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A Supplementary Note 1: Proofs

A.1 Proof of the proposition|[l]

Since the solver U is of order p, and the explicit Euler scheme has order 1 it is trivial to prove proposition (I)) from the
Taylor expansion of ¥. We include the proof here for completeness. We can write as as h approaches zero:

wn = V(uy)
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The second part of the proposition can be proven similarly by replacing u; by ¥~ (u,).
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A.2  Proof of theorem
Notice that for every n, the following holds:

0 0

n n—1
%\P (ut) 80\110\:[/ (ut)
_ (T () 00 (wy) U (" (uy)) (S1.2)
O Un-l(wy) 00 00

Variation due to the initial condition Variation of the gradient of the solver given the initial condition

We use (S.I. 2) to construct the following:

)= Y (] wgww-%utmg@ww W) LY

where all the derivatives with respect to 6 are taken assuming that the initial condition is fixed. The proof of (S.I. 3) is
conducted by recurrence, and is given in section[A.6]

To prove theorem [T} we simply replace in (S.I. 3)) the solver W by its Euler approximation given in the proposition [T}
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(S.I.4)
if we develop the expression of the explicit Euler solver, we have
o T T o (i o, . ~ ~
) = >0 (T 2P ) 2 it )+ B0 () + Mo (7 (w0) + O(0)
j=1 =1
a n— n n
+ 5 (U (@) + A(E(E" T (w)) + M7 (w))) + O(h%))
j=n—1 i=n—j . j=n—1 i=n—j
- OV (" *(wy)),, 0 =1 OV (¥ (uy)) 9
= 2 (Il gy MagMe@ )+ 3 (11 —ggmmpg,; )00)
Jj=1 =1 j=1 1=1
0
+ hogMe (U7 () + O(h?)
j=n—1 i=n—j i
_ Ov(P" " (uy)), 0 j-1 0 n-1 2
- 2 ( 11 W)héwMe(\P (ut))+ha—0M9(\I/ (w)) + nO(h?)
_ (S.I.)
The leading order term in Z;jf*l Iz %)O(W) is O(h?). Furthermore, and since n is fixed, nO(h?)

is simply equal to O(h?). Reporting this in equation (S.I. 3)) completes the proof as follows:

o n j=n—1 i=n— Ja\I/ yn— z(uf)) o _ o el 0
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A.3  Proof of the corollary [I.1]

We prove corollary (T-T), we start from (SI.3) and replace n by “-. This makes the convergence linear in h:

O () = Z (11 W)h{fem(qﬂ l(uf))maaaMg(\p” Hu))+0h)  (SLT)
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A4  Proof of the Corollary

In order to prove corollary[I.2] we write the Jacobian of the taylor expansion of the solver ¥ and we keep the zero order
term.

a a k k—1 p+1
a0y L (V) = gy (Yl +Zh 7 (F(2(w)) + Mo(Z(w))* " + O(h*)
» (S.L 8)
k—1 p+1
+ 330 Z w)) + Mo (B(w)))** +O(h*)
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If we replace the Jacobian in (I7) by the approximation in (S.I.8):
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The second part of the corollary, i.e. assuming that n = b hto can be proven similarly.
A.5 Proof of the Corollary[1.3]
0 U(W(uy)) = 0 (u +th w)) + Mg (¥ (w)))*~1 + O(hP*1))
oW (uy) Y0 00 (uy ¢ E
9 gL yh-1 kL k—1 +1
= oy (VO +Zh SR (w)) +Zh 1 (Ma(P ()" + O )
b
k k—1 +1 k—1
= 59(a) T (uy +Zh 7 (F(2(u)))" " + O kz:: U(wy)))
aq,(uf)\l’ (¥ (uy))
__ 0 9 kL k—1
- G\IJ(ut) \IJO(\I](u )) 8‘1’(1%) Zh‘ k'(MG(\IJ( )))
- 1 k—1
=TLM(¥(u; kz:: kT V(uy)))
(S.I. 10)
A.6  Proof of the equation (S.I.3)
The proof of is conducted by recurrence. For n = 1 we have:
9 OU(V°(u,))
SI 11
30\11( u:) = 00 ( )
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which is by inspection of (S.I. 2)) true.
Assume that (S.1. 3)) is true for all n, for n + 1 we have:
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Which is conveniently written as:
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Equation (S.I. 15) can be written in a more compact form as:
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which is by inspection of (S.I. 2)) true. This completes the proof of the formula (S.1I. 3).

B Supplementary Results 1: Additional experiment on the two scale Lorenz 96

The two scale L96 system describes a coupled system of equations [Lorenz| [[1995] with S' slow variables, u;r =

[UI,U uI’Q, _ ,uI S]T each of which is coupled to B fast variables (y¢,1.s,Yt.2,s," "+ » Yt,B,s):

UIS =—uly o (uTt,s—Q — UTt,s+1) —ult s+ A+ Ry

. de t (S.I1.17)
Yt,b,s = —CYVYt,b+1,s (yt,b+2,s - yt,bfLs) — CYtb,s T ;u t,s

B
where Rt,s = — (%) Zb:l Yt,b,s

In this experiment, We assume that the physical core F represents the equations that govern the slow variables and we
use a sub-model My to mimic the impact of the fast variables ¥, p, s:

where u; = [ug 1, U1, -, ut}g]T € RS and My is a fully connected neural network with parameters 6. The physical
core F = [Fy, Fy,--- , Fs]T is given by:
ut,s = Fs = _uTt,s—l (uTtﬁs—2 - uTt,s+1) - 'U/Tt,s +A (SI 19)

The goal of this experiment is to evaluate the proposed Euler approximation of the online learning of the sub-model
My (based on a static approximation of the Jacobian of the flow) on a multiscale dynamical systems, for varying time
steps of the Euler approximation. We set the number of slow variables .S = 8 and the number of fast variables B = 5.
Regarding the values of the parameters of the equation, we use the following configuration: A = 8,d = 1, v = 10,
and ¢ = 10. This simulation configuration yields chaotic dynamics, where the statistical properties can not be solely
explained by the slow model (this can be visualized in S.I. Figure[I] where the PDF of the physical core is
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given with respect to the one of the multiscale system). We assume here that the number of time steps n is fixed, and
we run a series of two experiments for which the time step of the Euler approximation of the gradients decreases from
h=0.1to h =0.05.

We compare the proposed Euler approximation to both offline and online calibration techniques. The online calibration
is carried using an exact gradient and also with an emulator. The emulator is trained sequentially to the sub-model
Mg as discussed in Results. In the online learning experiments, the training datasets correspond to time series of the

full Lorenz 96 system {(uzk i uzk)| withk =1...Nand j = 1...n} and in the offline learning experiment, the

training data corresponds to {(uzk Ry, = [Ri, 1, Ry 2, , R, 5)]7| with k = 1... N}. The number of simulation
steps is set to n = 10 and the size of the dataset IV is equal to 20000.

Overall, the following models are tested:

* Online calibration with exact gradient: In this calibration scheme, we implement the solver of ina
differentiable language and we optimize the parameters of the sub-model with the exact gradient of the online
objective function.

* Online calibration with a static approximation: In this experiment, we evaluate the performance of the
proposed online learning scheme in which the gradient of the online loss function is approximated based on
the Static-EGA (19). In this experiment, the solver of is not assumed to be differentiable.

* Online calibration with an emulator: We also evaluate and compare the proposed approximation schemes to
online learning with emulators as presented in the related works subsection. We recall that in this experiment,
physical core F in is replaced (in the training phase) by a neural network that is trained sequentially
with My. This network is a linear quadratic model, similar to the one discussed in |Fablet et al.|[2018]].

* Offline calibration: We also compare the proposed static approximation to a simple offline learning strategy.
In this experiment, the parameters of the sub-model are optimized to minimize the following offline objective
function:

2
‘ (S.I. 20)

0=+ 3[R, ~ Mo(ud,)
k

Besides the offline calibration scheme, the online cost function used in this experiment is the mean squared error of the
numerical integration of with respect to the true two-scale Lorenz 96 sequence. All the tested experiments
share the same parameterization of the sub-model My, which is a fully connected neural network with 6 hidden layers,
each with 100 neurons and a hyperbolic tangent activation.

B.1 Performance of the learnt sub-model

We plot the performance of both online and offline optimization approaches in the Lorenz 96 case study in S.I. Figure|T]
We evaluate the approaches with respect to the true Lorenz 96 simulation and also with respect to a simulation issued
from the physical core. Overall, we notice that both offline and online schemes noticeably outperform the physical core
which highlights the relevance of using such corrections. Regarding the short-term prediction performance, panel (c) of
S.I. Figure[T] shows that all models are able to provide better predictions than the physical core. in this experiment, the
online learning with true gradient is able to provide the best prediction performance. When evaluating the qualitative
properties of the simulation of the models highlighted for instance in panels (a) and (b) in S.I. Figure[I} We also found
that the proposed approximate gradient for the online learning scheme provides a very nice correction that is on the
same level as online optimization with the true gradient. The proposed approximation also improves when we reduce
the time step of the Euler approximation of the gradient from » = 0.1 to h = 0.05. This experiment also reveals that
online learning with an emulator can be challenging. Specifically, the qualitative and quantitative comparison of the
PDF of the models trained online with an emulator in S.I. Figure[I]shows that the sub-model calibration can be highly
sensitive and shows that two different model initializations can lead to distinct sub-models.

C Supplementary Results 2: Additional experiment on the Lorenz 63 model

We also analyse in S.I. Figure 2| the memory and time complexities of the EGA compared to standard backpropagation
through a DOPRIS solver. The EGA achieves a significant reduction in both execution time and memory usage while
maintaining error levels below 38%.
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S.I. Figure 1: Simulation example of the tested models in the Lorenz 96 esperiment. We compare a multiscale
simulation of the true system (S.I._I7) to the physical core in (30) (without the neural network sub-model) and to
corrected models where the correction term My is calibrated both online and offline. We compare the PDF of the first
state of the tested models with respect to the one computed from a simulation of the true system given by (S.I. 17)
both qualitatively in (a) and quantitatively in (b). (c) Mean error growth of the tested models. We plot both the mean
and standard deviation that was computed based on an ensemble of 20 trajectories issued from 5 different learning
realizations. The error bars are scaled by 1/20.

D Supplementary Methods 1: Algorithms of the proposed online learning methodology

D.1 Gradient evaluation using composable function transforms

A direct evaluation of can be based on composable function transforms of modern languages such as JAX ?
or PYTORCH (based on the functorch tool). These tools allow to evaluate vector valued gradients (not only vector
Jacobian products), and it can be adapted to the computation of (27)). Algorithm T[highlights how this can be achieved.

D.2 Modification of the backward call

The gradient of the online cost function can be computed by a modification of the backward call of modern automatic
differentiation languages. The idea is to construct a ResNet-like computational graph using the sub-model Mg. We
modify the gradient of the output of each ResNet block using a hook to include the information of the Jacobian of the
non-differentiable solver. And the gradient of each block will correspond to ¥Mae(-)/a6. We provide an implementation
of this technique, inspired by the syntax of PyTorch, in Algorithm[2]
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S.1. Figure 2: Analysis of the computational complexity of the EGA with respect to backpropagation through the DO-
PRIS8 numerical solver. (a) Wall time per backward pass and speedup relative to the standard backpropagation through
the numerical solver. (b) Size of the computational graph and relative size with respect to standard backpropagation. (c)
Relative error of the EGA with respect to backpropagation through the numerical solver (size of the error bars of the
figures in panel ¢ was divided by 50). This benchmark was executed on a single NVIDIA GeForce GTX 1080 Ti GPU.
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Algorithm 1 Gradient computation based on composable function transforms

Input:
U: Non-differentiable solver of the hybrid system (3]
Mp: Deep learning based sub-model
u;: Initial condition
n, h: Number of simulation steps and time step
Tonline - Online cost function
[ : Approximation scheme for the Jacobian of the flow
return

> Iterate through the solver ¥
for j < 1ton do

uyjn = U7 ()
end for
> Precompute the Jacobians J ;
forj < 1ton—1do

Ji =120 7 0w~ () /own—i(u,)
end for
> Compute the vector valued gradients of the sub-model
for j < 1ton do

OMe (W7~ (1)) /06 > This can be done, for example, using functorch
end for
> Compute the Euler approximation of the gradient of the solver
Arp = Y5201 30h0/00Me(WI 1 (uy)) + ho/0oMe (V" (uy)))
> Compute the remaining gradients and evaluate the gradient of the online cost
v = 9Q(--,9)/96

= 0Q(,g(T" (ur)),: /dg

3~70nlme/69 =v+wA, p(\I’ut
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Algorithm 2 Gradient computation based on backward call modification

Input:
U: Non-differentiable solver of the hybrid system (3]
Mp: Deep learning based sub-model
u;: Initial condition
n, h: Number of simulation steps and time step
Tontine - Online cost function
[ : Approximation scheme for the Jacobian of the flow
return
> Backward hook function
def HOOK(Zyy j1, j)
> grad(-) refers to a modification of the gradient
grad(z,4;p) = h - grad(ze4np) - I > notice that w = grad(zs4nn)
end def
> Iterate through the solver ¥
for j < 1ton do
Urpjn = W (uy)
end for
> Precompute the Jacobians J ;;
forj < 1ton—1do
Ji =112 0w = (w))/own—i(u,)
end for
> Generate a ResNet like computational graph
Z; = Uy > Initialize the ResNet state
for j < 1ton do
Zitjh = Mo(Z4 (j—1)n)
data(zs4,n) = Wetjn > data(-) refers to a modification of the value
if j # n then
> Modify the gradient of the ResNet State
HOOK(Zt"r]‘hm .7)

end if
end for
> Compute the online objective function
Q(,g(¥"(uy)),0) = Q(-, g(z(0rynn)), 0) > The simulated states now have a computational graph
Backward(Q(-, g(¥"(u)), 0)) > Run a backward call

10
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