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Text S1. Magnetic measurements and relative paleointensity

Natural remanent magnetization (NRM), anhysteretic remanent magnetization (ARM)

and low-field magnetic susceptibility (χ) of core MD95-2016 were measured on U-channels

and discrete samples using a 2G Enterprises cryogenic magnetometer and an Agico KLY-3

susceptibility meter inside the shielded room of the paleomagnetic laboratory at the Institut

de Physique du Globe de Paris. In total, 29 meters of U-channels sections and 1071 single

samples taken every 2 cm using ∼8 cm3 plastic cubes. Samples and U-channels were step-

wise demagnetized in alternating fields (AF) of peak amplitudes comprised between 10 to

90 mT. Viscous overprints are generally limited to the 0-10 mT range. Characteristic NRM

directions were determined from the 50–80 mT demagnetization interval for the discrete

samples and from 30–90 mT interval for U-channels. Characteristic direction with a mean

angular deviation in excess of 10◦ were disregarded.

The anhysteretic remanent magnetisation (ARM) imparted in a 80 mT peak AF field

and 0.05 mT DC bias field was demagnetized at the same steps as the NRM. Proxies for the

concentration of low-coercivity magnetic minerals and their finer fraction are given by ARM

and χ, respectively. ARM/χ is a proxy for magnetic grain size (Maher, 1988; Banerjee et

al., 1981). Variations of this parameter (Figure S3) by up to a factor of four hamper RPI

calculations based on the normalization of NRM measurements with ARM or χ. Changes

in magnetic concentration and grain size are strongly affected by climatic stages, as seen

by the comparison of magnetic proxies with δ18O (Figure S3). The concentration and

size of magnetic minerals is maximal during cold stages and minimal during interglacials.

Concentration variations are mainly driven by massive discharge of massive glacial detritus

with coarser grain size from melted ice masses and by carbonate dilution during interglacial

(Robinson et al., 1995).

Relative paleointensity (RPI) was estimated as mean value of NRM/ARM ratio over

the 30–90 mT rage of AF demagnetization (Figure S3). Almost identical RPI variations are

obtained with the pseudo-Thellier method (Tauxe et al., 1995), which relies on NRM-ARM

demagnetization slopes. This confirms the stability of NRM. However, NRM normalization

fails, due to the strong magnetic grain size variability shown by ARM/χ.
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Text S2. An age-depth model construction

The standard approach for depth-age model construction relies on fitting the δ18O

record to a reference, commonly a stack curve, and following astronomical tuning if more

precise orbitally-paced signals are available. The global benthic δ18O stack LR04 (Lisiecki

& Raymo, 2005) is the most widely used target curve because it integrates 57 globally

distributed benthic records spanning the past 5.3 Ma. The HMM stack used here is a recent

update of LR04 based on a hidden Markov model that includes a larger number of records

(Ahn et al., 2017). Tuning a single-location δ18O record to the global δ18O stack might

bias the age-depth model due to the incomplete global synchronisation of δ18O variability

(Labeyrie et al., 2005; Waelbroeck et al., 2011). Age lags were addressed by constructing

regional benthic δ18O stacks covering the past 150 ka (Lisiecki & Stern, 2016). Regional

stacks enable a better synchronization of geographically close records.

The age model was constructed in four steps:

1. Age tie points. Define age tie points by matching the peaks of Ice Rafted Debris (IRD)

events in core MD95-2016 and U1308 (Hodell et al., 2008), using Si/Sr and Zr/Sr as IRD

proxies (Figure S1). The choice of U1308 as a target core is determined by its accurate

age model being constrained by radiocarbon dates and and oxygen isotopes stratigraphy

with Greenland ice cores (Svensson et al., 2006) for the last 42 ka, and with the benthic

stack LR04 prior to 60 ka. Planktonic δ18O records can be affected by significant age

offsets caused by foraminifera dissolution (e.g., Barker et al., 2007), and size segregation

(Savranskaia et al., 2022) effects.

2. Age offset corrections. Define additional tie points by matching the 9Be record of

MD95-2016 with the Deep North Atlantic (DNA) δ18O stack (Lisiecki & Stern, 2016)

(Figure S10). 9Be is a valid substitute for δ18O at this high-latitude site, owing to its

strong association with glacial-interglacial cycles and the relatively short residence time

in the Atlantic Ocean (von Blanckenburg & O’nions, 1999).

3. Model correction for the upper part. Alignment the upper part of the MD95-2016

δ18O record with the DNA δ18O age model. Due to the limited DNA age coverage prior to

0–135 ka, the older part of sedimentary record was matched with the HMM stack using

the software package BIGMACS, which is based on the Bayesian Inference Gaussian

Process regression (Lee et al., 2022).
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4. Check accuracy. Evaluate the accuracy of correlations using the BIGMACS algorithm

by comparing the MD95-2016 record with the planktic δ18O variations from the neighbour

core ODP982 (57◦30.8’N, 152◦55.5’W) on its independent age scale (Jansen et al., 1996).
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δ18O 9Be 10Be 10Be/9Be

δ18O 1 +0.44 −0.09 −0.37

9Be +0.44 1 +0.32 −0.42

10Be −0.09 +0.32 1 +0.66

10Be/9Be −0.37 −0.42 +0.66 1

χ +0.12 −0.09 −0.32 +0.33

Si/Sr +0.31 +0.47 −0.13 −0.44

Ca/Sr −0.37 −0.38 −0.008 +0.27

Sr/Rb −0.56 −0.66 −0.08 +0.53

Ti/Ca +0.52 +0.65 −0.006 −0.47

Ti/K −0.31 −0.12 −0.24 +0.25

Zr/Sr −0.49 −0.59 −0.12 −0.53

Table S1: Pearson correlation coefficients r between Be isotopes and environmental proxies in

core MD95-2016.
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δ18O 9Be 10Be χ Si/Sr Ca/Sr Sr/Rb Ti/Ca Ti/K Zr/Sr

PC1 +0.653 +0.769 −0.020 −0.306 +0.669 −0.682 −0.965 +0.934 −0.343 +0.936

PC2 +0.030 −0.258 −0.783 −0.669 +0.189 +0.229 +0.031 −0.175 −0.639 −0.002

PC3 +0.180 +0.390 +0.486 −0.107 +0.312 +0.502 −0.019 −0.214 −0.471 −0.155

PC4 +0.144 −0.078 −0.313 0.623 0.409 0.327 −0.044 0.040 −0.039 0.113

PC5 0.668 −0.052 −0.038 0.136 −0.364 −0.207 0.083 −0.118 −0.213 −0.155

PC6 0.213 0.209 −0.135 −0.164 0.001 0.194 0.087 0.045 0.431 −0.049

Table S2: Pearson correlation coefficients r between the first six principal components and Be

records, δ18O, XRF elemental ratios, and magnetic susceptibility.
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№ Recognized excursion Age interval (ka) 10Begeo SINT-2000 PISO-1500 Reference

1 Hilina Pali 17±3 15-18 - 19 1,15

2 Laschamps 40 ±1 36-39 38-41 41 2,3

3 Norwegian Greenland Sea 62 ±2 63-65 65 64 3,14

4 Fram St./Post-blake 98±7 101 99 99 4,5,12

5 Blake 120±12 113-117 114 120 5,6

6 Icelandic Basin 188±2 186-192 190 195 5,11

7 Pringle falls 212±13 209 213 213-220 6,9

8 Portuguese Margin 286-290 283 283 286 6,10

9 Calabrian Ridge 315-325 315 317 321 5,11

10 Biwa III 368-402 390 390 401 5

11 Calabrian Ridge II 515-528 517 533 526 5,11,14

12 Big Lost 558±14 552 555 560 6,13

13 La Palma 575±8 580-590 590 589 6,8

Table S3: Temporal occurrence of recognized geomagnetic events between 10Begeo, SINT-2000,

and PISO-1500. 1. B. S. Singer, Jicha, et al. (2014); 2. B. S. Singer et al. (2009),3. Lund et al.

(2006), 4. B. S. Singer, Guillou, et al. (2014), 5. Laj & Channell (2007), 6. Channell et al. (2020),

7. Coe et al. (1978), 8. B. Singer et al. (2002), 9. Herrero-Bervera et al. (1994), 10. Thouveny et

al. (2004), 11. Thouveny et al. (2008), 12. Lund (2022), 13. Lanphere (2000), 14. Simon et al.

(2016), 15. Liu et al. (2018)
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Figure S1: (a) Planktonic δ18O record from MD95-2016 (solid black line, left scale) compared

to the global benthic δ18O probabilistic stack HHM (Ahn et al., 2017) (dashed blue line with

95% confidence interval). The age uncertainties for MD95-2016 are obtained with the BIGMACS

emission model(Lee et al., 2022). Black squares represent tie points used to convert depth to age

scale. (b) Planktonic δ18O records from MD95-2016 and from the neighbour core ODP982 (Jansen

et al., 1996) on their own age scales. Comparison of XRF Si/Sr signal from MD95-2016 (black

solid line) with (c) Zr/Sr and (d) (Si/Sr) from North Atlantic site U1308 Hodell et al. (2008). (e)

Sedimentation rate associated with age-depth model for sedimentary core MD95-2016.
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Figure S2: (a) Relative paleointensity (mean NRM/ARM ratio over the 30-80 mT AF demag-

netisation range) obtained from u-channel measurements, compared with SINT-2000 VADM record.

The RPI values were scaled to VADM (SINT-2000) for better comparison; (b) 10Begeo converted

to normalized beryllium production rate P/P0, obtained from a PCA solution with RPI and ARM

included into the dataset; (c) same as (b), but RPI and ARM have not been included into the

dataset. Vertical bands highlight recognized geomagnetic excursions (Table S3) over the past 600

ka.
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Figure S5: Results of PCA (higher order components). (a) PC3 converted to global production

P/P0 (gray line) and Sea Surface Temperature from neighbour site ODP982 (Herbert et al., 2016);

(b) Sum of PC4 and PC5 (gray line) and RPI stack SINT-2000 (black) converted to P/P0.
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corrected 10Begeo record, respectively. Corrected records have been obtained through horizontal

and vertical shifts, until the mean squared differences with SINT-2000 were minimized. The corre-

sponding age offsets in (b) and (c) are 2.7 and 3.5 ka, respectively.
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Figure S7: SINT-2000 together with original (green curve) and adjusted (black) for the time

delay 10Begeo records, converted to the beryllium production rate P/P0.
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Figure S8: Relation between m/m0 obtained from the SINT-2000 RPI stack and P/P0 obtained

from 10Begeo (orange circles) and from 10Begeo after removing the temporal offsets (Figure S7)

related to Group 3 artifacts (blue diamonds).
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Figure S9: Results of PCA obtained with 10Be normalizedby α ∗ χ, where α an empirical factor

and χ is magnetic susceptibility. Cases a–e correspond to the indicated α above each panel.
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Figure S10: Comparison of 9Be from MD95-2016 with (a) the Deep North Atlantic δ18O stack

(Lisiecki & Stern, 2016) and (b) the HMM δ18O stack (Ahn et al., 2017). The red filled circles

mark the 28 ka and 41ka ages of the Mono Lake/Auckland and Laschamps excursions, respectively.

The black and blue arrows are used to highlight the offset between two signals. The δ18O record is

delayed with respect to 9Be during the glacial stages, whereas no or positive δ18O delay is observed

for the interglacial periods.
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