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A B ST R A CT 

Understanding how species can form and remain isolated in the marine environment still stimulates active research. Here we study the differ-
entiation and the possibility of hybridization among three temperate octocorals: Eunicella cavolini, Eunicella singularis, and Eunicella verrucosa. 
Morphologically intermediate individuals have been observed between them. Among these three species, E. singularis is the only one described 
in mutualistic symbiosis with photosynthetic Symbiodiniaceae. The symbiosis between Symbiodiniaceae and scleractinian corals is well studied, 
especially in the context of the response to anthropogenic climate change. Nevertheless, the potential role of symbiotic interactions in speci-
ation processes remains unknown in cnidaria. We tested here the possibility of hybridization between symbiotic and non-symbiotic Eunicella 
species. Through multivariate analyses and hybrid detection, we prove the existence of on-going gene flow between E. singularis and E. cavolini, 
with the observation of F1 and F2 hybrids, and backcrosses. Demographic inferences indicate a scenario of secondary contact between these two 
species. Despite current gene flow, these two species appear genetically well differentiated. Our data also suggest an intermediate abundance of 
Symbiodiniaceae in the hybrids of the two parental populations. We discuss the evolution of the Symbiodiniaceae/cnidarian symbiosis in the 
light of our results.
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I N T RO D U CT I O N
As corner stones of evolutionary biology, species and speciation 
still raise a wealth of questions fuelled by the technological and 
conceptual advancements in genomics. Genomic data allow 

testing hypotheses about species boundaries and origins. Named 
species are indeed hypotheses, built on available data, that can 
be rejected or validated through the integration of additional 
data and/or the use of additional criteria based on evolutionary 
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concepts (Pante et al. 2015b). Sound species delimitations are 
useful in estimating a species’ range and biodiversity patterns 
(Muir et al. 2022, Coelho et al. 2023), to avoid biases in studies 
of connectivity (Pante et al. 2015b), and of adaptive abilities 
(Brener-Raffalli et al. 2022). However, proposing sound spe-
cies delimitation can be problematic because different delimita-
tion criteria may bring contradictory conclusions about species 
boundaries (the Grey Zone of de Queiroz 2007). This Grey 
Zone corresponds to puzzling cases such as the absence of gene 
flow among morphologically undifferentiated sets of organisms 
(i.e. cryptic species, Cahill et al. 2024), or conversely, the detec-
tion of gene flow among sets of organisms recognized, based on 
morphological distinctiveness, as distinct species (Leroy et al. 
2020). Evolutionary inferences, based on genomic data, allow 
testing scenarios of speciation and current gene flow: this pro-
vides a better understanding on the origin and persistence of 
species in light of genomic divergence (Roux et al. 2016, De Jode 
et al. 2023).

In the marine realm, the question of speciation is considered 
as particularly confusing. Notably, how new species can ori-
ginate from populations with large effective size associated with 
high level of gene flow is still abundantly debated in the literature 
(e.g. Palumbi 1992, Mayr 2001, Faria et al. 2021). Difficulties in 
sampling and rearing organisms also hamper experiments to test 
reproductive isolation (Faria et al. 2021). Important progress 
in developing methodologies allow to better understand spatial 
patterns of genetic structure in marine organisms, for example 
through the study of oceanographic connectivity (Reynes et al. 
2021), clines in allele frequencies (Gagnaire et al. 2015), and hy-
brid zones (Bierne et al. 2003).

In this context, the role of symbiotic interactions in repro-
ductive isolation remains poorly investigated. There are various 
examples of the involvement of microbial species in repro-
ductive isolation, especially in insects (Brucker and Bordenstein 
2012). For marine species, microbial communities have been 
mainly explored in light of adaptative evolution (Rosenberg 
and Zilber-Rosenberg 2018). Shallow water scleractinian corals 
(hexacorals) are usually associated with various species of 
photosynthetic zooxanthellae, in the family Symbiodiniaceae 
(Cairns 2007, LaJeunesse et al. 2018). Changes in associated 
Symbiodiniaceae can impact the thermotolerance of the coral 
holobiont, and the possibility of adaptation facing climate 
change (Berkelmans and van Oppen 2006, van Oppen and 
Medina 2020). Inferences from the phylogeny of anthozoans 
(hexacorals and octocorals) have shown multiple acquisitions of 
the symbiotic state throughout evolution (Cairns 2007, Campoy 
et al. 2020, Mc Fadden et al. 2021). The symbiotic interactions 
between anthozoans and Symbiodiniaceae provide important 
mutualistic benefits especially from a nutritional point of view 
(Furla et al. 2005). These interactions require specific adaptations 
for the animal host as, for example, protection against oxygen 
produced by photosynthesis (Furla et al. 2005). Therefore, one 
can hypothesize that in hybrids such adaptations could be modi-
fied and a breakdown of symbiosis could occur, leading to re-
duced fitness. The association with Symbiodiniaceae can range 
from mutualism to parasitism (Sachs and Wilcox 2006, Lesser 
et al. 2013, see also Matz 2024), and a change in the genomic 
background in hybrid hosts could modify the nature of sym-
biosis as well. The presence of Symbiodiniaceae could then be 

involved in genetic incompatibilities with the host genome, as 
previously observed with bacterial species (Bordenstein 2003, 
Brucker and Bordenstein 2012). All these observations raise the 
question of the potential role of Symbiodiniaceae in speciation 
and reproductive isolation in anthozoans. This topic has been 
poorly explored up to now. In Plexaura octocorals, two incom-
pletely isolated species have been shown to present different 
populations of Symbiodiniaceae, questioning their role in spe-
cies boundaries (Pelosi et al. 2022).

Here we explore the robustness of species limits between 
named species of the gorgonian genus Eunicella (Octocorallia, 
Eunicellidae) documented as displaying different symbiotic re-
lationships. In shallow conditions (above 50 m depth), three 
Eunicella species are mainly present in the Mediterranean Sea: 
Eunicella cavolini (Koch, 1887), Eunicella singularis (Esper, 
1791), and Eunicella verrucosa (Pallas, 1766). These three spe-
cies have partially overlapping ranges, and they can be observed 
in sympatry in the area of Marseille (France). Eunicella singularis 
hosts Symbiodiniaceae corresponding to the Philozoon genus 
(Forcioli et al. 2011, LaJeunesse et al. 2018, 2022, Porro 2019), 
whereas the two other gorgonian species are devoid of these 
symbionts (Carpine and Grasshoff 1975). The Symbiodiniaceae 
contribute to the carbon metabolism of E. singularis, but a non-
symbiotic aphyta morph has already been observed (Gori et al. 
2012). The lack of variability in mitochondrial DNA does not 
allow to distinguish these three species (Calderón et al. 2006), 
and a study using two nuclear introns suggested the possibility 
of hybridization between E. cavolini and E. singularis (Aurelle et 
al. 2017). Moreover, demographic inferences based on a large 
number of nuclear loci in E. cavolini and E. verrucosa indicated 
the possibility of current gene flow between these two species 
(Roux et al. 2016). However, these data are incomplete because 
individual identified as E. singularis, nor individuals that are 
morphologically difficult to attribute to a named species (which 
could be hybrids) have been analysed. Here, we will further in-
vestigate these topics with the following objectives: (i) estimate 
the genomic differentiation among these three species and test 
for species limits, (ii) test whether symbionts are present or ab-
sent in the hybrids, to look for a possible breakdown in symbi-
osis, and (iii) infer scenarios of speciation. Studying the history 
of speciation is useful to infer how divergence happened, and 
to test the possibility of current and past gene flow. Analysing 
the hybrid status on morphologically intermediate individuals 
allows to further test if hybridization is still on-going. We used 
restriction sites associated DNA sequencing (RAD-sequencing; 
Baird et al. 2008) to test species limits and hybridization. We 
then used transcriptome data for demographic inferences, for 
the analysis of putative hybrids, and to test for the presence of 
Symbiodiniaceae. The results will be useful to better understand 
the evolution of these species in different environments and par-
ticularly the possible impact of hybridization in adaptation to 
changing environment.

M AT E R I A L  A N D  M ET H O D S

Species distribution
Eunicella verrucosa is present both in the Eastern Atlantic Ocean 
and the Mediterranean Sea (Carpine and Grasshoff 1975). In 
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the Atlantic, E. verrucosa can be found from Ireland and west 
coasts of Britain to Angola (Grasshoff 1992, Readman and 
Hiscock 2017). Eunicella verrucosa has been observed in the 
North Western Mediterranean Sea, in Sardinia (Canessa et al. 
2022), and in the Adriatic and Aegean Seas (Chimienti 2020). 
In the Mediterranean Sea, E. verrucosa can be observed from 
shallow conditions (20–40 m) up to 200 m in depth (Sartoretto 
and Francour 2011, Fourt and Goujard 2012, Chimienti 2020).

Eunicella singularis and E. cavolini are only present in the 
Mediterranean Sea. Eunicella cavolini can be observed in the 
Western Mediterranean, Adriatic, and Aegean Seas, from 5 to 
200 m depth (Sini et al. 2015, Carugati et al. 2022). Eunicella 
singularis can be found in the Western Mediterranean and 
Adriatic Seas, and, less frequently, in the Eastern Mediterranean 
(Gori et al. 2012). It is usually observed up to 40 m in depth. 
Eunicella singularis is the only Mediterranean octocoral known to 
harbour Symbiodiniaceae (but see Bonacolta et al. 2024). These 
Symbiodiniaceae belong to the temperate clade A (Forcioli et al. 
2011, Casado-Amezúa et al. 2016), now corresponding to the 
Philozoon genus (LaJeunesse et al. 2018, 2022). Deep occur-
rences (up to 70 m) of E. singularis have been mentioned, and 
assigned to the aphyta morph, without Symbiodiniaceae (Gori 
et al. 2012). In the area of Marseille, these three species can be 
observed in sympatry and at the same depth (Sartoretto and 
Francour 2011).

Sampling
The sampling for RAD sequencing included 25 specimens iden-
tified as E. cavolini, 23 E. singularis, seven E. verrucosa, and 12 
morphologically intermediate individuals (potential hybrids). 
These lattermost individuals displayed intermediate colours 
and branching patterns between E. cavolini and E. singularis 
(Supporting information, Fig. S1), and they were analysed to 
test their hybrid status (Aurelle et al. 2017). The specimens have 
been sampled by scuba diving at different times of the year in the 
area of Marseille, where the three species are present in sympatry 
(Supporting information, Fig. S2; Table S1).

For transcriptome sequencing, specimens attributed to E. 
cavolini, E. singularis, and E. verrucosa have been collected in 
the Mediterranean (for the three species), and in the Atlantic 
(E. verrucosa only; Supporting information, Table S2; Fig. 1) 
in 2016. The final sampling for transcriptomics included five E. 
cavolini, eight E. singularis, three E. verrucosa, and four potential 
hybrids.

Sampling was non-destructive, with authorizations from the 
local authorities, and included Marine Protected Areas.

Mitochondrial MutS
To test the genetic proximity of three Eunicella species studied 
here, we built a tree with mitochondrial MutS sequences 
(McFadden et al. 2011), available in GenBank. The methods and 
sequences are detailed in Supporting information, Figure S3 and 
Supporting information, Table S3.

RAD sequencing
DNA was extracted with a Macherey-Nagel NucleoSpin DNA 
RapidLyse kit. RAD library preparation (with the PstI restric-
tion enzyme) and sequencing (Illumina NovaSeq600 with 150 
nucleotide paired-end sequencing) were performed at the MGX 

platform (CNRS). The MGX platform performed quality con-
trol, demultiplexing, and removal of PCR duplicates with unique 
molecule identifiers. Potential contaminants were removed with 
kraken2 (Wood et al. 2019, Lu et al. 2022). RAD loci were as-
sembled with ipyrad (Eaton and Overcast 2020). We tested four 
assembly strategies to test the robustness of the results: a de novo 
assembly, with a clustering threshold of 0.85, and assembly on a 
reference genome, with each of the three available genomes: for 
E. cavolini, E. singularis, and E. verrucosa (Ledoux et al. personal 
communication).

From these datasets, we built four datasets focused on the dif-
ferentiation between E. cavolini and E. singularis: we excluded E. 
verrucosa samples and we retained the first percent of the loci 
with the highest FST between E. cavolini and E. singularis. These 
last datasets will be labelled as ‘1%’ (see characteristics of the dif-
ferent datasets are summarized in Supporting information, Table 
S4).

Transcriptome sequencing and SNP calling
Total RNA was extracted as in Haguenauer et al. (2013). RNAs 
were sent to the LIGAN genomic platform for sequencing 
(Lille, France) on four flow cells of an Illumina NextSeq 500 
(2 × 75 bp). The transcriptomes were assembled with the de 
novo RNA-Seq Assembly Pipeline (DRAP; Cabau et al. 2017) 
with Oases (Schulz et al. 2012) and default parameters. We 
performed an individual assembly, and a meta-assembly to be 
used as reference. The statistics describing the assembled tran-
scriptomes are given in Supporting information, Table S2. We 
used the BLAT software (Kent 2002) and the blat_parser.pl 
script to remove potential Symbiodiniaceae sequences in the 
obtained transcriptomes, with the transcriptome of the type A1 
(Baumgarten et al. 2013) as a reference.

We mapped the reads on the meta transcriptome filtered for 
Symbiodiniaceae sequences with the bwa option mem (Li and 
Durbin 2009). The obtained sam files were converted in bam 
format with samtools 1.9 (Li et al. 2009), and sorted with Picard 
tools (‘Picard Toolkit’, 2019). The SNP calling was performed 
with reads2snp 2.0 with default parameters (Tsagkogeorga et al. 
2012, Gayral et al. 2013). The obtained dataset, including vari-
able and non-variable sites, is thereafter referred as the ‘all sites’ 
dataset. We performed separate SNP calls with reads2snp for 
pairwise comparisons among species and without the potential 
hybrid samples. These three datasets were used for demographic 
inferences, and are referred to as ‘all-CS’ for the E. cavolini/E. 
singularis comparison, ‘all-CV’ for the E. cavolini/E. verrucosa 
comparison, and ‘all-SV’ for the E. singularis/E. verrucosa com-
parison.

For an analysis of genetic differentiation, we filtered the ‘all 
sites’ vcf file with vcftools (Danecek et al. 2011). We retained 
biallelic sites, without missing data, and separated by at least 1 kb: 
this is the ‘polymorphic sites’ dataset. As for RAD sequencing, 
we built a dataset focused on the differentiation between E. 
cavolini and E. singularis, retaining the 1% loci with the highest 
differentiation between E. cavolini and E. singularis (Supporting 
information, Table S4).

Presence of Symbiodiniaceae
We analysed the presence of Symbiodiniaceae in Eunicella gor-
gonians with transcriptome data. First, we counted the number 

http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
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Figure 1. Map of sampling sites for transcriptomes: (A) general view, (B) close-up on the area of Marseille. The symbols correspond to 
different samples: EC E. cavolini, ES E. singularis, EV E. verrucosa, HY potential hybrids. The three letters correspond to the codes of the 
sampling. The latitude and longitude degrees are indicated on the map. The maps have been produced with the marmap R package (Pante and 
Simon-Bouhet 2013) and following the tutorial of Krueger-Hadfield (2015).
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of reads corresponding to the Symbiodiniaceae transcriptome 
type A1 with Salmon (Patro et al. 2017). Second, we used the 
percentage of assembled sequences (contigs) in the Eunicella 
transcriptomes corresponding to Symbiodiniaceae following the 
BLAT analysis. We used a Kruskal–Wallis test in R to test for dif-
ferences among the four groups of samples (the three Eunicella 
species and the potential hybrids) for each metric. Additionally, 
we performed a BLAST analysis with the nuclear ribosomal 
large subunit (LSU), Internal Transcribed Spacers (ITS), and 
photosystem II protein D1 (psbA) sequences of Philozoon 
(LaJeunesse et al. 2022) to try to identify the Symbiodiniaceae 
genera present in the different samples.

As our data pointed to the unexpected presence of 
Symbiodiniaceae in E. cavolini (see Results), we further explored 
this topic with preliminary data from another experiment dedi-
cated to studying the microbiome of E. cavolini and E. singularis. 
This pilot study involved an analysis of microeukaryotic commu-
nities through 18S rDNA metabarcoding on two colonies of E. 
cavolini and one E. singularis (Supporting information, File S2).

Genetic differentiation and analysis of hybrids
With RAD sequencing data, we performed the analysis of gen-
etic diversity with the four datasets including all loci. With 
transcriptomes, we performed the same analyses with the ‘poly-
morphic sites’ dataset. We used the LEA R package to estimate 
ancestry coefficients (Frichot et al. 2014, Frichot and François 
2015). We tested K values from 1 to 10, with 10 replicates for 
each K. To analyse the genetic differences among individuals, we 
performed a Principal Component Analysis (PCA) with the R 
package adegenet ( Jombart 2008). The pairwise FST (Weir and 
Cockerham 1984) estimated among species were computed 
with the R package Genepop (Rousset 2008, Rousset et al. 
2020), after conversion of the vcf file with PGDSpider (Lischer 
and Excoffier 2012). The distribution of FST among loci was 
obtained with vcftools.

The hybrid status (e.g. first generation hybrids) of mor-
phologically intermediate individuals was analysed with the 
NewHybrids software (Anderson and Thompson 2002). We 
used the Genepopedit R package to prepare the input file from 
the Genepop format (Stanley et al. 2017). Following the re-
sults of the LEA and PCA analyses, we compared E. cavolini, E. 
singularis, and potential hybrids. The NewHybrids analysis has 
difficulties to converge when there is a too high number of loci 
compared to the number of individuals (https://github.com/
eriqande/newhybrids/issues/5). We therefore used the dif-
ferent ‘1% SNP’ datasets of RAD sequencing and transcriptome 
datasets (i.e. the most differentiated loci) for the NewHybrids 
analysis. As a prior, we used individuals with the lowest levels of 
admixture in LEA as potential parental individuals. For the RAD 
datasets, this corresponded to 10 individuals of each species as 
priors. For transcriptome sequencing this corresponded to three 
individuals for E. cavolini, and six individuals for E. singularis. 
Each NewHybrids analysis was repeated 10 times to test the ro-
bustness of the results.

Scenarios of speciation
We tested scenarios of speciation with the Demographic 
Inferences with Linked Selection (DILS) pipeline (Csilléry et 
al. 2012, Pudlo et al. 2016, Fraïsse et al. 2021) on transcriptome 

data only. Note that with the high number of loci recovered 
with transcriptomes, the numbers of specimens used here are 
adequate for robust inferences (Roux et al. 2016). The DILS 
pipeline allows the analysis of two species scenarios only: we 
therefore performed separate analyses for the three two-species 
comparisons, with the ‘all-CS’, ‘all-CV’, and ‘all-SV’ pairwise 
datasets. We did not include the potential hybrids in the analysis, 
which would have required the consideration of a separate popu-
lation. The tested scenarios are presented in Supporting informa-
tion, Figure S4 (see Fraïsse et al. 2021 for details). Briefly, DILS 
allows testing a scenario with current migration (i.e. gene flow), 
such as isolation/migration or secondary contact, vs. scenarios 
of current isolation (no gene flow), such as complete or ancestral 
migration (gene flow among ancestral populations).

We used the same priors for all analyses, with different 
numbers of sequences per gene and per sample according to 
the dataset (Supporting information, Table S5). For all pair-
wise comparisons, we performed two DILS analyses: one with 
constant population sizes, and one with variable population 
sizes.

R E SU LTS

Mitochondrial MutS
The mitochondrial MutS sequences available in GenBank con-
firmed the proximity of the three Eunicella species analysed here: 
all sequences were identical for these three species, as well as for 
three other sequences deposited in GenBank as unidentified 
Eunicella (Supporting information, Fig. S3). The closest species 
to this group was Eunicella racemosa. All other Eunicella MutS 
sequences (Eunicella tricoronata and Eunicella albicans) grouped 
separately with Complexum monodi, but with low bootstrap sup-
port.

Presence of Symbiodiniaceae
The transcriptomes showed low numbers of reads counts 
aligning on the Symbiodiniaceae transcriptome (1868 to 58 406 
reads; Supporting information, Table S6). The proportion of 
contigs corresponding to Symbiodiniaceae with BLAT was also 
very low (between 0.00276 and 0.03686; Supporting informa-
tion, Table S6). Significant differences were observed among 
species in both cases (Kruskal–Wallis test, P = .047 for reads 
counts, and P = .002 for the proportions of contigs). The pair-
wise Wilcoxon test showed significant differences only for the 
comparisons of proportions of contigs involving E. singularis, 
which was higher than in other species (Supporting informa-
tion, Table S7; Fig. 2). The mean values of reads counts and 
contigs for Symbiodiniaceae in the hybrids were lower than in E. 
singularis and E. cavolini but higher than in E. verrucosa, although 
pairwise tests were not significant.

The BLAST analysis with the LSU, ITS, and psbA sequences 
of Philozoon only retrieved corresponding sequences in the 
transcriptomes of E. singularis. Regarding the pilot study of 
18S rDNA metabarcoding, a diversity of 92 operational taxo-
nomic units (OTUs) corresponding to Symbiodiniaceae in 
the Silva database was observed in E. singularis, with a single 
OTU largely dominant in abundance (Supporting informa-
tion, File S2). The same OTU was also observed in E. cavolini 
with a low abundance of reads, but still representing 99% of all 

http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
https://github.com/eriqande/newhybrids/issues/5
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http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
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Figure 2.  Distribution of the frequency of Symbiodiniaceae sequences in the individual transcriptomes according to the species based (2A) 
on the number of reads estimated with Salmon, and (2B) on the proportion of assembled sequences (contigs) with the BLAT analyses. 2A, 
Read counts with Salmon; mean values per group: E. cavolini: 16 508; hybrids: 10 238; E. singularis: 26 023; E. verrucosa: 4285. Kruskal–Wallis 
test of the differences among groups: chi-squared = 7.9467, d.f. = 3, P-value = .047. 2B, Assembled sequences with BLAT; mean values per 
group: E. cavolini: 0.0034; hybrids: 0.0029; E. singularis: 0.0219; E. verrucosa: 0.0028. Kruskal–Wallis test of the differences among groups: chi-
squared = 14.352, d.f. = 3, P-value = .002.
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12 to 13 Symbiodiniaceae OTUs detected in the two analysed 
colonies. A BLAST search in GenBank identified a subset of 
Symbiodiniaceae sequences related to this OTU. Phylogenetic 
inference based on these data indicated that this OTU was re-
lated to clade A of the Symbiodiniaceae.

Genetic differentiation and analysis of hybrids
With RAD sequencing we obtained between 12 952 and 29 061 
SNPs for the assembly on the E. cavolini and E. verrucosa gen-
omes, respectively (Supporting information, Table S4). The FST 
estimates from RAD sequencing were highest for the compari-
sons between E. verrucosa and all other samples (FST between 
0.51 and 0.66 depending on dataset; Supporting information, 
Table S8). The FST between E. cavolini and E. singularis was lower 
(FST between 0.29 and 0.38), and the lowest FST values were ob-
served for the comparisons between hybrids and E. cavolini or E. 
singularis (FST between 0.09 and 0.13). The cross-entropy analysis 
using LEA with RAD sequencing showed a minimum at K = 3 for 
the four datasets (results not shown). The barplots of coancestry 
coefficients were very similar for the four datasets, with a separ-
ation of the three species, and an admixture between E. cavolini 
and E. singularis for the morphologically intermediate individuals 
(Supporting information, Fig. S5). The PCAs on RAD sequencing 
were very similar for all datasets, with a separation between E. 
verrucosa and all other samples on the first axis (Supporting in-
formation, Fig. S6). The second axis separated E. cavolini and E. 
singularis, with the potential hybrids in an intermediate position 
between them. Projections on axes 3 and 4 resulted mainly in the 
separations of E. verrucosa samples from each other.

With transcriptomes, we obtained 31 369 SNPs for the ‘poly-
morphic sites’ dataset. With this dataset, the highest FST values 
were observed for the comparisons between E. verrucosa and all 
other samples (FST > 0.43; Supporting information, Table S9). 
The FST between E. cavolini and E. singularis was much lower 
(0.21), and the lowest FST values were observed for hybrids com-
pared to these two species (FST around 0.07 in both cases). These 
differences corresponded to different distributions of FST over 
SNPs (Supporting information, Fig. S7). For the 1% SNPs with 
the highest FST estimates, 52 SNPs were shared by both compari-
sons involving E. cavolini (i.e. E. cavolini vs. E. singularis and E. 
cavolini vs. E. verrucosa), 116 top 1% SNPs were shared by both 
comparisons involving E. singularis, and 1042 top 1% SNPs were 
shared by both comparisons involving E. verrucosa.

The cross-entropy analysis using LEA with transcriptomes 
indicated a best clustering solution corresponding to K = 2 or 
K = 3 clusters (Supporting information, Fig. S8). At K = 2, the 
first distinction was observed between E. verrucosa and all other 
samples (Fig. 3). The K = 3 analysis further separated E. cavolini 
and E. singularis, with morphologically intermediate individuals 
admixed between these two species. Conversely the individ-
uals representative of E. cavolini and E. singularis presented low 
levels of admixture, apart from the E. cavolini of the site in Algeria 
(code ANB), and, at a small level, two E. singularis individuals 
from Banyuls (BAN). At K = 4, the two E. cavolini individuals 
from Algeria separated from other E. cavolini from the northern 
part of the Mediterranean.

As with RAD sequencing, the PCA on transcriptome SNPs 
separated E. verrucosa from other samples on the first axis  
(Fig. 4). The second axis separated E. cavolini and E. singularis, 

with the potential hybrids in an intermediate position between 
them. The third axis separated the E. cavolini samples from 
Algeria (ANB site) from all other samples (Supporting informa-
tion, Fig. S6).

The NewHybrids analysis on RAD sequencing indicated that 
all morphologically intermediate individuals, except one, ap-
peared as hybrids: first generation (F1), second generation (F2), 
or backcrosses with E. singularis or E. cavolini (Table 1). These 
samples also appeared admixed on the basis of LEA (Supporting 
information, Fig. S5). One individual identified as a potential 
hybrid in situ, was inferred as a parental E. singularis. For four 
individuals, the hybrid status varied according to the dataset: F2 
or backcross with E. cavolini in two cases, F1 or F2 in two cases. 
Potential parental individuals not included in the priors were in-
ferred as parental with NewHybrids. The NewHybrids analysis 
with transcriptomes indicated that the morphologically inter-
mediate individuals were hybrids with a probability of one in all 
10 iterations of the analysis. One individual was an F1 hybrid, 
another one was an F2 hybrid, and the two other ones corres-
ponded to backcrosses with E. singularis (Fig. 3; Table 1). In the 
same analysis, the E. cavolini and E. singularis individuals not 
included as priors for parental species (see Fig. 3 for the indi-
viduals used as priors), were indeed inferred as parental with 
a probability of one, including the E. cavolini individual from 
Algeria (ANB).

Scenarios of speciation
The average pairwise net divergence estimated from DILS was 
0.0018 between E. cavolini and E. singularis, and around 0.007 
for the two comparisons with E. verrucosa (Supporting infor-
mation, Table S9, Aurelle 2024). The DILS analysis indicated 
the existence of current gene flow between E. cavolini and E. 
singularis with high probability, both with constant and vari-
able population sizes (P = .87 and .88, respectively; Table 2). 
This possibility of gene flow corresponded to a scenario of sec-
ondary contact. Conversely, a model of current isolation was 
inferred for the comparisons between E. verrucosa and each of 
the two other species, with a probability P ≥ .87: in these two 
cases, the inferred scenario included a period of ancestral mi-
gration, though with moderate support (P between 0.61 and 
0.69). A genomic heterogeneity in effective size (i.e. variations 
among loci) was inferred with strong support (P ≥ .99) for all 
analyses. In the case of current gene flow (between E. cavolini 
and E. singularis), a genomic heterogeneity in migration rates 
was inferred (P ≥ .82). We repeated the DILS analysis without 
including the two divergent samples of E. cavolini from Algeria: 
this led to similar results, with inference of secondary contact 
for the comparison with E. singularis, and ancestral migration 
for the comparison with E. verrucosa (results not shown). For 
parameter inferences, we used the complete datasets, with all 
E. cavolini samples. The inferred parameters for the different 
scenarios are presented in Supporting information, Table S9. 
We will first present the results obtained for the constant popu-
lation sizes models. The divergence time between E. cavolini 
and E. singularis (median 403 273 generations) was much lower 
than between E. cavolini and E. verrucosa (median 1 054 488 
generations), and between E. singularis and E. verrucosa (me-
dian 899 098 generations). For the comparison between E. 
cavolini and E. singularis, the time of secondary contact was 

http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae116#supplementary-data
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estimated after around 85% of time spent in isolation since 
divergence. Following secondary contact, the gene flow was 
similar in both directions for these two species. The duration 

of ancestral migration roughly corresponded to 6% and 8% of 
the total time since divergence for the comparison between 
E. cavolini and E. verrucosa, and for the comparison between 

Figure 3.  Barplots of coancestry coefficients inferred with the LEA R package. The analysis is based on the ‘polymorphic sites’ transcriptome 
dataset. The asterisks indicate the individuals used as priors for parental status in the NewHybrids analysis. The results of the NewHybrids 
analysis are indicated below the hybrid individuals: F1, 1st generation; F2, 2nd generation; Sbx, backcross with E. singularis. The coancestry 
analysis is based on 31 369 SNPs, whereas the NewHybrids analysis is based on 326 SNPs showing high differentiation between E. cavolini and 
E. singularis.
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E. singularis and E. verrucosa, respectively. For these last two 
cases, the gene flow (forwards in time) during ancestral migra-
tion was higher towards E. verrucosa than in the opposite dir-
ection. The estimated effective sizes were of similar order for E. 
cavolini and E. verrucosa. Similar results were obtained for the 
models including variations in effective size, except for the esti-
mate of current gene flow between E. cavolini and E. singularis: 
with variable population size, gene flow from E. singularis to E. 
cavolini was higher than in the opposite direction.

D I S C U S S I O N
The three named Eunicella species studied here have been previ-
ously described with differences in colony morphology, sclerite 
shape, and in the presence of photosynthetic Symbiodiniaceae 
(Carpine and Grasshoff 1975). Our results demonstrate a con-
tinuum between E. cavolini and E. singularis, with morphologic-
ally intermediate individuals, on-going gene flow, and hybrids 
characterized by a reduced frequency of Symbiodiniaceae com-
pared to E. singularis. On the other hand, E. verrucosa appears 

Figure 4. Principal Component Analysis based on the ‘polymorphic SNPs’ transcriptome dataset; axis 1 represents 33.2% of the variance, axis 
2 represents 13% of the variance

Table 1. Inference of hybrid status with NewHybrids for transcriptome and RAD sequencing. For transcriptomes, all probabilities were at 1 for 
the inferred status and for the 10 replicates. For RAD sequencing, the results are given for the four datasets (different assembly strategies). If no 
probability is mentioned for RAD sequencing, the hybrid status was supported by a probability higher than 0.999 over the 10 replicates. In the 
other cases, the numbers indicate the minimal probability threshold over the 10 replicates for this status (and the status was coherent over the 
10 replicates as well, with slight variations in probability). NA indicates an individual which was removed during the filtering of SNPs because 
of too many missing data. The lines highlighted in grey indicate the cases where different status was inferred depending on the dataset. Bx-ES 
and Bx-EC indicate backcrosses with E. singularis and E. cavolini, respectively; ES indicates parental E. singularis

Individual—RAD sequencing De novo Ref. E. cavolini Ref. E. singularis Ref. E. verrucosa

EC-X-MFNB F2 F2 F2 F2

EC-X-MFNC F2 NA Bx-EC NA
EC-X-MFND Bx-ES Bx-ES Bx-ES Bx-ES
EC-X-MFNE Bx-EC Bx-EC Bx-EC Bx-EC
EC-X-MFNF Bx-EC F2 > 0.95 Bx-EC > 0.92 F2

EC-X-MFNG F2 F2 F2 F2

EC-X-MFNH Bx-ES Bx-ES Bx-ES > 0.67 Bx-ES > 0.98
EC-X-MFNI F1 F1 F1 F2

EC-X-MFNL F1 F1 > 0.99 F1 F2

ES-X-MFNA Bx-ES Bx-ES Bx-ES Bx-ES
ES-X-MFNJ F2 F2 > 0.96 F2 F2

ES-X-MFNK ES ES ES ES
Individual—transcriptome
EH-JPB-a F1

EH-MFN-a Bx-ES
EH-MFN-b F2

EH-MFN-e Bx-ES
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genetically isolated from these two species. We will discuss here 
the differences observed among markers, the outcome of hybrid-
ization, the speciation scenarios, and what can be learnt on the 
evolution of symbiosis.

Discordances between molecular markers
As previously observed (Aurelle et al. 2017), mitochondrial 
DNA did not discriminate the three species due to the slow evo-
lution of mitochondrial DNA in octocorals (McFadden et al. 
2011, Muthye et al. 2022). The use of transcriptome sequences 
first confirmed the closer proximity between E. cavolini and E. 
singularis than with E. verrucosa. This had been previously sug-
gested with two intron sequences, but with incomplete lineage 
sorting (Aurelle et al. 2017). The Mediterranean Eunicella then 
add a new example of the lack of power of mitochondrial DNA 
to discriminate genetically differentiated octocoral species, as 
demonstrated in other genera (Pante et al. 2015a, Erickson et 
al. 2021). The slow rate of evolution of mitochondrial DNA in 
octocorals has been linked to the presence of the mitochondrial 
locus MutS, a homologue of a bacterial gene involved in DNA 
repair. However, there are contradictory examples showing that 
the presence of this locus is not the only factor explaining the 
slow evolution of mitochondrial DNA in octocorals (Muthye 
et al. 2022). More generally, as hybridization can lead to the 
sharing of mitochondrial DNA among species, the use of mul-
tiple independent nuclear loci is required for species discrimin-
ation in such cases.

Incomplete reproductive isolation among two named species
Inferences of genetic ancestry and hybrid status confirmed that 
morphologically intermediate individuals are indeed hybrids be-
tween E. singularis and E. cavolini, with the identification of F1, 
F2, and backcrosses with both parental lineages: first generation 
hybrids can then be fertile. The fact that gene flow indeed goes 
further than the hybrid levels is confirmed by the DILS analysis, 
which did not include hybrid individuals. Reproductive isola-
tion is therefore at least partial between these lineages. The ease 
to find hybrids in the area studied here, as well as similar obser-
vations in other sites (S. Sartoretto, personal communication) 
indicate that hybridization is not rare on an evolutionary scale. 
Similarly, transcriptome sequencing has led to infer hybridiza-
tion among Plexaura species on the basis of a small number of 
samples (Pelosi et al. 2022).

The alternation of populations with and without hybrids 
would point to a mosaic hybrid zone (Bierne et al. 2003), where 
hybrids could form in different areas and from different parental 
populations. As, or because, hybridization between E. cavolini 
and E. singularis had not been reported before, the presence of 
hybrids has probably been overlooked up to now. This may be 
the consequence of previously focusing on colonies with ‘typ-
ical’ morphologies. The frequency of hybridization therefore re-
mains to be studied.

Our results allow discussing the evolution of genomic diver-
gence among these species. The persistence of genomic differen-
tiation between these lineages in sympatry, despite current gene 
flow, indicates that intrinsic (i.e. genomic incompatibilities) or 
extrinsic (e.g. ecology) factors can maintain partial isolation. 
Difference or overlap in the timing of reproduction should also 
be considered in contributing to pre-mating isolation (Pelosi 
et al. 2022). A better characterization of the ecological range of 
parental and hybrid populations would be useful to test if local 
adaptation is involved in their distribution. Intrinsic factors 
such as genetic incompatibilities, potentially coupled with dif-
ferences in adaptation to local environments, can be present as 
well (Bierne et al. 2011). A genome wide analysis of differenti-
ation is required to investigate whether divergence between E. 
cavolini and E. singularis is homogeneous along the genome (as 
suggested by the DILS analysis which inferred a homogeneity of 
gene flow), or whether genomic islands of differentiation exist 
(Peñalba et al. 2024). We could then better understand to what 
stage of divergence the E. cavolini/E. singularis split corresponds: 
from intra-specific polymorphism to species separated by semi-
permeable barriers to gene flow.

One interesting question in this context is whether changes 
in selection regimes induced by human activities can change 
the outcome of hybridization (Ålund et al. 2023). For example, 
Mediterranean octocorals are impacted by mortality events 
linked with climate change (Sini et al. 2015, Estaque et al. 2023), 
and the impact of these events could be different for hybrids and 
parental individuals. In scleractinian corals, interspecific hybrid-
ization has been reported to enhance survival under elevated 
temperature conditions (Chan et al. 2018).

Regarding E. verrucosa, the more ancient divergence corres-
ponded to many more loci with high FST. Among the list of the 
most highly differentiated loci, more overlap was also observed 
for the two comparisons involving E. verrucosa than for the other 

Table 2.  Results of demographic inferences with DILS with transcriptome data. The columns indicate the species comparison, the model 
choice for population size (constant vs. variable), and the results of inferences: current (on-going) gene flow (migration vs. isolation); if 
current migration is inferred, DILS compares isolation/migration (IM) with secondary contact (SC); if no current migration is inferred, the 
comparison is between strict isolation (SI) and ancestral migration (AM); the last columns give the results of the tests of homogeneity or 
heterogeneity among loci for inferences in effective size (N-homo vs. N-hetero), and gene flow (M-homo vs M-hetero). The probability of each 
scenario is given in the same case. Homogeneity and heterogeneity indicate no variation or variation among loci, respectively

Comparison Population size Current gene flow IM/SC SI/AM N-hetero/N-homo M-hetero/M-homo

cavolini/singularis Constant Migration; 0.87 SC; 0.79 - N-hetero; 0.99 M-homo; 0.82
cavolini/singularis Variable Migration; 0.88 SC; 0.77 - N-hetero; 1 M-homo; 0.87
cavolini/verrucosa Constant Isolation; 0.90 - AM; 0.65 N-hetero; 1 -
cavolini/verrucosa Variable Isolation; 0.89 - AM; 0.69 N-hetero; 1 -
singularis/verrucosa Constant Isolation; 0.87 - AM; 0.61 N-hetero; 1 -
singularis/verrucosa Variable Isolation; 0.87 - AM; 0.61 N-hetero; 1 -
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pairwise comparisons: this may indicate that few genomic areas 
of potential incompatibilities with E. verrucosa are involved in 
the divergence between E. cavolini and E. singularis.

Scenarios of speciations
The scenarios of speciations inferred with DILS supported the 
current isolation (no gene flow) of E. verrucosa with the two 
other species with high posterior probability. Conversely cur-
rent gene flow was strongly supported vs. isolation between E. 
cavolini and E. singularis. The posterior probabilities for ances-
tral migration (for E. verrucosa vs. the two other species), and 
secondary contact (E. cavolini and E. singularis), were lower than 
for inferences on current gene flow. These scenarios were indeed 
the best among those tested here but they might not provide the 
best possible representation of the evolutionary history. Other 
models of evolution could be tested for better inferences, for ex-
ample by including the three species and hybrids, or gene flow 
from unsampled taxa (Tricou et al. 2022). The current isolation 
of E. verrucosa from E. cavolini is also at odds with previous re-
sults which showed the possibility of current gene flow between 
these two species despite an important divergence (Roux et al. 
2016). It will be useful to explore the reasons for the discrep-
ancy between this last study and the present one, which are both 
based on transcriptome datasets but obtained from different 
samples and sequencing platforms.

Eunicella verrucosa is currently widely distributed in the 
North Eastern Atlantic Ocean, and less frequently in the 
Mediterranean Sea, whereas both other species (E. cavolini and 
E. singularis) are only present in the Mediterranean Sea. The 
Atlantic/Mediterranean Sea transition does not seem to act as 
a phylogeographic barrier for E. verrucosa (Macleod et al. 2024). 
We can propose a scenario where the split between E. verrucosa 
and both other species occurred in allopatry between the Atlantic 
Ocean and the Mediterranean Sea, followed by the colonization 
of the Mediterranean Sea by E. verrucosa. The generation time 
remains unknown for the Eunicella species, and previous studies 
have shown important variation in the age at first reproduc-
tion in gorgonians, from 2 to 13 years (see references in Munro 
2004). If we use a generation time of two years for Eunicella spe-
cies, with a median estimate of divergence time around 900 000 
generations for E. verrucosa/E. singularis and 1 000 000 for E. 
verrucosa/E. cavolini, and based on a mutation rate set at 3 × 10-9, 
this would indicate a divergence at least around 2 000 000 years 
(2 Ma). The divergence time between E. cavolini and E. singularis 
would be 2.5 times more recent, around 800 000 years ago, with 
a median time of secondary contact around 60 000 generations, 
corresponding to 15% of the time spent since divergence. It is 
difficult to infer past distributions of E. singularis and E. cavolini, 
but one can note that even if they are currently found in sym-
patry in different areas, their ranges do not completely overlap. 
For example, E. cavolini is nearly absent at the west of the Rhone 
estuary on the French coast, whereas E. singularis is present 
there. The ecological range of E. singularis and E. cavolini is also 
not completely overlapping, as E. cavolini can be observed at 
greater depths than E. singularis (Gori et al. 2012, Carugati et al. 
2022). Therefore, one can envision an historical separation of 
these two species either geographically or ecologically, followed 
by a secondary contact where gene flow took place. In any case, 

additional information on generation time, mutation rate, and 
past demographic fluctuations are required to be more precise 
on the history of these species.

Evolution of symbiosis
As previously discussed, we clearly demonstrated here the possi-
bility of gene flow between symbiotic (hosting Symbiodiniaceae) 
and non-symbiotic octocorals. Symbiodiniaceae could never-
theless be involved in genetic incompatibilities with the genome 
of some cnidarian hosts, but this would require additional ana-
lysis of symbiotic status in hybrids. The methods used here did 
not aim at a precise quantification of Symbiodiniaceae, and one 
can note the low levels of sequences corresponding to these 
symbionts, even in E. singularis, which may be due to difficul-
ties in extracting the RNA of the symbionts (but see Guzman et 
al. 2018, Rivera-García et al. 2019). Despite these limits we ob-
served, as expected, a higher Symbiodiniaceae concentration in 
E. singularis than in either E. cavolini or E. verrucosa. Interestingly, 
the hybrids showed a lower frequency of Symbiodiniaceae than 
E. singularis, and E. cavolini, though the difference between 
hybrids and E. cavolini remains to be confirmed. In E. singularis, 
the transmission of Symbiodiniaceae seems to occur both ver-
tically, through ovules, and horizontally, from the environment 
(Forcioli et al. 2011). Neither transmission modes restored the 
levels of Symbiodiniaceae in the hybrids to those of E. singularis. 
This suggests a breakdown of or a failure to establish symbiosis 
for hybrid genotypes, which may impact the fitness of hybrids 
and consequently the possibility of introgression. The aphyta 
type of E. singularis observed in deep water conditions indi-
cates a plasticity of symbiotic status apart from hybridization. 
Nevertheless, here the hybrids were sampled in shallow condi-
tions (10–20 m depth) which underlines the role of hybridiza-
tion in reducing the extent of symbiosis. More precise estimates 
of Symbiodiniaceae abundance, and of physiological parameters 
such as photosynthetic and respiration rates (Ezzat et al. 2013) 
would help understanding the role of symbionts in hybrid fit-
ness. It would also be interesting to study if the Symbiodiniaceae 
of the different samples belong to the same population (Pelosi 
et al. 2022).

Our results also question the evolution and significance of 
octocoral/Symbiodiniaceae symbiosis. In scleractinians, the 
transition between symbiotic and non-symbiotic states hap-
pened repeatedly, but mostly in the direction of the acquisi-
tion of symbiosis, with very low rates of reversal (Campoy et al. 
2020). This may indicate that investing in such mutualistic inter-
actions for the cnidarian would lead to increasingly relying on 
autotrophy for energetic supply, making reversal to heterotrophy 
difficult. In octocorals, an evolutionary versatility in symbiotic 
state seems possible, as in various families and genera, both sym-
biotic and non-symbiotic species are present (Van Oppen et al. 
2005). In the Mediterranean Sea, all octocoral species are non-
symbiotic, except for E. singularis (but see Bonacolta et al. 2024). 
The most parsimonious scenario here would be an acquisition 
of symbiosis in E. singularis during or following its divergence 
from E. cavolini. The symbiotic status of E. singularis neverthe-
less could be facultative as previously mentioned for the aphyta 
type (Gori et al. 2012). Additionally, experimental physio-
logical studies have demonstrated the nutritional plasticity of E. 
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singularis which is able to use either heterotrophy or autotrophy 
for its metabolism (Ezzat et al. 2013). Nevertheless, in natural 
conditions, autotrophy seems to provide an important contribu-
tion to the metabolism of E. singularis, and the collapse of photo-
synthetic capacities in too warm conditions can contribute to 
mortality events in this species (Coma et al. 2015).

The question of symbiosis could be reversed as well: why are 
Symbiodiniaceae not more abundant in E. cavolini? This species 
can be observed in shallow conditions (less than 10 m depth) 
where there is enough light for photosynthesis, and in syntopy 
with E. singularis. The availability of prey or particulate organic 
matter may provide enough energy to E. cavolini in its habitat, but 
this species may have never engaged in mutualistic interaction 
with Symbiodiniaceae. Interestingly we observed a low rate of 
sequences related to Symbiodiniaceae in the transcriptomes of E. 
cavolini (and even lower, but not null in E. verrucosa). This may 
either correspond to a signal from free-living Symbiodiniaceae, 
or to rare, transient associations with the cnidarian. In addition, 
a Symbiodiniaceae OTU that is common to E. singularis and E. 
cavolini was identified among the microeukaryotes associated 
with the two species: this OTU is related to strains observed in 
symbiosis with E. singularis and other Mediterranean cnidarians. 
Molecular markers also showed the presence of Symbiodiniaceae 
in species previously supposed to be asymbiotic, as in the 
Mediterranean octocoral Paramuricea clavata, and in several 
Hawaiian antipatharian species (Wagner et al. 2011, Bonacolta et 
al. 2024). These results, and our observations in Eunicella species, 
obviously underline the dynamic nature of interactions between 
Symbiodiniaceae and cnidarians: the establishment of symbiosis 
may be preceded by more or less stable and more or less mutual-
istic interactions. The development of effective symbiosis, with 
stable relationships, and higher abundance of symbiont, would re-
quire specific adaptations from both partners. We can see here that 
even if on a macro-evolutionary scale, the acquisition of symbiosis 
is much more frequent than its loss, on a micro-evolutionary scale, 
the gene flow between the Eunicella species considered here has 
not led to the full development of symbiosis in E. cavolini.

CO N CLU S I O N
We demonstrated the lack of genetic isolation between 
octocorals with contrasted levels of mutualistic interaction 
with Symbiodiniaceae. Understanding the evolution and adap-
tation of these species in heterogeneous environments should 
then consider the possible impact of introgression. We also 
show that symbiosis is more flexible that previously envisioned 
in octocorals. For these species it will be useful to estimate the 
frequency and spatial extent of hybrid zones: does these cor-
relate with particular environments with a coupling between 
endogenous and exogenous barriers to gene flow (Bierne et al. 
2011)? For example, characterizing the genomic landscape of 
introgression would help to identify effects of introgression on 
adaptation or symbiosis. Indeed, even low levels of interspecific 
gene flow can have important consequences on the evolution 
of species (Arnold et al. 1999). Finally, various cases of hybrid-
ization have been demonstrated in symbiotic anthozoans (e.g. 
Combosch and Vollmer 2015, Pelosi et al. 2022): it would then 
be interesting to study the dynamics of symbiosis in these cases, 
especially when different Symbiodiniaceae strains are involved.
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