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Defining end-to-end (or online) training schemes for the calibration of neural sub-models in hybrid
systems requires working with an optimization problem that involves the solver of the physical
equations. Online learningmethodologies thus require the numerical model to be differentiable, which
is not the case for most modeling systems. To overcome this, we present an efficient and practical
online learning approach for hybrid systems. The method, called EGA for Euler Gradient
Approximation, assumes an additive neural correction to the physical model, and an explicit Euler
approximation of the gradients. We demonstrate that the EGA converges to the exact gradients in the
limit of infinitely small time steps. Numerical experiments show significant improvements over offline
learning, highlighting the potential of end-to-end learning for hybrid modeling.

High-fidelity simulations of physical phenomena require intense mod-
eling and computing efforts. Prohibitive computational costs often lead
to only resolving certain scales and the resulting scale truncation may
question the accuracy and reliability of the simulations. For example, in
ocean, atmosphere and climate systems, many physical, biological, and
chemical phenomena happen at scales finer than the discretization of
numerical models. These unresolved processes generally encompass
dissipation effects, but are also responsible for some energy redistribution
and backscattering1–3. In practice, parameterizations or sub-models of
these phenomena are coupled to the numerical models. These sub-
models introduce a significant source of uncertainty and might limit the
predictability of large-scale models.

The design of hybrid modeling approaches, based on the combination
of a physical core and a deep learning sub-model is under active
development4–12. Most of these advances are based on offline learning
strategies in which the deep learning sub-model is trained independently
without interacting with the dynamics. Offline learning is simple to
implement and to test, however several works have shown that this strategy
can lead to unphysical behaviours. The success of end-to-end learning
strategies inpure surrogatemodeling applications inweather forecasting13–18

suggests that building hybrid models that can be trained end-to-end (or
online, as sown in Fig. 1) is likely to become a revolution in numerical
modeling and might solve most of the issues with hybrid models that are
trained offline. A first example of this revolution is developed in12, where a
full set of primitive equations are implemented in JAX resulting in a fully
differentiable Neural Global Circulation Model.

Most state-of-the-art operational numerical models are built on tools
that do not support automatic differentiation. For instance, regional ocean

modeling is based on theRegionalOceanicModeling System (ROMS) and a
large community in weather and atmosphere relies on the Weather
Research and Forecasting Model (WRF) for regional applications. These
tools are popular and have large communities, and it is very unlikely that
such community will transition, at least innear future, to new models that
support automatic differentiation. In this situation, where the physical core
is not differentiable, how to optimize hybrid models end-to-end? In this
work, we derive an easy-to-use workflow to perform end-to-end optimi-
zation while bypassing the differentiability bottleneck of physical models.
Our methodology relies on the additive decomposition of the neural sub-
model and on an explicit Euler approximation of the gradient. We prove
that the proposed Euler Gradient Approximation (EGA) converges to the
exact gradients as the time step tends to zero. We validate our contribution
through several numerical experiments, including ocean-atmosphere pro-
totypical eddy-resolved simulations.

Results
Problem formulation
Hereafter, the physical system of consideration is governed by a differential
equation of the following form:

∂tu
yðt; �Þ ¼ N ðuyðt; �ÞÞ þ Gð�Þ ð1Þ

where the state uyt≜uyðt; �Þ 2 Uy belongs to an appropriate function space
Uy for all times t ≥ 0.TheoperatorN represents thenatural variability of the
system and G is an external forcing.

This equation describes how a real physical system changes over
time. For complex systems such as the atmosphere and the ocean, such
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models are not available. As an alternative, we must rely on a physical
core F , that is coupled with a number of heuristic process repre-
sentations, encoded in a sub-modelMθ

19. This sub-modelMθ depends
on a vector of parameters θ 2 Ra that need to be tuned using obser-
vables of the true state u†. Both F and Mθ are (potentially) non-linear
operators, constrained to produce well-posed solutions of the state
ut≜uðt; xÞ 2 U in some appropriate function space U . The time evo-
lution of this state is described by the following Partial Differential
Equation (PDE):

∂tuðt; xÞ ¼ F ðuðt; xÞÞ þMθðuðt; xÞÞ
uð0; xÞ ¼ u0ðxÞ

�
ð2Þ

where x 2 Ω � Rd , d 2 N is the space variable. The PDE (2) should also
be supplied with appropriate boundary conditions on ∂Ω.

Defining and calibrating sub-models is a crucial step in physical
simulations. Physics-based sub-models rely on first principles to describe
the operatorMθ . Typical examples can be found in the context of subgrid-
scale representations that are based on eddy viscosity assumptions. In such
representations,missing scales ofmotion are assumed to bemainly diffusive
and the operatorMθ becomes a diffusion operator20–24.

Physics-based sub-models have the advantage of being expressed
in a continuous form, enabling theoretical validation and ensuring the
equations are well-posed under these sub-models. In contrast, machine
learning solutions often rely on discrete versions of the system (2),
which can pose challenges for theoretical validation. However,
empirical evidence continuously demonstrates the interest in using
machine learning models to enhance current state-of-the-art physical
simulations.

Deep learning and sub-model calibration
For most standard deep learning models, the models and calibration tech-
niques are built after discretizing the governing equations (2):

_ut ¼ FðutÞ þMθðutÞ
uð0Þ ¼ u0

�
ð3Þ

where ut ≜uðtÞ 2 L � Rdu is a discretized version of ut and F the corre-
sponding vector field. The sub-model Mθ is a deep neural network with
parameters θ 2 Ra. The boundary conditions of the problem are dropped
for simplicity. From this equation, we also define a flow:

utf ¼ ϕtf ðutÞ ¼ ut þ
Z tf

t
ðFþMθÞðuwÞdw ð4Þ

Let us also assume that the numerical integration of (4) is performed using a
numerical schemeΨ that runs for the sake of simplicity with a fixed step size
h:

utþnh ¼ ΨnðutÞ ¼ Ψ � Ψ � � � � � Ψ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n times

ðutÞ ð5Þ

where n is the number of grid points such as tf= t+ nh.We assume that the
solver Ψ as well as the time step h are defined by some stability and per-
formance criteria that make the resolution of the equation (5) converge to
the true solution (4).

In this work, we discuss possible optimization strategies for the cali-
bration of θ. The sub-modelMθ is assumed to be a deep learningmodel, and
we focus on gradient-based optimization strategies for calibrating its
parameters. Note that calibrating the parameters ofMθ using gradient-free
techniques is also possible. For instance by defining a state space model on

Fig. 1 | Global overview of the online learning problem and link to the
proposed EGA. The aim of the proposed framework is to provide a simple and easy-
to-use workflow to solve online optimization problems of hybrid models that con-
tain both a physical core and a deep learning component. In online learning, a hybrid
model is initialized, and a number of simulation timesteps are computed using a
numerical solver. Model observables are then derived from the simulation and

compared to ground truth data. Optimizing the error between these two quantities
using gradient-based methods requires solving an optimization problem that
involves the gradient of the numerical model, which is unavailable when the model
lacks automatic differentiation capabilities. This work proposes practical and effi-
cient methods for approximating this gradient, enabling online learning for hybrid
models that are not IA-Native.
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the parameters θ and running an ensembleKalman inversion25–27. However,
we focus on gradient based techniques, as they are the most used optimi-
zation techniques for calibrating deep learningmodels.We also assume that
there is a single sub-modelMθ, and that its impact on F is additive. These
assumptions are realistic in several simulation based scenarios, and we
provide in the discussion section, possible extensions for non additive sub-
models.

Offline learning strategy
The common strategy for optimizing deep learning-based sub-models is to
formulate the optimization problem as a supervised regression problem.
Provided a referenceRt 2 Rdu that represents an ideal sub-model response
to the inputut, theoffline learning strategy canbewritten as the emulationof
Rt using the deep learning model Mθ. This translates into a supervised
regression problem where the objective function can be written as:

QðRt;Mθ; θÞ ð6Þ

with Q, a cost function that depends implicitly on θ through Mθ, and
possibly, explicitly when, for instance, regularization constraints on the
weights of the sub-models are used. The parameters are typically optimized
using a stochastic gradientdescent algorithm, and the gradients of themodel
are computed using automatic differentiation.

Example1. (Offline learning of subgrid scale sub-models). In subgrid scale
modeling, the sub-model Mθ accounts for unresolved processes due to
limited resolution when discretizing the equations8,28,29. In this context,Rt is
defined as the difference between a high-resolution equation and a low-
resolution one i.e., assuming some reference discretization at Rduy with
duy >> du in which the continuous equations are perfectly resolved,Rt is the
subgrid-scale term that is defined as follows

Rt ¼ τðFduy ðu
y
t ÞÞ � Fðτðuyt ÞÞ

where u† is the true, high resolution, state,Fduy the equations defined on the
high-resolution grid and τ is a projection from the high-resolution space to
the low resolution one. This operation typically includes a filtering of the
finer scales inRduy and a coarse-graining to the grid inRdu . Given a dataset
of N snapshot pairs fðRtk

; τðuytk ÞÞjk ¼ 1; � � � ;Ng, the cost function can be
written as:

QðRt ;Mθ; θÞ ¼
1
N

X
k

Rtk
�Mθðτðuytk ÞÞ

��� ���2 þRð�Þ ð7Þ

where Rð�Þ is a regularization term and ∥ ⋅ ∥ is some appropriate norm
(typically L2) inRdu . The optimization problem (7) is typically solved using
a stochastic gradient descent algorithm.

The offline optimization problem aims to minimize the discrepancy
between the sub-modelMθ and a reference datasetRtk

that is considered an
ideal response. For several applications that involve making numerical
models closer to historical observations, such as weather forecasting, for
instance, the complexity of the underlying dynamics and our lack of prior
knowledge makes challenging the definition and construction of an offline
reference dataset Rtk

. Furthermore, several works9,30 showed that deep
learning sub-models that are trained offline perform poorly in online tests.
These models can lead to numerical instabilities or physically unrealistic
flows that can lead to a blow-up of the simulation.

Online learning strategy
In online learning strategies, the sub-modelmustminimize the cost between
anumerical integrationof themodel (5) and some reference. Formally, let us
assumegy 2 F : Uy�!Rm to be a real vector valued observable of the true
dynamics described in (1). This observable might correspond to real
observations of a geophysical state or to some observable of an idealized
experiment for which (1) is assumed to be known. To this observable, we

associate a real vector-valued observable of the dynamical system (3)
g 2 F : L�!Rm. Theonline learningproblemaims atmatching these two
quantities using an objective function of the following form:

J ðgyðuytþnhÞ; gðΨnðutÞÞ; θÞ ð8Þ

where n is a hyperparameter that corresponds to the number of integration
time steps of (5) used in the optimization. Here, the cost functionJ is given
in discrete time and depends on the solution of the dynamical model (5).

Example 2. (Online learning of subgrid-scale sub-models). Similarly to
the previous example, the sub-model Mθ is assumed to account for
unresolved processes due to limited resolution after discretizing the
equations. In this context, uy 2 Rdh is the true reference high-resolution
simulation, and g† is some observable on this high-resolution simulation.
A natural choice of this observable, e.g.31, is a filtering and coarse graining
operation, i.e. g†= τ. The observable on the low-resolutionmodel g is a full
state observable, i.e., u = g(u), and the online loss function can be sim-
plified and defined as the difference between a high-resolution equation
and the low-resolution one. Given a dataset of N pairs of time series
fðτðuytkþjhÞ; τðuytk ÞÞjwith k ¼ 1 . . .N and j ¼ 1 . . . ng, the cost function
can write:

J ð�Þ ¼ 1
N

X
k

1
n

Xn
j¼1

k τðuytkþjhÞ � Ψjðτðuytk ÞÞ k þRð�Þ

The resolution of the optimization problem (8) becomes challenging,
as it now involves the resolution of the whole dynamical system (4). Spe-
cifically, when solving the online optimization problem, i.e., argminθJ ,
using gradient descent, it is necessary to compute the gradient of the loss (8)
with respect to the parameters of the sub-model:

∂J
∂θ

ðgyðuytþnhÞ; gðΨnðutÞÞ; θÞ ¼
∂J ð�; �; θÞ

∂θ
þ ∂J ð�; gðΨnðutÞÞ; �Þ

∂g
∂g
∂Ψ

∂ΨnðutÞ
∂θ

ð9Þ

The gradient of the solverΨnmust thus be evaluated for everynwith respect
to the parameters of the sub-model:

∂ΨnðutÞ
∂θ

¼ ∂

∂θ
Ψ � Ψ � � � � � ΨðutÞ ð10Þ

Computing this gradient requires the solverΨ to be differentiated with
respect to the parameters of the sub-model, which critically limits the use of
the online approach in practice. As discussed in the introduction, most
large-scale forward solvers in Earth system models (ESM), and digital twin
frameworks in Computational Fluid Dynamics (CFD) applications rely on
high-performance languages and tools that do not embed automatic dif-
ferentiation (AD). We discuss in the following section how to approximate
(10) in order to solve the online learning problem.

Related works on online learning for hybrid systems
Differentiable emulators In the context of online learning, differentiable
emulators32 are considered to both approximate the physical part of (3) and
the numerical solver Ψ. These models were successfully tested on data
assimilation toy problems32, and can be adapted to the online learning of
sub-models33,34.

Let Gϕ be a deep learning approximation of F such that _ut �
GϕðutÞ þMθ and let Ψα be the numerical scheme with parameters α. The
solverΨα can be based on a deep learning model. For the sake of simplicity,
the solver Ψα is assumed to be an explicit single-step scheme, discretized
with a fixed step size h0. The emulator aims at approximating the true solver
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(5) i.e.:

utf ¼ ut0þnh ¼ Ψ � Ψ � � � � � Ψ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n times

ðut0 Þ

� Ψα � Ψα � � � � � Ψα|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
r times

ðut0 Þ
ð11Þ

Assuming that r, h0,Gϕ andΨa are correctly calibrated, the gradients of the
true solution with respect to the parameters (10) are replaced by the ones of
(11). In practice,Gϕ (and occasionallyΨα) as well as the sub-modelMθ can
be trained sequentially. For complex models, these emulators, and their
solvers, require careful tuning to ensure that the training of the sub-model is
not biased by the uncertainty of the emulator33.

Optimal control and definition of solver-specific backward models
The online optimization problem can be written as an optimal control
problem with the following optimization problem:

argminθ J
s:t: _ut ¼ FðutÞ þMθðutÞ

�
ð12Þ

A Lagrangian of this optimization problem can then be written as:

L ¼ J þ
Z tþnh

t
λtð _ut � FðutÞ �MθðutÞÞdt ð13Þ

where λt is a time-dependent Lagrange multiplier. The gradients of the
online objective function with respect to the parameters are identical to the
ones of the Lagrangian. The optimal control problem is here formulated in
continuous time, but a corresponding discrete time control can also be
defined based on the discretized dynamics (5).

Interpreting this machine learning problem as an optimal control
providesmultiplemethods tobuild solutionsof theonline learningproblem.
Overall, optimal control methods can be divided into direct and indirect
approaches35. Direct approaches, discretize then optimize methods, are
based on a discrete dynamical model constraint. Indirect approaches,
optimize then discretize techniques, work on the continuous optimal control
problem (12). The latter technique was advertised in36 as a potentially effi-
cient methodology for the optimization of neural ODE models.

In practice, one significant drawback of employing optimal control
methods lies in the complexity of designing the adjointmodel. It necessitates
a domain-specific treatment based on the underlying dynamics of the
physical equations, which might limit the use of this strategy in the context
of online learning of deep learning sub-models.

Online learning using gradient-free methods The computational
burden associated with evaluating gradients of numerical solvers has
motivated the development of gradient-free optimization methods for
addressing online learning problems in hybrid numerical models. These
methods are based on the definition of a state-spacemodel in the parameter
space. Parameter estimation is then formulated as an inverse problem and
estimates are derived using standard inversion techniques based on obser-
vations. Among these methods, Ensemble Kalman Inversion (EKI) is a
widely used, state-of-the-art technique that has been explored in recent
related works37,38.

Gradient-free methods are particularly appealing since they avoid the
need to compute gradients of thehybridmodelwhen solvingonline learning
problems. However, they require careful tuning of the inversion scheme, a
task that becomes increasingly complex as the number of parameters grows,
which is often the case when using deep learning-based sub-models.

Euler gradient approximation (EGA) for the online learning
problem
We aim to define a relevant, easy-to-use workflow for solving the online
optimizationproblem inhybridmodeling systemswhere thephysicalmodel
is not differentiable. In order todo so,we introduce theEGA,which relies on

an explicit Euler discretization for the computation of the gradients, i.e. the
backward pass in deep learning.

Recall that the online cost function (8):

J ðgyðuytþnhÞ; gðΨnðutÞÞ; θÞ

depends explicitly on the non-differentiable solverΨ, that runs (for the sake
of simplicity) with a fixed step size h:

utf ¼ utþnh ¼ ΨnðutÞ ¼ Ψ � Ψ � � � � � Ψ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n times

ðutÞ

As discussed in the previous section, the resolution of the online optimi-
zation problem requires the computation of the gradient of the online
objectivewith respect to theparameters of the sub-model. Byusing the chain
rule, it is trivial to show that this gradient depends on the gradient of the
solver Ψ i.e.:

∂J
∂θ

ðgyðuytþnhÞ; gðΨnðutÞÞ; θÞ ¼
∂J ð�; �; θÞ

∂θ
þ ∂J ð�; gðΨnðutÞÞ; �Þ

∂g
∂g
∂Ψ

∂ΨnðutÞ
∂θ

In order to solve the online optimization problem, we aim to find an
efficient approximation of the gradient of the solver Ψ with respect to the
parameters of the sub-model. Let us consider an explicit Euler solver ΨE, a
single integration step of (3) using ΨE can be written as:

utþh ¼ ΨEðutÞ ð14Þ

where ΨE(ut) = ut + h(F(ut) +Mθ(ut)).
We aimat approximating the gradient of the solverΨ, using the ones of

the Euler solver. In this context, and in order to keep track of the order of
convergence of the gradient, we introduce the following proposition.

Proposition 1. Assuming that the solverΨ has order p≥1, we have for any
initial condition ut:

utþh ¼ΨðutÞ
¼ΨEðutÞ þ Oðh2Þ ð15Þ

In particular, every solution at an arbitrary time tf= t+ nh can bewritten as:

utf ¼ utþnh ¼ΨnðutÞ
¼ΨEðΨn�1ðutÞÞ þ Oðh2Þ

ð16Þ

By using the proposition 1, we can show that the gradient of the solver
Ψ can be written as a function of the gradient of the Euler solver plus a
bounded term.

Theorem 1. (EGA): Under the same conditions as proposition 1, and
assuming that the number of time steps n is fixed and corresponds to a
hyperparameter of the online learning problem, the gradient of the solverΨ
can be written as follows:

∂

∂θ
ΨnðutÞ ¼

Xj¼n�1

j¼1

Yi¼n�j

i¼1

∂ΨðΨn�iðutÞÞ
∂Ψn�iðutÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Jacobian of the flow

h
∂

∂θ
MθðΨj�1ðutÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Gradient of the sub�model

þ h
∂

∂θ
MθðΨn�1ðutÞÞ þ Oðh2Þ

ð17Þ

Corollary 1.1. Under the same conditions as proposition 1, and if we
assume that the online learning problem is defined for a given initial and
finite times t0 and tf such that n ¼ tf�t0

h , then the convergence of the EGA
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becomes linear in h i.e.:

∂

∂θ
ΨnðutÞ ¼

Xj¼n�1

j¼1

Yi¼n�j

i¼1

∂ΨðΨn�iðutÞÞ
∂Ψn�iðutÞ

 !
h
∂

∂θ
MθðΨj�1ðutÞÞ

þ h
∂

∂θ
MθðΨn�1ðutÞÞ þ OðhÞ

ð18Þ

The difference between the EGA formulation of Theorem 1 and the
one of Corollary 1.1 lies in the convergence rate of the accumulated error in
the gradient approximation. Specifically, we show in Supplementary
NoteA.2 (see equation (S.I. 5)) that this error accumulation term is bounded
by nO(h2). In Theorem 1, the number of time steps n is assumed to be fixed,
resulting in the error accumulation term being bounded by O(h2). In Cor-
ollary 1.1, n increases as h decreases, i.e., n = (tf − t0)/h, so the error
accumulation is only bounded by O(h).

Here, we assume for simplicity that the Euler solver runs at the same
time step as the one of the solver Ψ. In practice and as shown in the
experiments, these solvers might have different time steps and our meth-
odology only requires training trajectories of the solver Ψ to be sampled at
the time step of the Euler solver.

Both theorem1 and corollary 1.1 show that the gradient of the solverΨ
can be approximated by knowing two terms, the Jacobian of theflow aswell
as the gradient of the sub-model with respect to the parameters θ at some
simulation time stepof the solverutkþjh ¼ ΨjðutÞwith j=1,…,n−1.While
the gradient of the sub-model with respect to the parameters can be com-
puted for every input ut+jh using automatic differentiation, the Jacobian of
the flow needs to be specified or approximated.

EGA Jacobian approximation
The Jacobian in the EGA equations (17) and (18) need to be provided in
order to evaluate the gradients of the solverΨwith respect to theparameters.
In practice, several techniques can be used, we discuss in this work three
techniques based on a static formulation of the Jacobian, on the use of a
tangent linear model and on an ensemble approximation.

Static formulation (Static-EGA). A static formulation of the Jacobian
corresponds to approximating the Jacobian term in (17) and (18) by the
identity matrix. It can be shown that a static formulation of the Jacobian
matrix implies corollary 1.2.

Corollary 1.2. (Static-EGA). Under the same conditions as proposition 1,
and assuming that the number of time steps n is fixed, and corresponds to a
hyperparameter of the online learning problem, the gradient of the solverΨ
can be written as the one of the Euler solver as follows:

∂

∂θ
ΨnðutÞ ¼

Xj¼n

j¼1

h
∂

∂θ
MθðΨj�1ðutÞÞ þ Oðh2Þ ð19Þ

If we assume that the number of time steps varies with, h i.e., that the
online learning problem is defined for a given initial andfinite times t0 and tf
such that n ¼ tf�t0

h that the error term bound becomes is linear in h i.e.:

∂

∂θ
ΨnðutÞ ¼

Xj¼n

j¼1

h
∂

∂θ
MθðΨj�1ðutÞÞ þ OðhÞ ð20Þ

This static approximation provides a simple, easy-to-use, approx-
imation of the gradient of the solver with respect to the parameters θ.
Furthermore, and similarly to the gradients in (17) and (18), the order of
convergence of the gradients in (19) and (20) is quadratic and linear,
respectively. However, the constant of convergence of this approximation is
larger than the approximations in (17) and (18) due to the presence of
additional quadratic terms in the O(h2). In this context, improving the

precision of the gradient approximation requires either reducing the time
step h, or providing a better approximation of the Jacobian matrix.

Tangent linear model (TLM) approach (TLM-EGA). The rise of varia-
tional data assimilation techniques motivated the development of Tan-
gent LinearModels for several physicalmodels. This TLMcorresponds to
the Jacobian of the solver Ψ that operates only on the physical core F,
without a sub-modelMθ. Let us call this solver Ψo and it corresponds to
the time discretization of the following integral:

utf ¼ Ψn
o ðut0 Þ � ut þ

Z tf

t
FðuwÞdw ð21Þ

The tangent linear model ofΨo can be defined simply, for every initial
condition ut as the Jacobian of Ψo i.e.:

TLMΨo
ðutÞ ¼

∂ΨoðutÞ
∂ut

ð22Þ

In order to use this TLM in the gradient defined in (17) and (18), we
need to add the variation that is due to the sub-model Mθ. Since the sub-
model is additive, we can write the following result.

Corollary 1.3. (Extended TLM for Hybrid systems). Under the same
conditions of proposition 1, and assuming that the order of both solvers Ψ
and Ψo is p, and given the TLM of Ψo. We can write the Jacobian of Ψ as
follows:

TLMΨðutÞ ¼
∂ΨðutÞ
∂ut

¼TLMΨo
ðutÞ þ

∂

∂ut

Xk¼p

k¼1

hk

k!
MθðutÞðk�1Þ þ Oðhpþ1Þ

ð23Þ

Since all the reminder terms in the results showed in (17) and (18) are
bounded by at most O(h2), a sufficient approximation of the Jacobian term
based on the TLM of Ψo requires evaluating the Jacobian ofMθ only up to
k = 1 i.e.:

TLMΨðutÞ ¼
∂ΨðutÞ
∂ut

¼ TLMΨo
ðutÞ þ h

∂MθðutÞ
∂ut

þ Oðh2Þ ð24Þ

We recall that the Jacobian ofMθ can be computed efficiently using auto-
matic differentiation.

Ensemble tangent linearmodel (ETLM) approximation (ETLM-EGA).
The Jacobian of the flow in both (17) and (18) can be approximated by
using an ensemble. This formulation is widely employed in data assim-
ilation, and it is documented in numerous state-of-the-art works. For
completeness, we provide a brief overview here, which is largely based on
the work of 39.

For every initial condition ut, we start by constructing a K-member
ensemble i.e. fuit ji ¼ 1 � � �Kg. These initial conditions are then propagated
by the solver Ψ to compute the ensemble prediction:

uitþh ¼ ΨðuitÞ for i ¼ 1; � � � ;K ð25Þ
Perturbations are constructed relative to the ensemblemean (indicated

by ut), δ u
i
t ¼ uit � ut and δ u

i
tþh ¼ uitþh � utþh, and these are assembled

into du × Kmatrices, δUt and δUt+h, representing ensemble perturbations
listed column-wise for times t and t + h, respectively. Based on these
ensemble perturbations, the Jacobian matrix can be approximated as the
best linear fit between δUt and δUt+h:

∂ΨðutÞ
∂ut

� ETLM ¼ δUtþhδU
T
t ½δUtδU

T
t �

�1 ð26Þ
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whereTdenotes thematrix transpose, and −1 represents thematrix inverse.
The ensemble approximation of the Jacobian is particularly valuable

when missing a tangent linear model, as it provides a simple data-driven
approximation of the sensitivity of the flow to initial conditions. However,
When utilizing an ensemble approximation, a particularly challenging
aspect arises when dealing with high-dimensional systems, where the sys-
tem dimension du, is significantly larger than the number of ensemble
membersK. In such situations, a good calibration of the initial perturbation
is mandatory in order to produce an informative ensemble.

Implementation in deep learning frameworks
Based on the above formulations, one can derive approximations for the
gradient of the online cost (8). This involves substituting the gradient of the
solver in (9) with any of the providedmethods and neglecting theO(⋅) term.

∂J
∂θ

ðgyðuytþnhÞ; gðΨnðutÞÞ; θÞ ¼ v þ wAl;p þ OðhpÞ ð27Þ

where v ¼ ∂J ð�;�;θÞ
∂θ represents the gradient of the regularization, w ¼

∂J ð�;gðΨnðut ÞÞ;�Þ
∂g

∂g
∂Ψ is the gradient of the online cost with respect to the solver

andAl,p is the approximation of the gradient of the solver with respect to the
parameters. The subscript p represents the order of approximation of the
gradient, it also implicitly specifies the trainingmethodology adopted for the
number of time steps n. In particular, if p = 2, the number of steps n is fixed
and is considered as a training hyperparameter. If p = 1, it means that n is
deduced from a given initial and finite time. The subscript l represents the
methodology used to compute the Jacobian of the flow:

Al;p ¼
Xj¼n�1

j¼1

Jj;lh
∂

∂θ
MθðΨj�1ðutÞÞ þ h

∂

∂θ
MθðΨn�1ðutÞÞ

�

where Jj;l ¼ ðQi¼n�j
i¼1

∂ΨðΨn�iðut ÞÞ
∂Ψn�iðut Þ Þ is defined from a Jacobian approximation

as follows:

∂ΨðΨn�iðutÞÞ
∂Ψn�iðutÞ

¼

ΨðΨn�iðutÞÞ
Ψn�iðutÞ ; if l ¼ 1 ðEGAÞ

I; if l ¼ 2 ðStatic� EGAÞ
TLMΨ; if l ¼ 3 ðTLM� EGAÞ
ETLM; if l ¼ 4 ðETLM� EGAÞ

8>>>><
>>>>:

ð28Þ

The implementation of (27) in programming languages that support
automatic differentiation requires evaluation of the gradient of the sub-
modelMθ for inputsΨ

j(ut) that are issued from thenon-differentiable solver
Ψ. These gradients aremultipliedwith the Jacobian of theflow Jj,l toproduce
an estimate of the gradient of the solver. The evaluation of the gradient can
be based on composable function transforms40, or on themodification of the
backward call in standard automatic differentiation languages. In Supple-
mentary Note D, we provide algorithms that illustrate practical imple-
mentations of these two methodologies.

EGA for an improvedcomputational cost in training long roll-outs
Increasing the number of training steps n strongly influences the inference
accuracy of both surrogate physical simulators41,42 and hybrid models12,31,43.
When large number of time steps are required, the EGA can be used to
reduce the computational complexity of the computational graph in the
training phase. For instance, if we assume that the numerical solver requires
N Number of Function Evaluations (NFE) per time step, the EGA can be
used with a first order Jacobian approximation and would require only
backpropagation through a single function evaluation. This allows to have
larger roll-outs at a smaller computational cost. We evaluate the ability of
using the EGA on fully differentiable hybrid models to reduce the time and
memory complexity of the backward pass in experimental subsection.

Experiments
Numerical experiments are performed to evaluate the proposed online
learning techniques. We first validate numerically the order of convergence
of some results developed in the previous section. We also evaluate the
performance of the EGA when compared to fully differentiable hybrid
models in terms of memory and time complexity of the backward pass. We
then evaluate sub-models trained online with the proposed gradient
approximations. These sub-models are benchmarked against state-of-the-
art training techniques, including online learning with the exact gradient
(whenassuming that the gradient of the solver is available). The comparison
of the sub-models is done principally on online metrics, where we evaluate
the hybrid system (the physical core coupled to the deep learning sub-
model) in simulating trajectories that are realistic with respect to some
reference data.We also compare, when relevant, offlinemetrics, where only
the output of the sub-model is evaluated (without considering the coupling
to the physical core). We consider two case studies on the Lorenz-63 and
quasi-geographic dynamics. Additional experiments on the multiscale
Lorenz 96 system44, as well as the details on the parameterization of the deep
learning sub-models, training data, objective functions, and baseline
methods are given in Methods.

Lorenz 63 system
The Lorenz 63 dynamical system is a 3-dimensional model of the form:

_uyt;1 ¼ σðuyt;2 � uyt;1Þ
_uyt;2 ¼ ρuyt;1 � uyt;2 � uyt;1u

y
t;3

_uyt;3 ¼ uyt;1u
y
t;2 � βuyt;3

ð29Þ

Under parametrization σ = 10, ρ = 28 and β = 8/3, this system exhibits
chaotic dynamics with a strange attractor45.

We assume that we are provided with F, an imperfect version of the
Lorenz system (29) that doesnot include the termβuyt;3. This physical core is
supplemented with a sub-modelMθ as follows:

_ut ¼ FðutÞ þMθðutÞ ð30Þ

where ut ¼ ½ut;1; ut;2; ut;3�T and F : R3�!R3 is given by:

F1ðutÞ ¼ σðut;2 � ut;1Þ
F2ðutÞ ¼ ρut;1 � ut;2 � ut;1ut;3

F3ðutÞ ¼ ut;1ut;2

ð31Þ

The sub-modelMθ is a fully connected neural network with parameters θ.

Analysis of the order of convergence. Here, we present a numerical
validation of the convergence order for both the EGA and Static-EGA
results developed in the previous section. We specifically focus on the
results of the theorem 1 equation (17) and the one of the corollary 1.2
equation (19). In this experiment, we evaluate the error of the proposed
gradient approximations when the time step h varies from 10−1 to 10−4.
This time step will correspond to the one used by the Euler approxima-
tion of the gradient, and not to the time step of the forward solver Ψ.
Regarding the solver Ψ, we use in this experiment a differentiable
adaptive step size solver Ψ (DOPRI8 used in36). This solver allows us to
compute the exact gradient of the online cost function using automatic
differentiation.

Figure 2 shows the value of the gradient error for different values of h.
Overall, the error of the proposed approximations behave as second order.
This result validates numerically the development of theorem 1 and,
importantly, the result of the Static-EGA (corollary 1.2 equation (19)), that
will be used in the following experiments.
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Analysis of the performance of the EGA. We present an evaluation of
the memory and time complexity of the EGA with respect to back-
propagation through the entire computational graph of the numerical
solver. We assume here that the numerical solver Ψ is a Runge-Kutta 4
(RK4) solver (Please refer to Supplementary Note C for a similar analysis

on the DOPRI8 solver), and we compare the time and memory usage of
the EGA with respect to standard backpropagation through Ψ, for an
increasing number of solver steps n. We study the performance of both
the EGA formulations defined in equation (17) (with a first order Jaco-
bian) and the Static EGA defined in equation (19).

The panel (a) of Fig. 3 shows that the EGA leads to an average speedup
in the computation timeof the gradients by factor of 4with respect to the full
computational graph.The size of the computational graphgiven inpanel (b)
of Fig. 3 is alsodivided roughlyby the same factor. Panel (c)of Fig. 3 presents
the gradient error of the EGA relative to the absolute value. This error
indicates that the static EGA, which misses Jacobian information, fails to
provide accurate gradients after n = 10 simulation steps, with errors
exceeding 50% of the gradient value. However, the EGA with Jacobian
information maintains error levels below 33% across all simulation steps.
These experiments highlight the potential of EGA for supporting the
training of hybrid models or surrogates for physical simulators over long
simulation times.”

Submodel performance. In this experiment, we evaluate the perfor-
mance of the proposed online learning techniques in deriving a relevant
sub-modelMθ. We assume that we are provided with a dataset of the true
system in (29),Dh ¼ fðuytkþjhi

; uytk Þjwith k ¼ 1 . . .N and j ¼ 1 . . . ng and
we aim at optimizing the parameters of the sub-model Mθ to minimize
the cost of the online objective function (8). We evaluate two of the
proposed online learning schemes, the Static-EGA given in Eq. (19) and
the ETLM-EGA in which the Jacobian is approximated using an
ensemble (26). These schemes are compared to the simulations based on
a sub-model that is calibrated using the exact gradient of the online
objective.We also compare thesemodels to the physical core, that we run
without any correction.

Aqualitative analysis of both the simulationand short-termforecasting
performance of the tested models is given in Fig. 4. Overall, all the tested
models are able to significantly improve the physical core, leading to a
significant decrease in the forecasting error (as shown in panel (b)), while
also reproducing the Lorenz 63 attractor (as highlighted in panel (a)). This

Fig. 3 | Analysis of the computational complexity of the EGA with respect to
backpropagation through the RK4 numerical solver. aWall time per backward
pass and speedup relative to the standard backpropagation through the numerical
solver. b Size of the computational graph and relative size with respect to standard
backpropagation. c Relative error of the EGA with respect to backpropagation
through the numerical solver. The inset provides a zoomed-in view of the relative

error for smaller values of n (up to n = 50), highlighting the behavior of the methods
within the 100% and 50% error thresholds. The Error is averaged over the training
data samples and error bars correspond to the standard deviation (size of the error
bars of the figures in panel c was divided by 50). This benchmark was executed on a
single NVIDIA GeForce GTX 1080 Ti GPU.

Fig. 2 |Order of convergence of the proposed Euler gradient approximations.We
provide experimental validation of the gradient based on both the EGA (17) and
Static-EGA (19) formulas. The error is computed by comparing these gradients to
the exact ones, returned using automatic differentiation of the solver Ψ. We recall
that in the EGA, the Jacobian of the flow is computed exactly using automatic
differentiation. The dashed line correspond to the h2 slop and indicates the order of
convergence of the proposed methods.
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finding is also validated through the computationof theLyapunov spectrum
and the Lyapunov dimension of the tested models, Table 1. All the training
schemes examined in this study yield simulations that closely align with the
true underlying dynamics, which confirms the effectiveness of the proposed
Euler approximations, for solving the online learning problem.

Quasi-geostrophic turbulence
Quasi-geostrophic dynamics. In this second experiment, we consider
Quasi-Geostrophic (QG) dynamics. QG theory is a workhorse to study
geophysical fluid dynamics, relevant when the fluid follows an hydro-
static assumption and for which the Coriolis acceleration balances the
horizontal pressure gradients.

Over a doubly periodic (x, y) square domain with length L = 2π, the
dimensionless governing equations in the vorticity (ωt) and streamfunction
(ψt) are:

∂ωt

∂t
þAðωt ;ψtÞ ¼

1
Re

∇2ωt � f � rωt ð32aÞ

∇2ψt ¼ �ωt ð32bÞ

where,Aðωt ;ψtÞ represents the nonlinear advection term:

Aðωt ;ψtÞ ¼
∂ψt

∂y
∂ωt

∂x
� ∂ψt

∂x
∂ωt

∂y
;

and f represents a deterministic forcing46:

f ðx; yÞ ¼ kf cos kf x
� �

þ cos kf y
� �h i

:

Large eddy simulation setting. In this experiment, we study the
development of a sub-model that accounts for unresolved subgrid scale
effects on the coarsened resolution of the QG equations (32). We are
specifically interested in a Large Eddy Simulation (LES) setting in which
the vorticity and streamfunction are filtered using a Gaussian filter47,
denoted by ð�Þ. Applying this filter to Eqs. (32a)-(32b) yields:

∂�ωt

∂t
þAð�ωt ; �ψtÞ ¼

1
Re

∇2�ωt � �f � r�ωt þAð�ωt ; �ψtÞ �Aðωt ;ψtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Πt � Mθ

ð33aÞ

∇2�ψt ¼ ��ωt ð33bÞ

When compared to the direct numerical simulation (DNS) of equations
(32a)-(32b), the LES can be solved at a coarser resolution. Yet, the termΠt

encoding the Sub Grid Scale (SGS) variability requires a closure procedure.
In this experiment, the proposed online learning techniques must recover a
sub-model that accounts for this SGS term. This sub-model is a deep
learning Convolutional Neural Network (CNN) Mθð�ψt; �ωtÞ that takes as
inputs both the vorticity and streamfunction fields ð�ψt ; �ωtÞ.

We use different random vorticity fields as initial conditions to gen-
erate 14 Direct Numerical Simulation (DNS) trajectories. These DNS data
are then filtered to the resolution of the LES simulation and used as training,
validation, and testing datasets. In this experiment, we compare the pro-
posed online learning strategywith a static approximation of the Jacobian to
both online learning with an exact gradient and offline learning schemes.
These learning-based approaches are also compared to a standard, physics-
based, dynamic Smagorinsky (DSMAG) parameterization21, in which the
diffusion coefficient is constrained to be positive31 in order to avoid
numerical instabilities related to energy backscattering7,31.

2 1

3

Fig. 4 | Qualitative analysis of the tested models in the Lorenz 63 experiment.
a The attractor of the true Lorenz 63 model is compared to both the physical core
(without the neural network correction termMθ) and to the hybridmodels (with the
neural network corrections). The sub-models are optimized online using stochastic
gradient descent, and the gradients of the online function are computed either

exactly (using automatic differentiation) or using some of the proposed approx-
imations. bMean error growth (MEG) of the tested models. The mean and standard
deviation of the MEG are computed based on an ensemble of 20 trajectories issued
from 5 different runs. The error bars are scaled by 1/20.

Table 1 | Simulation performance the data-driven models

Model Exponents Dimension

True gradient (0.90 −0.01 −14.57) ± (0.02 0.01 0.02) 2.061 ± 0.001

Static approximation (0.91 −0.01 −14.57) ± (0.02 0.01 0.02) 2.061 ± 0.001

Ensemble approximation (0.91 −0.01 −14.56) ± (0.02 0.01 0.02) 2.061 ± 0.001

Physical core (−0.03 −4.99 −5.98) ± (0.01 1.43 1.42) 0

full Lyapunov spectrum and Lyapunov dimension of the tested models. The Lyapunov spectrum of the true Lorenz 63 system is (0.91, 0.0, −14.57) and it’s dimension is estimated to be 2.06457. The
Lyapunov spectrumwasestimated using theGram-Schmidt orthonormalization technique, starting from initial conditions in the test set. The reported values correspond to the averageLyapunov spectrum
after convergence, with the errors representing the standard deviation.
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Offline analysis. We first examine the accuracy of the deep learning sub-
models in predicting the subgrid-scale term Πt for never-seen-before
samples of ð�ψt ; �ωtÞ within the testing set. We use a commonly used
metric8,31, the correlation coefficient c between the modeled Mθð�ψt ; �ωtÞ
and true Πt SGS terms.

Table 2 shows the correlation coefficients, averaged over two model
runs and 1000 testing samples, for both the deep learning sub-models and
the DSMAG baseline. Consistent with the previous findings31, offline tests
show that the data-driven SGS models substantially outperform DSMAG
with a correlation coefficient c above 0.8. We also validate, similarly to

previousworks31 that offline learningperformsbetteronofflinemetrics than
online learning-based models.

Online analysis. Here, we evaluate the ability of the trained hybrid
models to reproduce the dynamics of the filtered DNS simulation. Fig-
ure 5 shows a simulation example from an initial condition in the test set.
A visual analysis reveals that the DSMAG scheme (purple panel in Fig. 5)
smooths out fine-scale structures. This model is intrinsically built on a
diffusion assumption which enables the system to sustain large-scale
variability at the cost of excessively smoothing small-scale features.

Table 2 | Correlation coefficients between the predicted and true subgrid scale term

Online, true gradient Online, Static-EGA Offline DSMAG

0.883 ± 8.550 × 10−4 0.881 ± 5.650 × 10−3 0.930 ± 2.009 × 10−3 0.243

The correlation coefficients of the learning-based methods was averaged over 5 model runs.

Fig. 5 | Vorticity field simulation example for the different models. Time evolution of the vorticity field for the different models, starting from the same initial condition.
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Although deep learning-based sub-models calibrated offline demonstrate
superior offline performance, indicated by a high correlation coefficient
(refer to Table 2), their coupling with the solver results in an unphysical
behavior within the coupled hybrid dynamical system. Specifically, the
online performance of the offline sub-model shows, in the orange panel
in Fig. 5, sustained high-resolution variability, that is not present in the
filtered DNS. The results of online learning with the exact gradient show
more realistic flows, that are visually comparable to the the filtered DNS.
The blue panel in Fig. 5, demonstrates that the proposed Euler approx-
imation of the online learning problem also provides a flow close to the
filtered DNS, without relying on a differentiable solver.

We draw similar conclusions from the statistical properties of the
simulated flows reported in Fig. 6. Overall, the analysis of the Probability

Density Function (PDF) of the vorticity field in Fig. 6 confirms that online
learning schemes display the closest statistical properties to the filteredDNS
field. The DSMAG sub-model does not reproduce the extreme events of
both positive and negative vorticity, and the offline learning-based model
exhibits a skewed distribution tail, which is predominantly biased towards
positive vorticity values. Likely, the time series of kinetic energy Et and
enstrophy Zt demonstrate that the DSMAG model, characterized by
excessive diffusivity and the absence of backscattering, results in a sub-
stantial reduction in both Zt and Et. The analysis of the time-averaged
spectra also clearly highlights the robustness of the sub-models that are
trained online. Both the one optimized with the exact gradient and the
proposed approximation accurately reproduce small and large scales of
the flow.

/
0

/
0

E Z |Π |

Fig. 6 | Statistical evaluation of the differentmodels. aProbability density function
of the vorticity field (b) Time evolution of the kinetic energy Et ¼ 1

2 <ψtωt> and
enstrophy Zt ¼ 1

2 <ω
2
t > normalized by the energy and enstrophy of the initial con-

dition (of the filtered DNS) E0 and Z0 respectively. c Time averaged kinetic energy

spectra Eν, enstrophy spectra Zν and power spectrum of the SGS term ∣Πν∣. The PDF
is computed using a kernel density estimator. The result highlighted in this figure
correspond to colored boxes in Fig. 5.
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Fine-tuning offline sub-models. The proposed online optimization
approach can be beneficial in situations where a sub-model, calibrated
offline, displays a nonphysical or unstable behavior when coupled with
the solver. Such a sub-model can be significantly improved by fine-tuning
its parameters using an online optimization scheme and our proposed
gradient approximation allows achieving this fine-tuning step, without
requiring access to the exact gradient of the solver. Figure 7 displays the
improvements of the offline model discussed above when fine-tuned (for
two epochs) using the proposed static approximation of the online
learning. A visual inspection of the vorticity field in Fig. 7, shows how this
fine-tuning step successfully removes the unphysical behavior of the
offline model. This fine-tuning step also brings significant improvement
to the time-averaged spectra, shown in Fig. 7, now aligning closely with
the filtered DNS spectra.

Discussion
Nowadays, the high-fidelity simulation and forecasting of physical phe-
nomena rely on dynamical cores derived from well-understood physical
principles, along with sub-models that approximate the impacts of certain
phenomena that are either unknown or too expensive to be resolved
explicitly. Recently, deep learning techniques brought attention and
potential to the definition and calibration of these sub-models. In particular,
online learning strategies provide appealing solutions to improve numerical
models and make them closer to actual observations.

In this work, we develop the EGA, an easy-to-use workflow that allows
for the online training of sub-models of hybridnumericalmodeling systems.
It bypasses the differentiability bottleneck of the physical models and con-
verges to the exact gradients as the time step tends to zero. We stress the
robustness and efficiency of the proposed online learning scheme on

E

Z

|Π |

Fig. 7 | Vorticity field and time-averaged spectrums of the offline model before
and after fine-tunning. a The same offline model that leads to an unphysical vor-
ticity field in Fig. 5 is fine-tuned using the proposed static approximation of the
online learning problem, leading to a realistic vorticity simulation. b Time-averaged

kinetic energy spectra Eν, enstrophy spectra Zν and power spectrum of the SGS term
∣Πν∣ of the offline model before and after the online fine-tuning. The green arrows in
both panels a and b highlight the impact of the models trained online.
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realistic case studies, including Quasi-Geostrophic dynamics. Overall, we
report significant improvements when compared to standard offline
learning schemes and achieve a performance that is similar to solving the
exact online learning problem.

Our future workwill explore the proposedmethodology for large-scale
realisticmodels such as the ones used in atmosphere and ocean simulations.
Besides algorithm developments, it will require technical efforts to syn-
chronize the PDE solvers, usually written in high-performance languages
such as FORTRAN, to the deep learning-based sub-models that are usually
in languages and packages that support automatic differentiation (Pytorch,
Jax, Tensorflow).Wewill particularly focus on the end-to-end calibration of
hybrid systems with observation-driven constraints and expect to improve
forecasting performance when compared to standard physical models and
to full data-driven forecasting surrogates as the ones developed in13–18.
Scaling the demonstrations to realistic use cases introduces various chal-
lenges. In the following, we present some of these challenges along with
initial solutions for addressing them.

The sub-model Mθ in (3) may often account for various unresolved
processes (e.g., passive and active tracer transport, biogeochemistry, con-
vection), which are typically governed by different underlying dynamics. To
calibrate a number of q sub-models, and assuming that these models are
additive, equation (3) becomes:

_ut ¼ FðutÞ þ
Pq
i¼1

Mi
θðutÞ

uð0Þ ¼ u0

8<
: ð34Þ

Jointly calibrating these sub-models using an online learning methodology
should certainly be considered with care to avoid mixing the individual
contribution of every sub-model. To circumvent such a difficulty, it is
necessary to define and include offline costs for each sub-model as a
regularizationof the online learningobjective function. For every sub-model
Mi

θ , we need to define, as discussed in the offline learning section of Results,
a reference dataset Ri

t that represents an ideal response to the input ut. The
newonline cost function that takes into account these offline regularizations
can be written as:

J combined ¼ J ðgyðuytþnhÞ; gðΨnðutÞÞ; θÞ þ
Xq
i¼1

QiðRi
t;M

i
θ; θÞ

where J ð�Þ is the online cost function. Minimizing each individual reg-
ularization term within this learning methodology ensures that every sub-
model accurately represents a specified underlying process. Simultaneously,
the online objective function guarantees the correct interaction among these
sub-models and with the physical core F.

In the present development, interactions between the resolved flow
component and the unresolved components are formulated as correction
terms that are constructed based on the resolved components of the flow.
Likely, we are missing several degrees of freedom that represent the inde-
pendent or generic fine-scale variability. This missing variability generates
uncertainty. Taking into account and modeling this uncertainty is man-
datory in applications that require probabilistic forecasting, such as data
assimilation48. Models that encode uncertainty can consistently define
Stochastic versions of the original equations and can ensure that certain
quantities, such as integrals of functions over a spatial volume like
momentum, mass, matter, and energy, are conserved at every time step49,50.
The proposed online learning methodology can allow for the calibration of
such stochastic sub-models for various configurations regarding the model
class and the objective function formulation.

The proposed Euler gradient approximations are based on the
assumption that the sub-model in (3) is additive. Precisely, this assumption
allows us to express the gradient of the Euler solver, for a given initial
condition, in terms of the gradient of the sub-model. The latter is then easily
evaluated using automatic differentiation. Additive sub-models are

commonly found inphysical simulations, enabling theproposed framework
to cover a wide range of case studies. Yet, the proposedmethodology can be
extended to non-additive sub-models by converting them into additive
ones. This conversion can be achieved by explicitly coding the non-additive
physical contribution into the sub-modelMθ.

Understanding themechanisms responsible for the success of the deep
learning model will improve the reliability of such representations. Inter-
preting deep learning sub-models might also guide the analysis of the
interaction between the large-scale physical core and the heuristic processes
that are represented by the sub-model. In particular, the sub-modelMθ can
be decomposed into a combination of known expected physical contribu-
tions. In the context of subgrid-scale modeling, these contributions might
include the dissipative effects acting on the smallest scales, and some
advection corrections and backscattering effects acting on the transport of
the resolved quantities. New decompositions can then be considered to, for
instance, more effectively include the dissipation explicitly and/or antici-
pated advection corrections in F.

In addition to subgrid-scale modeling and interpretation, extracting
other sources of information including errors, due for instance to the pre-
sence of systematic errors, biases, or overall incompatibility of F in the
modeling of some observable g(⋅), could also be addressed. It is a challenging
problem and must require capabilities to disentangle all the contributions
from the sub-model Mθ, while taking into account the possible errors and
the overall (positive or negative) impact of F into the modeling of g(⋅). For
future investigations, we believe that valuable insights on this problem can
be obtained by developing ensembles of simulations, performed at various
spatial scales, to subsequently analyze the inferred different sub-models.

Our future workwill explore the proposedmethodology for large-scale
realisticmodels such as the ones used in atmosphere and ocean simulations.
Besides algorithm developments, it will require technical efforts to syn-
chronize the PDE solvers, usually written in high-performance languages
such as FORTRAN, to the deep learning-based sub-models that are usually
in languages and packages that support automatic differentiation (Pytorch,
Jax, Tensorflow).Wewill particularly focus on the end-to-end calibration of
hybrid systems with observation-driven constraints and expect to improve
forecasting performance when compared to standard physical models and
to full data-driven forecasting surrogates as the ones developed in13–18.

Methods
Training configuration in the Lorenz 63 experiment
Training data. In the first experiment given in Results, with the Lorenz
63 system, we use multiple datasets Dh ¼ fðuytkþjh; u

y
tk
Þjwith k ¼

1 . . .N and j ¼ 1 . . . ng that are sampled as the same time step as the Euler
approximation. These datasets are generated using the LOSDA ODE
solver51. The number of training samplesN is equal to 100 time steps and
the number of simulation time steps n is fixed to 10.

The dataset used in the remaining Lorenz 63 experiments, Dh ¼
fðuytkþjhi

; uytk Þjwith k ¼ 1 . . .N and j ¼ 1 . . . ng is sampled at h = 0.01. The
same sampling rate was used in multiple works52–54 that involve the data-
driven identification of the Lorenz 63 system. This dataset is also generated
using the LOSDAODE solver51. The number of training samplesN is equal
to 5000 time steps and the number of simulation time steps n is fixed to 10.

Training criterion and numerical solver. In both the Lorenz 63
experiments, the online objective function corresponds to the mean
squared error between the true Lorenz 63 state and the numerical inte-
gration of the model (30) over n = 10 time steps. The cost function can be
written as:

J ¼ 1
N

X
k

1
n

Xn
j¼1

k uytkþjh � Ψjðuytk Þk22 ð35Þ

where ∥ ⋅ ∥2 is the L2 norm. The solver Ψ used in these experiments is a
differentiable DOPRI8 solver, developed in36.
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Parameterization of the deep learning sub-model and Baseline. The
sub-model employed in the Lorenz 63 experiments consists of a fully
connected neural network with two hidden layers, each with three neu-
rons. The activation function utilized for these hidden layers is the
hyperbolic tangent. Below is a detailed description of themodels tested in
the Lorenz 63 experiment given in Results:
• No calibration and only using the physical core: In this experiment

we only run the physical core given by _ut ¼ FðutÞ i.e., by removing the
sub-modelMθ in (30).

• Online calibration with exact gradient: The sub-model is trained by
utilizing the exact gradient of the online cost (35). To compute the
gradient of the solver, we rely on the fact that the solver used in this
experiment is implemented in a differentiable language, allowing for
automatic differentiation.

• Online calibration with a static approximation: The sub-model is
trained by utilizing the proposed Euler formulation of the gradient of
the online cost (35), in which we use a static approximation of the
Jacobian as described in (19).

• Online calibration with an Ensemble approximation: Similarly to
above, the sub-model is trained by utilizing the proposed Euler
formulation of the gradient of the online cost (35), but the Jacobian is
approximated using an ensemble as described in (26). The size of the
ensemble is set to 5 members.

Evaluation criteria. In Fig. 2, the gradient error is computed as the mean
absolute error between the exact gradient (computed using automatic
differentiation) and the one returned by one of the proposed approx-
imations. If we use equation (27) to express this error and assuming that
the exact gradient is ∂J

∂θ , the error depicted in Fig. 2 is computed as:

ϵ ¼ 1
a

∂J
∂θ

� v þ wAl;pðutÞ
����

����
����

����
1

ð36Þ

where∥ ⋅ ∥1 is the L1 normand a is the number of parameters (we recall that
θ 2 Ra). In this experiment, the tested gradients correspond to p = 2 (since
we use a fixed number of simulation steps n = 10), and to l = 1, 2 (which
corresponds to the EGA and Static-EGA formulas in (28)). The exact
Jacobian is in this experiment evaluated using automatic differentiation.

In Fig. 4, theMEG is simply themean squared error at lead time t0+ ih
normalized by the initial error at t0 + h. It can be written as:

MEGðt0 þ ihÞ ¼
k uyt0þih � Ψiðuyt0 Þk22
k uyt0þh � Ψðuyt0 Þk22

ð37Þ

The Lyapunov spectrum in Table 1 is computed using the Gram-
Schmidt orthonormalization technique55, and the Lyapunov dimension is
deduced from the spectrum as given in56.

Training configuration in the QG experiment
Training data. We run the QG equations with the flow configuration
given in Table 3 starting from 14 different initial random fields of vorticity
on a high-resolution grid to generate direct numerical simulation (DNS)
data. These runs are used to generate 14 different initial conditions that
are in the statistical equilibrium regime. The new initial conditions are
then used to generate DNS data of 2 million time steps that correspond to
4000 eddy turnover times. These data are then filtered to the resolution of
the LES simulation and sampled every hLES. From the 14 runs, we used 8

datasets for training one for validation, and the remaining 5 datasets for
testing and evaluation of the models. Regarding the training and valida-
tion datasets, they are written as fðωtkþjhLES

; ðωtk
;ψtk

ÞÞjwith k ¼
1 . . .N and j ¼ 1 . . . ng where N = 2000 × 8 (where 8 is the number of
training datasets) and n = 10 for the online learning experiments and
as fðΠtk

; ðωtk
;ψtk

ÞÞjwith k ¼ 1 . . .Ng.

Training criterion. The online objective function in the QG experiment
corresponds to the means squared error between the true vorticity field
and the one issued from the numerical integration of the model (33) over
n = 10 time steps. The cost function can be written as:

J ¼ 1
N

X
k

1
n

Xn
j¼1

k ωtkþjh � Ψjðωtk
Þ k ð38Þ

The solverΨ depends solely on the vorticity fieldω as all the other variables
can be deduced from ω.

The offline objective function is the mean squared error between the
output of the sub-modelMθ and the reference subgrid scale termΠ. It canbe
written as:

J ¼ 1
N

X
k

1
n

Xn
j¼1

k Πtk
�Mθðωtk

;ψtk
Þ k ð39Þ

Numerical solver of the QG system. QG system is solved using a code
adapted from31. This solver is written in a differentiable language which
allows the comparison of our proposed approximation tomodels that are
optimized onlinewith the true gradient of the solver. It relies on a pseudo-
spectral solver and a classical fourth-order Runge-Kutta time integration
scheme.

Filtering and coarse graining operation. The QG equations are defined
on a double periodic squared domainΩ ∈ [−π, π]2. The DNS solution is
constructed on a regular NDNS × NDNS grid with a uniform spacing
ΔDNS ¼ 2πN�1

DNS. The LES system of equations is obtained by projecting
the DNS states through a convolution with a spatial kernelG, followed by
a discretization on the reduced grid, with larger spacing ΔLES = δΔDNS.
We use in this experiment a Gaussian filter that can be defined in spectral
space as:

Gν ¼ exp � ν2Δ2
f

24

	 

;

where Δf is the filter size, which is taken to be Δf = 2ΔLES to yield sufficient
resolution8. This filtering/coarse-graining operation can be written as
(taking here as an example the DNS vorticity field ω):

�ων ¼ ω � Gð Þ jνj < πΔ�1
LES

� �
:

Regarding numerical aspects, we can solve the time integration of the LES
system with a larger time-step by a factor corresponding to the grid size
ratio, that is, ΔtLES = δΔtDNS.

Parameterization of the deep learning sub-model and baseline. The
sub-model used in the QG experiments is a Convolutional Neural Net-
work (CNN) that has the same architecture as the one used in7. The inputs
of the CNN are the vorticity and streamfunction fields ðωtk

;ψtk
Þ. The

convolutional layers have the same dimension (64 × 64) as that of the

Table 3 | Parameters of the Flow Configurations

DNS grid (NDNS × NDNS) LES grid (NLES × NLES) Scale (δ) DNS time step (hDNS) LES time step (hLES) Re r kf

1024 × 1024 64 × 64 16 5 × 10−5 8 × 10−4 20000 0.1 4

Both the DNS and LES systems share the same parameters, except for the grid size and the integration time step. The grid size of the LES system is reduced by a factor of δ = 16. The time step of the LES
system corresponds to that of the DNS multiplied by δ.
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input and output layers. All layers are initialized randomly. The number
of channels is set to 64 and the filter size is (5 × 5). The activation function
of each layer is ReLu (rectified linear unit) except for the last one, which is
a linear map. Similarly to31 We use periodic padding.

Below is a detailed description of the models tested in the QG
experiment:
• Online calibrationwith exact gradient: In this calibration scheme, we

assume that the solver of (33) is differentiable and we optimize the
parameters of the sub-model with the exact gradient of the online
objective function. This experimentwas already studied in31 and shows
better stability performance than offline calibration schemes.

• Online calibration with a static approximation: In this experiment,
we evaluate the performance of theproposedonline learning scheme in
which the gradient of the online loss function is approximatedbasedon
(19). In this experiment, the solver of (33) is not assumed to be
differentiable.

• Offline calibration: We also compare the proposed static approx-
imation to a simple offline learning strategy in which the CNN is
calibrated to reproduce the subgrid-scale term Πt.

• Physical SGSmodel with dynamic Smagorinsky (DSMAG):We also
evaluate and compare the proposed approximation schemes with
respect to classical physics-based parameterization given by the
dynamic Smagorinsky (DSMAG) model. In this model, the impact
of theunresolved scales on the dynamics is assumed tobe diffusivewith
a diffusion constant that is computed automatically. The dynamic
Smagorinskymodel has beenwidely used as a baseline inmany studies.
For a detailed explanation, please refer to, for example7.

Data availability
The data used in this study can be generated using the code available at
https://github.com/saidOUALA/EGA.

Code availability
The code used in this study is available at https://github.com/
saidOUALA/EGA.
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