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The productivity of many fish populations is influenced by the environment, but developing environment-linked stock assessments remain
challenging and current management of most commercial species assumes that stock productivity is time-invariant. In the Northeast United
States, previous studies suggest that the recruitment of Southern New England-Mid Atlantic yellowtail flounder is closely related to the strength
of the Cold Pool, a seasonally formed cold water mass on the continental shelf. Here, we developed three new indices that enhance the
characterization of Cold Pool interannual variations using bottom temperature from a regional hindcast ocean model and a global ocean data
assimilated hindcast. We associated these new indices to yellowtail flounder recruitment in a state–space, age-structured stock assessment
framework using the Woods Hole Assessment Model. We demonstrate that incorporating Cold Pool effects on yellowtail flounder recruitment
reduces the retrospective patterns and may improve the predictive skill of recruitment and, to a lesser extent, spawning stock biomass. We also
show that the performance of the assessment models that incorporated ocean model-based indices is improved compared to the model using
only the observation-based index. Instead of relying on limited subsurface observations, using validated ocean model products as environmental
covariates in stock assessments may both improve predictions and facilitate operationalization.
Keywords: Cold Pool index, ocean model, recruitment, retrospective prediction, Southern New England-Mid Atlantic yellowtail flounder, state–space model,
stock assessment.

Introduction

In recent decades, the US northeast shelf marine ecosys-
tem has experienced rapid ocean warming, affecting marine
organisms from the surface to the bottom (Forsyth et al.,
2015; Pershing et al., 2015; Kavanaugh et al., 2017; Kleis-
ner et al., 2017). While the productivity of many fish pop-
ulations is largely influenced by the environment (Vert-pre
et al., 2013; Szuwalski et al., 2015), current management of
most commercial species assumes that stock productivity is
time-invariant.

In the Northeast US shelf, previous studies have identi-
fied significant relationships between stock productivity and
climate variables for several groundfish including yellowtail
flounder (Limanda ferruginea; Sissenwine, 1974; Miller et al.,
2016; Xu et al., 2018), summer flounder (Paralichthys den-
tatus; O’Leary et al., 2019), winter flounder (Pseudopleu-
ronectes americanus; Bell et al., 2014, 2018), and Atlantic cod
(Gadus morhua; Miller et al., 2018). When environmentally
induced changes in stock productivity are not taken into ac-
count in assessments, retrospective bias can occur (Brooks and
Legault, 2016; Tableau et al., 2019) and affect the short-term
catch advice. Therefore, it is critical to develop fishery stock
assessments that integrate environmental effects as a research
priority (Hare et al., 2016).

The physical environment in the Southern New England
(SNE) and middle Atlantic Bight (MAB) is highly dynamic
due to seasonal, interannual, and decadal variability in both
atmospheric and oceanographic processes. The MAB Cold
Pool is a seasonally formed cold water mass that occurs from
late spring to early fall and is associated with the recruit-
ment and settlement of the Southern New England-Mid At-
lantic (SNEMA) yellowtail flounder population (Sullivan et
al., 2000, 2005; Miller et al., 2016). This stock experienced
overfishing from the 1970s to the mid-1990s and, in paral-
lel, recruitment has declined since the 1980s (NEFSC, 2012).
From 1990 onwards, recruitment has remained dramatically
low and the stock status is listed as overfished, with spawning
stock biomass (SSB) below the management target (NEFSC,
2020). This stock, which is currently in a rebuilding plan,
is assessed using a statistical catch-at-age model (ASAP, Age-
Structured Assessment Program, Legault and Restrepo, 1999).
One of the major sources of uncertainty in the assessment
is the cause of the persistent low recruitment in recent years
(NEFSC, 2012, 2020).

Recruitment of SNEMA yellowtail flounder depends on
temperature conditions during the early life stages (Sullivan
et al., 2000, 2005). After spawning in spring and early sum-
mer, eggs are fertilized and float near the surface for about
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2 months. Then, the late-stage larvae/early juveniles settle to
the bottom during the summer and the early fall. Field studies
suggest that the recruitment of SNEMA yellowtail flounder
is closely related to ocean bottom temperature, vertical ther-
mal structure, and maintenance of the Cold Pool (Sullivan et
al., 2000, 2005). Recently, modelling studies have shown that
recruitment and SSB are closely related to the Cold Pool dy-
namics and Gulf Stream position (Miller et al., 2016; Xu et
al., 2018).

Cold Pool effects on SNEMA yellowtail flounder recruit-
ment have been explored by estimating its intensity using
a Cold Pool Index based on in situ observations (hereafter,
Obs_CPI; Miller et al., 2016; Xu et al., 2018). These bot-
tom temperature observations are from the Northeast Fish-
eries Science Center (NEFSC) fall bottom trawl survey, which
occurs annually during September and October (Mountain,
2003). The Obs_CPI provides a restricted perception of the
potential Cold Pool impacts on recruitment because it does
not cover the entire larval settlement period from summer to
early fall, when temperature may play a critical role in larval
survival. Another limitation is that the Obs_CPI relies on ob-
servations from the NEFSC fall survey, which can be limited or
even absent during critical changes to the Cold Pool. For ex-
ample, the NEFSC fall survey was severely restricted in 2017
(vessel mechanical failure) and did not take place in 2020
(COVID-19 pandemic). An alternative approach is to quan-
tify the strength of the Cold Pool using regional ocean models.
Chen and Curchitser (2020) developed a method to compute
a Cold Pool Index that accounts for the Cold Pool persistence
time, temperature, and volume based on a long-term high-
resolution regional ocean modelling system (ROMS). While
this is a valuable tool for studying the interannual variabil-
ity of the Cold Pool, it is challenging to use it operationally
in the SNEMA yellowtail flounder stock assessment. First, the
ROMS model used in Chen and Curchitser (2020) extends
only until 2007 and would, thus need to be updated every 2
years for the stock assessment. Second, the modelled bottom
temperature is warm-biased during the stratified season (Chen
et al., 2018; Chen and Curchitser, 2020). Finally, quantifying
Cold Pool persistence requires high-resolution, 3D profiles of
temperature and salinity at a daily resolution.

Here, we developed three alternative Cold Pool indices that
account for intensity, persistence, and the spatial extent of the
Cold Pool using bottom temperature estimates from a regional
ocean model and a global ocean data assimilated hindcast.
Our goal was to develop tailored indices that better character-
ize Cold Pool interannual variations that are associated with
the historical and current variability of SNEMA yellowtail
flounder recruitment. We associated the new Cold Pool indices
to recruitment in a state–space, age-structured stock assess-
ment framework (Miller et al., 2016; Miller and Stock, 2020;
Stock and Miller, 2021). Finally, we assessed whether includ-
ing ocean model based Cold Pool indices in the SNEMA yel-
lowtail flounder stock assessment reduces retrospective pat-
terns and improves the skill of short-term forecasts.

Material and methods

Environmental data

We used high-resolution bottom temperature ocean reanal-
ysis and model output over the period 1972–2019 to cover
the same time period as the last stock assessment (NEFSC,

2020). Instead of using observed ocean temperature data as in
Miller et al. (2016), we combined two model-based estimates
of monthly bottom temperature between 1972 and 2019.

For the period between 1972 and 1992, we used ocean
bottom temperature from the long-term (1958–2007) high-
resolution numerical simulation of the Northwest Atlantic
Ocean in the Regional Ocean Modelling System (hereafter,
called ROMS-NWA). Previous studies that focused on the
ROMS-NWA-based Cold Pool highlighted strong and con-
sistent warm bias in bottom temperature of about 1.5◦C
during the stratified seasons over the period of 1958–2007
(Chen et al., 2018; Chen and Curchitser, 2020). In order
to bias-correct bottom temperature from ROMS-NWA, we
used the monthly climatologies of observed bottom temper-
ature from the Northwest Atlantic Ocean regional climatol-
ogy (NWARC) over decadal periods from 1965 to 1994. The
NWARC provides high resolution (1/10◦ grids) of quality-
controlled in situ ocean temperature based on a large vol-
ume of observed temperature data (Seidov et al., 2016a,
b; https://www.ncei.noaa.gov/products/northwest-atlantic-re
gional-climatology). The first step was to re-grid the ROMS-
NWA to obtain bottom temperature over the same 1/10◦ grid
as the NWARC. A monthly bias was calculated in each grid
cell and for each decade (1965–1974, 1975–1984, and 1985–
1994) in the MAB and in the SNE shelf:

BIASi, d = TClimatology
i,d − T̄ROMS−NWA

i, d , (1)

where TClimatology
i,d is the NWARC bottom temperature in the

grid cell i for the decade d and T̄ROMS−NWA
i, d is the aver-

age ROMS-NWA bottom temperature over the decade d in
the grid cell i. Time series of the decadal bias estimates in
the Cold Pool domain between ROMS-NWA and the NWA-
climatology during the summer period are represented in Sup-
plementary Material I (Figure S1.1), while monthly and in-
terannual time series of bottom temperature between ROMS-
NWA before the bias correction (ROMS-NWA) and ROMS-
NWA after the bias correction (debiased ROMS-NWA) can
be found in Supplementary Material I (Figure S1.2). Fur-
thermore, maps of the mean decadal bias estimates between
ROMS-NWA and the NWA-climatology during the summer
period (June–September) in the Cold Pool domain are avail-
able in Supplementary Material I (Figure S1.3), and maps of
the mean bottom temperature are represented for each decade
in Supplementary Material I (Figure S1.4). We discussed the
modelled data quality and limitations as well as the bias cor-
rection we applied to ROMS-NWA in Supplementary Mate-
rial II.

For the period between 1993 and 2019, we used the bot-
tom temperature output from the gLobal Ocean ReanalY-
sis and Simulation project (GLORYS12v1) ocean reanalysis,
which is a global ocean, eddy-resolving, and data assimilated
hindcast from Mercator Ocean (Fernandez and Lellouche,
2018; Lellouche et al., 2021). This dataset has been shown to
be highly representative of observational surface and bottom
temperature and salinity over the Northeast US shelf (Chen et
al., 2021; Supplementary Material I, Figure S1.5). The com-
parison of the monthly and interannual bottom temperature
variations highlighted that debiased ROMS-NWA and GLO-
RYS12v1 over the Cold Pool domain (Supplementary Mate-
rial I, Figure S1.2) are fully integrable.
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Cold Pool indices

We explored the Cold Pool effects on the SNEMA yellow-
tail flounder recruitment by considering three characteristics
of the Cold Pool: strength, persistence over time, and spatial
extent. The first step was to define the Cold Pool domain,
which is typically located within the MAB and the southern
flank of Georges Bank (Houghton et al., 1982; Lentz, 2017;
Chen et al., 2018). Here, we delineated a spatial domain cov-
ering the management area of the SNEMA yellowtail floun-
der comprising the MAB and in the SNE shelf between the 20
and 200 m isobaths (Chen et al., 2018; Chen and Curchitser,
2020). We restricted the time period from June (to match the
start of the settlement period; Sullivan et al., 2005) to Septem-
ber (which is the average end date of the Cold Pool (calendar
day 269) estimated by Chen and Curchitser (2020). The Cold
Pool domain was defined as the area, wherein average bottom
temperature was cooler than 10◦C between June and Septem-
ber from 1972 to 2019. We then developed the three Cold
Pool indices using bottom temperature from ocean models.

The Cold Pool Index (Model_CPI) was adapted from Miller
et al. (2016). Residual temperature was calculated in each
grid cell, i, in the Cold Pool domain as the difference be-
tween the average bottom temperature at the year y (Ti,y) and
the average bottom temperature over the period 1972–2019
(T̄i, 1972−2019) between June and September. Model_CPI was
calculated as the mean residual temperature over the Cold
Pool domain such that

Model_CPIy =
∑n

i=1(Ti, y − T̄i, 1972−2019)
n

, (2)

where n is the number of grid cells over the Cold Pool domain.
The temporal component of the Cold Pool was calculated

using the persistence index (Model_PI). Model_PI measures
the duration of the Cold Pool and was estimated using the
month when bottom temperature rises above 10◦C after the
Cold Pool is formed each year. We first selected the area over
the Cold Pool domain in which bottom temperature falls be-
low 10◦C between June and October. We then calculated the
“residual month” in each grid cell, i, in the Cold Pool do-
main as the difference between the month (as in month-index
“1 = January,” “2-February,” …) when bottom temperature
rises above 10◦C in year y and the average of those months
over the period 1972–2019. Then, Model_PI was calculated
as the mean “residual month” over the Cold Pool domain:

Model_PIy =
∑n

i=1(Monthi, y − Monthi, 1972−2019)
n

. (3)

Finally, we developed a spatial extent index (Model_SEI) to
test the hypothesis that SNEMA yellowtail flounder recruit-
ment is dependent on the amount of Cold Pool habitat avail-
able to the larval settlers (Sullivan et al., 2005). Model_SEI
is estimated by the number of cells where bottom tempera-
ture remains below 10◦C for at least 2 months between June
and September. We also tested Obs_CPI, the Cold Pool index
developed by Miller et al. (2016), to compare two types of in-
dices; one calculated from the observed bottom temperature
(Obs_CPI) and one calculated from the modelled bottom tem-
perature (Model_CPI).

WHAM

We implemented the SNEMA yellowtail flounder assessment
in the Woods Hole Assessment Model (WHAM), a state–
space, age-structured stock assessment framework that allows

explicit linking of population processes to environmental co-
variates (Miller and Stock, 2020; Stock and Miller, 2021).
The WHAM model treated all numbers at age as indepen-
dent random effects (Stock and Miller, 2021). As in Miller
et al. (2016) and Stock and Miller (2021), age-composition
data were assumed to follow a logistic-normal distribution
with pooling of zero observations with adjacent ages. As in the
latest SNEMA yellowtail flounder assessment, weight-at-age,
natural mortality-at-age, and maturity-at-age were treated
as known (see details in Supplementary Material III, S3.1;
NEFSC, 2020). Selectivity of the fleet was divided into six time
blocks and specific selectivity is assigned for each of the three
indices of abundance coming from the spring, fall, and win-
ter NEFSC bottom trawl surveys. Selectivity for the fleet and
indices were assumed to have logistic functional form except
for three blocks for which age-specific, flat-topped selectivity
was used to facilitate convergence.

To conduct 4-year predictions, we fixed weight-at-age and
maturity-at-age at their average values from the last 5 years of
data (NEFSC, 2020). We forecasted the numbers-at-age and
the environmental covariates in the prediction years by con-
tinuing the autoregressive processes.

We fitted the models using the open-source statistical soft-
ware R (R Core Team, 2021) and TMB (Kristensen et al.,
2016), as implemented in the WHAM package (v1.0.4). The
fixed effect parameters, which are estimated by maximizing
the marginal likelihood within R can be found in Supple-
mentary Material IV for the five selected models (see be-
low, the details regarding these models). The random effects
(n = 458) are posterior empirical Bayes estimates (Kristensen
et al., 2016).

Incorporating Cold Pool effects in WHAM

In WHAM, the Cold Pool Index (Xt) in year t was modelled
as a first-order autoregressive, AR(1), process:

Xt ∼ N
(
μX (1 − φX ) + φXXt−1, σ 2

X

)
, (4)

with X1 ∼ N(μX,
σ 2

X

1−φ2
X

) and where μX was the marginal

mean of the process, σ 2
X the variance of the process, and φX

the autocorrelation parameter. The Cold Pool observations,
yt, were assumed to be normally distributed with mean Xt and
variance σ 2

Xt
such that

yt |Xt ∼ N
(
Xt, σ 2

Xt

)
. (5)

The observation variances of each year t, σ 2
Xt

, were treated
as known with year-specific values for Model_CPI, Obs_CPI,
and Model_PI. The observation error variance for Model_SEI
was estimated from the Model_CPI and Model_PI observa-
tion variances, which were based on the same data (GLO-
RYS12v1 and ROMS-NWA) because no direct method was
identified (Supplementary Material III, S3.2).

The Cold Pool indices estimated by the models and the stan-
dard residuals are presented in Supplementary Material III,
S3.3).

As in Xu et al. (2018), we tested different ways to incor-
porate the Cold Pool effect on recruitment, following Iles and
Beverton (1998). The Cold Pool events were hypothesized to
affect the carrying capacity by determining the amount of suit-
able habitat for pre-recruits, and thus its effect on recruit-
ment was modelled as a “limiting factor” in the Beverton–
Holt stock–recruit function (Miller et al., 2016). We also
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Table 1. Negative log-likelihood (NLL), AIC, and difference in AIC (�AIC) for each of the tested models.

Obs_CPI Model_CPI Model_PI Model_SEI NLL AIC �AIC

m1 — Controlling — — −612.84 −1041.7 0
m2 — Controlling Limiting — −613.57 −1041.1 0.6
m3 — Controlling — Limiting −613.31 −1040.6 1.1
m4 — Masking — — −612.04 −1040.1 1.6
m5 — Controlling Masking — −612.94 −1039.9 1.8
m6 — Controlling — Masking −612.85 −1039.7 2
m7 — Limiting Masking — −612.51 −1039 2.7
m8 Limiting — — — −611.40 −1038.8 2.9
m9 — Masking — Controlling −612.24 −1038.5 3.2
m10 — Masking Limiting — −612.19 −1038.4 3.3
m11 — Masking Controlling — −612.09 −1038.2 3.5
m12 — Masking — Limiting −612.11 −1038.2 3.5
m13 Controlling — — — −610.96 −1037.9 3.8
m14 Masking — — — −610.74 −1037.5 4.2
m15 — Limiting — — −610.56 −1037.1 4.6
m16 — Limiting — Masking −611.53 −1037.1 4.6
m17 — — Controlling — −610.44 −1036.9 4.8
m18 — — Masking — −610.39 −1036.8 4.9
m19 — Limiting Controlling — −611.30 −1036.6 5.1
m20 — — Limiting — −609.91 −1035.8 5.9
m21 — Limiting — Controlling −610.80 −1035.6 6.1
m22 — — — Controlling −608.89 −1033.8 7.9
m23 — — — Masking −608.30 −1032.6 9.1
m24 — — — Limiting −607.96 −1031.9 9.8
m25 — — — — −600.56 −1019.1 22.6

tested the Cold Pool effect on the mortality rates for larvae
and young fish via density-independent mortality (“control-
ling factor”) and on pre-recruit mortality and/or growth via
density-dependent process (“masking factor”).

We tested the incorporation of multiple Cold Pool effects
in WHAM. As in Miller et al. (2016) and Xu et al. (2018), we
fitted a set of models including one environmental covariate.
Furthermore, the WHAM model was extended to allow inclu-
sion of two Cold Pool effects into the stock–recruit function
g:

g
(
X1,t, X2,t, St

)

= log
(

α0Steα1X1,t−1+α2X2,t−1

eγ1X1,t−1+γ2X2,t−1 + β0Steβ1X1,t−1+β2X2,t−1

)
, (6)

where St is the SSB at time t and the two different CPIs, Xj,t ,
can each have a controlling (α j), limiting (β j), masking (γ j), or
no (α j = β j = γ j = 0) effect. The incorporation of two Cold
Pool effects simultaneously allowed us to explore combined
effects of the Cold Pool strength, persistence, and area. For
example, a weak Cold Pool event (high CPI) that may induce
an increase of the density-independence mortality, i.e. act as a
“controlling factor,” can have a low spatial extent (high SEI)
that may affect the carrying capacity for pre-recruits as a “lim-
iting factor” (Maunder and Thorson, 2019). The environmen-
tally explicit stock–recruit function, g, then determines the ex-
pected number of recruits at time t + 1, Rt+1, as in WHAM:

log (Rt+1) = log[(g (X1, X2, St )] + εt+1, (7)

with εt+1 = N(− σ 2
R
2 , σ 2

R ), where εt+1 is the stochastic recruit-

ment deviation at time t + 1 with variance σ 2
R and − σ 2

R
2 is the

bias correction term (Stock and Miller, 2021).
In order to visualize and analyze the covariate effects on

the stock–recruitment relationships, we plotted the stock–
recruitment relationship over the range of the different esti-
mated Cold Pool indices (Obs_CPI, Model_CPI, Model_SEI,

and Model_PI) for the four selected models that included en-
vironmental covariate effects (Supplementary Material V).

Analysis

We tested the single effect of the four Cold Pool indices
(Obs_CPI, Model_CPI, Model_PI, and Model_SEI) with three
ways to incorporate each index (controlling, limiting, or
masking factors). Then, we fit a set of models with the com-
bined effects of two Cold Pool indices by testing all pairwise
combinations of Cold Pool indices, excluding the Obs_CPI,
with the three factor types (Table 1). Finally, we fit a model
without any Cold Pool effect as a control. In order to use
Akaike’s Information Criterion (AIC) to compare the afore-
mentioned Cold Pool effect scenarios, the four Cold Pool in-
dices were included in the 25 models. Hence, the observations
are included in the likelihood for the different models, but
whether their effect on recruitment is estimated depends on
the model in Table 1. Based on AIC, we selected five mod-
els for further analysis. These included the best fit (lowest
AIC) model with one Cold Pool index, the two best models
with combined Cold Pool effects (two CPI effects), the best
model including effects of the Obs_CPI, and the base model
without any CPI effects (denoted m1, m2, m3, m8, and m25
in Table 1). For these five selected models, we compared the
estimates of recruitment, SSB, and fully selected fishing mor-
tality (F). These estimates for the three other models with the
best fit and �AIC ≤ 2 (denoted m4, m5, and m6 in Table 1)
are presented in Supplementary Material VI. Furthermore, we
produced two sets of 4-year predictions for years 2019–2022
under the assumption that future F is at the level that pro-
duces the MSY (FMSY; Miller et al., 2016; Xu et al., 2018)
or at the level that produces spawning biomass per recruit
representing 40% of the unfished spawning biomass per re-
cruit (F40%; Miller and Legault, 2017) for the five selected
models.
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Unlike F40%, FMSY is a function of the stock–recruit rela-
tionship and, depending on the type of effect, also the Cold
Pool indices (Miller et al., 2016; Miller and Stock, 2020).
Thus, we estimated FMSY into the projection period over the
range of estimated Cold Pool indices for the four selected
models that included environmental covariate effects (Supple-
mentary Material VII). This provided insights regarding the
variations of the Cold Pool indices on the FMSY estimates.

Next, we explored the impact of incorporating Cold Pool
effects on the retrospective pattern generated through refitting
the model to the data after removing its terminal year sequen-
tially (Mohn, 1999). The five selected models were compared
with respect to the Mohn’s ρ for recruitment (ρR), ρSSB (ρSSB),
and F (ρF), which were calculated from seven retrospective
peels, the typical number used in Northeast US assessments
(Deroba, 2014; Miller and Legault, 2017). To evaluate the
models’ ability to provide consistent predictions, we gener-
ated a series of retrospective predictions (Brooks and Legault,
2016; Xu et al., 2018). For each model, 15 retrospective 4-
year predictions between 2000 and 2014 were generated as in
Xu et al. (2018). The models were fitted to data between 1973
and terminal years from 2000 to 2014, and we produced a se-
ries of 4-year predictions beyond the terminal year of data.
First, we fitted a model to 1973–2000 and predicted recruit-
ment and SSB from 2001 to 2004, then we fitted a model to
1973–2001 and predicted recruitment and SSB from 2002 to
2005, and so on until 2014. In the projection years, we used
the F from the assessment fit using all data from 1973 to 2018.
The process was repeated 15 times between 2000 and 2014.
We compared the recruitment and SSB produced from the 15
retrospective predictions and from the corresponding models
using the full data from 1973 to 2018.

To quantify the effects of incorporating the different Cold
Pool indices in WHAM on the predictive performance, we cal-
culated the mean absolute differences (MAD) between the ret-
rospective recruitment (and SSB) predictions and the models
using the full data for each prediction lead year (from 1 to 4
years) such that

MADt = 1
n

∑n

t=1

∣∣yt,i − xt
∣∣, (8)

where n is the number of years, yt,i is the prediction for the
year t and the lead year i, and xt is the model estimate in year
t when fit to the full data.

Results

Cold Pool indices

The time series of Obs_CPI and Model_CPI are strongly cor-
related (r = 0.78, p-value = 2.26e-10; Table 2) despite large
differences in some years, e.g. 1975, 1990, and 2012 (Figure
1a and Table 2). The increasing trend of Cold Pool indices is
the result of warming ocean temperatures in the MAB since
1980. However, Obs_CPI has higher observation error than
Model_CPI due to the differences in data resolution (resolu-
tion of modelled data is higher than observed data). Model_PI
was negatively correlated with Obs_CPI (r = −0.76, p-
value = 1.9e-09) and Model_CPI (r = −0.93, p-value < 2.2e-
16; Table 2), meaning that a weaker Cold Pool was associated
with shorter persistence time (Figure 1b). Model_SEI was neg-
atively correlated with Obs_CPI and Model_CPI (Table 2), al-
though there was much more variation in the minimum spa-
tial extent than in the maximum (Figure 1c). The intensity and

Table 2. The Pearson correlation coefficients between SNEMA yellowtail
flounder recruitment (in log scale) and the Cold Pool indices (Obs_CPI and
Model_CPI), the persistence index (Model_PI), and the spatial extent index
(Model_SEI).

Variable1 Variable2 Correlation p-value

Obs_CPI Model_CPI 0.78 2.3e-10
Obs_CPI Model_PI − 0.76 1.9e-09
Obs_CPI Model_SEI − 0.64 1.9e-06
Model_CPI Model_PI − 0.93 < 2.2e-16
Model_CPI Model_SEI − 0.87 2.7e-15
Model_PI Model_SEI 0.89 < 2.2e-16
Obs_CPI Recruitment − 0.65 1.5e-06
Model_CPI Recruitment − 0.66 7.4e-07
Model_PI Recruitment 0.60 1.3e-05
Model_SEI Recruitment 0.64 2.6e-06
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Figure 1. Cold Pool time series between 1972 and 2018. Panel (a)
represents the Obs_CPI calculated using in situ observations as
described in Miller et al. (2016) vs. the Model_CPI. Panel (b) shows the
Model-Persistence Index. Panel (c) represents the Model-Spatial Extent
Index. The polygons and the dashed lines represent the 95% CIs.
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frequency of negative Model_SEI events have increased from
1999 onward (Figure 1c). The absolute values of correlations
between the Obs_CPI and the three model-based indices were
between 0.64 and −0.78, and the correlations between all four
Cold Pool indices and the natural log of recruitment estimated
in the last stock assessment (NEFSC, 2020) were between 0.60
and 0.66 (Table 2).

Cold Pool effects within the stock assessment
model

Each of the 25 models (Table 1) converged and produced an
invertible Hessian matrix (see diagnostic plots in Supplemen-
tary Material III, S3.4 and 3.5).

Based on AIC, the models including Cold Pool indices per-
formed better than the model that did not integrate Cold Pool
effects (m25, �AIC = 22.6). Moreover, two of the three mod-
els (m1 and m4) integrating Model_CPI had lower AIC than
all the models that integrated Obs_CPI (m8, m13, and m14).
The three models in which Model_CPI was included as a con-
trolling factor (m1, m2, and m3) performed best. Among these
models, the one with only one index (m1) had slightly lower
AIC than those incorporating two indices (m2, �AIC = 0.6;
m3, �AIC = 1.1). We then focused further analyses on the
three best models (m1, m2, and m3), the best model with
Obs_CPI (m8), and the model without any environmental co-
variates (m25).

Incorporating Cold Pool indices in the selected mod-
els (m1, m2, m3, and m8, hereafter, called g(Model_CPI),
g(Model_CPI + PI), g(Model_CPI + SEI), and g(Obs_CPI),
respectively) resulted in a reduced retrospective pattern of
SSB, F, and recruitment, but was most pronounced in re-
cruitment (Figure 2). Using model-based Cold Pool indices re-
sulted in further reduced retrospective patterns compared to
the Obs_CPI (Figure 2). While the assessment model that used
Model_CPI in combination with Model_PI had only the sec-
ond best fit in terms of AIC, it had the lowest retrospective pat-
tern (reduction of |ρR| by 0.24, |ρSSB| by 0.04 and |ρF| by 0.04
compared with the model without Cold Pool indices; Figure
2).

In the models with environmental covariates, the estimated
stock–recruitment relationship varied depending on the way
we linked the Cold Pool indices to recruitment (“controlling
factor”, “limiting factor”, and “masking factor”; Supplemen-
tary Material V). The variations of the Cold Pool indices are
closely associated to the large inter-annual variations in re-
cruitment (Supplementary Material VIII) with, overall, larger
recruitment associated with stronger and longer or larger Cold
Pool. Moreover, in the model including two covariates, the
stock–recruitment relationship is more closely associated to
Model_CPI than to Model_PI and Model_SEI (Supplementary
Material V).

The five assessed models (and the other best models m4, m5,
and m6 in Table 1) estimated very similar recruitment, SSB,
and F between 1972 and 2018 at first glance (Figure 3a, c, and
e, and Supplementary Material VI). However, the analysis
of estimates relative to Base revealed inter-annual differences
in recruitment, which are, on average, 10.5%, 9.7%, 9.8%,
and 10.0% (2161 t, 2144 t, 1888 t, and 2092 t in absolute
value) for g(Obs_CPI), g(Model_CPI), g(Model_CPI + PI),
and g(Model_CPI + SEI), respectively, over the period 1972–
2018 (Figure 3b). The differences were similar among the
models incorporating model-based indices and reached −27%
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Figure 2. Change in Mohn’s ρ of key quantities (F: “fully selected”
fishing mortality rate, recruitment, and SSB: spawning stock biomass)
relative to the model without environmental covariates for three models
including environmental covariates.

in 2013 and −41% in 2016. g(Obs_CPI) did not show the
same variations in recruitment estimates compared to Base
with largely higher recruitment, for example, in 1976 (+26%)
and 1999 (+30%) and lower recruitment, for instance, in
1974 (−9%) and 1987 (−31%). The SSB and F estimates
showed modest differences relative to Base with average dif-
ferences between 1.6 and 2.4% for SSB and between 1.4
and 1.9% for F (Figure 3d and f). But the differences in
SSB and F estimates using model-based indices are oppo-
site of those from g(Obs_CPI). All models that included
Cold Pool effects had decreased uncertainty in recruitment
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Figure 3. Annual raw (left column) and relative (to the model without environmental covariates, right column) estimates for recruitment (a and b), SSB (c
and d), and fully selected fishing mortality (F) (e and f). Annual estimates from the four selected models are included. The coloured polygons represent
the 95% CIs. On the left column, recruitment, SSB, and F from the five models are represented but overlap on each of the three panels (a), (c), and (e).

of about 5% between 1973 and 2018 compared to Base (left
column, Figure 4). Including the model-based Cold Pool in-
dices also reduced the uncertainty in SSB and F by a modest
amount (1.5–1.9%), whereas the Obs_CPI did not (left col-
umn, Figure 4).

Cold Pool effects on stock projections

We projected the four Cold Pool indices and their errors
through 2021, by continuing the autoregressive process model
(Figure 5). While Model_CPI was projected to increase
slightly, linked to the continued warming of the Cold Pool do-
main, the Obs_CPI was projected to decrease indicating im-
proved ocean conditions for SNEMA yellowtail flounder re-
cruitment. The Model_PI and Model_SEI were predicted to
decrease slightly in the projection years. In summary, the Cold
Pool was projected to be weaker, shorter, and cover less space
using the model-based data products. The uncertainty of the
four estimates was much higher during the projection period
as expected under the AR(1) model when predicting beyond
the period with observations. The uncertainty of Obs_CPI was

also high in 2017 because observed data were not available
this year to calculate the index and it was estimated by the
AR(1) model (Figure 4a).

Overall, the short-term projections of SSB, and recruitment
with F = F40% were higher than stock estimates calculated
with F = FMSY (Figure 6). When F = F40%, fishing mortal-
ity was the same for all models, while FMSY varied with dif-
ferent Cold Pool-recruitment effects (Figure 6f; Supplemen-
tary Material VII). When recruitment was a function of the
Cold Pool and SSB, both recruitment and SSB projections were
much higher than in the model when recruitment was solely
a function of SSB (Figure 6a–d). The three models with the
model-based Cold Pool indices produced similar SSB and re-
cruitment estimates in short-term projections, with 30–31%
higher recruitment and 12–14% larger SSB than Base (Figure
6a–d). Using the observation-based Cold Pool projected even
higher stock estimates, with 60–61% higher recruitment and
29–38% higher SSB than Base over the period 2019–2022
(Figure 6a–d).

Model with two Cold Pool effects had similarly uncertain
short-term recruitment projections compared to Base, while
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Figure 4. Mean change in coefficient of variation (C.V.) for key quantities (F: “fully selected” fishing mortality rate, recruitment, and SSB: spawning stock
biomass) in model and projection years relative to the model without environmental covariates for three models including environmental covariates. For
the projected year, the triangles and the points represent the C.V. for projections in which F = FMSY and F = F40%, respectively.

models including only one effect had 7% and 21% lower un-
certainty (Model_CPI and Obs_CPI), respectively. The uncer-
tainty in SSB in the projection period depended on whether
FMSY or F40% was used, but the mean changes in the coef-
ficient of variation compared to Base did not exceed 4% in
either the projected or model years (Figure 4).

All five models predicted higher recruitment and SSB esti-
mates (coloured lines in Figure 7 and Supplementary Material
IX) than estimates when performing the assessment on full
data (black lines) between 2000 and 2018. Moreover, the esti-
mates of the models incorporating the Cold Pool effects were

generally lower than Base except in a few years (Figure 7 and
Supplementary Material IX).

The incorporation of Cold Pool indices substantially im-
proved the recruitment retrospective predictions after 1 year
compared to Base as suggested by the low MAD ratio (Figure
8). As prediction lead time increased, the recruitment predic-
tions from the four models including Cold Pool indices de-
viated from the estimates when performing the assessment
on full data (MAD ratio close to 1), and were negligibly im-
proved in the third and fourth prediction years. In contrast,
the SSB retrospective predictions were improved (relative to
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Figure 5. Cold Pool indices time series between 2016 and 2021. Panel (a)
the Obs_CPI calculated using in situ data as described in Miller et al.
(2016), and the Model_CPI calculated using ocean model products. Panel
(b) shows the Model-persistence index. Panel (c) represents the
Model-spatial extent index. The polygons represent 95% CIs, and the
dashed line marks the terminal year in the assessment (2018).

the estimates when performing the assessment on full data)
in the second and, to a lesser extent, in the third prediction
years, although the improvement was less pronounced than
for recruitment. For both recruitment and SSB predictions, the
model that incorporated Model_CPI and Model_PI exhibited
the best predictive performance (lower MAD ratio) while the
model with Obs_CPI had the highest MAD ratio.

Discussion

In this study, we used environmental indices from observa-
tions, a regional ocean model hindcast, and a global ocean
reanalysis and incorporated them into a state–space stock

assessment framework for SNEMA yellowtail flounder. Our
study demonstrates that incorporating Cold Pool effects on
SNEMA yellowtail recruitment reduced the retrospective
patterns and improved the predictive skills of recruitment
and, to a lower extent, SSB compared to the base model
without any Cold Pool effects. Furthermore, the performance
of the models incorporating ocean model-based indices was
improved compared to the one with the observation-based
index. However, the incorporation of ocean model-based
indices did not reduce the uncertainties and temporal trends
in stock estimates over the period of 1972–2018. Finally, the
improvement of the recruitment retrospective prediction with
ocean model-based indices suggests that incorporating ocean
model-based indices may benefit the predictive skills of the
stock assessment models.

The mechanisms leading to environmentally
induced variations in recruitment

In this study, we used a state–space age-structured assessment
model to incorporate the Cold Pool effect into the Beverton–
Holt stock–recruit function in the SNEMA yellowtail floun-
der assessment. We explored different mechanisms leading to
environmentally induced variations in recruitment (“control-
ling factor”, “limiting factor”, and “masking factor”) as well
as the simultaneous variations of two of these processes. Our
results showed that the models incorporating Obs_CPI and
Model_CPI performed better than Model_SEI and Model_PI.
Moreover, the inter-annual variations of the two CPIs af-
fect the stock–recruit relationship more than the latter two
(Model_SEI and Model_PI; Supplementary Material V). Our
results also showed that the incorporation of the Model_SEI
and Model_PI in the model as a secondary Cold Pool ef-
fect did not add substantial improvement despite a slight re-
duction of the retrospective patterns of recruitment (Figure
2) and very little improvement of retrospective predictions
(Figure 7).

The three models that performed the best were the ones
in which Model_CPI was a controlling factor, suggesting that
the Cold Pool strength affected both the maximum recruits
per spawning biomass (which could be due to an increase in
mortality rates) and the maximum recruitment (i.e. the car-
rying capacity). Weak Cold Pool events may have impacted
recruitment when SSB was low with decreases in recruits
per spawning biomass, but also when SSB was high with
reductions in the carrying capacity (Maunder and Thorson,
2019). This implies that Cold Pool variations have affected
SNEMA yellowtail flounder recruitment when SSB was high
before the 1990s and continued to affect recruitment after the
1990s when SSB was well-below its past level. This could be
one of the reasons why SSB has remained at a very low level
for over 30 years.

The best model with Obs_CPI assumed that the Cold Pool
was a limiting factor for recruitment, meaning that the Cold
Pool affects only the carrying capacity of the settlement area.
The differences in mechanisms leading to variation in recruit-
ment between Obs_CPI and Model_CPI may be due to the dif-
ferent time period considered. Obs_CPI was estimated using
bottom temperature in September and October, thus it covered
only the end of the settlement season. Therefore, Obs_CPI
only accounts for a portion of the Cold Pool effects on re-
cruitment.
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Using ocean models to integrate environmental
effects

Using bottom temperature from ocean models provides a high
spatial and temporal resolution of historical ocean conditions
3D, which is required to calculate the Cold Pool indices ana-
lyzed in this study. Furthermore, gaps in ocean observations,
such as those in 2017 and 2020 in the Obs_CPI, are avoided
using ocean models. Using bottom temperature from ocean
models also allowed us to explore the effects of alternative
Cold Pool indices to those developed and tested in Miller et al.
(2016) and Xu et al. (2018). This historical time-series of bot-
tom temperature in the northwest Atlantic may be valuable
for other stock assessments that may benefit from a high-
resolution ocean bottom temperature hindcast. Indeed, several
other stocks on the Northeast US shelf have identified links
between bottom temperature and population processes (Sup-
porting Information in Chen et al., 2021), such as Georges
Bank and Gulf of Maine Atlantic Cod (Pershing et al., 2015;
Miller et al., 2018), Georges Bank and Gulf of Maine Atlantic
American Lobster (Tanaka et al., 2019), and SNEMA Winter
Flounder stock (Bell et al., 2018).

A stock assessment model to account for changing
ocean conditions

Over the past 45 years, the Cold Pool has become weaker,
shorter in duration, and smaller in size (Supplementary Mate-
rial X). The SNEMA yellowtail flounder stock may be more
sensitive to these changing ocean conditions because it is the
southernmost stock in the northwest Atlantic (NEFSC, 2012).
Moreover, its recruitment is likely one of the most sensitive
biological parameters to the environment, given that the set-
tlement of the pre-recruits during the Cold Pool event repre-
sents a bottleneck in its life history during which the local and
temporary decrease in bottom temperature impacts the sur-
vival of the settlers (Sullivan et al., 2000, 2005; Haltuch et al.,
2019). This well-defined environmental pressure at a specific
life stage is likely one of the reasons why including environ-
ment in the assessment provides good performance in terms of
retrospective pattern and short-term forecast (Haltuch et al.,
2019). Furthermore, the structure of WHAM may allow im-
proving the assessment framework by combining estimates of
time-varying parameters as random effects and the incorpora-
tion of the interannual variations and the long-term changes
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Figure 7. The retrospective prediction patterns from the model without environmental covariates (Base) and the model in which Model_CPI affects SSB
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in bottom temperature directly on recruitment (Miller et al.,
2016; Stock and Miller, 2021). We suggest the incorporation
of environmental variables in other stock assessment models
using WHAM to determine if retrospective patterns can be
reduced and if prediction skill can be improved.

Application to stock assessments

While reducing the retrospective patterns in the terminal year
model estimate is a key step to improve confidence in the re-
sults of stock assessments, improving the model prediction
skill is crucial to produce short-term (i.e. 1–3 years) popu-
lation forecasts and reliable catch advice. Our results suggest
that the incorporation of the Cold Pool into the Beverton–
Holt stock–recruit function can reduce retrospective patterns
in near-term recruitment predictions and the reduction is more
pronounced when using ocean model-based indices. While the
different models we tested showed similar trends in stock esti-
mates when there were catch and survey data (between 1973
and 2018), recruitment and SSB estimates exhibited large dif-

ferences during the prediction period. The large divergence of
predictions highlights that care should be taken when environ-
mental covariates are incorporated in the assessment model as
this can lead to significant impacts on management decisions
and short-term catch advice. The two fishing mortality scenar-
ios used for the projections period (either F40% or FMSY) in-
duced major differences in projections because FMSY (instead
of proxy as F40%) integrates the environmentally induced vari-
ations in the stock–recruits parameters, which can be valuable
in a highly variable system such as the Cold Pool. However,
the environmental covariates affect FMSY only when they act
as a “controlling factor” (Supplementary Material VII) and
the method used can lead to very high FMSY as we can see
with g(obs_CPI) (Figure 5f).

Future work should evaluate the true bias or relative error
of the predictions of recruitment and SSB through a simulation
study where the true values being estimated are known. Alter-
native hypotheses on the effects of the Cold Pool on recruit-
ment could be treated as operating models and all of the es-
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timating models could be fitted to each hypothetical scenario
and evaluate whether any of the estimation models are ro-
bust to the hypothetical stock–recruitment relationships (Der-
oba et al., 2015; He and Field, 2019; Perretti et al., 2020).
Similarly, a closed-loop management strategy evaluation sim-
ulation study with the same alternative hypothetical states of
nature, but where catch advice is determined using alterna-
tive harvest control rules could determine whether any of the
estimation models provide better management metrics (total
yield, likelihood of being overfished, and so on) than the oth-
ers (Punt, 2003; Szuwalski and Punt, 2013).

To operationalize the environment-linked assessment
model, bottom temperature data would need to be available
at the same time as the biological data. However, reanal-
ysis products such as GLORYS12v1 rely on an intensive
computational process and publish a new year of bottom
temperature data with a lag of more than 1 year, which
is a major operational limitation. A potential way around
this would be to combine the model- and observation-based
approaches by using the ocean model-based index and the
observation-based index. Seasonal statistical models (e.g.
Chen et al., 2021) could also be used to produce short-term

bottom temperature forecasts based on the last bottom tem-
perature observations available. Figure 9 illustrates how the
Cold Pool index could be included in the SNEMA yellowtail
flounder assessment operationally..

In order to improve the incorporation of environmental in-
dices into stock assessment models using output from ocean
models, further initiatives would be necessary to get high-
resolution, skillful bottom temperature over the Northeast US
shelf in near-real time or with a few months lag. This ocean
model output can be used to estimate the different Cold Pool
indices using the method presented in this study. The product,
Operational Mercator global ocean analysis, released by the
E.U. Copernicus Marine Service Information (https://resource
s.marine.copernicus.eu) provides near real-time bottom tem-
perature at a global scale and the model features are similar
to those of GLORYS12v1. However, this product is not rean-
alyzed (in contrast to GLORYS12v1), so its skill to reproduce
the spatio-temporal Cold Pool variations should be analyzed
in detail before it can be used in the stock assessment model.
Furthermore, longer-term hindcasts from the 1970s to present
would avoid combining two ocean models as we did here with
GLORYS12v1 and ROMS-NWA. Another major step to im-
prove the stock assessment short-term projections and refine
fisheries management decisions would be to introduce skillful
seasonal to annual forecasts of bottom temperature over the
Northeast US shelf.

Our study demonstrates that environmental covariates de-
rived from ocean models can be incorporated in stock assess-
ment models. However, the use of ocean models should be
done with caution and a preliminary identification of model
bias is essential. Observation-based climatologies developed
in different regions (e.g. Johnson and Boyer, 2014; Seidov et
al., 2016a, 2017) may be considered as an efficient tool to bias-
correct ocean models when substantial biases are identified.
Moreover, the identification of the well-defined environmen-
tal effect on a specific life stage is another crucial prerequisite
to incorporate robustly environmental covariates in stock as-
sessment model (Haltuch et al., 2019). Hence, skillful ocean
model-based covariates may be used to incorporate environ-
mental effects into well-defined time-varying population pro-
cesses in marine fish stock assessments. Instead of relying on
limited subsurface ocean observations, using ocean model as
environmental covariates in stock assessments may both im-
prove predictions and facilitate operationalization.

Supplementary data

Supplementary material is available at the ICESJMS online.
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Figure 9. Conceptual design of the potential approach to use the latest available Cold Pool index (CPI) in the SNEMA yellowtail flounder stock
assessment. Here, we used the example for the assessment in 2019 if the Cold Pool index had been introduced. In the 2019 SNEMA yellowtail flounder
assessment conducted in summer, GLORYS12v1 could be used to calculate the Cold Pool index between 1972 and 2017 and the observation-based
index could be used for 2018. Moreover, the seasonal statistical predictive model developed by Chen et al. (2021) could be applied using in situ observed
bottom temperature collected by the NOAA NEFSC in the spring of 2019. This statistical model would have produced bottom temperature forecasts
during the Cold Pool season in 2019 which would be used to calculate the Cold Pool index in 2019. The incorporation of the Cold Pool index could have
been used to predict the recruitment in 2020.
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