-off frequency was selected to prevent the spurious breaking of small waves in the
model, which would have interrupted simulations before the main breaking event occurred. The waves are divided into
two sets of nine waves each, referred to as A and B. For sets A and B, the spectral peak periods are 𝑇𝑝 = 2.25 and 2.49
s, and the peak enhancement factor are 𝛾 = 3.3 and 1.4, respectively. In each set, the parameter 𝐴 is varied, through
adjusting 𝐻𝑠, to generate waves of different breaking strength. The resulting linear steepness 𝑆𝐿 (Eq. 6) of each wave
packet is also listed in Table 2.

2.2. Validation of the simulated free-surface profiles with experimental measurements
The focused breaking waves that were simulated in the NWT were generated in the physical flume, by specifying

the same stroke time series at the piston wavemaker. The experimental parameters are identical to those listed in Table
2, except that the focusing time is reduced to 30 s. This change is not important since the experimental results are used
here to assess the accuracy of the 2D-FNPF NWT simulations. Each experiment was repeated 3 times, after letting the
flume rest for 45 minutes in between, to ensure a good repeatability of the breaking waves.

In each experiment, the free-surface elevation of the incident wave packet was measured with a servo-controlled
non-intrusive wave gauge (see Ohana and Bourdier (2014) for details of the wave gauge) working at an acquisition rate
of 50 kHz and located upstream of the breaking location 𝑥𝑏 ≃ 21 m, at 𝑥 = 11.895 m. The free-surface profiles of the
breaking waves were measured in space along the flume sidewall, with a high-speed video camera centered around the
breaking location (Fig. 3). The camera recorded 2000 frames per second. A 2 m long checkerboard, shown in Fig. 3a,
was used to carry out the intrinsic and extrinsic calibrations of the video camera. The extrinsic calibration allows to
compensate for the varying pixel size resulting from the fact that the optical axis of the camera is not perpendicular
to the flume sidewall. The red dots in the figure mark the checkerboard corners detected by the calibration algorithm.
These are used to transform the pixel coordinates of a point into its checkerboard coordinates. The flume coordinates are
then calculated by applying a rotation and a translation of the checkerboard coordinates, defined using the horizontal
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Number 𝐴 =
𝑁
∑

𝑛=1
𝑎𝑛

[m]

𝐻𝑠 [m] 𝑇𝑝 [s] 𝛾 [1] 𝑓𝑐 [Hz] 𝑥𝑓 [m] 𝑡𝑓 [s] 𝑆𝐿 [1]

A1 0.242 0.11 2.25 3.3 0.8 19.37 50 0.286
A2 0.253 0.115 2.25 3.3 0.8 18.97 50 0.299
A3 0.264 0.12 2.25 3.3 0.8 18.80 50 0.312
A4 0.286 0.13 2.25 3.3 0.8 22.99 50 0.338
A5 0.297 0.135 2.25 3.3 0.8 23.57 50 0.351
A6 0.308 0.14 2.25 3.3 0.8 23.87 50 0.364
A7 0.330 0.15 2.25 3.3 0.8 24.15 50 0.389
A8 0.374 0.17 2.25 3.3 0.8 27.04 50 0.442
A9 0.440 0.20 2.25 3.3 0.8 27.16 50 0.520

B1 0.259 0.11 2.49 1.4 0.8 19.47 50 0.289
B2 0.282 0.12 2.49 1.4 0.8 18.84 50 0.315
B3 0.306 0.13 2.49 1.4 0.8 19.69 50 0.341
B4 0.329 0.14 2.49 1.4 0.8 23.42 50 0.368
B5 0.353 0.15 2.49 1.4 0.8 23.92 50 0.394
B6 0.376 0.16 2.49 1.4 0.8 24.08 50 0.420
B7 0.400 0.17 2.49 1.4 0.8 23.94 50 0.447
B8 0.423 0.18 2.49 1.4 0.8 23.72 50 0.473
B9 0.447 0.19 2.49 1.4 0.8 26.05 50 0.499

Table 2
Parameters of breaking and non-breaking waves simulated in the NWT based on JONSWAP spectra: theoretical crest
elevation 𝐴 at focusing based on linear wave theory, peak period 𝑇𝑝, peak enhancement factor 𝛾, and cut-off frequency
𝑓𝑐 . Parameters 𝑥𝑓 and 𝑡𝑓 are the focus location and time based on linear wave theory, which are such that waves break at
𝑥𝑏 ≃ 21 m in the NWT; 𝑆𝐿 denotes the linear steepness of the focused wave packet (Eq. 6).

datum represented by the still water line and a reference mark located 21 m away from the wave paddle. Figure 3b
illustrates the detection of the free-surface profile at the wall using a Canny-type contour detection algorithm. The blue
dots mark the pixels at the intersection between the free surface and the tank wall. The contour detection algorithm
is applied on the image located between the two red lines shown in the figure. The transformation obtained from the
linear calibration is applied to transform the pixel coordinates of the free surface into the flume coordinates. More
details on the measurement methodology can be found in Hulin (2024).

Figure 4a shows time series of free-surface elevations measured with the wave gauge, for three replicates of one
focused wave experiment (similar to A6, except for 𝑡𝑓 = 30 s), together with the corresponding NWT simulation (also
for 𝑡𝑓 = 30 s). At this scale, the agreement between the different runs and the numerical simulations is excellent.
The zoomed-in view of the same data in Fig. 4b shows that differences in surface elevation between the experimental
replicates are small, on the order of 1 mm. Differences between the experimental results and the numerical simulations
are slightly larger, ∼ 3 mm. A time shift of ∼ 20 ms is also observed.

Figure 5 shows free-surface profiles measured near the breaking zone at different times for the three experimental
replicates of this wave, together with the profiles simulated in the NWT. The different experimental curves agree
very well with each other. Except for a small time/phase shift, the agreement between the numerical and experimental
profiles is quite good, all the way to the breaking location. Differences between the numerical and experimental curves,
however, seem to be increasing as the wave approaches breaking, with the experimental wave crest elevation being
slightly smaller. Since free-surface profiles are measured along the flume sidewall with the video camera, this mild
wave damping could result from viscous dissipation in the wall boundary layer, which is not represented in potential
flow theory. Hence, as noted by Rapp and Melville (1990), the fluid kinematics, and waves, may be slightly different,
and less affected by sidewall friction, in the middle of the flume. In particular, it was reported in the latter work that
breaking occurred earlier at the wall. Similar comparisons between experimental and NWT results were performed for
other waves, whose details are given in Appendix B.
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(a) Checkerboard placed on the flume sidewall for calibration.
Red dots mark detected checkerboard vertices.

(b) Free-surface measurement using a contour detection
algorithm (applied to the image between the two red lines to
avoid detecting spurious contours). Blue dots mark detected
free-surface points.

Figure 3: Wave free-surface profile measurement using a high-speed video camera.
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Figure 4: (a) Time series of free-surface elevation measured at the wave gauge located at 𝑥 = 11.895 m for three replicates
of the same focused wave experiment (similar to A6 except for 𝑡𝑓 = 30 s). The free-surface elevation simulated with the
NWT for the same wave is also shown. (b) Zoomed-in view around the maximum crest of (a).

3. Computation of nonlinear breaking wave parameters from NWT simulations
While accurate and repeatable, the wave flume experiments and the available instrumentation do not allow for a

direct and non-intrusive measurement of the fluid particle velocity near and at the crest. It is also quite challenging to
accurately measure the wave crest speed in the flume. Both of these measurements are required to compute the breaking
onset criterion𝐵. For these reasons, considering their experimental validation, the NWT results are used to estimate the
different parameters required to compute the breaking onset criterion 𝐵 and the breaking strength parameter 𝛤 , defined
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Figure 5: Comparison of simulated (NWT) and experimental free-surface profiles of a wave (similar to A6 except for 𝑡𝑓 = 30
s) at different times. Runs 1-3 are three replicates of the same experiment.

Number 𝑥𝑏 [m] 𝑡𝑏 [s] 𝜂𝑏 [m] 𝑐 [m/s] 𝛤 [1] d𝐵
d𝑡

[s-1] Breaking
group

A1 20.99 50.42 0.32 2.39
A2 20.99 50.55 0.35 2.39
A3 21.01 50.56 0.39 2.72 0.93 0.55 1
A4 20.86 47.17 0.34 2.55 0.82 0.52 2
A5 20.90 46.89 0.37 2.74 1.21 0.69 2
A6 20.92 46.74 0.39 2.82 1.67 0.91 2
A7 20.93 46.56 0.40 2.89 2.78 1.47 2
A8 21.02 43.89 0.30 2.54 1.15 0.71 3
A9 20.97 43.63 0.36 2.92 2.97 1.57 3

B1 20.99 50.39 0.33 2.44
B2 21.05 50.57 0.41 2.76 0.92 0.53 1
B3 21.00 50.1 0.41 2.86 1.90 1.01 1
B4 20.95 46.97 0.35 2.64 1.06 0.63 2
B5 20.99 46.70 0.39 2.84 1.90 1.02 2
B6 21.02 46.59 0.41 2.93 2.89 1.51 2
B7 20.92 46.55 0.41 3.00 3.70 1.94 2
B8 20.90 46.57 0.41 3.39 3.92 2.15 2
B9 20.99 44.30 0.32 2.34 1.44 0.96 3

Table 3
Parameters of two sets of breaking and non-breaking waves simulated in the NWT based on JONSWAP spectra (see Table
2). Breaking wave parameters are computed at the breaking time 𝑡𝑏. For the non-breaking waves, parameters are computed
at the instant at which the free-surface elevation is maximum. See section 2.1 for the definition of the breaking groups.

in Eq. 1. As proposed in earlier work (Barthelemy et al., 2018; Derakhti et al., 2018), this parameter is calculated at
the breaking onset threshold 𝐵 = 𝑢∕𝑐 = 0.85, beyond which a wave will inevitably evolve towards breaking.

In the computation of 𝐵, the crest celerity is calculated as 𝑐 = d𝑥𝑐∕d𝑡, based on the time history of the crest location
in the model simulations, 𝑥𝑐(𝑡) (i.e., the location at which the free surface is maximum). To prevent an oscillatory
behavior of the crest celerity, and hence of 𝐵, a careful computation of the crest location is required. Generally, 𝑥𝑐(𝑡)
is located in between two discretization nodes. For this value to be accurate, a smooth local approximation of the
wave crest geometry must be defined (e.g., Mohanlal et al., 2023). To do so, at each time step, the BEM node of
maximum surface elevation is first selected: 𝐱𝐽 (where 𝐽 corresponds to the index of this node). Then, a local cubic
smoothing spline approximation of the free surface is made, using 10 nodes of coordinates 𝐱𝑗 = (𝑥𝑗 , 𝑧𝑗) on either side
of 𝐽 , i.e., in the interval 𝑗 ∈ [𝐽 − 10; 𝐽 + 10]. Similar to the so-called quasi-spline method introduced by Grilli and
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Subramanya (1996) in the NWT, this approximation allows for multiple-valued free-surface elevations (such as occurs
in overturning waves), by defining two spline approximations of each free-surface coordinate as a function of the node
index 𝑗: 𝑋(𝑗) and 𝑍(𝑗), respectively. Specifically, here, functions 𝑋 and 𝑍 are found by minimizing the following
quantity:

𝐽+10
∑

𝑗=𝐽−10
|𝑓𝑗 − 𝐹 (𝑗)|2 + (1 − 𝑝)∫

𝐽+10

𝐽−10

|

|

|

|

|

d2𝐹
d𝑙2

(𝑙)
|

|

|

|

|

2

d𝑙, (11)

where 𝑝 = 0.8 is the smoothing parameter, 𝐹 corresponds to 𝑋 or 𝑍 and 𝑓𝑗 corresponds to 𝑥𝑗 or 𝑧𝑗 , the set of nodal
coordinates in the considered interval. Note that this analysis is done in postprocessing, using the Matlab software
function csaps.

Functions 𝑋(𝑗) and 𝑍(𝑗) describe the free surface as a smooth parametric curve with 𝑥 = 𝑋(𝑗) and 𝑧 = 𝑍(𝑗)
from which we identify the 𝑥-coordinate of the crest 𝑥𝑐(𝑡) = 𝑋(𝑗𝑚𝑎𝑥) and the crest elevation 𝜂𝑐(𝑡) = 𝑍(𝑗𝑚𝑎𝑥), where
𝑗𝑚𝑎𝑥 is the real value of the curve parameter corresponding to the point of maximum elevation. The crest velocity is
then obtained by differentiating the wave crest position with respect to time using a first-order finite-difference scheme.
The procedure used here for the computation of the crest location allows to obtain a smooth time evolution that can be
directly differentiated numerically without inducing strong oscillations of the crest speed.

Computing 𝐵 and its time derivative also requires accurately computing the horizontal fluid velocity at the crest.
This is done, as for the crest speed, within a local smooth cubic spline approximation of the free surface horizontal fluid
velocity,𝑈 (𝑗). The latter is similarly obtained by minimizing Eq. 11 with 𝑓𝑗 = 𝑢𝑗 , where 𝑢𝑗 are the horizontal velocities
computed at the BEM nodes at each time step. The horizontal velocity at the crest is then found as 𝑢(𝑡) = 𝑈 (𝑗𝑚𝑎𝑥).

Figures 6a and 6b show the time evolution of the crest and horizontal fluid velocities computed for waves A3 and
A7, respectively. Figure 7a and 7b show the time evolution of 𝐵 for the same cases. As suggested by Derakhti et al.
(2018), the time derivative of 𝐵, used to compute 𝛤 , was calculated as the slope of a linear interpolation of 𝐵(𝑡) over
the time interval during which |𝐵 −0.85| < 0.03. This interpolation corresponds to the orange line in Figs. 7a and 7b.

Derakhti et al. (2018) proposed a definition of the characteristic breaking wave period 𝑇𝑏, which they used
to compute 𝛤 with Eq. 1. In their work, 𝑇𝑏 was calculated based on the linear dispersion relationship, using the
wavelength 𝐿𝑏 computed at breaking, defined from two successive zero-crossing points around the crest. However,
in our simulations of wave sets A and B in the NWT, we observed that in a few cases the forward trough of the
breaking wave was above the Still Water Level (SWL) and, therefore, 𝐿𝑏 was overestimated by the zero-crossing
approach. Accordingly, in the current work, we modified Derakhti et al. (2018)’s definition of 𝑇𝑏 to use, instead, the
crest velocity computed at breaking onset (when 𝐵(𝑡) = 0.85), 𝑐, together with the linear dispersion relationship (Eq.
3), as:

𝑐 =
√

𝑔
𝑘𝑏

tanh 𝑘𝑏ℎ and 𝑇𝑏 =
2𝜋

√

𝑔𝑘𝑏 tanh 𝑘𝑏ℎ
. (12)

Given 𝑐, the first equation is used to compute the value of the wavenumber at breaking onset, 𝑘𝑏 = 2𝜋∕𝐿𝑏, and the
characteristic wave period 𝑇𝑏 is then found from the second equation. Values of the breaking location 𝑥𝑏, breaking
time 𝑡𝑏, crest elevation at breaking 𝜂𝑏, crest velocity at breaking 𝑐𝑏, breaking strength 𝛤 , and the time derivative of 𝐵
at 𝐵 = 0.85 are given in Table 3 for all the focused wave cases.

4. A linear-equivalent breaking onset criterion
In this section, we derive a linear-equivalent breaking onset criterion which aims at predicting the value of 𝑢∕𝑐

from linear wave theory. The approach relies on the definition of a linear wave, which has a mechanical energy and
impulse similar to the fully nonlinear wave. In order to do so, we must assume that the wave is regular, but we will
explain later (in Section 5) how we suggest to use this approach for irregular waves.

4.1. Definition of the linear-equivalent periodic wave
Given a nonlinear periodic wave, the linear-equivalent wave is defined such that it has the same period-averaged

energy 𝐸 and impulse 𝐼 , as the nonlinear wave. Once the linear-equivalent wave parameters are calculated, the ratio
𝑢∕𝑐 of the linear-equivalent wave is calculated at its crest and compared to the value found for the nonlinear wave,
in order to establish an equivalence. Thus, given the free-surface elevation of a periodic linear (infinitesimally small)
wave:

�̊� (𝑥, 𝑡) = �̊� cos
(

�̊�𝑥 − �̊�𝑡
)

, (13)
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Figure 6: Time evolution of the crest velocity and of the horizontal fluid velocity at the crest for waves A3 (𝑎) and A7 (𝑏)
(see Table 3).
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Figure 7: Time evolution of the parameter 𝐵 for the waves A3 (𝑎) and A7 (𝑏). The vertical red line corresponds to the
breaking time 𝑡𝑏 (see Table 3). The dashed horizontal line corresponds to 𝐵 = 0.85 and the two solid horizontal lines to
𝐵 = 0.85 ± 0.03. As suggested by Derakhti et al. (2018), the linear interpolation is carried out between these two solid
horizontal lines.

where the ring symbol “ .̊ ” refers to linear-equivalent quantities, a standard second-order perturbation approach
(Phillips, 1966) yields the period-averaged potential energy, �̊�𝑝, and kinetic energy, �̊�𝑘 as:

�̊�𝑝 = �̊�𝑘 = 1
4
�̊�2, (14)

where, for simplicity, we have assumed that the gravity 𝑔 = 1 and the fluid density 𝜌 = 1, without loss of generality
since, in the following analysis, we will consider the ratios of the linear and nonlinear quantities. The relationship
between the kinetic energy, 𝐸𝑘, and the impulse, 𝐼 , for a purely progressive wave (linear or nonlinear) is defined by
the wave speed 𝑐 = 𝜔∕𝑘 (see Phillips, 1966):

𝐼 =
2𝐸𝑘
𝑐

, 𝐼 =
2�̊�𝑘
�̊�

. (15)
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Now, enforcing the condition that the linear-equivalent wave has the same total energy, 𝐸 = 𝐸𝑝 + 𝐸𝑘, and impulse as
the nonlinear wave yields the amplitude and phase speed of the linear-equivalent wave, as:

⎧

⎪

⎨

⎪

⎩

𝐸 = �̊� = 1
2
�̊�2

𝐼 = 𝐼 =
2�̊�𝑘
�̊�

= �̊�
�̊�

= 𝐸
�̊�

⇒

⎧

⎪

⎨

⎪

⎩

�̊� =
√

2𝐸

�̊� = 𝐸
𝐼

. (16)

Linear-equivalent 𝑢∕𝑐 at the wave crest
The horizontal velocity at the crest of a linear wave, �̊�, is (without applying any stretching):

�̊� = �̊��̊�
�̊�

= �̊�
�̊�
. (17)

Substituting Eq. 17 into Eq. 16, yields the linear-equivalent �̊� ratio, as a function of the impulse and total energy of
the nonlinear wave, as:

�̊� = �̊�
�̊�
= �̊�

�̊�2
= 𝐼2

𝐸2

√

2𝐸, (18)

which can also be expressed as a function of the non-dimensional energy, 𝐸 = 𝑘2𝐸, and impulse, 𝐼 = 𝑘3∕2𝐼 , as:

�̊� = 𝐼2

𝐸2

√

2𝐸. (19)

Note, however, that the relative water depth of the linear-equivalent wave, �̊�ℎ, which is different from that of the
nonlinear wave, is not defined at this stage.

Relative water depth of the linear-equivalent wave
The relative water depth of the linear-equivalent wave may be found using the linear dispersion relation �̊��̊�2 =

tanh
(

�̊�ℎ
)

and substituting Eq. 16 into the dispersion relationship:

⎧

⎪

⎨

⎪

⎩

�̊�2 = ℎ
tanh

(

�̊�ℎ
)

�̊�ℎ

�̊� = 𝐸
𝐼

⇒

(

𝐸
𝐼

)2

= 𝑘ℎ
tanh

(

�̊�ℎ
)

�̊�ℎ
. (20)

Then, given 𝐸, 𝐼 and a relative water depth 𝑘ℎ, solving Eq. 20 gives the linear-equivalent relative water depth �̊�ℎ
which will be used in the following. Equation 16 leads to �̊� < 𝑐 and Eq. 20 to �̊� < 𝑘. Note that Eq. 20 can lead to
nonphysical small values of �̊� compared to 𝑘 when 𝑘ℎ is too small. In the following, the wavelength of the non-linear
wave will be assumed to be smaller than 6 times the water depth.

4.2. Relationship between �̊�∕�̊� and 𝑢∕𝑐
Let us now examine the behavior of the linear and nonlinear ratios, �̊� = �̊�∕�̊� and 𝐵 = 𝑢∕𝑐, for different (regular)

wave parameters. For this purpose, we use the method of Cokelet (1977), which allows to compute different non-
dimensional quantities such as the energy, 𝐸, and the impulse, 𝐼 , for a given nonlinearity level 𝜖 ∈ [0, 1] and a relative
water depth parameter exp (−𝑘ℎ). These quantities can be computed up to the breaking limit 𝜖 = 1. The nonlinearity
level 𝜖, also called the expansion parameter, is defined by the equation 𝜖2 = 1− 𝑞2crest𝑞

2
trough∕𝑐

4, with 𝑞crest and 𝑞trough
the nonlinear horizontal fluid velocities at the crest and the trough, respectively, in a frame of reference moving at speed
𝑐. Note that the numerical values of the horizontal velocity at the crest (not given in Cokelet (1977)) were computed
in the present study using the same method. Also note that other approaches could have been used to compute the
nonlinear values of 𝑢∕𝑐 (e.g., Clamond and Dutykh, 2018).

For a given relative water depth, 𝐵 and �̊� only depend on the nonlinearity parameter. As an illustration, Fig. 8a.
shows the evolution of 𝐵 and �̊� as a function of 𝜖2, for an infinite water depth. It can be observed that the linear
equivalent �̊� goes through a slight maximum around 𝜖2 = 0.92, similar to what was observed in Cokelet (1977) for the
evolution of the energy, impulse, and wave speed parameters. The maximum value of �̊� observed in Fig. 8a corresponds
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(a) (b)

Figure 8: Illustration of the definition of the linear breaking onset criterion. (a) Evolution of the ratio 𝑢∕𝑐 for a nonlinear
regular wave ( ) and the corresponding equivalent linear wave �̊�∕�̊� ( ) as a function of the nonlinearity level 𝜖2 for an
infinite water depth. The linear breaking onset threshold is defined as the value of �̊�∕�̊� for the value of 𝜖2 at which 𝑢∕𝑐=0.85
( ). (b) Evolution of the transfer coefficient 𝛼 = 0.85∕�̊�𝑡 as a function of the relative water depth parameter.

to a nonlinear 𝐵 = 0.77. Based on these observations, we do not find a strict one-to-one correspondence between 𝐵
and �̊�. To simplify the problem and, as we are interested in predicting when the nonlinear wave up-crosses 𝐵 = 0.85,
we suggest to use the value �̊�𝑡 = �̊�(𝜖2) corresponding to 𝐵(𝜖2) = 0.85 for the detection of the breaking onset. After
computing the ratio 𝛼 = 0.85∕�̊�𝑡 for any relative water depth parameter, �̊�ℎ, we define the linear-equivalent breaking
onset threshold of a nonlinear periodic wave as:

𝛼
(

�̊�ℎ
)

�̊� > 0.85. (21)

The evolution of 𝛼 as a function of the linear relative water depth �̊�ℎ is plotted in Fig. 8b, for the range of water
depths within which the linear-equivalent model is expected to be valid. In this range, the transfer function 𝛼 may be
approximated by the following expression:

𝛼
(

�̊�ℎ
)

≈ 0.85
0.3546 + 0.0113 𝑒−�̊�ℎ − 0.3056 𝑒−2�̊�ℎ + 0.2298 𝑒−3�̊�ℎ

. (22)

5. Wave breaking prediction using the linear breaking onset threshold
In this section, we assess whether the linear-equivalent breaking onset criterion derived in Section 4 can accurately

predict the breaking of the focused wave packets presented in Section 3. For this purpose, we assume that the free
surface of the linear-equivalent wave is defined by Eq. 2 and that the horizontal fluid velocity at the free surface of the
linear-equivalent wave is given by the corresponding linear wave kinematics:

�̊� (𝑥, 𝑡) =
𝑀
∑

𝑚=1
𝑎𝑚

𝑔𝑘𝑚
𝜔𝑚

cos
(

𝑘𝑚𝑥 − 𝜔𝑚𝑡 − 𝜙𝑚
)

, (23)

where the amplitudes, angular frequencies, wavenumbers and phases correspond to those used in Eqs. 2 and 4. The
wave crest speed is calculated from the second derivatives of the free-surface elevation 𝜂𝑥𝑡 and 𝜂𝑥𝑥 using the following
equation (see Longuet-Higgins (1957), Equation 2.5.18):

�̊�(𝑡) = −
𝜂𝑥𝑡

(

𝑥𝑚𝑎𝑥(𝑡), 𝑡
)

𝜂𝑥𝑥
(

𝑥𝑚𝑎𝑥(𝑡), 𝑡
) , (24)
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with 𝑥𝑚𝑎𝑥(𝑡) the position of the wave crest that has the largest value of �̊� and, as a consequence, is most likely to
break. Once the crest speed is computed, the instantaneous relative water depth is computed using the linear dispersion
relationship. As will be shown later, the linear breaking onset criterion in Eq. 21 predicts the breaking onset quite well.
However, a better agreement is obtained with the following slightly modified breaking onset criterion:

𝐵 = 1.04 × 𝛼
(

�̊�ℎ
)

�̊� > 0.85. (25)

Note that the factor 1.04 was determined empirically such as to obtain a better agreement with the present numerical
results, but discriminating a very mild spiller from a non-breaking steep wave may remain difficult when using this
linear-equivalent criterion.

Figure 9 shows the evolution of 𝐵 as a function of time for the different wave cases defined in Table 3. The solid
lines correspond to the early stage, during which 𝐵 remains below 0.85 and, after the first up-crossing of this threshold,
the evolution of𝐵 is represented by dotted lines. The colored bullets mark the time, 𝑡𝑏, at which the wave starts breaking
in the FNPF-NWT, i.e. when the wave profile presents a vertical tangent for the first time. In the wave set A (Fig. 9a),
we see that cases A1 and A2 do not up-cross the threshold 𝐵 = 0.85 and the waves do not break in the numerical
simulations, while this threshold is up-crossed for case A3 and the wave breaks close to the focusing time in the NWT
simulations. Waves in cases A4 to A7 also up-cross the 0.85 threshold close to the focusing time, but they had already
up-crossed the threshold 4 seconds earlier than for case A3, which indicates that these waves break approximately 4
seconds earlier than the wave of case A3. This is confirmed by the NWT simulations, which also predict the breaking of
these waves approximately 3 seconds earlier than for case A3 (see Table 3). For cases A8 and A9, the linear-equivalent
breaking threshold �̄� = 0.85 is up-crossed 8 s before the focusing time. This earlier breaking is confirmed by the NWT
simulations. For the wave set B (Fig. 9b), no breaking occurs in the wave packet B1, while breaking occurs close to the
focusing time for cases B2 and B3. For cases B4 to B8, parameter 𝐵 reaches a value of 0.85 approximately 4 seconds
before the focusing time, which is a good prediction of the earlier breaking also observed in the NWT simulations.
However, for case B9, the threshold value is reached after breaking has occurred in the NWT simulations, although
a rather large value of 𝐵 (just below 0.85) is reached at 𝑡 ≈ 42.5 s. This may show some limitations of the approach,
which may not be able to distinguish breaking waves from non-breaking waves when the breaking strength is very
small. Nevertheless, these results indicate that the parameter 𝐵 is overall very good at predicting which wave crest
is breaking. These results suggest that the waves break earlier than the focusing time because, as a result of wave
component superposition in the focusing train, the threshold 𝐵 = 0.85 is up-crossed much earlier than the focusing
time, and not because the celerity of the waves is affected by local nonlinearity. Indeed, nonlinearity only causes a
moderate increase of the wave phase speed, due to amplitude dispersion, that cannot explain the large difference in
breaking time for only slightly different wave packets (e.g., A3 compared to A4).
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(a) Wave set A (b) Wave set B

Figure 9: Evolution of the predicted breaking parameter 𝐵 as a function of time. Lines are dotted after the first up-crossing
of the level 0.85 and the dots represent the instant of breaking in the FNPF simulations.

6. Breaking strength prediction
In this section, we analyze the ability of parameter 𝐵, obtained from linear-equivalent characteristics, to predict the

breaking strength parameter 𝛤 = 𝑇𝑏 d𝐵∕d𝑡. For this purpose, let us examine the evolution of 𝐵 and 𝐵 depicted in Fig.
10 for two wave cases. The evolution of 𝐵 is only represented in the neighborhood of 𝐵 = 0.85, as 𝛤 relies on the time
derivative of 𝐵 at this instant. Note that the value 𝐵 = 0.85 is reached before the instant corresponding to 𝐵 = 0.85.
In addition, one can clearly see that the slopes of 𝐵 and 𝐵 are different. This may be explained by the fact that 𝐵 was
derived from the ratio between 𝐵 and �̊� when 𝐵 = 0.85, but this ratio is different for other values of 𝐵. However, the
values of 𝛤 and �̊�𝑏 d𝐵∕d𝑡 computed for the different wave cases considered in the previous sections present a good
correlation, as shown in Fig. 11. This suggests that the breaking strength of the waves may be well predicted using the
following equivalent parameter:

𝛤 = 3.89 �̊�𝑏
d𝐵
d𝑡

, (26)

where the factor 3.89 was derived from the correlation coefficient identified from the data presented in Fig. 11.
One may expect the breaking strength to be related to the linear global steepness of the wave packet, 𝑆𝐿, as defined

in Eq. 6. Derakhti et al. (2018) observed that focused wave packets, which were generated using a different wave
spectrum from the ones considered in our study, were not breaking for 𝑆𝐿 = 0.3005 and breaking for 𝑆𝐿 = 0.302.
Here, we find that the wave packets contain a breaking wave when 𝑆𝐿 > 0.3. The results presented in (Derakhti et al.
(2018), Table 1, cases A3-A6) may suggest that the breaking strength is increasing with the global steepness of the
wave packet. However, Fig. 12a shows that, for all the waves of sets A and B that break, the evolution of the breaking
strength is non-monotonic as we increase the steepness of the wave packet, 𝑆𝐿. This can be explained by the fact that
𝑆𝐿 is representative of the steepness of the perfectly focused waves, but not of the local steepness of the wave crests
which break prior to the focusing time (imperfectly focused waves). The local steepness of the particular wave crest
which breaks may also be estimated from linear wave theory by considering the product, 𝑘𝜂𝑐 , with 𝑘 a wave number
defined according to the shape of the wave crest and 𝜂𝑐 the crest elevation of the wave when it passes through its
maximum. For this particular analysis, the wave number, 𝑘, was computed based on the definition of Derakhti et al.
(2018) for the sake of comparison. Figure 12b shows that the breaking strength evolves linearly with the local linear
steepness, 𝑘𝜂𝑐 . In addition, we find that 𝑘𝜂𝑐 = 0.29 is also a valid threshold to predict the breaking of the wave crests
which break prior to the focusing time.
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(a) Case A4 (b) Case B3

Figure 10: Time evolution of �̊� ( ), �̄� ( ) and 𝐵 ( ) for the wave cases A4 (a) and B3 (b). Comparison of the slopes
d�̄�∕d𝑡 ( ) and d𝐵∕d𝑡 ( ) used to calculate 𝛤 and 𝛤 .

Figure 11: Evolution of the nonlinear breaking strength parameter 𝛤 (derived from the FNPF simulations) as a function of
the linear estimate �̊�𝑏d�̄�∕d𝑡. The waves of set A are marked with circles and that of set B with stars. The different colors
correspond to the breaking groups given in Table 3: blue for group 1, red for group 2 and black for group 3.
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(a) (b)

Figure 12: Evolution of the nonlinear breaking strength 𝛤 as a function (a) of the linear wave steepness 𝑆𝐿 of the focused
wave and (b) of the linear steepness of the breaking wave crest 𝑘𝜂𝑐 . The waves of set A are marked with circles and that
of set B with stars. The different colors correspond to the breaking groups given in Table 3: blue for group 1, red for group
2 and black for group 3.
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7. Conclusions
In this paper, we showed that the breaking onset and the breaking strength parameters of nonlinear waves could be

estimated using linear wave models and we derived predictive equations to do so. Our findings are important as they
allow identifying both waves that break and how intense breaking is in time series of focused wave packets generated by
standard linear superposition methods. As this approach requires only a modest computational effort, in comparison to
running FNPF or CFD models, our methodology will allow easily simulating statistically meaningful sets of breaking
waves and, based on these, performing probabilistic analyses of wave breaking, and of the characteristics of breaking
waves, in various sea states.

Specifically, building on the work of Barthelemy et al. (2018), who proposed a universal breaking onset criterion,
𝐵 = 𝑢∕𝑐 > 0.85, we developed a linear-equivalent breaking onset criterion, based on the characteristics of an equivalent
linear wave that has the same energy and impulse as a regular nonlinear wave. Our method improves the earlier work
of Stringari et al. (2021), who only considered the conservation of energy.

We assessed the predictive ability of the linear-equivalent breaking onset criterion by performing simulations of
18 breaking and non-breaking focused waves in a 2D-FNPF-NWT. Although already well-validated experimentally in
earlier work, we performed a specific validation of the NWT against experiments in a laboratory flume run for some
of the same focused breaking waves, and found a very good agreement of the simulated free-surface profiles with
experimental results, up to the breaking point (vertical tangent on the wave front face). Based on the NWT results, we
found that, after applying a nearly unity correction factor (1.04) to its theoretical value, the linear-equivalent breaking
criterion could predict breaking onset with good accuracy, for the focused wave cases studied here, which covered a
fairly wide range of steepness/breaking strength.

In addition, we showed that the breaking strength of the waves computed in the NWT, expressed as parameter 𝛤
proposed by Derakhti et al. (2018), could also be accurately predicted based on a linear-equivalent wave model, using
a simple constant correlation factor.

One caveat in our study is that these encouraging results were obtained considering only a specific set of
unidirectional waves, whose energy was distributed as a JONSWAP spectrum, and for which breaking resulted from
frequency focusing. Hence, in future work, the proposed linear-equivalent breaking onset criterion and strength
parameter should be validated for a wider range of wave conditions (relative water depth, wave spectrum, directional
spreading, value of the phases at focusing). In particular, the more realistic case of irregular breaking waves should be
considered. If these additional validations confirmed the universality of the present findings, further important scientific
developments could result in the field of breaking occurrence statistics and strength, which are key to a wide range of
marine geophysics and ocean engineering applications.

An additional limitation of the present work is that the effect of a structure on the wave field is not taken into
account in the simulations. Indeed, the diffracted and radiated waves around the structure will modify the incident
wave field and, hence, are likely to affect the occurrence and characteristics of breaking waves. This limitation could
be addressed in future work, by computing the first-order diffraction and radiation terms and by accounting for these
terms in the computation of the 𝐵 and 𝛤 parameter. This would however require a dedicated validation.
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Figure 13: Horizontal distance between BEM nodes in the free surface discretization, at the start of the simulations, as a
function of the 𝑥-location of the nodes.
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A. Details of the NWT discretization and numerical accuracy
In the NWT simulations, 774 nodes were distributed along the boundary of the computational domain. The free

surface was discretized using 601 nodes, the far end of the NWT using 31 nodes, the bottom using 101 nodes, and the
wavemaker paddle using 41 nodes. In the area corresponding to the breaking location, ranging from 𝑥 = 19 to 22 m,
the distance between nodes Δ𝑥 was reduced; this increased resolution yields more accurate results, in particular for the
magnitude of the 𝛤 parameter. A gradual refinement of the spatial resolution was done over 3 m zones located on either
side of the area with the highest node density. Figure 13 shows the location of the BEM nodes on the free surface, at
the start of the simulations (𝑡 = 0). A convergence study of the 𝛤 value calculated as a function of the number of nodes
on the free surface is shown in Fig. 14 for wave A7 (see Table 2). Results show that, for the simulations carried out
with more than 601 nodes on the free surface (corresponding to the vertical dashed line), no significant difference is
observed for the value of 𝛤 . The orange circle corresponds to the value of 𝛤 obtained for the base discretization, but
when the flume slope is not taken into account (i.e. when the depth is equal to 2 m all along the flume). A difference
of less than 4 % is observed.

The error on the volume and energy of the computational domain can be used to assess the accuracy of the BEM
computations in the NWT simulations. As an example, these errors were computed for the case of wave A7. The
maximum relative error on the NWT volume was 0.002%, and the maximum relative error on the energy was less than
1%, at the end of the simulation. Note, the error on the energy is computed as (𝐸𝑓 −𝑊𝑝)∕𝑊𝑝, where 𝐸𝑓 is the total
energy of the fluid and 𝑊𝑝 is the work of the paddle. The total energy of the fluid corresponds to the sum of its kinetic
and potential energy, with the latter set to zero at the start of the simulations. The work of the paddle 𝑊𝑝 corresponds
to the work of the pressure force acting on the paddles. The time evolutions of 𝐸𝑓 and 𝑊𝑝 are shown in Fig. 15.

B. Detailed comparison of the experimental and numerical free-surface profiles
Most of the waves listed in Table 2 were generated and measured in Ifremer’s wave flume, using a video camera,

following the methodology presented in Section 2.2. Note, however, that for the measured waves, the focusing time
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Figure 14: Evolution of the value of 𝛤 with the number of points on the free surface. The vertical dashed line corresponds
to the base discretization of 601 points on the free surface. The red circle corresponds to the value of 𝛤 obtained with the
base discretization, but without considering the longitudinal slope of the flume.
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Figure 15: Comparison of the total energy of the fluid 𝐸𝑓 and of the work of the paddle 𝑊𝑝 computed as a function of
time in the NWT, for the focused wave case A7.

was set to 30 s instead of 50 s. For this reason, the corresponding waves are denoted by a star (wave A3∗ corresponds to
wave A3, except that 𝑡𝑓 = 30 s). The non-breaking waves, as well as waves A8∗, A9∗ and B4∗, were not measured. For
each of the measured waves, the time-shift Δ𝑡 and difference in amplitude Δ𝜂 between the numerical and experimental
profiles were computed 0.1 s before breaking occurred. These differences are listed in Table 4. The computation of
Δ𝑡 and Δ𝜂 is illustrated in Fig. 16, which shows the measured and numerical free-surface profiles for wave B5∗ 0.1 s
before breaking. A time-shifted experimental profile is also shown. The employed time shift Δ𝑡 was calculated such
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Number Δ𝑡 [ms] Δ𝜂 [m]

A3∗ 11.0 0.024
A4∗ 18.5 0.015
A5∗ 21.5 0.013
A6∗ 20.0 0.012
A7∗ 19.5 0.016
B2∗ 20.0 0.022
B3∗ 19.0 0.021
B5∗ 18.0 0.017
B6∗ 18.5 0.014
B7∗ 20.0 0.011
B8∗ 14.5 0.007

Table 4
Time shift and difference in amplitude between the numerical (FNPF simulations) and experimental waves, for the cases
listed in Table 2, computed 0.1 s before breaking occurred: (i) Δ𝑡 is the time shift between the two free-surface profiles
computed with Eq. 27, and (ii) Δ𝜂 is the amplitude difference between the maxima of the FNPF and the measured (time
shifted) profiles. Note, measured waves do not exactly correspond to those listed in Table 2, because the focusing time 𝑡𝑓
was 30 s in experiments instead of 50 s in the model simulations. For this reason, the experimental waves are denoted by
a star.

Figure 16: Comparison of the numerical and experimental free-surface profiles of wave B5∗, at 0.1 s before breaking occurs.
For comparison, the free-surface profile measured 18 ms later is also depicted.

that the difference between the numerical and measured profiles was minimum in the least square sense, as:

Δ𝑡 = min
𝛿𝑡

(

∑

𝑖

(

𝜂FNPF(𝑥𝑖, 𝑡0.1) − 𝜂𝑚𝑒𝑎𝑠(𝑥𝑖, 𝑡0.1 + 𝛿𝑡)
)2
)

, (27)

where 𝜂FNPF and 𝜂𝑚𝑒𝑎𝑠 denote the numerical and measured free-surface profile respectively, and 𝑥𝑖 are the 𝑥-coordinates
of the measured free-surface points. The values 𝜂FNPF(𝑥𝑖, 𝑡) corresponding to the experimental locations 𝑥𝑖 are obtained
by interpolating the numerical results between BEM nodes. Figure 16 shows that, except at the wave crest, the time-
shifted profile is very close to the numerical profile. The crest is the wave region where the largest fluid velocities occur.
As such, it is likely to be the location at which the influence of the wall on the wave shape is the largest, as a result
of sidewall friction. The discrepancy in wave amplitude Δ𝜂 reported in Table 4 corresponds to the vertical distance
between the maxima of the numerical and experimental profiles. For all the measured wave cases, the time shift Δ𝑡 is
less than 21.5 ms and the amplitude discrepancy Δ𝜂 is less than 2.5 cm.
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