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Version 0: 

Reviewer comments: 

Reviewer #2 

(Remarks to the Author) 
This work addresses the problem of creating data-driven subgrid models for numerical simulations. This is a highly active
area of research, with broad applications across science and engineering. A novel approach to construct online trained
models, but circumventing the requirement of differentiable numerical schemes is introduced. The method revolves around
the idea of approximating the term in the online loss function which requires differentiable numerics, allowing for online
training without a differentiable simulator. The method is demonstrated on two toy models of chaotic dynamical systems,
Lorenz 63 and quasi-gesotrophic fluid flow, and shown to improve performance with respect to an offline-trained model.
Additionally, the authors demonstrate fine-tuning an offline trained model using the new approximate online method
improves performance. 

This is a highly relevant and topical work, and introduces an innovative approach to tackling the problem of online learning.
The results are comprehensive and compelling, with sensible experiments, baseline model comparisons, and metrics
chosen. I recommend to the editor publication of the work, after minor revisions: 

1. I was going to suggest some relevant references: Nonnemacher & Greenebrg 2021
(https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002554), Frezat et al. 2023
(https://arxiv.org/pdf/2310.19385) and Pedersen et al. 2023 (https://arxiv.org/abs/2307.13144) as relevant works that explore
replacing the differentiable solver with an approximate model - I see the first 2 in the bibliography, but cannot see where they
are referenced in the main text? Some short discussion of the proposed work in comparison to these published works should
be in the main text. 

2. It seems the second part of Proposition 3.1, in equation 18, assumes that previous timesteps have been integrated using
the full numerical solver, not the explicit Euler. Training over multiple timesteps, we need to compose multiple Euler
timesteps together, which would lead to some accumulation or error that doesn’t seem to be accounted for here. 

3. Appendix f1 title typo 

4. Some additional description of the computational cost of the various methods would also be interesting. For example -
training an online model with RK4 integration requires long gradient graphs due to recursive calls to the neural network at
each numerical timestep. This problem is circumvented in the Euler gradient approximation. However, the Jacobian
approximation may lead to additional non-trivial computation. This could lead to some trade-offs in terms of compute &
model performance that are important considerations. 

Reviewer #3 

(Remarks to the Author) 
The major claims of the paper introduce an innovative method known as Euler Gradient Approximation (EGA) for enhancing
online calibration in hybrid modeling systems with non-differentiable components. These claims are novel and potentially
influential for the community, particularly in the numerical modeling and machine learning integration fields. However, the
novelty and broader impact would be more compelling if the authors could compare their method against more established
or recent approaches with appropriate citations. 

While the methodology is promising, the paper could be strengthened with a more rigorous statistical analysis and additional



empirical validations across diverse systems to demonstrate robustness and reproducibility. Details on the experimental
setup and parameters are somewhat lacking, which might hinder reproducibility. 

The paper has the potential to influence thinking in fields that involve dynamic modeling and real-time data assimilation but
would benefit greatly from a deeper theoretical exploration and clarity in model assumptions. Further evidence in the form of
expanded case studies or real-world applications would enhance the work's credibility and applicability. 

In terms of statistical analysis, more detailed information on the methods used for data handling and analysis should be
included to assess the appropriateness and validity of the statistical conclusions drawn. 

In summary, with additional details, rigorous testing, and clearer exposition, the paper could significantly impact the field. I
have chosen to remain anonymous for this review process. 

Version 1: 

Reviewer comments: 

Reviewer #2 

(Remarks to the Author) 
Thanks to the authors for their comprehensive response. My comments are thoroughly addressed in the new submission,
and I recommend publication of this revised version to the editor. 
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credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.
In cases where reviewers are anonymous, credit should be given to 'Anonymous Referee' and the source.
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Abstract

The authors would like to thank the anonymous reviewers for their valuable com-
ments and suggestions. In this document, we address the issues raised as best as possi-
ble. We have made some modifications to the structure of the main document so that it
broadly complies with the style of CommsPhys. As a result, the numbering of the sec-
tions, theorems and other items might have being changed from the initial submission.
In order to have concise answers to the reviewers comments, we use in this rebuttal the
numbering of the tracked change version of the manuscript in blue next to the initial
numbering of the first manuscript.

1 Reviewer 2

Reviewer Comment 1

This is a highly relevant and topical work, and introduces an innovative approach
to tackling the problem of online learning. The results are comprehensive and com-
pelling, with sensible experiments, baseline model comparisons, and metrics chosen.
I recommend to the editor publication of the work, after minor revisions:

Response We appreciate the feedback on our work and the manuscript. Every comment is
addressed carefully below, and the modifications can be found in blue in the tracked-changes
version of the manuscript.

1

said.ouala@imt-atlantique.fr
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Reviewer Comment 2

I was going to suggest some relevant references: Nonnemacher and Greenebrg 2021,
Frezat et al. 2023 and Pedersen et al. 2023 as relevant works that explore replacing the
differentiable solver with an approximate model - I see the first 2 in the bibliography,
but cannot see where they are referenced in the main text? Some short discussion of
the proposed work in comparison to these published works should be in the main
text.

Response

We thank the reviewer for rising this point and for the suggested references. We have a
section in the Supporting Information Appendix B that discusses alternative solutions of the
online learning problem. We discuss in this section the possibility of using emulators and we
cited the first two references provided by the reviewer. We also discussed the possibility of
designing models for the computation of the gradient of the online learning problem using
optimal control formulations.

Following the reviewer’s comment, we moved appendix B to the main paper. This new sub-
section is entitled 2.5 Related works on online learning for hybrid systems and discusses
recent, state-of-the-art, alternative solutions to the online learning problem that use i) em-
ulators (where we also included the third reference provided by the reviewer) ii) Optimal
control methods and iii) Gradient free (ensemble based) methods for which recent works
also emerged. This new subsection can be found in blue in the tracked-changes version of
the manuscript.

Reviewer Comment 3

It seems the second part of Proposition 3.1, in equation 18, assumes that previous
timesteps have been integrated using the full numerical solver, not the explicit Eu-
ler. Training over multiple timesteps, we need to compose multiple Euler timesteps
together, which would lead to some accumulation or error that doesn’t seem to be
accounted for here.

Response

As observed by the reviewer, the second part of the proposition 3.1 (2.1) assumes that the
previous time-steps are integrated with the full numerical solver. This is particularly impor-
tant since we don’t want to modify the forward solver of the numerical model. Training over
multiple time-steps does lead to error accumulation and these errors are being accounted for
in our framework.

Specifically, when we derive the formula for the Euler Gradient Approximation (theorem 3.1
(2.1)), we show that there is an error in the gradient approximation that is equal to (please
refer to appendix C.2 (B.2), equation (39) (44)):

j=n−1∑
j=1

(

i=n−j∏
i=1

∂Ψ(Ψn−i(ut))

∂Ψn−i(ut)
)O(h2) +O(h2)
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Please note the sum over n time-steps which represents the error accumulation of the gradi-
ent estimation.

Due to this error accumulation, we have two versions of the EGA method, the one given
in theorem 3.1 (2.1) (equation (14) (17)), which assumes that the number of training steps
n is fixed. In this context, the error above is bounded by O(h2). The second version is
given by corollary 3.1.1 (2.1.1) (equation (15) (18)). In corollary 3.1.1 (2.1.1), the number of
training steps n changes to correspond to some final time tf and in this context, the error
accumulation above is only bounded by O(h).

We have added the following text after corollary 3.1.1 (2.1.1) to explain the difference be-
tween the two versions of the EGA approximation and to link this with the accumulation of
errors in the computation of the gradient.

The difference between the EGA formulation of Theorem 2.1 and the one of Corollary 2.1.1
lies in the convergence rate of the accumulated error in the gradient approximation. Specif-
ically, we show (see equation (44) in the Supporting Information Appendix B.2) that this
error accumulation term is bounded by nO(h2). In Theorem 2.1, the number of time steps n
is assumed to be fixed, resulting in the error accumulation term being bounded by O(h2). In
Corollary 2.1.1, n increases as h decreases, i.e., n = (tf − t0)/h, so the error accumulation is
only bounded by O(h).

Reviewer Comment 4

Appendix f1 title typo

Response

We thank the reviewer for noticing this typo. It was corrected.

Reviewer Comment 5

Some additional description of the computational cost of the various methods would
also be interesting. For example - training an online model with RK4 integration re-
quires long gradient graphs due to recursive calls to the neural network at each nu-
merical timestep. This problem is circumvented in the Euler gradient approximation.
However, the Jacobian approximation may lead to additional non-trivial computa-
tion. This could lead to some trade-offs in terms of compute and model performance
that are important considerations.

Response

We thank the reviewer for rising this very relevant point. Using the Euler Gradient Approx-
imation instead of the gradient of a numerical scheme that requires N functions evaluations
(N = 4 when using RK4) leads to a simpler computational graph. Regarding the Jacobian
approximation, the EGA can use a first order Jacobian approximation with allows to keep
the computation of the backward pass trivial (it will only require in practice using e.g. a
torch.nograd on the forward operations that are not required by the Euler Gradient Approx-
imation).
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We have added a subsection 2.9 that discusses these aspects:

2.9 EGA for an improved computational cost in training long roll-outs

1.1 EGA for an improved computational cost in training long roll-outs

Increasing the number of training steps n strongly influences the inference accuracy of both
surrogate physical simulators [1, 2] and hybrid models [3, 4, 5]. When large number of time
steps are required, The EGA can be seen as an algorithm that can be used to reduce the
computational complexity of the computational graph in the training phase. For instance, if
we assume that the numerical solver requires N Number of Function Evaluations (NFE) per
time step, the EGA can be used with a first order Jacobian approximation and would require
only backpropagation through a single function evaluation. This allows to have larger roll-
outs at a smaller computational cost. We evaluate the ability of using the EGA on fully
differentiable hybrid models to reduce the time and memory complexity of the backward
pass, as well as the corresponding gradient errors in section 2.11.2 and SI appendix E.

We also added an experimental section 2.11.2 for the Lorenz 63 system compares the mem-
ory and computation performance of the backward pass computed using the computational
graph of the Runge-Kutta 4 solver (and DOPRI8 in the Supporting Information Apendix E)
with respect to the Euler Gradient Approximation. Overall, the EGA leads to a speedup
and to a reduced memory cost of a factor of 4 with respect to standard backprop through
RK4 while keeping the error levels smaller than 33% for all the tested simulation time steps
n.
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2 Reviewer 3

Reviewer Comment 1

The major claims of the paper introduce an innovative method known as Euler Gradi-
ent Approximation (EGA) for enhancing online calibration in hybrid modeling sys-
tems with non-differentiable components. These claims are novel and potentially
influential for the community, particularly in the numerical modeling and machine
learning integration fields. However, the novelty and broader impact would be more
compelling if the authors could compare their method against more established or
recent approaches with appropriate citations.

Response We would like to thank the anonymous reviewer for this positive feedback on our
work. We acknowledge the reviewer’s concern regarding the comparison of our method
with state-of-the-art approaches and appreciate the opportunity to clarify this point.

We have compared our approach with both established and more recent methods. Specif-
ically, in the QG experiment, we demonstrate that online learning, (including online learn-
ing with the EGA) overcomes the known limitations of widely used eddy-viscosity-based
subgrid-scale models such as the Dynamic Smagorinsky model. Furthermore, we have com-
pared our online learning approach with EGA to offline learning, which is the most com-
monly employed training method for hybrid models. Our results show that EGA avoids
typical issues associated with offline learning, such as unphysical behaviors and instabilities
in the simulations. Additionally, our method performs comparably to online learning with
a differentiable numerical model.

In the Supporting Information Appendix G.1 (D), we extend our analysis to an other system,
the slow/fast Lorenz 96 system, where we observe similar results to those obtained in the
Lorenz 63 and QG experiments. In the Lorenz 96 experiment, and in addition to the fully
differentiable online learning and offline learning baselines, we also compare our method to
the use of a differentiable emulator (which is very recent state-of-the-art methodology for
online learning). Our results show that EGA achieves similar outcomes while bypassing the
need for emulator calibration.

In response to the reviewer’s suggestion, we have included a new section (Section 2.5 in the
tracked changes document) that discusses relevant state-of-the-art approaches, along with
appropriate citations (e.g., [6]).

Reviewer Comment 2

While the methodology is promising, the paper could be strengthened with a more
rigorous statistical analysis and additional empirical validations across diverse sys-
tems to demonstrate robustness and reproducibility. Details on the experimental
setup and parameters are somewhat lacking, which might hinder reproducibility.

Response

In addition to the Lorenz 63 experiment and to the experiment on the QG model, we also
provide in SI document Appendix G.1 (D) an experiment on the Slow-Fast Lorenz 96 model



6 Communications Physics– Response to reviewers

which is a coupled ODE with slow and fast dynamics. The results are similar to the ones of
the Lorenz 63 and to the QG model.

Regarding the experimental setup, we initially presented it in the Supporting Information.
However, following the reviewer’s suggestion, we have moved the experimental setup to
the Methods section of the main paper to enhance readability. We have also included code
and data availability statements, which will provide, in the final version of the manuscript,
links to the GitHub repository containing the code used to generate the results.

Reviewer Comment 3

The paper has the potential to influence thinking in fields that involve dynamic mod-
eling and real-time data assimilation but would benefit greatly from a deeper theo-
retical exploration and clarity in model assumptions. Further evidence in the form of
expanded case studies or real-world applications would enhance the work’s credibil-
ity and applicability.

Response We thank the reviewer for this positive feedback on our work. Regarding the
theoretical validation of the EGA, our method was derived using error rates from the corre-
sponding numerical schemes, and it provably converges (and experimentally, for instance, in
Figure 2) to the true gradients, either quadratically or linearly, depending on how we specify
the number of training steps, n. We acknowledge that these error rates do not guarantee the
use of the EGA for arbitrary time steps h or an arbitrary number of steps n. However, they do
ensure that we can control the error by reducing h and/or n. As for the model assumptions,
we clearly state in the manuscript that the EGA is applicable to additive submodels. We
also discuss in the Supporting Information Appendix possible extensions to non-additive
submodels.

Due to the underlying computational requirements, in terms of compatibility of real-world
numerical models and state-of-the-art deep learning frameworks), real-world applications
go beyond the scope of this paper, the primary focus of which is the derivation and evalua-
tion of the EGA algorithm. We do agree with the reviewer that real-world applications will
support further the credibility and applicability of the EGA approach and our future work
will specifically explore applications to the calibration of submodels in the ocean model com-
ponent of Earth System Models.

Reviewer Comment 4

In terms of statistical analysis, more detailed information on the methods used for
data handling and analysis should be included to assess the appropriateness and va-
lidity of the statistical conclusions drawn.

Response We understand the reviewer’s concern regarding the methods used for data han-
dling. Following the reviewer’s comment, we have moved the details of the experimental
section from the Supporting Information Appendix to the Methods section in the main pa-
per. This section now includes all the necessary details to ensure the reproducibility of the
experiments, along with the evaluation criteria used in the analysis.
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