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Abstract

The development of fisheries in the oceans, and other human drivers such as climate warm-

ing, have led to changes in species abundance, assemblages, trophic interactions, and ulti-

mately in the functioning of marine food webs. Here, using a trophodynamic approach and

global databases of catches and life history traits of marine species, we tested the hypothe-

sis that anthropogenic ecological impacts may have led to changes in the global parameters

defining the transfers of biomass within the food web. First, we developed two indicators to

assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of

biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the

fraction of secondary production reaching the top of the trophic chain. Then, we assessed,

at the large marine ecosystem scale, the worldwide change of these two indicators over the

1950–2010 time-periods. Global trends were identified and cluster analyses were used to

characterize the variability of trends between ecosystems. Results showed that the most

common pattern over the study period is a global decrease in TCI, while the ECI indicator

tends to increase. Thus, changes in species assemblages would induce faster and appar-

ently more efficient biomass transfers in marine food webs. Results also suggested that the

main driver of change over that period had been the large increase in fishing pressure. The

largest changes occurred in ecosystems where ‘fishing down the marine food web’ are most

intensive.

Introduction

Anthropogenic stressors, such as fishing [1], degradation of essential habitats, pollution,

intense activities on coastal areas, invasive species and climate change [2,3] disrupt marine

species and ecosystems, and modify the structure and functioning of their food webs [4–6]. In

particular, the rapid development of global fisheries since the 1950s [7–9] has led to a decline

in predator biomass [10–12], overexploitation and collapse of fish stocks [8], and degradation
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Data Availability Statement: The Sea Around Us

fisheries catch per Large Marine Ecosystem are

publicly available online (http://www.seaaroundus.

org/data/#/lme). The data related to species life

history traits have been taken from FishBase

(http://www.fishbase.org/) and SeaLifeBase (http://

www.sealifebase.org/) in the tables “Ecology”,

“Growth” and “Morphometrics”, or from the

EcoBase repository (section ‘Discovery Tools’;

http://ecobase.ecopath.org/). The Large Marine

Ecosystems maps have been constructed using

the digital maps (section ‘Maps and Data’, and

‘Digital Maps’; http://www.lme.noaa.gov/). The

https://doi.org/10.1371/journal.pone.0182826
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182826&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182826&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182826&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182826&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182826&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182826&domain=pdf&date_stamp=2017-08-11
https://doi.org/10.1371/journal.pone.0182826
http://creativecommons.org/licenses/by/4.0/
http://www.seaaroundus.org/data/#/lme
http://www.seaaroundus.org/data/#/lme
http://www.fishbase.org/
http://www.sealifebase.org/
http://www.sealifebase.org/
http://ecobase.ecopath.org/
http://www.lme.noaa.gov/


of marine habitats [13,14]. Climate change is modifying ecosystems structure and functions

[15] as ocean warming affects marine species’ size, growth, reproduction, distribution and

interactions [16]. These stressors may act in synergy to modify the functioning of marine eco-

systems [17,18]. Such changes deserve to be understood in the perspective of implementing

the ecosystem approach to fisheries [19] and ecosystem-based management [20].

Biomass (or energy) flows from low to high trophic levels of a food web and their changes

over time is a key aspect of ecosystem functioning, integrating the effects of natural and

human disturbances [21]. The biomass flow in an ecosystem is dependent on species’ traits

such as trophic levels, production or consumption rates and their interactions, as well as fea-

tures of the physical environment such as temperature [22]. Ecosystem stressors, particularly

fishing, can drive natural selection in exploited fish populations, as the sustained targeting of

fish above a certain size has been shown to select for individuals with lower asymptotic size

and earlier maturation [23]. Such selection events affect the structure and diversity of commu-

nities in the long term [17], and thus biomass flows in the food web.

In this paper, we investigate the past changes in the trophic functioning of marine ecosys-

tems caused by the human-induced changes in species assemblages. We examine these

changes at the scale of the World’s large marine ecosystems (LMEs) over the 1950 to 2010

period. For this, two parameters, defining the main characteristics of the biomass flow, were

used: the trophic transfer efficiency [24,25] and the residence time of biomass in a food web

[21,26]. Trophic transfer efficiency measures the fraction of biomass transferred by predation

from one trophic level to the next [24], while the residence time of biomass refers to the time a

unit of biomass spends at a given trophic level, before ascending to the next [26]. In other

words, these parameters depend on species assemblages and measure ‘how much’ of the bio-

mass flow is transferred from one trophic level to the next in the food web (transfer efficiency),

and ‘how fast’ the biomass is transferred in the food web (residence time).

We proceeded in four steps: (i) we calculated the trophic transfer efficiency and the resi-

dence time of biomass within each large marine ecosystem using global fisheries catch data per

taxon over the 1950–2010 period; (ii) from these parameters, we derived time-series of inte-

grated indicators of the ecosystem trophic functioning, at the scale of the whole food web

within each LME; (iii) we analyzed how these indicators changed over time, identifying global

trends and their relationship with changes in fishing and climate; (iv) we used cluster analyses

to explore the inter-LMEs variability in trends and to identify groups of ecosystems character-

ized by similar trends. The study of the ecosystem characteristics and changes within each clus-

ter provides a new perspective for understanding the effects of natural and anthropogenic

stressors on the marine food web functioning. The two new indicators and the methodology

presented in this study provide a way to calculate food web functioning metrics and assess

their temporal variability at the food web scale.

Materials and methods

Study area and data

The analysis is based on catch data for 1950 to 2010, assembled by the Sea Around Us fisheries

catch reconstruction (see www.seaaroundus.org; [27]). Note that this database, while present-

ing estimates of fisheries catches by over 200 countries and their oversea territories, thousands

of taxa and four sectors (industrial, artisanal, subsistence and recreational fisheries) and explic-

itly accounting for discards, builds on the Food and Agriculture Organization (FAO) records

of global fisheries landings [27].

Parameters were calculated at the scale of the large marine ecosystems (LMEs). This geo-

graphic breakdown, initially defined by Sherman [28], now contains 66 ecosystems defined by
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their bathymetry, hydrography, productivity, species assemblages and coastal area limits

(www.lme.noaa.gov; S1 Appendix). The 200 mile Exclusive Economic Zones of maritime

countries, which yield about 90% of the global fisheries catch [29], are largely represented by

the system of LMEs. However, due to mainly the unreliability of Chinese fisheries statistics

[30] and the unavailability of detailed catch data from Siberia and other Arctic seas, the follow-

ing LMEs were omitted from this study: East China Sea, Yellow Sea, Chukchi Sea, Beaufort

Sea, East Siberian Sea, Laptev Sea, Kara Sea, Antarctic, Hudson Bay and Central Arctic Ocean

[31–33].

We excluded rare taxa by including only the taxonomic groups that represented at least

0.1% of the total catches for at least one year between 1950 and 2010. Then, we collated biologi-

cal information for the exploited taxa included in the catch database. Trophic level estimates

for each species or taxon and the parameters required as input for empirical equations (such as

growth parameters and ecological features) were taken from FishBase (www.fishbase.org; [34])

for fish and from SeaLifeBase (www.sealifebase.org; [35]) or the EcoBase repository [36,37] for

invertebrates. For each LME and taxon, we used estimates of growth parameters originating

from the same ecosystem when available, and average values from related taxa or larger geo-

graphical entities when not.

Estimation of biomass flow parameters from growth parameters

The residence time of biomass is a key parameter of the trophic functioning of ecosystems, as

implemented in the EcoTroph modelling approach [21], and is related to the life expectancy of

organisms [38]. Here, we first considered the inverse of the residence time, i.e., the speed of

the biomass flow, as a measure of the velocity of transfers within the food web from low to

high trophic levels [39]. Gascuel et al. [39] showed that the speed of the biomass flow can be

identified as the production to biomass ratio (P/B) and can be estimated for any fish species

using the following empirical equation:

P
B

� �

i;j

¼ 1:06� e0;018�Tj � K0:75
i;j ð1Þ

where B is the biomass, P the production, (P/B)i,j is the speed of flow (expressed in TL.year-1)

for taxonomic group i in LME j, Tj is the mean sea surface temperature (SST) in ˚C, and Ki,j is,

in the von Bertalanffy growth model, the rate at which asymptotic size is approached.

The second parameter of interest is trophic transfer efficiency, which is commonly defined

as the ratio between the production of a predator and the production of its prey (Fig 1) and

expresses the fraction of production that is transferred from one trophic level to the next in a

food chain [24,40]. Here, we calculated a partial trophic transfer efficiency, the ratio P/Q

(where Q is the consumption) also called “gross food conversion efficiency” [25], and whose

value is largely determined by the respiration rate (R). We assumed that this P/Q ratio is

related to total transfer efficiency, but this assumption will be further discussed. P/Q was esti-

mated from the ratio between P/B (Eq 1) and Q/B [41]:

Q
B

� �

i;j

¼ 10
7:964 � 0:204 � log10ðWi;jÞ � 1:965 � 1000

Tj
þ 0:083 � Aiþ 0:532 � h þ 0:398 � d

ð2Þ

where (Q/B)i,j is the biomass-specific consumption rate for taxonomic group i in LME j, Wi,j

is the asymptotic weight of the von Bertalanffy growth curve, A is the aspect ratio of the fish

caudal fin, h is 1 if the species is herbivorous and 0 otherwise, d is 1 if the species eats detritus

and 0 otherwise.
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Mean ecosystem SST (Tj), required for Eqs (1) and (2), was obtained from Eppley Labora-

tory (sbir.nasa.gov) as an average for the time-period 1980–2014. Because the study focused on

community level changes, no variation of the temperature was included in the empirical equa-

tions; the von Bertalanffy growth parameters were also assumed to remain unchanged. These

assumptions allowed us to focus on the changes in food web functioning in relation to changes

in species composition, while we did not explicitly account for the effects of changes in diet,

behavior or temperature on individuals or populations. For invertebrates, parameters P/B and

P/Q have been directly estimated from a meta-analysis using the EcoBase repository [36,37].

Trophodynamic transformation: From species to trophic spectra

To implement our trophodynamic approach, taxon-specific data were transformed into data

per trophic class, building for each parameter a trophic spectrum according to an established

methodology [38,42] implemented in the R package EcoTroph [43]. For a value of interest

(usually biomass or catch; production P and consumption Q in our case), a smoothing func-

tion distributed the value for each species over a range of trophic classes, using classes with a

width of 0.1 trophic level unit and a log-normal distribution assumed to mimic the within-spe-

cies variability of trophic levels (Fig 2). This transformation from species-specific values into

trophic classes considers explicitly the structure of the food web, and gives the distribution of

the values of interest along the food web structure.

Trophic spectra were obtained from the sum of all species values (weighted by their catch)

per trophic class (Fig 2). Weighted averages proportional to the catch for each trophic class

were used for the ratios between P/B and P/Q:

P
B

� �

t; j;y

¼

P
i

P
B � Y
� �

i; t; j; y
P

iYi;t;j;y
ð3Þ

P
Q

� �

t; j;y

¼

P
i

P
B � Y
� �

i; t; j; y
P

i
Q
B � Y
� �

i; t; j; y
ð4Þ

Fig 1. Biomass flow transfers between a prey and a predator. Black arrows represent energy transfers or

losses. The prey has a trophic level τ and the predator has a trophic level (τ+1). Fishing mortality F and natural

mortality M0 represent non-predation mortalities. Excretion U and respiration R are the predator metabolic

losses. The partial transfer efficiency (Pτ+1/Qτ+1) and total transfer efficiency (Pτ+1/Pτ) are indicated (derived

from Gascuel et al.,[39]).

https://doi.org/10.1371/journal.pone.0182826.g001
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where P/Q, is the partial transfer efficiency and Y, is the fisheries catch, referring to species i, at

trophic level τ, in LME j and for year y.

From trophic spectra to ecosystem indicators

The two parameters were raised from trophic classes to the entire food web, using two cumu-

lated indicators. Based on preliminary testing, these indicators were calculated between tro-

phic levels 2 and 4, as follows:

• The Time Cumulated Indicator (TCI) is the sum of all partial residence times within each

trophic class:

TCIj;y ¼
Xt¼4:0

t¼2:0

Dt
P
B

� �

t;j;y

ð5Þ

Fig 2. Examples of trophic spectra for the North Sea large marine ecosystem. (a) Catch Spectrum in 1970 where each colored area

represents a smoothed species-specific catch; (b) Catch trophic spectrum, where each curve represent the mean spectrum over 5 years;

light grey to black lines from 1951–1955 to 2006–2010 (c) Speed of flows P/B spectrum from 1951 to 2010 (d) Partial transfer efficiency P/Q

trophic spectrum from 1951 to 2010.

https://doi.org/10.1371/journal.pone.0182826.g002
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where Δτ is the width of the trophic class (i.e. 0.1). Thus, TCIi,j expresses the residence time

of biomass in the food web from TL = 2.0 to 4.0, in LME j, and for year y.

• The Efficiency Cumulated Indicator (ECI) quantifies the fraction of production passing

from TL = 2.0 to TL = 4.0:

ECIj;y ¼
Yt¼4:0

t¼2:0

P
Q

� �Dt

t;j;y

ð6Þ

Finally, indicators were expressed in relative values, relatively to 1950, in order to standard-

ize indicators for all ecosystems and to provide an overview of temporal variations of trophic

functioning within each LME:

TCIR ðj;yn1950Þ ¼
TCIj; y

TCIj; 1950

ð7Þ

and:

ECIR ðj; yn1950Þ ¼
ECIj;y

ECIj;1950

ð8Þ

Data analysis

The expansion of fishing pressure for each ecosystem since 1950 was quantified using three

indices: the primary production required for fisheries divided by the primary production

(PPR/PP) of the ecosystem [44]; the index of the loss of production caused by fishing (Lindex)

[45]; and the percentage of overexploited and collapsed stocks estimated from the stock status

plots (SSPs) [46]. As complementary qualitative fishing indices, the mean trophic level of catch

(MTL) [4], the fishing in balance index (FiB) [47], and the catch biodiversity index of Shannon

(S) [48] were considered. These different indices were useful to distinguish potential bias due

to fisheries catch data from specific processes due to ecosystem change [49] and also give an

overview of the whole food web. For instance, an increase in the Shannon index can emphasize

a diversification of targeted species by fisheries and an increase in the FiB index indicates an

expansion of fisheries. Additionally, the correlation between the indicator and the Shannon

biodiversity index has been tested (S1 Table).

Several indicators were also tested regarding climate effects: mean SST and primary pro-

duction (PP) from the Eppley Laboratory (sbir.nasa.gov), and annual mean SST, PP and O2

from the Geophysical Fluid Dynamics Laboratory (GFDL CMIP5 MR, NOAA, www.gfdl.

noaa.gov). The mean values were used to distinguish between different LMEs, while annual

time-series data helped identify multi-decadal trends and long-term climatic signals across

ecosystems.

Fifty-six LMEs were analyzed for which we had temporal series of ECI and TCI for 61 years

(see data in S2 Table). We first conducted an analysis of worldwide trends of our two ecosys-

tem indicators of trophic functioning (TCI and ECI), as well as fishing pressure and climate

change indicators. Furthermore, we clustered the most strongly exploited ecosystems (10 eco-

systems with the highest mean percentage of overexploited/collapsed stocks on the period

1950–2010 according to the SSPs; S1 Appendix) and the ecosystems with the most intense cli-

mate change effects (10 ecosystems with the highest SST increase between 1980–1985 and

2005–2010; S1 Appendix) to identify patterns characteristic of ecosystems with extreme
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fishing/climate change impacts, and compared to worldwide trends in efficiency/residence

time of biomass.

In order to analyze the variability in trends between LMEs, and to better identify the effects

of the various stressors, a Principal Component Analysis (PCA) and an Ascending Hierarchi-

cal Classification (AHC) of the 56 LMEs were performed independently on both TCIR and

ECIR. We used the R package FactomineR [50], considering indicators as the variables to be

explained, LMEs as statistical levels and the years from 1951 to 2010 as explanatory variables.

Quantitative and qualitative supplementary variables were added to each ecosystem, testing

the effect of the ecosystem fishing regimes, climate change intensity, and their changes over

time (supplementary variables and modalities are detailed in S1 Table).

Sensitivity analysis

We conducted sensitivity analyses to assess the structural and parameter uncertainties of the

results. Firstly, a comparison between a catch-based approach and a biomass-based approach

was made using the North Sea as a case study. Catch and biomass values were extracted from a

trophodynamic model (Ecopath model) of the North Sea [51]. The catch and biomass esti-

mates were then used to calculate trophic spectra of P/B, P/Q and the related indicators (pre-

sented in S2 Appendix). Secondly, we used the established clusters and analyzed the indicators

trends when including finfish species only in order to examine the effect of invertebrates’ fish-

eries development [52] on the indicators trends (presented in S3 Appendix). Finally, we devel-

oped a case by case analysis on a selection of contrasted LMEs, testing at the same time how

indicators changed when calculated on various ranges of trophic levels (partial ECI, ECIR, TCI

and TCIR from TL = 2.0 to TL = b, where b varies between 2.5 to 4.5). This analysis (presented

in S4 Appendix) also provides insights on the way trophic functioning is affected in different

trophic levels.

Results

Worldwide trends in the trophic efficiency and residence time

The TCI and ECI values among LMEs depend in part on the type of ecosystem (Fig 3). The

slowest biomass transfers in the food web were observed for polar ecosystems (TCI>3.5 years

on average, from TL = 2 to TL = 4) and the fastest for the tropical LMEs (TCI = 2 years). Polar

ecosystems had the most efficient trophic transfers, while tropical ecosystems exhibited low

efficiencies between TL = 2 and TL = 4. The mean partial transfer efficiency over one trophic

level was estimated to be 13%, 10% and 7% in polar, temperate and tropical LMEs, respectively.

Upwelling ecosystems (4 LMEs: California Current, Humboldt Current, Canary Current and

Benguela Current) exhibited intermediate TCI values and low efficiencies.

The mean global trend among all LMEs showed a significant and continuous decrease in

TCI from 2.9 years in 1950 to less than 2.5 years in 2010 (Fig 3). The worldwide average ECI

increased from less than 0.009 in 1950 to more than 0.010 in 2010 (Fig 3), which corresponds

to 9.5% and 10.15% per trophic level, respectively. Both global trends are significantly chang-

ing, as suggested by the statistical analysis (S5 Appendix).

The pressure and status indicators showed that the ocean was getting warmer, less oxygen-

ated, with more fish stocks becoming overexploited/collapsed and catches more diverse. SSTs

increased by 0.6˚C from the 1950s to 2010, while oxygen content decreased by 0.003 mol O2.

m-3 during the same period (Fig 3). The stocks that were classified as overexploited or col-

lapsed increased from zero in the 1950s to 56% in 2010, whereas the Lindex increased substan-

tially from the 1950s to the 1990s and then stabilized (Fig 3). The Shannon index, expressing
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the diversity of species in the catches, increased since the 1950s, along with a decrease of the

contribution of finfish in fisheries catches (Fig 3).

The average residence time of biomass and trophic transfer efficiencies of the ten most

strongly exploited ecosystems were higher than the global mean (Fig 4). These ecosystems

were polar or temperate ecosystems, mainly in the North Atlantic (S1 Appendix). The indica-

tors were not only higher in these overexploited ecosystems, but also showed stronger varia-

tions since the 1950s. The residence time of biomass in the food webs fell from 4.5 to 3.2 years

over the study period, a much stronger decrease than the worlwide trend (-28% and -16%,

Fig 3. Worldwide values and trends of transfer efficiency, residence time, fishing and climate

indicators. (a) Mean 1950–2010 values of the Time Cumulated Indicator TCI per type of ecosystem (in

years); (b) Mean 1950–2010 values of the Efficiency Cumulated Indicator ECI per type of ecosystem; (c)

Worldwide trend in TCI; (d) Worldwide trend in ECI; (e) Worldwide SST anomaly relative to the mean of the

time-series (orange, in ˚C, left axis) and O2 anomaly trends (yellow, in mol O2 m-3, right axis) (f) Worldwide

trends in the fishing pressures indices: SSP (red, in % on the left axis) and Lindex (orange, right axis); (g)

Shannon index (h) Percent of fish species. Colored sectors refer to bootstrap confidence intervals of the mean

of LMEs, at 95%.

https://doi.org/10.1371/journal.pone.0182826.g003
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respectively). The trophic efficiency indicator increased by 39% (from 10.7 to 12,5% when

expressed over one TL), generally higher than the worldwide trend (+15%; from 9.4% to 10.1%

over one TL). In contrast, the 10 LMEs selected for their important rise in SST, did not appear

to exhibit any particular pattern in their functioning when compared to the worldwide trends.

Faster biomass transfers in food webs

Four patterns of evolution in the time indicator were identified among the 56 LMEs from the

Principle Component Analysis (Fig 5; Table 1). Clusters 1 and 3 were characterized by high

fishing pressure, while cluster 2 was composed of more lightly exploited ecosystems. In cluster

4, the fisheries developed after the 1960s and very few catch occurred in the 1950s.

Cluster 1 aggregated 16 ecosystems, including ecosystems that exhibited the highest fraction

of overexploited or collapsed stocks and ecosystems that were already intensively exploited in

the 1950s (mainly from polar regions and the North Atlantic), but where the fishing pressure

decreased since the 1980s. In those ecosystems, the TCI sharply decreased from high values

over the whole period, from 3.8 years in 1950 to 2.6 years in 2010 (Fig 5). At the same time, the

amount of total catch and its diversity (Shannon index) remained almost constant at low levels

while the mean trophic level of catch, the FiB index, and the fraction of fish species decreased

over time. Such trends remained when only finfishes were considered in the analysis (Cluster1

in S3 Appendix), suggesting that the development of invertebrate fisheries was not the major

driver of the indicator trends. However, when all species are included, the decrease is stronger,

suggesting an influence from increasing invertebrates catch.

Fishing pressure was also important in cluster 3, as indicated by Lindex and PPR/PP, and

includes two upwelling, some temperate ecosystems such as the North Sea, and a majority of

the East Asian LMEs. In this cluster, fast trophic transfers occurred in the 1950s, slowing in the

mid-1980s (from 2.3 to 2.7 years), while the catch amount increased (from 1 to 2t�km-2). Since

the late 1980s, the total catch and its diversity stabilized, while the TCI decreased from 2.7 to

2.3 years in the 2010s, revealing faster trophic transfers in the recent period.

Ecosystems in which fisheries developed later and targeting a larger diversity of species

(e.g., tropical ecosystems; cluster 2), were associated with a lower fishing pressure. However, in

Fig 4. TCI and ECI trends on an a priori selection of LMEs. (a) Time indicator nominal values trends (b) Efficiency indicator

nominal values trends–‘Group 1’ gathers the 10 most strongly exploited ecosystems (according to their SSPs); ‘Group 2’ gathers the

10 ecosystems with the strongest increase in SST since 1990; ‘All LMEs’ gathers the 56 LMEs. Colored sectors refer to bootstrap

confidence intervals of the mean, at 95%.

https://doi.org/10.1371/journal.pone.0182826.g004
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Fig 5. Results from the Principle Component Analysis and clustering on the Time Cumulated Indicator TCIR. (a)

Worldwide map of the clusters; Mean trend per cluster from 1950 to 2010 in: (b) Relative to 1950 TCIR (colored sectors refer to

bootstrap 95% confidence intervals); (c) Nominal values of TCI; (d) Number of overexploited and collapsed stocks in SSPs (%);

(e) FiB index; (f) the Mean Trophic Level; (g) the Shannon biodiversity index.

https://doi.org/10.1371/journal.pone.0182826.g005
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those ecosystems, the residence time of biomass decreased from 2.7 years in 1950 to 2.3 years

in 2010. In the East Bering Sea and the Aleutian Islands (cluster 4), the TCI strongly increased

until the early 60s (from less than 3 years in 1950 to more than 5 years in 1962) due to the

development of fisheries. Before 1960, very small catches were taken. The trend after 1960 was

similar to those of clusters 1 or 2.

Diversity of trends in trophic efficiencies

More disparity was found in the clustering of LMEs from the trophic transfer efficiency indica-

tor, with greater increases than decreases since 1950 (Fig 6). The California Current forms a

cluster by itself because of its increasing efficiency starting from very low efficiency values in

the 1950s, when the catch of California sardine was highest.

Similar to cluster 1 in the TCIR analysis, cluster 4, where fishing pressure was high in the

early years and where the overexploitation or collapse was highly represented, exhibits large

changes in functioning: trophic efficiency increased substantially (from 8.2% in the 1960s to

11.4% per TL in 2010). The increase mainly occurred over the 1970s, jointly to a large decrease

in the Lindex, FiB index and MTL. Also, its correlation with the Shannon diversity index was

positive for the majority of LMEs, while the fraction of fish in total catches decreased

(Table 1). The trend in cluster 4 was not only due to the emergence of invertebrates in the

catch but also to changes among trophic class of finfish species (S3 Appendix).

Two other groups of ecosystems are under intensive fishing pressure: clusters 1 and 2. In

cluster 1 (including the North Sea), where the total catch and Lindex increased and reached

high values over the time-period, the mean efficiency decreased from 13.7% to 11.2% per TL.

The diversity of catch was rather low, while the fraction of fish species remained large and con-

stant since 1950 (Table 1). In cluster 2, even though the fishing pressure was large, the trophic

efficiency indicator was almost stable (increased from 9.3% to 9.9% per TL over the last two

decades). In contrast to cluster 1, the diversity of the catch was high and increasing.

As for the time indicator, cluster 3, which includes a majority of tropical ecosystems, was

characterized by a low but increasing fishing pressure and a high diversity in catch, especially

during the two earlier decades. Efficiency increased slightly, from 7.3% per TL in 1950 to 8.3%

in 1980, before stagnating over the second half of the study period. However, the trend of this

cluster was not consistent when including only finfish species (S3 Appendix).

Discussion

Building indicators to explore the food web functioning

The Time Cumulated Indicator. TCI, expressed as the mean B/P ratio per trophic class,

quantifies the residence time of biomass in the food web [26], and indicates how much time is

required to transfer energy from TL = 2.0 to TL = 4.0. This indicator depends on the mean life

expectancy of organisms at each trophic level: the shorter the life-expectancy, the more the fish

are eaten at young age, and the faster the biomass moves up from a given trophic level to the

next. In other words, what the indicator measures is not the overall fraction of short-living spe-

cies in the ecosystem, but rather within each trophic class. Therefore, faster biomass transfers

indicate that the fraction of short-living species increased in at least one trophic class (the

impacted trophic classes was specified using partial TCI; S4 Appendix).

Although fishing obviously decrease the life expectancy of individuals in exploited stocks,

the TCI indicator does not consider changes which may occur at the population level. This

demographic effect will tend to reduce residence times in the food webs. As a consequence, the

observed decrease in the indicator is considered an underestimate of the real trend which may

have occurred over the period.
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The Efficiency Cumulated Indicator. The ECI indicator is derived from the transfer effi-

ciency and is commonly used in the field of trophic ecology, for instance, for the calculation of

fishing pressure indicators [31,49] or in ecosystem models [11,53]. Here, using the P/Q ratio

to build the Efficiency Cumulated Indicator ECI, we mainly focused on losses from respiration

and excretion (Fig 1). However, we did not account for non-predation natural mortalities, for

example, the transfer of energy from organisms to detritus after their death. Thus, ECI may

over-estimate trophic transfer efficiency, particularly for organisms with less predation pres-

sure or which are ‘trophic dead end/energy roundabout’ species [54]. In addition, we did not

account for fishing mortalities because they relate to changes occurring at population level,

Table 1. Clustering based on trends in the Time Cumulated Indicator (TCIR) and the Efficiency Cumulated Indicator (ECIR): Selection of results

regarding clusters description by supplementary qualitative variables.

Indicator and

Cluster

Qualitative modalities Occurrence in all LMEs

(%)

Selected in the cluster

(%)

Occurrence in the cluster

(%)

p-value

TCIR Cluster 1 (16

LMEs)

FiB decreasing 7.1 100.0 25.0 0.005**

PPR/PP decreasing 8.9 80.0 25.0 0.021*

MTL decreasing 44.6 44.0 68.8 0.028*

Overexploitation>50% (1990–

2010)

51.8 41.4 75.0 0.033*

Prop. of fish species decreasing 58.9 39.4 81.3 0.036*

FiB increasing 83.9 21.3 62.5 0.013*

Cluster 2 (21

LMEs)

MTL stable 51.8 51.7 71.4 0.027*

Tropical ecosystems 48.2 51.9 66.7 0.038*

Cluster 3 (17

LMEs)

High Lindex >0.05 (1990–2010) 35.7 55.0 64.7 0.004**

High catch >1t/km2 (1990–2010) 51.8 44.8 76.5 0.017*

1t/km2 < Catch high <2t/km2 26.8 53.3 47.1 0.034*

Lindex low (<0.01) 26.8 6.7 5.9 0.019*

Cluster 4 (2 LMEs) High MTL (>3.60) 19.6 18.2 100.0 0.036*

Polar ecosystems 21.4 16.7 100.0 0.043*

ECIR Cluster 1 (7 LMEs) PPR/PP<10% 35.7 0.0 0.0 0.036*

TCI decreasing 69.6 2.6 14.3 0.002**

Cluster 2 (29

LMEs)

+0.1˚C< SST increase <+0.7˚C 57.1 65.6 72.4 0.020*

Temperate ecosystems 23.2 76.9 34.5 0.045*

High Lindex >0.05 (1990–2010) 35.7 70.0 48.3 0.049*

FiB decreasing 7.1 0.0 0.0 0.048*

Prop. of cephalopods: 0–1% 46.4 34.6 31.0 0.020*

Cluster 3 (10

LMEs)

Catch increase 50.0 32.1 90.0 0.006**

Tropical ecosystems 48.2 29.6 80.0 0.033*

Cluster 4 (9 LMEs) Prop. of fishes decreasing 58.9 27.3 100.0 0.005**

FiB decreasing 7.1 75.0 33.3 0.011*

TCI decreasing 69.6 23.1 100.0 0.028*

Correlation to Shannon >0.5 33.9 31.6 66.7 0.040*

Lindex low <0.01 (1990–2010) 25.0 35.7 55.6 0.040*

PPR/PP increasing 87.5 10.2 55.6 0.010*

Modalities are ranked from the over-represented to under-represented in each cluster. Detailed modalities tested can be found in S1 Table and detailed

results can be found (de cumulativethe Tlated index (ECI)nce 1950e of biomass in S6 and S7 Appendices. P values measure if occurrence of the modality

within the cluster differ from the one in the whole studied population;

‘*’ stands for p-value<0.05,

‘**’ for p-values<0.01.

https://doi.org/10.1371/journal.pone.0182826.t001
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Fig 6. Results from the Principal Component Analysis and clustering on the ECIR. (a) Worldwide map of the clusters;

Mean trend per cluster from 1950 to 2010 in: (b) Relative to 1950 ECIR (colored sectors refer to bootstrap 95% confidence

intervals); (c) ECI nominal values; (d) Lindex of fishing pressure; (e) Difference SST(y)−SST(1950); (f) the Shannon

biodiversity index (g) Fraction of finfish species (%).

https://doi.org/10.1371/journal.pone.0182826.g006
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while our study aims to focus on community level and on changes in species assemblages.

However, as fishing removes part of the production from exploited populations, ECI may also

over-estimate trophic transfer efficiency particularly in ecosystems where fisheries catches

account for the removal of production from specific trophic levels over the last decades.

The geographic pattern exhibited by both indicators appeared globally consistent and

seemed to confirm their ability to capture the variability in trophic functioning among ecosys-

tems. The efficiency indicator ECI showed that LMEs tended to be more efficient in high lati-

tudes and less efficient in the tropics (Fig 3), which had already been demonstrated in other

studies [55,56]. As well, the most efficient ecosystems were also characterized by long residence

time of biomass in the food web through TCI (Fig 3). This pattern is due to temperature,

explaining that polar ecosystems generate slow biomass transfers compared to tropical ecosys-

tems [25,26,53].

Data uncertainties

TCI and ECI are based on catch data and the use of catch data to infer changes in biomass in

the food web is an issue that is contentious in the scientific literature [57,58]. The sensitivity

analysis performed on the North Sea revealed a large difference in P/B and P/Q trophic spectra

for low trophic levels and in the resulting indicators (S2 Appendix). Such difference was

expected since catch data allowed only to study the exploited part of the food web, which thus

does not consider low trophic levels and especially phytoplankton. In contrast, for intermedi-

ate and high trophic levels, the spectra weighted by catch or by biomass were very close,

because a large part of the biomass is accessible to fishing. Thus, our trophic indicators consti-

tute acceptable proxies to study the trophic functioning of the fishable part of food webs only.

However, some species were not well represented in catch even if important for the function-

ing of food webs. This was for instance the case of jellyfish, which influence the functioning of

many ecosystems through competition with forage fish [54], and can drive ecosystem shifts

[18,59].

Using catch data instead of biomass for indicators computations may have also led to bias

due to changes occurring in fishing strategies or fishing regulations. Such type of bias can be

detected in our study. For example, some ecosystems such as the Insular Pacific-Hawaiian

demonstrated large shifts in the level and composition of catches, caused by changes in fisher-

ies regulations introduced in the 1980s [60]. More generally, the decrease in the fraction of fin-

fish species observed in some ecosystems (or clusters) suggests either a potential bias due to

the development of fisheries targeting invertebrates since the 1950s [52], or a real increase in

abundance of invertebrate species in some ecosystems due to fisheries effects or climate change

[61,62]. However, the two effects can be disentangled using different indicators such as the FiB

index [49]. Furthermore, the complementary analysis on finfish we performed demonstrates,

at least partially, that the main trends observed for the various clusters (e.g. clusters 1, 2, 3 for

TCI and clusters 1 and 4 for ECI) were not only due to a development of invertebrate fisheries

(S3 Appendix). Additionally, conducting experiments could help to understand better the

indicators [63].

Towards faster and more efficient trophic transfers in marine food webs?

Trophic transfers are becoming faster. Results demonstrated a significant worldwide

decreasing trend in TCI, which appeared to be a result, at least in part, of the global increase in

fishing pressure. The decline was two times larger in the ten ecosystems where the fraction of

overexploited/collapsed stocks is the highest (-28%), and -32% on average for the ecosystems

in cluster 1. In this cluster, characterized by intense fishing, the large decrease in the MTL, FiB
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index, and fraction of finfish in the catch suggests a clear “fishing down the food web” syn-

drome [4,49]. Over-exploitation of top-predators may have progressively altered the structure

of the ecosystem, leading to the dominance of small, fast-growing organisms. As a result, bio-

mass transfers would drastically be faster at the scale of the whole food web and within trophic

classes.

Ecosystems where fisheries developed more recently (cluster 2), for example in the South

Hemisphere [7], also demonstrated a transition to faster biomass transfers since the 1950s.

However, the increase in catch and in catch diversity suggest that our trophic indicators esti-

mated from catches might be biased by “fishing through the food web” [64] and/or “fisheries

expansion” [7,65,66]. Such processes, related to changes in the fishing strategies and targeted

species, may have partially occulted the real changes occurring in ecosystems. Nevertheless,

the sensitivity analysis on the development of invertebrate fisheries (S3 Appendix) indicates

that those fisheries do not fully influence the trend in cluster 2, suggesting potential changes in

food web functioning of the finfish community since 1950. As well, the fisheries development

observed in cluster 4 since the 1970s is characterized by a clear increase in the mean trophic

level of the catch, suggesting a “fishing up marine food webs” effects [67]. For clusters 2 and 4,

even if the functioning changes are not directly detected, they might still occur and those clus-

ters allow identifying real changes in the other clusters.

Results also highlighted that environmental forcing is a driver of some changes observed in

the speed of trophic transfers. This is the case for upwelling ecosystems, such as the Humboldt

Current and some Asian LMEs, where the large changes in the abundance of Sardinops sagax
influenced the residence time of biomass in ecosystems. Those ecosystems explained the trend

of cluster 3, where TCI increased when the sardine was abundant in ecosystems and in the

catch (this species has a high residence time in its trophic class). This species abundance was

closely linked to specific temperature regimes [68], eventually resulting in some change in the

food web functioning.

Increasing indicator of the transfer efficiency?. Our results largely suggest that transfer

efficiency is highly variable among ecosystems (from 4.2% per trophic level to 15.8%) and

since 1950, which is concordant with other studies [44,69]. Some authors consider that stress

could generate a decrease [70–72] or an increase [25,73] in trophic transfer efficiency. We

observed a worldwide slight increase in the ECI, over the study period from 9.5% in 1950 to

10.2% in 2010. This result needs to be taken carefully, considering the influence of invertebrate

fisheries (S3 Appendix). Here again, the increase in fishing pressure appeared to be the main

driver of change. The cluster analysis showed that the largest rises in the mean ECI indicator

are observed for ecosystems of cluster 4, where the fishing indicators suggested a very high

fishing pressure and a clear case of “fishing down the marine food web” [4]. In this cluster, the

fraction of secondary production reaching trophic level 4 (ECI) doubled since 1950.

The general rule of an increasing trophic efficiency over time has a few exceptions, particu-

larly the 7 LMEs included in cluster 1, whose trophic efficiency was decreasing, especially dur-

ing the first decades of the study period. These ecosystems were characterized by high fishing

pressures, but also by a rather low and stable diversity in catch and a large fraction of finfish.

These ecosystems were also exceptions to the general rule of a decreasing TCIR. The North Sea

case study (S4 Appendix) exhibited a transition within several trophic compartments to less

efficient species in term of trophic transfers and with identical/higher life expectancies.

Consequences of faster transfers and higher trophic efficiencies. The worldwide

decrease in the residence time of biomass in the food web may have resulted in a decrease in

the overall biomass of marine ecosystems, especially at high trophic levels. The shorter life

expectancy of organisms results in faster trophic transfer through trophic level classes, and

smaller biomass. Such a quasi-physical relationship between the speed of the trophic flow and
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the abundance of living organisms is predicted from numerical modeling of trophic dynamics

[21,39,42]. At the community level, the fishing-induced selection of short-living species

induces higher mean natural mortalities, thus adding to the direct impact of fishing, an indi-

rect impact through changes of the life history traits of species assemblages.

Fishing-induced modification of the trophic structure may increase the resilience to anthro-

pogenic pressures [39]. Fishing takes away the long-lived slow growing species, and leaves the

fast growing short-lived species, which are less vulnerable to fishing [74]. Nevertheless, short-

lived species are also more sensitive to environmental-driven fluctuations [68], leading to

more variations in ecosystem structure and functions. This is consistent with E. Odum’s theory

of ecosystem maturation [22,75], which predicts that perturbed ecosystems have more chaotic

dynamics.

The detailed analysis of indicators related to fishing strategies showed that the general rule

of an increasing transfer efficiency inferred from fisheries catch reflects realistic changes

occurring in the food webs, at least in part. Such changes towards more efficient species can be

interpreted as an ecosystem’s adaptation to stress, and more specifically to increasing fishing

pressures. This change did not mean that the functioning of the food web was improving, espe-

cially in terms of biomass flow transferred to top-predators. First, we underlined above that

our ECI indicator only relies on partial trophic efficiencies, not taking into account the

increase in fishing mortality and the variability in the mean non-predation natural mortality.

Such increases of non-predation mortality would contribute to reduce the size of the biomass

flow available to the higher part of the food web. Second, even if the fraction of biomass flow

reaching high trophic levels was increasing, the biomass flow may be reduced, eventually lead-

ing to a smaller total biomass transfer towards top-predators. This is what occurred, for

instance, in the Newfoundland-Labrador Shelf ecosystem which exhibited a strong decline of

the biomass [70], a higher ECI and reduced TCI. There is little doubt that such type of change

affected the trophic functioning of marine ecosystems worldwide, leading to a global decrease

in the biomass flow available for top-predators.

Our results also suggested that indicators are interdependent and that we see simulta-

neously transitions to faster/more efficient or longer/less efficient transfers. This assumption is

not valid for all trophic class and ecosystems (as suggested in S4 Appendix), but it could be

interpreted as an adaptive response of the food web to allow faster and more efficient transfers

under ecosystem perturbation. The theoretical basis of such ecological responses to perturba-

tion should be explored in future studies.

Towards an increasing impact of climate change

Even if some climate change effects on marine communities have already been shown at the

global scale [76], our study did not demonstrate any climate change impact. The selection of

the 10 LMEs demonstrating the highest increase in SST since the 1980s did not exhibit any

particular pattern. Another classification was tested based on observed temperature data [77],

but did not show any particular pattern either. One reason may be that climate change effects

on trophic functioning are harder to detect because of synergistic interactions with fisheries.

Several studies showed that changes in community structure and ecosystem productivity in

the recent decades have been driven by both climate and fisheries [17,18]. Another hypothesis

is that fishing has been the dominant factor shaping trophic transfer in LMEs, and might be a

predominant factor on ecosystems even in the recent decades. However, the impact of climate

change should increase in the coming years, especially as large scale changes in species distri-

bution and biogeography are predicted for the world oceans under climate change [78–80].

The consequences should be a higher abundance of short-living species in temperate and polar
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LMEs. Some scenarios also predict an increase of pelagic and demersal invertebrates [81].

Such changes could alter the functioning of marine food webs, in which faster transfers could

appear. Furthermore, food webs exploited by fisheries might be more sensitive to climate

change [17], to trophic cascades [5] and to shifts in the ecosystem species assemblages, and the

resulting structure and functions. By considering another spatial resolution for the two indica-

tors, climate change effects need to be further explored.

Overall, this study improves our understanding on the effects of fishing and environmental

changes on the trophic dynamics of the world’s marine ecosystems. The results challenge the

widely used assumption that trophic transfer efficiency is relatively constant across different

ecosystems, time and trophic entities. Instead, we showed that trophic transfer varies between

ecosystems, which is partly driven by different levels of disturbance. Our findings improve the-

oretical understanding of trophodynamics and the accuracy of ecosystem modelling, as well as

their applications for understanding the effects of climate change or assessing fisheries man-

agement options.
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