

Supplementary Figure 1: (a) Secondary structure prediction of Rpa2^{WH} from TALOS-N software based on HN, H α , C α , C β , CO and N secondary shifts, with predicted helices in red, strands in green and loop/coil regions in grey. The confidence is depicted by the dark grey line. Secondary structure elements inferred from these predictions are indicated at the top. (b) Backbone RMSD of the NMR structure ensemble. On the right of each graph, mappings of the secondary structure elements and RMSD are shown on the representative structure of Rpa2^{WH}, with the color coding as indicated. Source data are provided as a Source Data file.

Supplementary Figure 2: ¹⁵N relaxation parameters of Rpa2^{WH} at 35°C, 600 MHz. R₁ (a), R₂ (b), {¹H}-¹⁵N NOE (c) and R₂/R₁ ratio (d). Averages and standard deviations are indicated. Secondary structure elements are displayed at the top; helices and strands are highlighted in red and green, respectively. Source data are provided as a Source Data file.

Supplementary Figure 3: Backbone dynamics parameters of Rpa2^{WH}, extracted from ¹⁵N relaxation data using the Lipari-Szabo model-free approach with an anisotropic global reorientation model: (a) Order parameter S² probing motions on the ps-ns timescale. Secondary structure elements are indicated at the top and helices and strands are highlighted in red and green, respectively. (b) Fast motions (S²) mapped on the representative structure of Rpa2^{WH}, with the color coding as indicated on (a), i.e., from blue to red for increasing ps-ns dynamics.

(c, d) Close up view of the binding interface of Rpa2^{WH} with PriSL^{Δ CTD} (orange spheres) and PolD (blue spheres). (e) Exchange contribution R_{ex} probing motions on the μ s-ms timescale. (f) Slow motions (R_{ex}) mapped on the representative structure of Rpa2^{WH}, with the color coding as indicated on (e), i.e., from blue to red for increasing µs-ms dynamics. Rationalization of the dynamics: The N-terminal region up to residue 205 is highly flexible. The dynamics of the folded WH domain can be summarized as follows: on the N-terminus side of the domain, the loop between $\alpha 2/\alpha 3$ (236-240) has restrained dynamics on the ps-ns timescale due to the stabilization induced by the packing of Y239 into the hydrophobic pocket defined by L207, L235 and I244 (blue asterisks on (a) and blue labels on (b)), anchoring the N-terminus of $\alpha 1$ to the C-terminus of $\alpha 2$ and to $\alpha 3$ directly after the long flexible N-terminus tail. Opposite to the N-terminus, the region encompassing the loop between $\alpha 1$ and $\beta 1$ (K222-T224) and the β -wing loop (259-263) define a flexible hotspot (red labels on (b), with $S^2 < 0.75$. Interestingly, this flexible region of Rpa2^{WH} lies against PriSL^{ΔCTD} (c) and PolD (d) and is involved in many electrostatic interactions with each partner as observed in the XR and cryo-EM structures of the respective complexes. It is likely that the dynamic nature of this hotspot around the β -wing helps driving fast binding to the cognate polymerases and that this region might be stabilized/rigidified upon complex formation. Conformational exchange in the µs-ms timescale is detected for residues of helices $\alpha 1$ and $\alpha 3$ pointing towards the core of the domain (Rex ~ 1 s^{-1} , (e,f)). This phenomenon could arise from the propagation of the fast dynamics of the Nterminal tail, slowing down towards the core. Source data are provided as a Source Data file.

Supplementary Figure 4: Superimposed ¹H-¹⁵N HSQC spectra recorded on 100 μ M ¹⁵N-labeled Rpa2^{WH} (**a**, **b**, black), with 0.5 equivalents of unlabeled PriSL^{Δ CTD} (**a**, orange) or with 0.1 equivalent of unlabeled PolD (**b**, blue). Assignment is indicated for the most perturbed Rpa2^{WH} signals by PriSL^{Δ CTD} (I_{cplx}/I_{free} <0.29) or by PolD (I_{cplx}/I_{free} <0.26). These thresholds were used to delineate the respective binding surfaces to the polymerases on Fig. 3 k, l.

Supplementary Figure 5: (a) NMR chemical shift perturbations (CSP) and peak intensity ratios I_{cplx}/I_{free} (log₁₀ scale) on Rpa2^{WH} induced by PolB. The average $<I_{cplx}/I_{free}>$ in the folded domain (0.66) is indicated by the dotted line. ¹H-¹⁵N HSQC spectra were recorded on 50 µM ¹⁵N-labeled Rpa2^{WH} with and without an equimolar amount of unlabeled PolB. Secondary structure elements are indicated at the top. (b) Mapping of the intensity ratio I_{cplx}/I_{free} on Rpa2^{WH} with the color coding from blue (no attenuation) to red (large attenuation) as indicated. Rationalization of PolB binding: Despite an equimolar addition of PolB, the average Icplx/Ifree ratio (0.66 \pm 0.07) in the folded domain is much higher than for the complexes with only 0.5 equivalents of PriSL^{Δ CTD} (0.32 ± 0.05) or with 0.1 equivalent of PolD (0.31 ± 0.09). In addition, no significant and localized CSP or peak intensity change is detected outside of error bars on Rpa2^{WH} upon addition of PolB. Taken together, these observations indicate that, unlike with the PriSL^{ΔCTD} and PolD polymerases, no strong and specific binding of the Rpa2^{WH} occurs with PolB. Error bars in the I_{cplx}/I_{free} histograms represent the noise standard deviation in the spectra .Intensity ratios I_{cplx}/I_{free} are calculated from Rpa2^{WH} peak intensities in the complexed (I_{cplx}) and free (I_{free}) forms. Errors on intensity ratios are determined as: $\Delta(I_{cplx}/I_{free}) = I_{cplx}/I_{free} \times$ $((\Delta I_{cplx}/I_{cplx})^2 + (\Delta I_{ref}/I_{ref})^2)^{1/2}$, where ΔI_{cplx} and ΔI_{free} represent the noise standard deviation in the spectra of complexed and free forms of Rpa2^{WH}. Source data are provided as a Source Data File.

Supplementary Figure 6: Impact of RPA binding on PriSL priming activity. M13mp18 circular ssDNA was incubated with PriSL and increasing amounts of RPA (0-6.4 μ M) in the presence of dNTPs+rNTPs (a), dNTPs only (b) or rNTPs only (c). Control lanes contain oligonucleotide 1 kb Plus DNA Ladder or Low Range ssRNA Ladder. For details, see the method section. Each experiment was repeated 3 times. Uncropped gels are provided as a Source data File.

Supplementary Figure 8: Illustration of the quality of the X-ray crystallography electron density map and the cryo-EM maps, in the interfacial region with the Rpa2 winged-helix domain. Left panels show the 2mFo-Fc electron density map contoured at 1.0 σ for the PriS-PriL^{ΔCTD}-Rpa2^{WH} ternary complex. Middle (class1) and right (class2) panels show the cryo-EM maps contoured at a threshold of 0.148 for the DP1-DP2-Rpa2^{WH} ternary complexes.

Supplementary Figure 9: Structural conservation of the heterodimeric euryarchaeal DNA primase. (a) Model of Pyrococcus abyssi PriS-PriL^{Δ CTD} crystal structure at 1.85 Å resolution (PabPriSL^{Δ CTD}). (b) Alignment of human primase (PDB ID 4BPW) to PabPriSL^{Δ CTD}. (c) Alignment of Saccharolobus solfataricus PriSLX (PDB ID 5OFN) to PabPriSL^{Δ CTD}. (d) Superposition of the crystal structures of PabPriSL^{Δ CTD} (orange) and the Rpa2WH-PriSL^{Δ CTD} complex (green), illustrating that PriS does not undergo significant conformational changes upon binding to Rpa2.

Supplementary Figure 10. Investigating the role of the Rpa2 flexible acidic linker on the ability to stimulate PriSL primer extension activity. (a) Primer extension assay by PriSL in the presence of increasing concentrations of RPA^{ala-linker}. (b) Comparison of primer extension activity by PriSL in presence of RPA (in green) and RPA^{ala-linker} (in purple), relative to the activity of PriSL in absence of RPA. Experiments were repeated n=4 times, band integration was performed in all 4 biological replicates (>70 nt bands) to derive standard deviation. Each bar shows the mean value, standard deviation is represented as error bars, and individual measurements are shown as white dots. Uncropped gels are provided as a Source Data file.

Supplementary Figure 11: Cryo-EM workflow.

	α1	β1 α2	α3	β2	β3
		- <u> </u>		\Rightarrow	
Homo sapiens	ANGLTVAQ-NQVLNLIKACPRP	- EGLNFQDLKNQ - LK - HI	MSVSSIKQAVDFLSNEGH	IYSTVDDI	DHFKSTDAE
Saccharomyces cerevisiae	SPLQRILEFCKKQCEGKDAN	SFAVPIPLISQSLN	LDETTVRNCCTTLTDQGF	IYPTFDDI	NNFFAL
Promethearchaeum syntrophicum	KG	-DGVSIEEIGKIFS	INMAEIKKIIDQLCQDVK	IYKVHP-0	GFYSSY
Odinarchaeum yellowstonii	LGEDSLV-DRLMDAICKLDKG	-DGVLLTDIREE-LK-A	FKADEIEDVLNQLIKEGT	LYECKP-0	QRYQKSY
Heimdallarchaeum endolithica	SEEQESLNKITAEVLILLQ-ETE	-NALSMKEILDK-IG	EEGEKVEKAIQSLIKSGD	IY-EPKK	YYFKA
Palaeococcus pacificus	NEELEEVKKEVIALLK-GKKG	- TPVSKKYITKK - LQQK	FDEETIEDAIHELLAEGE	IF-EPEV	GYYQLIE
Pyrococcus furiosus	ENEILEKVKQEILEILRSKK	-IAVSRKYILKKLGE-K	YDEETIEDAIAELLADGE	IY-EPET(GYYKLL
Thermococcus kodakarensis	NPEVEKAKEAIMNLLREKG	-KALSHKFIVKKLSS-E	FDEEIIEEAITQLLADGE	IY-EPEI	GFY
Thermococcus nautili	SPELEKAKEAVMNLLREKG	-KALSHKFIVKKLSK-E	FDEEIIEEAISQLLADGE	IY-EPEI	GFYEPL
Pyrococcus abyssi	ELLEKAKEDILNILRQKR	-TAISRKYILKKLGD-K	YDEETIDDAITELLAQGE	IY-EPET(GYYKLL
	E205 (P. abyssi frame)	•• •	•	• •••	L268
		 PolD-interacting PriSL-interacting 	j residues in <i>P. abyssi</i> g residues in <i>P. abyssi</i>]	

Supplementary Figure 12. Structural alignment of Rpa2 WH domains from archaea and eukaryotic sources. Experimental structures were used when available, and AlphaFold predictions were used for the rest of queries. Sequence conservation is indicated with grey shading. Positions in *P. abyssi* Rpa2 that contact PolD and PriSL are indicated with blue and orange circles respectively.

Constraints		Mean of pairwise RMSD (Å)	
Dihedral restraints (\$)	120	Backbone atoms N, CA, C', O ^a	0.42 ± 0.12
Hydrogen bonds	32	Heavy atoms	1.51 ± 0.14
Distance restraints ^a	954		
Distance constraints ^{a,b}		Energies (kcal/mol)	
Unambiguous restraints	685	Total	$\textbf{-3540}\pm120$
Ambiguous distance restraints	269	Van der Waals	-342 ± 13.1
Intra-residue $ j-i = 0$	494	Electrostatic	-3351 ± 121
Sequential j-i = 1	238	Ensemble Ramachandran plot (% Residues)	
Medium range $2 \le j-i \le 4$	129	Most favored regions	95.9%
Long range $ j-i > 4$	93	Additionally allowed	4.1%
Residual distance constraint violatio	ns		
Number $\geq 0.5 \text{ Å}$	10 ± 1	Structure Z scores	
Number ≥ 0.3 Å	12 ± 1	Second-generation packing quality	1.1 ± 0.2
Number $\geq 0.1 \text{ Å}$	18 ± 1	Ramachandran plot appearance	2.2 ± 0.3
RMS deviation from nOes (Å)	0.30 ± 0.02	Chi1/Chi2 rotamer normality	1.6 ± 0.8
Unsatisfied H-bond donors ^c	4.7	Backbone conformation	-4.7 ± 1.5
Unsatisfied H-bond acceptors ^c	0		

Supplementary Table 1. Statistics for the ensemble of 10 structures calculated for fulllength Rpa2^{WH}. ^a For well-ordered residues (205-268). ^b For residues 175-204, only 29 intra or sequential distance constraints. ^c Per molecule. PDB ID: 9F27; BMRB ID: 34913.

		PriSI ^{∆CTD} +Rpa2 ^{WH}
	11102	
Data collection		
Space group	P 4 ₃ 2 ₁ 2	P 2 ₁ 2 ₁ 2 ₁
Cell dimensions		
a, b, c (Å)	116.6, 116.6, 121.1	68.8, 101.5, 177.8
α, β, γ (°)	90, 90, 90	90, 90, 90
Wavelength (Å)	0.98011	0.97857
Resolution (Å)	39.5 - 1.85	48.8 - 3.50
	(1.89 - 1.85)	(3.59 - 3.50)
Estimated resolution limit (Å)*	1.94, 1.94, 1.84	3.15, 3.59, 5.93
Rnim	0.023 (0.609)	0.036 (4.24)
R _{merae}	0.114 (4.06)	0.126 (15.0)
Ι/σΙ	12.6 (0.8)	9.5 (0.3)
CC _{1/2}	0.999 (0.592)	1.0 (0.20)
Completeness (%)	100 (100)	99.9 (99.5)
Redundancy	26.1 (24.8)	13.2 (13.4)
, Rnim*	0.025 (0.427)	0.022 (0.506)
R _{merae} *	0.125 (2.14)	0.074 (1.774)
/ σ/*	14.0 (1.5)	16.1 (1.8)
CC _{1/2} *	0.999 (0.745)	1.000 (0.593)
Completeness (%)*	96.4 (61.5)	58.1 (16.0)
Refinement		
Resolution (Å)	39.51 - 1.85	48.8 - 3.50
		(3.67-3.50)
No. reflections	67117 (1284)	8875 (386)
R _{work} / R _{free} (%)	19.87/22.37	23.45/25.55
No. atoms		
Protein	4606	5289
Ligand/ion	9	1
Water	611	-
B-factors		
Protein	43.1	184.1
Ligand/ion	54.3	44.13
Water	57.0	-
R.m.s. deviations	00	
Bond lengths (Å)	0.009	0.0085
Bond angles (°)	0.89	1.32
PDBID	9F28	9F26

Supplementary Table 2. Crystallographic and refinement statistics. Values in parentheses are for highest-resolution shell. Dataset from single crystal used per structure. Values calculated after truncation by STARANISO (*). Estimated resolution limits along the three crystallographic directions a*, b*, c*.

	PolD-Rpa ^{wn} class 1	PolD-Rpa ^{wн} class 2
	EMDB-50140	EMDB-50143
Data collection and processing	PDB 9F29	PDB 9F2A
Magnification	130,000X	130,000X
Voltage (kV)	300	300
Electron exposure (e ⁻ /Ų)	40	40
Pixel size (Å)	0.96	0.96
Symmetry imposed	-	-
Initial particle images (no.)	605,481	605,481
Final particle images (no.)	169,361	174,709
Map resolution (Å) (FSC threshold)	2.94 (0.143)	2.91(0.143)
Map resolution range (Å)	2-5	2-5
Refinement		
Initial model used (PDB code)	6T8H	6T8H
Model resolution (Å) (FSC threshold)	2.8 (0.5)	2.9 (0.5)
Model resolution range (Å)	2-5	2-5
Map sharpening <i>B</i> factor (Å ²)	97.2	96.7
Model composition		
Non-hydrogen atoms	13520	13557
Protein residues	1688	1692
Ligands	4	4
<i>B</i> factors (Å ²)		
Protein	58.57	58.79
Ligand	101.13	116.38
RMS deviations		
Bond lengths (Å)	0.003	0.004
Bond angles (°)	0.488	0.549
Validation		
Molprobity score	1.38	1.24
Clashscore	3.38	3.12
Poor rotamers (%)	0	0
Ramachandran plot		
Favored (%)	96.3	97.26
Allowed (%)	3.7	2.74
Disallowed (%)	0	0

Supplementary Table 3. Cryo-EM data collection, refinement and validation statistics.

Oligonucleotides	Length	Séquences (5' to 3')	
	(nt)		
Primer	17	TGCCAAGCTTGCATGCC	5'Cy5
	87	CAGGAAACAGCTATGACCATGATTACGAAT	
Template		TCGAGCTCGGTACCCGGGGATCCTCTAGAG	
		TCGACCTGCAGGCATGCAAGCTTGGCA	
	87	TGCCAAGCTTGCATGCCTGCAGGTCGACTCT	5'Cy5
		AGAGGATCCCCGGGTACCGAGCTCGAATTC	
Ladders		GTAATCATGGTCATAGCTGTTTCCTG	
	57	TGCCAAGCTTGCATGCCTGCAGGTCGACTCT	5'Cy5
		AGAGGATCCCCGGGTACCGAGCTCGA	
Oligonucleotide	87	TGCCAAGCTTGCATGCCTGCAGGTCGACTCT	
competitor		AGAGGATCCCCGGGTACCGAGCTCGAATTC	
		GTAATCATGGTCATAGCTGTTTCCTG	
Forward	34	GGATCCTaCGACCTGCAGGCATGCAAGCTTG	5'FAM
		GCA	
reverse	34	TGCCAAGCTTGCATGCCTGCAGGTCGTAGG	
		ATCC	

Supplementary Table 4. Oligonucleotides used as ladders and primer-templates in the activity assay experiments. Deoxyribonucleotides are in capital letters and ribonucleotide is in lower case letter.

Strains	Genotype or other relevant characteristics	Source or reference
E. coli		
DH5a	Φ 80dlacZ Δ m15, recA1, endA1, gyrA96, thi- 1, hsdR17 (r_k -, m_k +), supE44, relA1, deoR, Δ (lacZYA-argF)U169	Thermo Fisher Scientific
T. barophilus		
UBOCC-M-3300	$\Delta TERMP_00517$	(Birien et al., 2018)
Plasmids		
pUPH	Pop-in Pop-out vector	(Birien et al., 2018)
pRD603	pUPH-RPA∆70AA Cter	This study
pRD605	pUPH-RPA∆3SU	This study

Supplementary Table 5: Strains and plasmids used in this study.

761-RPA32∆WHCterKpnI	ATCG GGTACC AGATCAGGCGTAG		
	AAAGCCAGG		
762-	CCAATTTCTTTTTTACAAAAAGAG		
RPA32\Delta WHCterFusRv	GAATAAGAAGTCATTCTTCCTCAA		
	ATATTTCCTCCTCTAAGGC	To construct	
763-	GCCTTAGAGGAGGAAATATTTGAG	$RPA\Delta^{WH}$	
RPA32\Delta WHCterFusFw	GAAGAATGACTTCTTATTCCTCTTT		
	TTGTAAAAAAGAAATTGG		
764-	GCTA GGATCC GGCTCAACATATAT		
RPA32 \[] WHCterBamHI	GCGTTTATTCTGGC		
766-RPA32∆WHVerifRv	GGTATGCGATGCTCTTATTTGTTGT	Used with 776. To	
	TGG	verify mutant of	
		RPA	
771-RPA-SupBamHI-Fw	CCCTGCACTTATCCCCGAGAATCC	To suppress RamHI	
	ATTTTCCAAGGATTATCTTCTCC	site in the sequence	
772-RPA-SupBamHI-Rv	GGAGAAGATAATCCTTGGAAAATG	encoding RPA	
	GATTCTCGGGGGATAAGTGCAGGG	cheoding Ki A	
773-RPA∆3SU-KpnI	ATGC GGTACC AGTGACAGTCCCGC		
	ATGATAGG		
774-RPA∆3SU-FusRv	GGTCATTTTGCAAAATCTGGAGCC		
	ТТСТТАТТССТСТТТТТБТАААААА	To delete the three	
	GAAATTGG	RPA genes	
775-RPA∆3SU-FusFw	CCAATTTCTTTTTTACAAAAAGAG		
	GAATAAGAAGGCTCCAGATTTTGC		
	AAAATGACC		
776-RPA∆3SUVerifFw	GGGTTAGTATTCTAATTTTACCTCT	Used with 766. To	
	CTTCAAAGCG	verify mutant of	
		RPA	

Supplementary Table 6: List of primers used in this study. Restriction sites are shown in bold.