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Abstract11

The high-quality global wave mode synthetic aperture radar (SAR) vignettes routinely collected

by Sentinel-1 is today extensively exploited for various oceanic and atmospheric phenomena. Yet,

these observations still remain largely untapped for iceberg monitoring in the Southern Ocean. As

a follow-up to our previous work (Wang et al., 2019b), a dedicated SAR image classifier is built

to detect small-sized icebergs (<5 km) that are commonly underrepresented in current recording

systems. It has been fine-tuned from the Inception-v3 deep convolutional neural network using a

curated dataset of 2,062 iceberg and 15,338 non-iceberg cases. Independent evaluations, based on

three additional datasets, achieve high precision and recall rates above 90%. Applied to all WV

images acquired between 2016 and 2018 unveils iceberg occurrences around Antarctica. About

∼7.5% of the detected icebergs drift into 40◦S to 50◦S latitudes, while the majority are concen-

trated poleward of 55◦S. The seasonal patterns of SAR icebergs are generally consistent with

altimeter-detection estimates, and exhibit advances over the sea ice regions. Linking these SAR

icebergs to the reported large icebergs reveals that small icebergs are more likely located to the east

of large iceberg trajectories, suggesting the primary driver of underlying ocean currents to their

drift. Although precise identification of the shape and position of these small icebergs remains

challenging, WV SAR vignettes provide added values to iceberg investigations at scales beyond

current operational reports. Not only relevant for the precise monitoring of icebergs across a wider

range of sizes, it can become instrumental for our understanding of iceberg tracking, associated

dissolution, along with freshwater transport, and their broader impact on global and local climate

processes.
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Highlights13

• Global Sentinel-1 wave mode SAR aids monitoring of small icebergs around Antarctica14

• A deep-learning-based model is developed to identify SAR images containing icebergs15

• Icebergs are common in the Southern Ocean with unignorable proportion reaching over 50°S16

• Linking small and large icebergs benefits understanding of ocean currents and dynamics17

1. Introduction18

Icebergs, as drifting remains of calving events from glaciers and ice shelves, are a common19

phenomenon in the Southern Ocean (Jacobs et al., 1992; Smith, 2011; Tournadre et al., 2016).20

They are not only indicators of polar ice dynamics but also active entities in influencing sea level,21

ocean circulation, and marine ecosystems (Biddle et al., 2015; Merino et al., 2016). The trend of22

global warming has led to a growing mass loss of the Antarctic ice sheet, most of which ending23

up with calved icebergs (Mackie et al., 2020; Schloesser et al., 2019). Approximately 130,00024

icebergs are estimated to be floating around the Antarctic in the austral summer based on 3025

years of ship reports, with their dissolution rate dependent on the size and distance from their26

origins (Orheim et al., 2023b,a). Given this large population, an accurate representation of the27

iceberg dissolution process in global circulation models has become crucial to characterize its28

contribution to sea level rise and local circulation pattern, among others (Smith, 2011; Collares29

et al., 2018; England et al., 2020; Starr et al., 2021).30

Means to monitor icebergs have continuously been evolving over the last decades. Most31

straightforward are reports from sailing ships with iceberg position, shape, size, and volume es-32

timation (Jacka and Giles, 2007; Romanov et al., 2012). They have been a primary data source33

for iceberg statistics since the last century and continue to provide valuable perspectives on the34

distribution and dissolution of icebergs (Orheim et al., 2023b; Romanov et al., 2017). Meanwhile,35

satellite measurements have been demonstrated for monitoring icebergs over the most remote re-36

gions on Earth (Smith, 2011). Optical sensors provide high-resolution and detailed visual images37
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to identify icebergs (e.g. Braakmann-Folgmann et al., 2021), but are restricted by cloud cover and38

the absence of daylight during polar winters. Microwave instruments, by comparison, are not39

hindered by weather conditions. The scatterometer worked as a popular means for iceberg de-40

tection based on the higher backscattering in contrast to the background water (Stuart and Long,41

2011). Given the continuous operation of scatterometers, an operational database for tracking large42

iceberg (larger than 6 km in length) has been compiled and updated (Budge and Long, 2018). Be-43

yond its well-known capability for sea level measurements, spaceborne altimeters have also been44

demonstrated to capture iceberg signatures through the thermal noise signal analysis in open water45

(Tournadre et al., 2008). A complementary database of smaller-size icebergs composed of their po-46

sition, size and volumes has then been created combining multiple altimeter satellites (Tournadre47

et al., 2012, 2016). Yet, it is worth pointing out that the size of icebergs is estimated based on48

assumptions of fixed backscattering and free-board elevations (Tournadre et al., 2012) in addition49

to the fact that the shape of icebergs is also hard to infer from altimeter measurements.50

Spaceborne synthetic aperture radar (SAR) serves as a good candidate for complementary51

monitoring of all-sized icebergs attributed to its relatively wide coverage and high spatial reso-52

lutions (Barbat et al., 2019, 2021; Braakmann-Folgmann et al., 2022; Evans et al., 2023; Koo53

et al., 2023; Mazur et al., 2017; Power et al., 2001; Silva and Bigg, 2005; Wesche and Dierking,54

2015; Young et al., 1998). Similarly to scatterometers, SAR relies on backscattering of the illu-55

minated surface to identify the presence of icebergs. The radar backscattering over icebergs is56

a combination of surface scattering and volume scattering, often higher than the open water and57

visualized as bright objects on SAR images. One of the ever-largest icebergs on record calved58

from the Larsen C Ice Shelf in 2017, A68, has been consistently monitored by SAR in terms59

of its subsequent breakup as well as the drift during its lifecycle (Braakmann-Folgmann et al.,60

2022; Smith and Bigg, 2023). Thanks to the consistent acquisition plan of Sentinel-1 (S-1) across61

the Arctic region, an added-value product is operationally delivered by the Copernicus Marine62

Environment Monitoring Service with the full name of ”SAR Sea Ice Berg Concentration and63

Individual Icebergs Observed with Sentinel-1”. However, most of the relevant studies focus on64

automated detection of large icebergs based on wide-swath SAR images acquired in coastal areas65

where they are present all year round (Marino et al., 2016; Karvonen et al., 2021; Evans et al.,66

2023). Although icebergs of different sizes are equivalently significant, giant icebergs are better67

represented in climate models as they received much more attention (for example, the NIC iceberg68

database only reports iceberg larger than 18.5 km along at least one axis) (Tournadre et al., 2016).69

By comparison, smaller-sized icebergs (∼1 km) remains less tapped due to the lack of solid70
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observational source for characterizing their distribution and melting process. Such situation might71

be changed by S-1 wave mode (WV) acquisitions that systematically collect SAR vignettes (20 km72

by 20 km) over the open ocean. The huge amount of this database (60,000 per month per satellite)73

still poses great challenges to detect and identify small-sized icebergs across the vast Southern74

Ocean. Wang et al. (2019a,b) marks one of the earliest studies to explore S-1 WV acquisitions75

for automatic classification of vignettes regarding sea ice and iceberg signatures. While such76

a multiclass classification model is useful for tagging the whole WV image archive for quick77

categorization, some limitations are evident. Regarding the iceberg detection, the precision is far78

from satisfactory (17%) despite of the high recall (93%). Hard-metal objects, like vessels and79

platforms, have been misinterpreted that leads to a degraded classification performance (Wang80

et al., 2019b). This is because the overall features are not sufficient to represent the differences81

between icebergs and the metal objects for this comprehensive model, dealing with 10 classes,82

from pure ocean waves to oceanic front (Wang et al., 2019b).83

This study aims to demonstrate the use of a more dedicated binary classification model focus-84

ing on iceberg (IB) and the other non-iceberg (NIB) images. We first built a hand-crafted database85

of 17,400 labeled S-1 WV vignettes containing various iceberg signatures in terms of their size,86

shape and radar backscattering contrast relative to the surrounding water. It is divided into two part87

for training and validating the classification model to achieve optimal performance, respectively.88

This model is then applied to a three-year SAR dataset for further geophysical analyses of the89

detected small-sized icebergs. Results presented here are demonstrated to bridge the gaps between90

large and small-sized icebergs for better understanding the breakup and melting during their entire91

lifecycle.92

The remaining of this paper is organized as follows. The datasets are described in Section 2,93

including S-1 WV SAR vignettes and auxiliary environmental variables used in this study. The IB94

classifier (CMwvIB) is trained and evaluated in Section 3. Its application and analysis to a three-95

year period of SAR acquisitions around the Antarctica are illustrated in Section 4. Discussion and96

conclusion are given in Section 5.97

2. Datasets and processes98

2.1. S-1 WV SAR images99

The Sentinel-1 (S-1) mission comprises a polar-orbiting, sun-synchronous Synthetic Aperture100

Radar (SAR) satellite constellation designed for long-term monitoring of open ocean (Torres et al.,101

2012). S-1 satellites cross the equator at approximately 6:00 AM in descending orbit and 6:00 PM102
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in ascending orbit, ensuring consistent global coverage. The revisit cycle is 12 days per satellite,103

which can be reduced to 6 days with two satellites in orbit. S-1A and S-1B were launched in 2014104

and 2016, respectively and S-1B mission has unfortunately come to an end in December 2021 due105

to an anomaly in its electronics power supply. Such an observational capacity shall be restored by106

the upcoming launch of S-1C expected in 2024 and the Harmony mission in 2029.107

After its in-orbit commissioning phase, Wave Mode (WV) began its routine acquisition of SAR108

vignettes in June 2015 for S-1A and in June 2016 for S-1B, respectively. To our knowledge, it is109

the only imaging mode that operationally acquires vignettes over the global open oceans. Approx-110

imately 65,000 scenes are acquired per month per satellite, each covering a 20 km by 20 km swath111

with a pixel spacing of 5 m. These vignettes are collected by default in VV polarization (HH112

polarization was temporarily operational for S-1B between 15 March and 1 July 2017) at two al-113

ternating incidence angles of 23.5◦ (termed as WV1) and 36.5◦ (termed as WV2). This “leapfrog”114

acquisition pattern results in a separation of 200 km between two consecutive WV images at the115

same incidence (Fig. 1). All WV SAR vignettes are publicly accessible via ESA Sentinel Open116

Access Hub (https://sentinel.esa.int/web/sentinel/sentinel-data-access) and are117

also archived by the French Research Institute for Exploitation of the Sea (IFREMER) at http:118

//www.ifremer.fr/datavore/exp/dvor/#/s1quicklook.119

In this study, we focus on the area from 40◦S poleward as it is widely acknowledged that120

icebergs barely go further north (Tournadre et al., 2016). S-1 switches its acquisition mode to wide121

swath (either interferometric wide or extra wide) approaching the Antarctic continents in terms of122

the Mission Operation Scenario for dedicated sea ice observations. Top left of Fig. 1 illustrates123

the spatial locations of ∼5700 WV images collected within one revisit cycle of 12 days (blue dots124

for WV1 and red dots for WV2). The monthly count of WV SAR vignettes across a 2◦ by 2◦ grid125

can reach up to 40, as shown by the color-coded distribution in top right of Fig. 1. The spatial126

pattern of these acquisitions effectively overlaps with regions identified as frequent occurrence of127

icebergs (Tournadre et al., 2008, 2016). IBs in these regions should thus be readily detectable and128

well-resolved within the high-resolution WV SAR vignettes, especially for the calved icebergs129

beyond the reported scope of scatterometers and radiometers.130

To enhance the visibility of image patterns, a processing step converting the commonly used131

normalized radar cross section (NRCS) to the sea surface roughness image is implemented as in132

(Wang et al., 2019a). This is achieved by dividing SAR-measured NRCS by a referenced NRCS133

calculated with the empirical geophysical model function CMOD5.N at a constant wind speed and134

direction (here we take 10 m/s and 45◦). Each image is then downsampled to a reduced spatial135
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Fig. 1. Top left gives S-1 WV center locations acquired within a revisit cycle between 1 December 2016
and 12 December 2016 for WV1 (blue dots) and WV2 (red dots). Top right is the monthly count of WV
vignettes combining WV1 and WV2 in the grid of 2◦ by 2◦. Bottom panel shows the overall recall and
precision rate of icebergs given by CMwv developed in (Wang et al., 2019b).

spacing of 50 m from the full resolution of 5 m using a mean filtering. This downsampling step136

is carried out to not only increase the signal-to-noise ratio, but also reduce the image size for later137

training input.138

2.2. Training and assessment dataset139

Our study focuses on developing an iceberg-specific identification model, which requires a140

robust dataset of labeled WV SAR vignettes for training and evaluation. To this aim, an iceberg141

and non-IB dataset is constructed by merging two previously established databases: a training142

dataset containing 37,553 images of ten distinct geophysical phenomena (Wang et al., 2019a), and143

an assessment dataset (hereafter referred to as AD10k) used to evaluate the performance of the144

CMwv model presented by Wang et al. (2019b). The former dataset, comprising WV vignettes145

exclusively from Sentinel-1A acquired throughout 2016, includes 1,980 images labeled as ice-146

bergs, previously utilized in the development of CMwv. The AD10k dataset consists of 10,000147

randomly selected and labeled Sentinel-1A WV SAR images from 2016, of which 109 images148
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exhibit distinct iceberg features, with 27 overlapping with the training dataset. Note that both149

datasets are count-equalized between WV1 and WV2 acquisitions, ensuring that the influence of150

varying SAR incidence angles on iceberg detection and identification, as discussed by Wesche and151

Dierking (2012), can be neglected.152

Fig. 2. Map plot of the labeled iceberg (IB) and non-iceberg (NIB) images assembled for training of the
classification model (CMwvIB). Eight cases are given to illustrate the various shapes and patterns of SAR-
observed IBs.

Given the fact there is no record of icebergs drifting northward of the latitude 40◦S, SAR153

images with central locations northward 40◦S are excluded from the newly combined database,154

leading to 17400 vignettes in total. The central map in Fig. 2 provides a comprehensive overview155

of the spatial distribution of the dataset used in this study, which includes 2,062 iceberg (IB) and156

15,338 non-iceberg (NIB) labeled S-1 WV SAR vignettes. The IB vignettes are represented by157

red dots, and the NIB vignettes by gray dots. The map clearly shows that the majority of IB158

samples are concentrated in the Weddell Sea and the eastern sector of the Southern Ocean, regions159
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known for their high iceberg activity (Tournadre et al., 2012). This distribution is consistent with160

previous observations that highlight these areas as hotspots for iceberg formation and drift due161

to their proximity to calving fronts and strong ocean currents. In contrast, the NIB vignettes162

are more uniformly distributed across the Southern Ocean, reflecting a broader representation of163

geophysical phenomena other than icebergs.164

Surrounding the map are eight example SAR vignettes, illustrating the diversity of small-sized165

iceberg appearances captured by SAR images. The vignettes display a range of iceberg sizes and166

shapes, from small, barely visible dots to larger as in Fig. 2 (g), more distinct features with sharp167

contrasts against the surrounding ocean surface. This variability highlights the challenges in dis-168

tinguishing icebergs from other oceanic features, particularly in areas with complex backscattering169

characteristics such as sea ice, wind streaks, or ocean fronts. Another aspect worth mentioning is170

that these high-resolution images reveals the distinct scattering mechanisms associated with ice-171

bergs, varying between bright and darker radar returns in contrast with the ocean background. This172

is possibly associated with several impact factors including iceberg size, orientation, and the local173

radar incidence angle. In addition, for some particular cases such as Fig. 2 (a) and (h), wakes of the174

movements of small icebergs are visible. This shall likely result in misclassificiation with vessels175

(Asiyabi et al., 2023), but fortunately Southern Ocean is not a popular shipping route (Schreier176

et al., 2007).177

The dataset was randomly partitioned into two subsets with a 7:3 ratio, where 30% is reserved178

for testing model performance during the training phase. Additionally, three independent datasets179

(referred to as AD1, AD2, and AD3) are constructed to further evaluate the performance and180

sensitivity of the CMwvIB model. This multi-dataset approach is critical for validating the model181

robustness when applied to extensive WV SAR dataset (LeCun et al., 2015). Each vignette within182

these datasets was manually labeled by three SAR experts, and the results are cross-validated183

against the model outputs. Specifically,184

• AD1 includes 179,019 S-1A WV images acquired between 0-30◦S in 2016, among which185

no IB is expected.186

• AD2 includes 14,732 S-1A WV images acquired poleward of 40◦S during January 2017187

(austral summer) where both IB and NIB are labeled, with a higher frequency of IB expected.188

• AD3 includes 18,005 S-1A WV images acquired poleward of 40◦S in July 2017 (austral189

winter) with IB and NIB both labelled with fewer IB expected.190
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2.3. Auxiliary data191

To examine the relationship between the identified icebergs and larger icebergs, we use the192

consolidated Antarctic IB tracking database from Brigham Young University and the National193

Ice Center (BYU/NIC) (Budge and Long, 2018). This dataset, accessible at https://www.scp.194

byu.edu/data/iceberg/database1.html, consists of two primary files. The first file includes195

the original BYU daily IB tracks derived from various scatterometer measurements and interpo-196

lated NIC IB positions, mostly obtained from optical, infrared, and SAR sensors. The second197

file provides daily unique IB tracks, generated by averaging the positions from multiple sensors.198

Both files also contain data on iceberg sizes (>6 km for BYU and >18.5 km for NIC in length or199

>5 km2), rotation angles, and masking flags for each IB. In this study, we only focus on the IB200

positions from the daily unique tracks.201

To complement the seasonal manifestation of the identified icebergs, we include the sea ice202

concentration product which is publicly available at ftp://ftp.ifremer.fr/ifremer/cersat/203

products/gridded/psi-concentration/. This product is derived from Special Sensor Mi-204

crowave Imager (SSM/I) radiometer (Ezraty et al., 2007) and has been operational since 1992205

with a spatial resolution of 12.5 km. We use the monthly data to generate seasonal sea ice concen-206

tration maps, from which the sea-ice boundaries defined by the 10% contour is then derived.207

3. Development of the iceberg classifier208

This section details the development, training, and evaluation of the built CMwvIB model, an209

iceberg-specific classifier extended from previous CMwv framework that effectively categorized210

global WV SAR imagery into ten common geophysical phenomena (Wang et al., 2019b). The211

primary objective is to refine the classification of iceberg and non-iceberg features by fine-tuning212

Google’s Inception-v3 convolutional neural network (CNN). Although this represents a relatively213

straightforward machine learning task, it serves as an essential step toward applying WV SAR214

vignettes for specific iceberg studies.215

3.1. Model creation and training216

The Inception-v3 architecture, an evolution of the original GoogLeNet or Inception-v1 model217

(Szegedy et al., 2015), brings in additional factorization techniques to increase the number of218

convolutions while maintaining computational efficiency (Szegedy et al., 2016). This architec-219

ture has demonstrated exceptional performance, achieving 94.4% top-5 accuracy on the Ima-220

geNet Large-Scale Visual Recognition Challenge (ILSVRC) 2012 classification dataset. The221
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Inception-v3 model was selected for this study due to its proven performance in our previous222

classification work and its straightforward implementation using the Keras deep learning library223

(https://keras.io/). The model comprises 48 network layers with approximately 23 million224

trainable weights, organized into feature extraction and classification components. The feature225

extraction layers are optimized to detect key image features such as curves, edges, gradients, and226

patterns, yielding 2048 optimal features to feed the final classification layer of the architecture.227

Fig. 3. Schematic representation of the IB classifier (CMwvIB) implemented based on Inception v3 ar-
chitecture. The input layer is modified to take images with size of 451 × 451 pixels and the output layer
returns the probability of an image containing iceberg. The probability of an image classified as IB and NIB
summarizes to 1.

For this study, we use the CNN architecture by only modifying the input and output layers,228

following a previous similar approach Wang et al. (2019b). Specifically, the input layer is adjusted229

to accept images with dimensions of 451 by 451 pixels, allowing the model to fully capture the230

content of the downsampled SAR vignettes (Fig. 3). The final layer is replaced by a new classifi-231

cation layer designed to output the probabilities of IB and NIB categories. These probabilities sum232

to 1 and the model classifies an image as IB if the corresponding score exceeds that of NIB. The233

remaining layers of the Inception-v3 architecture are retained, with their weights initialized from234

the CMwv model. Fine-tuning of the entire network is then conducted using 70% of the training235

dataset, as outlined in Section 2.2. The remaining 30% of the dataset is used for validation at each236

epoch, ensuring robust model performance during optimization. It is worth noting that the random237

partitioning of the training and validation subsets does not influence the overall model accuracy,238

as demonstrated by Fig. 3 in Wang et al. (2019b).239

To train the CMwvIB model, the gradient descent optimizer is employed with a learning rate240

of 0.00001 and a momentum of 0.9. During each epoch, the model processes batches of 32 images241
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and accordingly updates the layer weights. The selected images experience a series of random242

transformations, including shifts, flips, rotations, and zooms, with newly introduced pixels filled243

by reflecting adjacent values. This real-time data augmentation approach addresses the challenge244

of uneven sampling commonly encountered in machine learning classification tasks. To note for245

operational use of CMwvIB, no further preprocessing of the input images is required.246

As shown in Fig. 4 (a), the overall accuracy (OA) of CMwvIB increases rapidly during train-247

ing, reaching approximately 99% by the 50th epoch. Beyond this point, the OA exhibits minimal248

fluctuation, peaking at 99.2% at the 426th epoch. The model is fine-tuned over a limited num-249

ber of epochs, as the OA has already achieved a remarkably high level. Fig. 4 (b) presents the250

corresponding confusion matrix, where true positives (TP), false positives (FP), false negatives251

(FN), and true negatives (TN) are defined. From this matrix, the precision (TP/(TP+FP)) and252

recall (TP/(TP+FN)) for iceberg detection are calculated to be 96.8% and 98.8%, respectively.253

These metrics manifest a significant improvement in iceberg detection performance compared to254

the original CMwv model.255

Fig. 4. Performance of the iceberg classifier CMwvIB in terms of its (a) overall accuracy (OA) variation
versus epoch during the model training and (b) confusion matrix based on all training images. The vertical
arrow in (a) marks the highest OA (99.23%) achieved at the 416th epoch. The letters within parenthesis in
plot (b) indicate true positive (TP), false positive (FP), false negative (FN) and true negative (TN), respec-
tively with the precision of 96.8% and recall of 98.8% for iceberg detection.

3.2. Image features extracted by CMwvIB256

Performance of the CMwvIB model is tightly linked to the 2048 image features derived through257

a series of convolutional and pooling layers. These features are fully explored in the final classi-258
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fication layer and help illustrate the architecture behavior. In Fig. 5 (a), these high-dimensional259

features extracted by CMwvIB are projected onto a two-dimensional plane using the t-distributed260

Stochastic Neighbor Embedding (t-SNE) technique, as described by Van der Maaten and Hinton261

(2008). The t-SNE algorithm computes similarities between data points based on joint probabil-262

ities, enabling the minimization of the Kullback-Leibler divergence between the original high-263

dimensional data and its lower-dimensional representation. The embedding map shown in Fig. 5264

(a) is generated using all training images, illustrating the pairwise distances between samples.265

Both IB and NIB classes are well-clustered and can be distinctly separated using a straightforward266

threshold, such as the dashed line depicted in the plot. The NIB cluster exhibits greater dispersion267

compared to the IB cluster, reflecting the broader range of phenomena encompassed by the NIB268

class in WV SAR data. Interestingly, despite being trained to classify only between IB and NIB,269

the CMwvIB model demonstrates an ability to further subclassify NIB images given the robust270

capabilities of this Inception-v3 CNN model, as also evidenced by the CMwv framework (Wang271

et al., 2019b).272

Fig. 5. (a) Projection of the 2048 image features in the trained CMwvIB classifier onto a 2D plane using
the t-SNE algorithm for visual inspection. (b) The cumulative distribution function of the probability that
an image contains icebergs, as predicted by CMwvIB for the training dataset.

The analysis of the t-SNE embedding reveals a subset of cases where the CMwvIB model273

classification and visual inspection are inconsistent. That is specifically 62 images labeled as NIB274

but categorized as IB by the model, while 23 labeled as IB but grouped as NIB by the model.275

These cases of discrepancy do not precisely correlate with the confusion matrix in Fig. 4 (b) due276

to the differences between t-SNE dimensionality reduction method and the operation of a fully277

connected neural network. Playing the built-in parameters of t-SNE algorithm may yield results278
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consistent with the CMwvIB classification, which is beyond the focus of this paper. Nevertheless,279

the minor deviation observed in these cases has almost negligible impact on the overall classifica-280

tion performance. Fig. 5 (b) demonstrates the distribution of the probability of an image classified281

as an IB by the model. As expected, the cases labeled as NIB show quite low probability of being282

grouped as IB that 99.6% of NIBs are below 0.5. This is in contrast with the labeled IB images283

having high probability that 98.8% of the correctly identified IBs exhibit an IB score above 0.5.284

Although lowering the threshold might enhance IB detection, it could also increase the rate of false285

alarms. Therefore, a threshold of 0.5 is consistently applied throughout this study to distinguish286

between IB and NIB classes.287

Fig. 6. Demonstration of four inconsistent classification cases between expert labeling and CMwvIB. The
top panel features two images labeled as IB but with very low model detection probabilities of 0.03% and
0.15%. The bottom panel displays two cases labeled as NIB that exhibit high model detection probabilities
of 99.97% and 80.62%, respectively.

The misclassified cases identified in Fig. 6 are presented to highlight specific challenges in288

iceberg detection using the CMwvIB model, as shown in Fig. 5 (a). The top two images in Fig. 6289

are labeled as iceberg by human experts but are classified as non-iceberg by the CMwvIB model.290

This misclassification likely results from the model limitations in distinguishing between icebergs291

and sea ice when they coexist in the same scene. The visual similarity between icebergs embedded292
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within larger sea ice fields and other bright reflectors, such as sea ice floes, can confuse the model.293

In such cases, the algorithm may be unable to properly weigh the subtle features that differentiate294

icebergs from sea ice, such as shape, edge contrast, or textural properties, leading to incorrect295

predictions. The bottom two images in Fig. 6 represent the reverse situation, where the model296

classified scenes as containing icebergs even though human experts labeled them as non-iceberg.297

Here, the presence of small icebergs within areas dominated by sea ice likely contributed to the298

model confusion. The interaction between icebergs and surrounding sea ice introduces additional299

complexity, as the model may rely on features such as reflectivity or texture, which are similar in300

both icebergs and sea ice. These factors could lead to an overestimation of the likelihood that an301

image contains an iceberg.302

3.3. Independent assessment303

Internal model validation based on a subset of the training dataset aims to help iterate the304

parameter optimization during the training process. However, the training dataset may not be305

sufficient to represent all the conditions in WV observations. The model performance must thus306

be evaulated using independent datasets, such as the three described in Section 2.2. The confusion307

matrix for each dataset (AD1, AD2, and AD3) are presented in Table 1. For AD1 composed of308

179,019 samples acquired in 2016 within the 0–30◦S region, all images are expected to belong to309

the non-iceberg class. And only 1.1% (1,961 images) are misclassified as IB, likely contaminated310

by rain events or presences of metal objects (vessels, platforms). CMwvIB exhibits satisfactory311

performance across AD2 and AD3, which include WV SAR images from January and July 2017,312

acquired 40◦S poleward. Precision and recall values exceed 90% across both large datasets (14,732313

images in AD2 and 18,005 in AD3). The classifier is relatively better performing during the austral314

summer, with IB detection misses of 6% in AD2 and 9% in AD3, and false positives of 1% and 8%,315

respectively. Such a seasonal discrepancy is largely to be attributed to the substantial variations in316

IB occurrence, e.g. Tournadre et al. (2012). The reduced accuracy in austral winter likely results317

from difficulties in distinguishing IBs coexisting with sea ice.318

To gain insights into the limitations of the CMwvIB classifier, a thorough visual analysis of the319

misclassified IB and NIB instances is further conducted, focusing exclusively on the false positives320

(FN) and false negatives (FP) highlighted in Table 1. This double verification procedure is similar321

to that shown in Fig. 6. For the NIB images misclassified as IB, we find that a significant portion322

of these cases involved small rain events, characterized by bright and dark spot-like features. This323

observation aligns with previous findings Wang et al. (2019b), which demonstrated that rain has324
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Table 1 Performance of the iceberg classifier CMwvIB based on the three independent assessment datasets.

Dataset TP FN FP TN Precision (%) Recall (%)

AD1 0 0 1,961 177,058 0%∗ ∞∗

AD2 1,307 78 18 13,282 99% 94%

AD3 101 10 9 17,869 92% 91%

∗ Zero detection of IB would lead to 0 precision and∞ recall based on their definitions.

a substantial impact on IB detection due to its variability and the complex signatures it induces325

in SAR imagery (Alpers et al., 2016). Additionally, some false positives are caused by features326

such as islands, ships, and atmospheric phenomena (e.g., dark or bright patches from convective327

events). For the false negatives (IB misclassified as NIB by the model), most cases occurred in328

challenging environmental conditions, such as within sea ice zones, areas of very low wind, or329

regions with heavy rainfall, strong convective cells, gust fronts, and bio-slicks. These phenomena330

coexist with the distinct local features of IBs, making their accurate detection challenging. Further331

refinement of the classifier is necessary to improve detection of these less common IB instances.332

4. Applications333

The application of CMwvIB to S-1A WV SAR data acquired poleward of 40◦S during 2016-334

2018 is carried out to analyze the distribution, relationship with large icebergs, and temporal vari-335

ation of icebergs in the Southern Ocean. This analysis is, to best of our knowledge, a pioneering336

effort, concentrating on the statistical evaluation of these WV SAR images to quantify iceberg337

presence. The observational footprint of the WV SAR images, approximately 20 km by 20 km,338

must portray the occurrences of small to very small-sized icebergs (<< 10km), compared to scat-339

terometer and altimeter measurements.340

4.1. Overall and extremes341

CMwvIB identified a total of 19,004 iceberg images from the experimental WV SAR dataset.342

It is important to note that this figure underestimates the actual number of IBs, as each WV SAR343

image could potentially contain multiple icebergs. These smaller icebergs are typically fragments344

that have broken off from larger ice masses due to various factors, documented in previous stud-345

ies (Huth et al., 2022; Orheim et al., 2023a). Fig. 7 illustrates the frequency of occurrence of346
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Fig. 7. Percentage of detected icebergs in each 2◦ by 2◦ grid box based on all WV SAR data acquired
poleward of 40◦S between 2016 and 2018. IB cases within the 40◦-50◦S latitude range are highlighted with
blue dots, with red circles marking the prominent cases as shown in Fig. 2. The black dotted lines represent
large iceberg tracks recorded in the NIC/BYU database.

the identified IB images on a 2◦ by 2◦ grid. The spatial distribution of IBs closely aligns with347

altimeter-derived estimates (Tournadre et al., 2012, 2016) and model simulations (Merino et al.,348

2016; Rackow et al., 2017). The entire Southern Ocean, poleward of 60◦S, is populated by IBs,349

with three major longitudinal clusters located around 30◦W, 140◦W, and 115◦E, where IB percent-350

ages reach approximately 35%, 25%, and 20%, respectively. The most prominent IB concentra-351

tion is observed in the Southern Atlantic Ocean, spanning from 60◦W to 30◦E and between 50◦S352

and 70◦S, a region of frequent IB occurrences already identified by long-term ship observations353

(Orheim et al., 2023b). In the Southern Indian Ocean, IBs are predominantly found between 70◦E354

and 130◦E, with a clear tendency to extend toward the 60◦S boundary. By contrast, in the Southern355

Pacific Ocean sector, from 80◦W to 150◦E, IBs are more spread and mostly poleward of 60◦S.356

The spatial distribution of the identified small icebergs only partially corresponds with the large357
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IB tracks recorded in the NIC/BYU database, as depicted by the black dotted curves in Fig. 7. No-358

table overlaps are observed, primarily in the northwestern Weddell Sea and sporadically across359

the Southern Pacific Ocean sector. Though a strong correlation between small IB fragments and360

nearby large icebergs is expected, the origins of these small IBs distanced from the larger icebergs361

remain underexplored. Tournadre et al. (2012) suggested these smaller IBs could drift over signif-362

icant distances from their original calving sites, though this hypothesis lacks direct observational363

or modeling evidence (England et al., 2020). It is important to note that the NIC/BYU database364

only tracks IBs exceeding 6 km in length, with just 80 large icebergs recorded between 2016 and365

2018. This represents a significant gap in IB monitoring, which is convincingly addressed using366

the systematic coverage provided by WV SAR data.367

An interesting observation is the detection of 1,429 icebergs images within the latitudinal band368

of 40◦S–50◦S, as highlighted by the blue dots in Fig. 7. These findings suggest that IBs can369

cross the southern extratropics and arrive northward of 40◦S, aligning with previous ship-based370

observations (Orheim et al., 2023b). Upon visual inspection of these IB images, 598 of them371

are found to contain noticeable-sized icebergs, while the remainder are predominantly small or in372

advanced stages of melting. Indicated by the red circles in Fig. 7, these 598 IBs are almost evenly373

distributed between 50◦S and 40◦S. This distribution suggests that the transport of freshwater from374

Antarctica via IBs might be quite efficient, spreading more effectively across the Southern Ocean375

than previously reported (Mackie et al., 2020; Rackow et al., 2017). Small-sized icebergs at the376

scale of 1 km, now identified by WV SAR imagery, provide valuable new sources to complement377

existing IB monitoring means, further offering visible features to facilitate the identification and378

tracking of IBs.379

4.2. Temporal variability380

The monthly distribution of total WV SAR acquisitions and corresponding identified icebergs381

is presented in Fig. 8 (a). S-1A consistently collects approximately 20,000 WV vignettes per382

month over the oceans south of 40◦S. However, the number of detected IBs exhibits significant383

seasonal variability. The austral summer, particularly February, typically shows the highest IB384

counts, whereas the austral winter, notably July, records the lowest. For instance, the percentage of385

identified IBs in July remains relatively stable, around 0.65%, from 2016 to 2018, while February386

shows some fluctuations, with IB occurrence ranging from 7.7% in 2016 to 9.0% in 2017, and to387

6.1% in 2018. This interannual variability in IB counts invites further investigations with a longer388

observational record to better identify the temporal trends. Note, these observed seasonal and389
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Fig. 8. (a) Monthly count of total WV vignettes (grey bar) and the detected iceberg (red bar) with the solid
dark curve representing the IB percentages. Seasonal maps of IB percentage on 2◦ by 2◦ grid grouped by
(b) DJF; (c) MAM; (d) JJA; (e) SON. The blue contour line corresponds to the ice concentration of 10% for
rough indication of ice-water boundary.

interannual patterns again align well with IB occurrences derived from altimeter data, reported by390

Tournadre et al. (2012). Such variations are important to help examine the impact of Antarctic391

melting water trend on global climate and vice versa. It is worth pointing out that the IB counts392

18

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5070392

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



should be considered rather than the number of identified IB images as their size and volume393

matter in the fresh water transport. These parameters are essential for accurately quantifying the394

melting water contribution from IBs to the Southern Ocean, which has significant implications for395

understanding the broader impacts of Antarctic ice melt on global climate.396

Maps of the WV IB percentage on 2◦ by 2◦ grid for the four seasons of DJF, MAM, JJA397

and SON are given in Fig. 8 (b)-(e). The highest IB occurrence is observed during DJF, with398

maximum percentages exceeding 50%. The spatial distribution of IBs along the Antarctic coast399

is non-uniform, mirroring patterns observed in Fig. 7. IBs are primarily found south of 60°S,400

with the exception of the Southern Atlantic Ocean sector extending from 60◦W to 30◦E. During401

MAM, the IB occurrence is relatively lower, though it exhibits a distribution pattern similar to402

DJF. In contrast, IB presence is almost negligible during the austral winter months of JJA and403

SON. This seasonality highlights the austral summer as the primary period for IB formation. The404

sparse green spots on the JJA and SON maps likely correspond to named large IBs and their405

adjacent small fragments. It has been reported that many large IBs, such as those calved from406

the Antarctic Peninsula, drift under the influence of the Weddell Gyre and the Antarctic Coastal407

Current, as noted by (Collares et al., 2018). These large IBs are known to persist for several years,408

as illustrated in Fig. 7. Yet it is interesting that the small-sized IBs present on WV images also409

evidence this interannual variability.410

In addition, the blue lines in Fig. 8 represent 10% ice concentration, marking the sea ice-water411

boundaries. The seasonal variation in these contours exhibits an inverse relationship with the412

distribution of WV-detected icebergs. During DJF, the sea ice extent is at its minimum, closely ap-413

proaching the Antarctic continent, while the majority of identified IBs are distributed across open414

waters. As sea ice coverage expands from DJF through MAM and into JJA/SON, the population415

of IBs diminishes, and most of IBs are observed over sea ice. Icebergs are found over both open416

water and sea ice during the transitional season of MAM. This also evidences the capability of417

WV vignettes for monitoring icebergs under different conditions, which shall complement other418

satellite remote sensing, particularly in the detection and tracking of small icebergs in regions with419

diverse ice cover.420

4.3. Correlation with named large icebergs421

A current challenge further lies in the difficulty to link small icebergs with the named large422

ones. Bridging this gap requires a thorough assessment of IBs identified through WV SAR im-423

agery with those detected by other satellite sources. A crucial step involves the joint analysis of424
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Fig. 9. (a)-(b) IB tracks of a66 and b34 given by the NIC/BYU database and positions of the detected
WV IBs from 2016-01-01 to 2017-04-05. Positions of a66 and b34 are colored in four seasons of MAM
(March-April-May), JJA (June-July-August), SON (September-October-November) and DJF (December-
January-February. Color of WV IB indicates the distance to the closest large IB. (c) Count of identified IB
images along with the a66 and b34 tracks with criteria of less than 500 km and 90 days.

medium-sized IBs using data acquired at different spatial resolutions, which would yield a more425

detailed understanding of their distribution patterns. As for this study, we select two IB tracks of426

a66 and b34 from the NIC/BYU database to manifest this aspect. Fig. 9 (a) and (b) illustrate the427

tracks of two large icebergs, a66 and b34, based on data from the NIC/BYU database, along with428

the positions of small icebergs detected by WV SAR during the period from January 1, 2016, to429

April 5, 2017. The tracks of a66 and b34 are displayed with colored dots representing four sea-430

sons: MAM (March-April-May), JJA (June-July-August), SON (September-October-November),431

and DJF (December-January-February). The trajectories of a66 and b34 are marked by an aver-432

age daily travel speed of approximately 7.3 km/day and 6.9 km/day, respectively. These drifts are433

consistent with the general drift patterns of large icebergs within the Southern Ocean, driven by434

prevailing ocean currents and wind forces. The small icebergs identified by WV SAR are color-435

coded in terms of their mean distance to the nearest large iceberg. Most of SAR-detected small436

icebergs are located to the east of the large icebergs. This eastward distribution pattern indicates437

the prominent influence of the Antarctic Circumpolar Current (ACC). While the majority of small438
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icebergs detected via WV SAR are concentrated to the east of the named large icebergs, a few no-439

table exceptions appear to the west. These westward anomalies are speculated to have originated440

from the fragmentation of other large icebergs located further west than the primary iceberg under441

investigation.442

Fig. 9 (c) shows the temporal variation in the number of small IBs detected near a66 (black443

line) and b34 (red line) over time. For both large icebergs, distinct seasonal patterns also appear,444

with small IB counts peaking in austral summer (DJF) and declining towards zero in the winter445

months. The highest counts for both a66 and b34 occur in November, indicating accelerated446

disintegration of the large icebergs as they drift from their calving locations to open waters. The447

zero counts observed at the beginning of the tracks reflect the lack of WV observations early in448

their lifecycles. The small fluctuations in the number of detected IBs along the tracks are likely449

influenced by local oceanic conditions, such as currents and interactions with the sea ice edge.450

While this analysis highlights the seasonal dependency of iceberg fragmentation, a more detailed451

investigation into the precise dynamics of small IB formation and drift, including iceberg size and452

shape extraction, remains to be performed, beyond the scope of this study.453

Fig. 10. (a) Proportion of collocated WV IBs to the closest NIC/BYU large IB over 2◦ by 2◦ grid. The
criteria are less than 500 km and within 90 days. (b) Distribution of these collocated WV IBs relative to
the large IB position and moving direction (indicated by the black arrow). The color represents binned data
count over total number of WV IB.

Clearly, the named large icebergs reported by BYU/NIC provide crucial reference to build454
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relationships with WV identified small-sized icebergs on the order of 1 km. This connection455

can be further explored by computing the distance from each identified WV SAR iceberg to its456

nearest large iceberg as given in Fig. 10 (a). Overall, 71.3% of the WV SAR-detected icebergs457

are located within 500 km and 90 days of a larger iceberg, this percentage decreasing to 37.2%458

when considering 200 km distance and 30 days. These icebergs are primarily concentrated in the459

northwestern Weddell Sea and near the Antarctic coast. Again consistent with previous results460

Tournadre et al. (2012), the small-sized iceberg cluster aligns with the tracks of large icebergs as461

in Fig. 7. Such a significant link between small and named large icebergs is consistent with the462

fragmentation of large icebergs into smaller ones, already extensively documented using satellite463

imagery (e.g. Braakmann-Folgmann et al., 2022; Huth et al., 2022). Combining the named large464

icebergs with the smaller ones identified by WV may thus help better monitor the calving process465

of a large iceberg.466

Fig. 10 (b) illustrates the spatial distribution of collocated SAR-detected icebergs relative to467

the position and movement direction of large icebergs. The analysis is restricted to within 500 km468

of the large iceberg and a 90-day window. As expected, the number of WV-detected small IBs469

increases with increasing distance from the large iceberg, in line with the hypothesis that smaller470

icebergs are fragments, initially calved from the larger iceberg and subsequently drifting away.471

Over time and distance, these fragments accumulate. Note that a rightward bias is observed in472

the drift pattern of the small icebergs relative to the movement direction the linked large iceberg.473

Specifically, 29.3% of WV IBs are detected in the right front, and 26.8% in the right rear, compared474

to 23.5% and 20.4% in the left front and rear, respectively. This asymmetry likely reflects the475

influence of regional ocean circulation patterns, such as the Southern Ocean currents, the Antarctic476

Coastal Current, and the Weddell Gyre (Collares et al., 2018). For instance, large icebergs located477

between 0◦ and 90◦W typically drift northward, while the prevailing ocean currents flow west to478

east, contributing to the observed rightward drift of small icebergs. In other words, the ability to479

track these small iceberg fragments using WV SAR imagery presents significant opportunities for480

better understanding of Southern Ocean circulation (Collares et al., 2018; Starr et al., 2021) and481

regional current dynamics (Huth et al., 2022).482

5. Discussion and Conclusion483

The WV vignettes offer unique capabilities for monitoring small-sized icebergs, primarily due484

to its high spatial resolution. reaching up to 5 meters. This fine resolution enables the detailed485

imaging of iceberg shapes, allowing for the detection of even the smallest icebergs that would486

22

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5070392

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



otherwise go unnoticed by lower-resolution sensors. The detection of these small-sized icebergs487

marks a fundamental step in understanding their spatial distribution, drift patterns, and contribution488

to meltwater injection into the Southern Ocean. As a follow-up effort to Wang et al. (2019b),489

this study focuses on building a dedicated classification model to improve the identification of490

WV vignettes with icebergs. The Inception-v3 model is tuned to implement this task. The new491

classifier, termed as CMwvIB, is trained using 17400 expert-labelled images and validated across492

three independent hand-crafted datasets. MwvIB demonstrates very high performance, achieving493

precision and recall rates exceeding 90%. CMwvIB is opening new opportunities to build a new494

improved small iceberg climatology of the Southern Ocean with Sentinel-1 Wave Mode systematic495

acquisitions.496

Misclassifications in the CMwvIB model are relatively few and can be categorized into two497

groups: false positives (NIB cases classified as IB by the model) and false negatives (IB cases498

classified as NIB by the model). The false positives are primarily attributed to small rain spots,499

ships, ice blocks, and strong convective events, which exhibit similar signatures to icebergs on500

SAR images. While the false negatives typically occur with small icebergs, in particular when501

they coexist with challenging environmental conditions such as sea ice, bio-slicks, low wind ar-502

eas, and strong convection (e.g., heavy rains and convective cells). It is worth pointing out that503

the CMwvIB model faces significant limitations in identifying icebergs in sea ice regimes, as ev-504

idenced by the cases shown in Fig. 11. A detailed examination of a sub-track of WV vignettes505

acquired on 24 December 2016 (black dots) reveals four misidentified iceberg cases with clear506

sea ice textures, with their probabilities of being icebergs falling below 5% (see bottom panel of507

Fig. 6). This is largely due to the absence of similar sea ice environments in the training dataset508

(as discussed in Fig. 2 and Section 2.2). To mitigate these limitations, expanding the training set to509

include more sea ice cases and further refining the CMwvIB classifier could significantly improve510

detection accuracy. Multiple tagging is probably another way to help distinguish between icebergs511

in open water and sea ice environments given the distinct features of icebergs in these contrasting512

conditions. Incorporating auxiliary data, such as satellite-based ice concentration measurements513

may also be a practical approach to address these classification challenges.514

The current CMwvIB model, while highly effective in detecting icebergs, also faces some515

limitations in accurately identifying iceberg positions and extracting associated shape descriptors,516

such as size and orientation. These limitations are particularly evident in complex SAR images,517

where icebergs are embedded within heterogeneous environments, such as sea ice, or are sub-518

ject to varying backscatter intensities due to environmental factors (as demonstrated in Fig. 2 and519
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Fig. 11. Two sub-tracks of S-1 WV SAR images on 2016-12-22 in blue dots and 2016-12-24 in black dots.
The six images of IBs over the open water that have been successfully identified by CMwvIB are marked
in red circles. Four misclassified examples are illustrated over the sea ice. Percentages on each image are
the IB probabilities calculated by CMwvIB and the two yellow boxes highlight one iceberg possibly being
observed in different days.

Fig. 11). In our attempts to address these challenges, several traditional techniques, including lo-520

cal thresholding, texture segmentation, and object detection algorithms, were explored. However,521

these methods have not consistently produced reliable results in delineating iceberg shapes and po-522

sitions, particularly for smaller icebergs or those with irregular geometries. This lack of precision523

highlights the need for further refinement in future work. A critical next step is to develop more524

robust algorithms that can accurately extract iceberg positions and sizes from individual SAR525

images. Efforts on implementing more dedicated techniques (e.g. Koo et al., 2023) or machine526

learning models (e.g. Zi et al., 2024) could significantly improve the detection of iceberg bound-527

aries and their morphological features, enabling more detailed monitoring of iceberg dynamics528

and behavior.529
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But already, iceberg tracking seems to play a crucial role in understanding the relationship530

between named large icebergs and the smaller-sized icebergs identified through SAR imagery (see531

Fig. 10). Large icebergs, often tracked by satellite scatterometer and optical sensors, eventually532

break into smaller fragments that drift across the Southern Ocean. However, the detailed inter-533

actions between these large icebergs and their resulting fragments remain poorly understood. By534

employing SAR data for iceberg tracking, it is now possible to link the movement and evolution535

of small icebergs to their parent icebergs, offering new insights into the processes of calving, frag-536

mentation, and drift. In addition, iceberg tracking that relies on accurate identification of iceberg537

position and shape could benefit from techniques similar to those used in eddy tracking (see yellow538

boxes in Fig. 11). Eddy tracking methods utilize sequential observations to follow the movement539

and evolution of mesoscale ocean features, which share some dynamic similarities with drifting540

icebergs. By applying similar principles, iceberg tracking could take advantage of continuous541

SAR observations and other spaceborne remote sensing to monitor the movement of both large542

and small icebergs over time.543

The presence of icebergs equatorward of 50◦S and even beyond 40◦S (Fig. 7), as observed by544

S-1 WV SAR, offers a valuable complement to existing ship-based reports (Orheim et al., 2023b).545

Most icebergs detected at these latitudes are relatively small, typically with surface areas of less546

than 1 km2 due to progressive melting. Such small icebergs may be documented through altimeter547

measurements (Tournadre et al., 2008), yet their frequency and distribution remain largely un-548

examined. The routine acquisition of WV SAR vignettes, coupled with the CMwvIB classifier,549

provides an opportunity to systematically monitor these icebergs and address this knowledge gap.550

Furthermore, joint investigations combining data from both S-1 WV and wide-swath SAR imag-551

ing mode, already extensively studied for iceberg detection (Barbat et al., 2021; Evans et al., 2023;552

Koo et al., 2023), should further enhance the identification of small icebergs. Other high resolu-553

tion imaging radar measurements, i.e. from the Surface Water and Ocean Topography (SWOT)554

mission, are additionally expected to contribute to the detection of small icebergs. Still, with its555

long term continuing routine acquisition capability, S-1 WV data fully cover the Southern Ocean556

around the Antarctica every month (Fig. 1 and Fig. 7), to provide a sustained service for the next557

decades. Transfer learning between S-1 WV and the foreseen Earth Explorer 10 Harmony bi-static558

SAR mission or the new Copernicus ROSE-L will also be tested. Overall, systematic monitoring559

of IBs distribution and evolutions, with related investigations, shall hence be pursued to provide560

improved climate-scale records to monitor the Southern Ocean.561
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