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Dietary metabarcoding methods 

DNA extractions from the faecal samples were performed using Zymo Research (Irving, CA) 

Quick-DNA Fecal/Soil Miniprep kits. Samples and field blanks were defrosted, vortexed, and 

centrifuged for 2 min at 8,000 g to collect all material to the bottom of the tubes. The RNA Later 

preservation buffer was pipetted off, and up to 150 mg of the faecal material was transferred to the 

kit’s bead bashing tubes. Where samples were very small, the RNA Later was removed from the tube 

and the tube was washed out with the bead bashing buffer, to transfer as much faecal material as 

possible to the bead bashing tube. This was also the method used for the field blanks, where no faecal 

material was present. Bead beating took place on a benchtop vortex set at maximum speed for 20 

minutes. The rest of the DNA extraction was performed following the manufacturer’s instructions, 

eluting the DNA in a final volume of 60 ul of elution buffer. Extractions were performed in three 

batches, with samples randomly mixed among batches to avoid batch effects, and a negative control 

(extraction blank) included with each. All DNA extractions and PCR set-ups were performed in a 

dedicated clean lab. 

Metabarcoding was performed with a 2-step PCR approach. In the first step, the 12S rRNA 

gene was amplified using MiFish primers (Miya et al., 2015) with overhanging Truseq tails. The 

forward primer sequence was: 5’-

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCGGTAAAACTCGTGCCAGC-3’; and the reverse primer 

sequence was: 5’-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCATAGTGGGGTATCTAATCCCAGTTTG-3’.  We included 

a PCR-blank with every batch of PCRs to monitor for contamination during set-up. A mock 

community (positive control), including DNA extracted directly from fish samples, was set-up last, in 

our main, pre-PCR lab and added to the plate or column after all other PCR tubes had been sealed. 

The PCR reaction included 6 μL of KAPA HiFi HotStart ReadyMix 2X (KAPA Biosystems, Wilmington, 

Massachusetts), 0.7 μL of each of the forward and reverse primers at 5 μM concentration, and 4.6 μL 

of faecal DNA template (or molecular grade water for the PCR-blank). For the mock community, we 



Electronic supplementary material – Fayet et al., 2023 Oecologia 

3 

reduced the amount of template DNA to 1 μL and added 3.6 μL of water. Thermocycling conditions 

were: 95 °C for 3 mins, 35 cycles of 98 °C for 30 secs, 65 °C for 30 secs, 72 °C for 30 secs, followed by 

a 5 minute extension at 72 °C. PCR products were visualised using electrophoresis in a post-PCR lab 

to ensure that all blanks were clear. PCRs were performed in triplicate, with the products from three 

replicates being combined and diluted 1:10 before the second stage PCR. 

The second stage PCR used the diluted product from the first stage as template and added the 

flow cell binding sites and sequencing primer binding sites. The primer sequences were: forward, 5’-

AATGATACGGCGACCACCGAGATCTACAXXXXXXXXACACTCTTTCCCTACACGAC-3’ and reverse, 5’-

CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGT-3’. The octo-X sites 

represent the i7 and i5 indexes used to identify samples. We used unique dual indexes, such that any 

reads that suffered from tag-jumping would be eliminated during de-multiplexing. The PCR reaction 

used 6 μL of KAPA HiFi HotStart ReadyMix 2X, 0.7 μL of each of the forward and reverse primers at 5 

μM concentration, 1 µL of template and 3.6 µl of molecular grade water. The thermal cycling profile 

was 94 °C for 3 mins, 12 cycles of 94 °C for 30 secs, 50 °C for 30 secs, 72 °C for 30 secs, and a final 

extension of 7 mins at 72 °C. 

Sequencing was performed on an Illumina HiSeq 2500 using Rapid Run chemistry with 250bp 

paired-end reads at the University of New Hampshire’s Hubbard Center for Genome Studies. Samples 

were loaded alongside other projects, such that each sample was sequenced on approximately 0.02% 

of a lane. Demultiplexed reads were imported into Qiime2 v2019.4 (Bolyen et al., 2019)  and primers 

at the 3’ end were trimmed using the cutadapt plugin (Martin, 2011). The DADA2 plugin (Callahan et 

al., 2016) was used to denoise and merge reads, running it separately for each lane of samples. During 

this step, we also trimmed the 5’ ends of reads to remove primers and truncated forward and reverse 

reads to 134 bp and 132 bp, respectively. These truncation lengths were found to maximise the 

number of sequences that were retained after quality filtering while providing sufficient length for 

merging. We also truncated reads when the base quality score fell below two. If this truncation 

resulted in a read shorter than the truncation parameters above, then the read was discarded. All 
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other settings were left as defaults. After denoising, we merged the samples from different 

sequencing lanes using the feature-table plugin. 

 Taxonomy was assigned using a custom script and database. The database included all 

vertebrate 12S and mitochondrial sequences, excluding primates, downloaded from GenBank on 

15/12/2017. Taxonomy assignments were made using an iterative blast method; each representative 

sequence was blasted 80 times against the reference database, increasing the percent identity 

incrementally from 70 to 100% over the 80 iterations. The hit with the highest percent identity was 

kept. This method circumvents a limitation of the blast method, which keeps only the first hit that 

meets the search criteria, rather than the best hit. The minimum query coverage was set to 40%. This 

script is available from https://bitbucket.org/dwthomas/qiime2_tools/src/master/mktaxa.py. 

Avian, mammalian, and unassigned sequences were filtered out using the taxa plugin and 

alpha diversity rarefaction curves were calculated using the diversity plugin. We found that the 

number of observed taxa levelled off above a sequencing depth of approximately 1500 reads for faecal 

samples, and at approximately 3000 for the mock community. This discrepancy was because our mock 

community was artificially super-diverse relative to the faecal samples. Nevertheless, we decided to 

re-sequence samples with fewer than 3000 prey reads to ensure that we had captured the entire 

diversity of the samples. We repeated all the above steps to combine the re-sequenced reads with the 

original reads from repeated samples.  

After resequencing, the diversity captured in faecal samples still plateaued at approximately 

1500 reads and so we rarefied our final feature table to a depth of 1500 reads using the feature-table 

plugin. Notably, there were no fish sequences picked up by any of our field-, extraction-, or PCR-blanks, 

(a few avian and mammalian sequences were picked up, but these did not make it past our filtering) 

and so we did not make any adjustments for contamination when analysing our results. 

We then manually checked all taxonomy assignments using NCBI’s blastn suite 

(https://blast.ncbi.nlm.nih.gov) in December 2020 and checked the geographic distributions of each 
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fish species using FishBase (https://www.fishbase.de). If a percent identity was less than 97%, then a 

genus- or family-level assignment was made depending on the alternate hits and percent identity. If 

there was more than one species assignment greater than 97% and those taxa occurred in the Indian 

Ocean, then we made a genus or family-level assignment based on the hits. Alternatively, if only one 

of the possible species was found in the Indian Ocean, then we made a species-level assignment. 

Behavioural classification 

Overview 

The accelerometer and dive data (n=10 birds) were classified in behavioural classes using an 

unsupervised machine learning approach; the results were then used to label the GPS and 

light/immersion data collected from the same birds. The labelled data was then used to train a 

supervised machine learning model to classify behaviour from the rest of the data from the (n=20) 

birds tracked with a GPS and or GPS + geolocator. 

The accelerometer and dive data were used to calculate 65 variables of potential relevance to 

classifying behaviour (Table S1), based on their use for this aim in other studies (Nathan et al., 2012; 

Patterson et al., 2019; Shamoun-Baranes et al., 2012). These variables were then averaged over 1 

second. 26 were subsequently dropped because of high correlation (|r| > 0.9) with one or more of 

the retained variables, leaving 39 variables (Table S1). The light and immersion data from the 

geolocators were used to calculate 18 variables over 1-min windows, 11 were subsequently dropped 

because of high correlation (|r| > 0.9) with others, leaving seven variables (Table S2). The GPS data 

were interpolated to 1-min intervals using continuous-time correlated random walks from the crawl 

package. Speed, turning angle, tortuosity, distance from the nest, distance covered since the previous 

location, and distance covered since start of the trip, were then calculated for each location.  

The 39 accelerometer data variables, along with the seven light and immersion variables, were 

scaled then inputted in a k-means clustering algorithm along with binary variables ‘species’ and 

‘day/night’ (estimated from time of day) and the continuous variable ‘hours since sunset’. We tested 
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between two and 20 clusters, retaining six as the optimal number based on the total within-sum-of-

squares, the gap statistic, and silhouette scores. Based on the characteristics of the variables in these 

clusters as well as their geographical location (see details below), we concluded that they represented 

the following behaviours: ‘at the nest’, ‘foraging’, ‘sitting on the sea surface during the day’, ‘sitting 

on the sea surface at night’, and two types of flights which mainly differed in wingbeat frequency but 

which we grouped together in the subsequent analysis as ‘flight’ for simplicity.  

These datapoints were then labelled accordingly and used to train a supervised model, this 

time using only GPS and geolocator variables (see details below about model training and testing). The 

data were split into an 80:20 training and testing set. We compared the performance of Naïve Bayes, 

Multivariate Adaptive Regression Splines (MARS), Neural Network and Gradient Boosted Trees 

models. For each model, the hyperparameters were tuned using ten-fold cross validation and the best 

model selected using the roc_auc metric (all variables were scaled and centered within the cross-

validation process). When inspecting accuracy of the tuned models on the held-out test set, all models 

performed well (accuracy > 88%). The gradient boosted tree model had the highest performance 

(accuracy = 94.5%, macro F1 = 92.2%) and was retained (details below). This model was then used to 

predict behaviour in the data from the birds fitted with a GPS and geolocator. A second gradient 

boosted tree model was trained on the GPS-only variables (accuracy = 88.9%, macro F1 = 85.7%) and 

used to predict behaviour in the data from the birds fitted with a GPS device only. 
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Table S1. Accelerometer variables retained and dropped from the analysis. * indicates variables 

calculated over a 2-second moving window, # indicates variables calculated over a 5-second moving 

window.  (X, Y and/or Z) indicates the variable was calculated along each axis, q indicates the variable 

was calculated along the length of the diagonal of the x-y-z volume. 

Retained variables 

Azimuth Pitch 

Azimuth circular variance*  Pressure (from depth logger) 

Depth (from depth logger) q (square root of the sum of squares of X, Y, Z) 

Dynamic acceleration* (X, Y, Z) Skewness* (X, Y, Z, q) 

Inclination angle Static acceleration* (Y, Z) 

Kurtosis* (X, Y, Z) Surge frequency# 

Maximum dynamic acceleration* (X) Sway frequency# 

Maximum acceleration* (X, Y)  Temperature (from temperature logger) 

Mean dynamic acceleration* (X, Y, Z) Trend in raw acceleration# (X, Y, Z, q) 

Minimum acceleration* (X, Y, q)  Vertical speed (change in depth / sec) 

Number of dives (from depth logger) Wing beat frequency# 

Overall dynamic body acceleration (ODBA) Yaw 

Dropped variables 

Inclination circular variance* Standard deviation of ODBA*  

Kurtosis (q) Standard deviation of raw acceleration* (X, Y, Z, q) 

Maximum dynamic acceleration* (Y, Z) Smoothed pitch* 

Maximum acceleration* (q, Z)  Smoothed roll* 

Minimum dynamic acceleration* (X, Y, Z) Smoothed yaw*  

Minimum acceleration* (Z)  Static acceleration* (X) 

Roll Raw acceleration (X, Y, Z) 

Standard deviation of dynamic acceleration* (X, Y, Z)  

 

Table S2. Geolocator variables retained and dropped from the analysis.  

Retained variables 

Total time wet Total number of bouts 

Number of landings (dry -> wet) Mean light level 

Number of take-offs (wet -> dry) Sd of light level 

Number of dry bouts (≥ 6s dry)  

Dropped variables 
Total time dry Minimum dry bout duration  

Proportion of time wet Maximum dry bout duration  

Number of wet bouts (≥ 6s wet) Mean dry bout duration  

Minimum wet bout duration  Minimum light level 

Maximum wet bout duration  Maximum light level 

Mean wet bout duration   
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Step 1 – identifying behaviour in the accelerometer & immersion data 

We implemented a k-means clustering algorithm to classify the data from the 10 birds fitted 

with accelerometers (8 of which also had an immersion logger). For this we used the 39 accelerometer 

data variables and the 7 GLS variables described above. All continuous variables were scaled. Two 

binary variables ‘species’ and ‘day/night’ (estimated from time of day) and the continuous variable 

‘hours since sunset’ were also added.  

To determine the optimal number of clusters, we tested between two and 20 clusters. The 

location of the knee point on the total within sum-of-squares (Fig S1.A) suggested an optimal number 

of clusters of five or six. We decided for six based on the Hubert statistic (Fig S1.B). Additionally 

support for six clusters came from the silhouette score which was slightly higher for six clusters (0.149) 

than for five (0.138).  

 

 

 

 

 

 

 

A 

B 
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Figure S0. (A) Total within sum-of-squares from the kmeans clustering for 2-20 clusters. The location of the knee 

point suggests an optimal number of 5 or 6 clusters. (B) Hubert statistic for 2-15 clusters (left) and second 

difference (right). The sharp increase in the statistic between 5 and 6 suggests 6 clusters is better than 5.  

 

We then explored the characteristics of the variables in each cluster to identify which 

behaviour each most likely represented. We identified the behaviours as follow (values are means ± 

SE). 

Cluster 1 (16.6 % of data points) took place very close to the nest (0.2 ± 0.005 km). Based on 

the very low speed (0.1 ± 0.04 km/h), lack of wing flapping (WBF = 0.001 ± 0.0002 Hz) and very low 

ODBA (0.03 ± 0.0003 g), we concluded the birds were stationary. The birds were also always dry (total 

time wet = 0.02 ± 0.009 sec / min) and no diving occurred (not a single dive recorded in 9,785 minutes). 

We concluded this behaviour corresponded to the birds being at their nest. 

Cluster 2 (2.9 % of data points) took place at sea (on average > 200km away from the nest), at 

medium speed (10.6 ± 2.3 km/h) and with a relatively high wing beat frequency = 2.2 ± 0.05 Hz and a 

high ODBA (0.8 ± 0.01 g). Furthermore, the immersion data showed the birds were getting in and out 

of the water during this behaviour (total time wet = 30.0 ± 0.4 sec / min, 0.8 ± 0.01 landing /min, 0.7 

± 0.01 take-off /min, number of bouts = 2.5 ± 0.02 / min), which is the only cluster in which this 

happened. The highest dive number occurred during this cluster (101 dives recorded in 1,726 

minutes). We concluded this behaviour was related to foraging. Due to its low occurrence, we believe 

this is a specific aspect of foraging, possibly when birds are pursuing a prey and then entering the 

water to catch it, i.e. diving from the air. Based on current knowledge of tropicbird foraging behaviour, 

this would therefore not include foraging when birds catch prey in the air (without landing on the 

water) or when they dive from the water surface. 

Cluster 3 (24.0 % of data points) occurred mostly during the day (98.9 %) and took place at sea 

(on average > 200km away from the nest), at very low speed (2.1 ± 0.03 km/h) and without wing 
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flapping (WBF = 0.04 ± 0.001 Hz) and with a low ODBA (0.27 ± 0.001 g). In addition, the birds were 

always wet in this behaviour (total time wet = 59.4 ± 0.05 sec / min) and there were no take-offs or 

landings (<0.01 landings or take-offs / min) nor diving occurs (11 dives recorded in 14,159 minutes).  

These characteristics are consistent with the birds sitting on the water during the daytime, where the 

bobbing movement on the water and the currents explain the small amount of movement. 

Cluster 4 (34.8 % of data points) is similar to Cluster 3 but occurred mostly at night (91.3 %). 

Like cluster 3, it took place at sea (on average > 200km away from the nest), at very low speed (1.3 ± 

0.01 km/h), without any wing flapping (WBF = 0.001 ± 0.0008 Hz), and with low ODBA (0.2 ± 0.0004 

g), and the birds were always wet (total time wet = 59.7 ± 0.03 sec / min) and did not take-off or land 

(<0.01 landings or take-offs / min). Diving was rare (115 dives recorded in 20,508 minutes). We 

concluded this behaviour represented the birds sitting on the water at night. 

Cluster 5 (14.8 % of data points) took place at sea (on average > 200km away from the nest), 

with relatively highly speed (19.1 ± 1.2 km/h) and high wing beat frequency (4.0 ± 0.01 Hz) and ODBA 

(1.0 ± 0.003 g). The birds were almost always dry (total time wet = 3.6 ± 0.2 sec / min) and almost 

never took off or landed on the water (<0.01 landings or take-offs / min). However some diving 

occurred (177 dives recorded in 8,747 minutes). We concluded this behaviour corresponded to the 

birds being in flapping flight. 

Cluster 6 (6.7 % of data points) also took place at sea (on average > 200km away from the 

nest), with relatively highly speed (26.0 ± 8.9 km/h) but, unlike the flapping flight above, with low wing 

beat frequency (0.3 ± 0.01 Hz) and lower ODBA (0.25 ± 0.002 g). Birds were always dry (total time wet 

= 0.2 ± 0.05 sec / min) and there was no take-offs or landings (<0.01 landings or take-offs / min) nor 

any diving (not a single dive recorded in 4,045 minutes). Based on this, we suggest this corresponds 

to a rarer type of flight which is gliding flight.  
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Step 2 – training a machine learning model to identify this behaviour in GPS & GLS data 

All these datapoints were then labelled according to their behaviour and were used to train a 

supervised model using the R package tidymodels. For this model, we only included variables from 

GPS and GLS variables (the 20 GLS variables described earlier and the six GPS variables described in 

the main text). Species, day/night and hours since sunset were also included. The data were split into 

a 20-80 training and testing set. We compared the performance of four models: Naïve Bayes, 

Multivariate Adaptive Regression Splines (MARS), Neural Network and Gradient Boosted Trees 

models.  

For each model, the hyperparameters were tuned using ten-fold cross validation and the best 

model selected using the roc_auc metric (all variables were scaled and centred within the cross 

validation process). The characteristics of all models are in Table S3. All models performed well but 

the model with the highest accuracy, the gradient boosted tree model was retained. The tuned 

gradient boosted tree model was then used to predict the behaviour of each datapoint from the birds 

fitted with a GPS and GLS.  

As a subsample of the birds were tracked with a GPS only, a second gradient boosted tree 

model was trained on the GPS variables only (as well as Species, day/night and hours since sunset). 

This model and used to predict behaviour in the data from the birds fitted with a GPS device only. 

The confusion matrices of the final gradient boosted tree models (Tables S4 and S5) show that 

the main misidentification of behaviour occurs between the two types of flight. Additionally, the 

confusion matrix for the GPS only model shows that unsurprisingly, the behaviours which are 

distinguished partly by wet/dry metrics are slightly less well identified. As distinguishing between 

types of flight was not necessary for our study, we merged the two flight categories together, so that 

any datapoint assigned either ‘flapping’ or ‘gliding’ flight simply became ‘flight’. This improved the 

model accuracies to 97.3% for the model trained on GPS + GLS data and to 92.5% for the model trained 

on GPS data only.  
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Table S3. Model parameters for the supervised machine learning step 

Model Tuned Hyperparameters Accuracy (95% CI) 
No Information 

Rate 
Macro F1 

Naïve Bayes 
smoothness = 0.5 

Laplace = 0 

0.795 

(0.788, 0.802) 
0.347 0.673 

MARS 
degree = 1 

nprune = 17 

0.895 

(0.889, 0.900) 
0.347 0.769 

Neural Network 

hidden_units = 10 

penalty = 2.154e-07 

epochs = 670 

0.909 

(0.904, 0.915) 
0.347 0.846 

Gradient Boosted 
Trees 

mtry = 11 

trees = 1000 

min_n = 7 

tree_depth = 8 

learn_rate = 0.022 

loss_reduction = 2.065e-09 

sample_size = 0.833 

0.945 

(0.941, 0.949) 
0.347 0.922 

Gradient Boosted 
Trees (GPS only) 

mtry = 10 

  trees = 1000 

  min_n = 15 

  tree_depth = 8 

  learn_rate = 0.085 

  loss_reduction = 6.098 

  sample_size = 0.583 

0.889 

(0.883, 0.894) 
0.347 0.857 

 

Table S4. Confusion Matrix for the final Gradient Boosted Tree model trained on GPS + GLS data. The main 

misallocation errors related to confusion between the flapping and the gliding flight. 

 

 

  

 
flap_flight foraging glide_flight nest seasit_day seasit_night 

flap_flight 1545 0 218 0 22 3 

foraging 0 346 4 0 19 4 

glide_flight 104 0 600 0 1 0 

nest 1 0 0 1949 7 22 

seasit_day 78 6 2 0 2685 44 

seasit_night 21 2 0 1 85 4019 
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Table S5. Confusion Matrix for the final Gradient Boosted Tree model trained on GPS data only. The main 

misallocation errors related to confusion between the flapping and the gliding flight. 

 
flap_flight foraging glide_flight nest seasit_day seasit_night 

flap_flight 1396 173 296 0 131 27 

foraging 0 0 0 0 1 0 

glide_flight 137 20 508 0 11 2 

nest 4 1 0 1937 1 11 

seasit_day 145 92 25 0 2624 39 

seasit_night 69 51 3 2 70 4013 

 

  



Electronic supplementary material – Fayet et al., 2023 Oecologia 

14 

Table S6. Average duration (in hours) engaged in different behaviours per trip for both tropicbird species. 

Trip metric  White-tailed tropicbird Red-tailed tropicbird 

Time in flight during daylight (hrs) 
25.6 ± 4.5 (INC) 

2.5 ± 0.9 (CR) 

38.5 ± 3.3 (INC) 

13.8 ± 6.9 (CR) 

Time foraging during daylight (hrs) 
2.3 ± 0.7 (INC) 

0.1 ± 0.08 (CR) 

2.9 ± 0.5 (INC) 

0.7 ± 0.6 (CR) 

Time sitting on the water during daylight (hrs) 
28.7 ± 6.5 (INC) 

0.6 ± 0.9 (CR) 

40.9 ± 3.5 (INC) 

12.7 ± 7.1 (CR) 

Time in flight during night-time (hrs) 
1.5 ± 0.8 (INC) 

0 ± 0 (CR) 

3.3 ± 0.6 (INC) 

0.5 ± 0.5 (CR) 

Time foraging during night-time (hrs) 
0.4 ± 0.1 (INC) 

0.01 ± 0.01 (CR) 

0.5 ± 0.1 (INC) 

0.06 ± 0.06 (CR) 

Time sitting on the water during night-time (hrs) 
46.2 ± 9.7 (INC) 

3.3 ± 2.1 (CR) 

59.8 ± 4.9 (INC) 

21.9 ± 11.6 (CR) 

 

Table S7. Composition of faecal samples and regurgitates from tropicbirds on Aldabra. Note we only used 

primers to detect fish, so we did not detect any non-fish species which may have been in the diet, such as 

squid. 

Bird Species Sample type 
Fish species 

(common name) 

Number of 
samples 

Red-tailed tropicbird Faecal 
Decapterus macarellus  

(Mackerel scad) 
1 

Red-tailed tropicbird Faecal 
Coryphaena equiselis  

(Pompano dolphinfish) 
2 

Red-tailed tropicbird Faecal 
Coryphaena hippurus 

(Common dolphinfish) 
1 

Red-tailed tropicbird Faecal 
Cheilopogon sp. 

(Flyingfish sp.) 
5 

Red-tailed tropicbird Faecal 
Exocoetus volitans 

(Tropical two-wing flyingfish) 
1 

Red-tailed tropicbird Faecal 
Hirundichthys sp. 

(Flyingfish) 
3 

Red-tailed tropicbird Faecal 
Oxyporhamphus micropterus micropterus 

(Bigwing halfbeak) 
1 

Red-tailed tropicbird Regurgigate 
Tetraodontidae sp.  

(Puffer fish sp.) 
1 

Red-tailed tropicbird Regurgigate 
Exocoetidae indet. 

(Flying fish) 
1 

White-tailed tropicbird Faecal 
Gymnothorax undulatus  

(Undulated moray) 
1 

White-tailed tropicbird Faecal 
Heteropriacanthus cruentatus  

(Glasseye) 
1 
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White-tailed tropicbird Faecal 
Exocoetus volitans 

(Tropical two-wing flyingfish) 
1 

White-tailed tropicbird Faecal 
Exocoetidae indet. 

(Flying fish) 
1 

White-tailed tropicbird Faecal 
Hemiramphus sp. 

(Halfbeak) 
1 

White-tailed tropicbird Faecal 
Hemiramphus lutkei 

(Lutke's halfbeak) 
1 

White-tailed tropicbird Faecal 
Cirripectes sp. 

(Combtooth blenny) 
1 

White-tailed tropicbird Faecal 
Gempylus serpens 

(Snake mackerel) 
1 

White-tailed tropicbird Faecal 
Psenes cyanophrys 

(Freckled driftfish) 
1 

White-tailed tropicbird Faecal 
Oxyporhamphus micropterus micropterus 

(Bigwing halfbeak) 
2 

White-tailed tropicbird Faecal 
Mulloidichthys flavolineatus 

(Yellowstripe goatfish) 
1 

White-tailed tropicbird Faecal 
Parupeneus multifasciatus 

(Manybar goatfish) 
1 

White-tailed tropicbird Faecal 
Parupeneus jansenii  

(Jansen's goatfish) 
1 

White-tailed tropicbird Regurgigate 
Kuhlia sp. 

(Flagtail sp.) 
1 

White-tailed tropicbird Regurgigate 
Elagatis bipinnulata  

(Rainbow runner) 
1 

White-tailed tropicbird Regurgigate 
Exocoetidae indet. 

(Flying fish sp.) 
2 
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Figure S1. Increase in home range with increasing sample size for (A) white-tailed tropicbirds and (B) 

red-tailed tropicbirds, for the 50% (blue) and 95% (red) density kernels. For both species, the home 

ranges plateau well before we reach our maximal sample size, showing that we have obtained a 

representative home range for the population despite our moderate sample size. 

  



Electronic supplementary material – Fayet et al., 2023 Oecologia 

17 

 

Figure S2.  Distribution of red-tailed tropicbirds (red) and white-tailed tropicbirds (blue) during their 

foraging trips around Aldabra. The dots represent the GPS locations, the pale areas the 95% density 

kernels, and the darker areas the core foraging areas (50% density contours). 
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Figure S3. Images of suspected attacks by a heron on red-tailed tropicbird nests. Although the predator is not seen 

on camera, the tropicbirds are displaying aggression towards something coming from above. In all instances, the chick 

was not seen again on camera after this, and the adult soon abandoned the nest. 
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