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Supplementary Figures 1-13 18 

 19 

Supplementary Fig. 1. Example seismograms and picked arrivals using the SEISAN 20 
package1. The starting time is 2019-07-28 at 19:54. OBS stations are shown on the left for each 21 
component. SH3 indicates a vertical component, SH1 and SH2 are horizontal components, and 22 
SDH shows a hydrophone component. P-wave phases are marked by red short lines with labels of 23 
IP, Pg, and EP, and S-wave phases are marked by red short lines with a label of Sg. The amplitude 24 
used for magnitude computation is marked by a label of IAML.  25 
  26 
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 27 

 28 

Supplementary Fig. 2. 1-D P-wave velocity models. (a) Five 1-D models (Models 1-5) are 29 
derived from an active-source wide-angle seismic refraction profile2. The smearing low-velocity 30 
model (Model 4) indicates an inverted model after the smearing test2, in which the initial model 31 
(Model 2) is inserted by a low-velocity anomaly with a velocity reduction of 8%. Model 5 is 32 
obtained by linear interpolation of Models 1-3. The grey shade represents the velocity of the crust 33 
with an age of <7.5 Ma3. (b) Average RMS residuals (dashed lines with circles) and the number 34 
of located earthquakes (solid lines with inverted triangles) as a function of iterations using the five 35 
different 1-D models shown in (a). The colour represents different models shown in Fig. 2a. The 36 
vertical green bar indicates the selected results for each 1-D velocity model. Model 5 (magenta) is 37 
the selected model for the earthquake location, which has the largest number of located 38 
earthquakes, and small RMS residuals (see Methods for discussion, Supplementary Table 3). 39 
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 41 

Supplementary Fig. 3. The optimum 1-D velocity model tests. (a) Average RMS residuals 42 
(dashed lines with circles) as a function of iteration number. A subset of 360 events with arrivals 43 
≥6 and station GAP ≤180° is used for searching the ″minimum″ 1-D velocity model (black) by the 44 
VELEST program4. The selected model (Model 5 in Supplementary Fig. 2a) used for the 45 
earthquake location is shown in red circles. The insert indicates the two 1-D velocity models. (b) 46 
The numbers of located earthquakes as a function of the iteration number. The other labellings are 47 
the same as those in Supplementary Fig. 2. 48 
  49 
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 52 

Supplementary Fig. 4. Wadati diagrams. (a) Green dots represent the original P-onset (P-wave 53 
onset) versus S-P time (S-wave – P-wave arrivals). (b) Green dots represent the modified 54 
computation showing the time differences between P-arrivals (Pi-Pj) versus those between S-55 
arrivals (Si-Sj) for each station pair (i, j) of each event5. In this study, the Vp/Vs ratio is ~1.73, 56 
which is used to estimate the S-wave velocity for the earthquake location. 57 
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 59 

Supplementary Fig. 5. The optimum Vp/Vs ratio (or S-wave velocity model) tests. (a)  60 
Average RMS residuals (dashed lines with circles) as a function of iteration number. The colour 61 
represents different Vp/Vs ratios used in the inversion. The same subset of 360 earthquakes as in 62 
Supplementary Fig. 3 is used. (b) The numbers of located earthquakes as a function of the iteration 63 
number. The other labellings are the same as those in Supplementary Fig. 3. 64 
  65 
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 68 

Supplementary Fig. 6. Cumulative travel time residuals. Average residuals for P- (a) and S-69 
arrivals (b) on each station using the NonLinLoc location program6. The inserts show the colour 70 
scale for the average residuals. Triangles indicate the locations of ocean bottom seismometers used 71 
in this study. The red line shows the location of the seismic refraction profile2. 72 
  73 
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 75 

Supplementary Fig. 7. Earthquake depths along the MAR for different 1-D velocity models. 76 
(a) Bathymetric map and located events. Solid and open dots indicate earthquakes with a depth 77 
uncertainty of ≤5 km and 5-10 km, respectively. The colour of the circle indicates the results using 78 
the different velocity models shown in (b). The earthquake depths along the transect a-a′ are shown 79 
in (c, d). The black star indicates an inactive hydrothermal mound observed during the submersible 80 
dive7. (b) Five tested 1-D velocity models from Supplementary Fig. 2a. (c-d) The focal depth 81 
distribution of earthquakes along the profile (aa′) in (a). Grey lines mark the depth uncertainties. 82 
The histograms on the right show the depth distributions for the different 1-D velocity models in 83 
(b). A short column with a number is plotted for reference. See Methods for discussion.   84 
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 86 

Supplementary Fig. 8. Depth resolution test along the MAR using three different 1-D velocity 87 
models. (a) Bathymetric map and located events. The colours represent different velocity models 88 
used for the location as shown in b. (b) Three different velocity models. Black: The final velocity 89 
used for the location. Red: The final velocity model is reduced by 0.1 km/s for all depths. Blue: 90 
The final velocity model is increased by 0.1 km/s for all depths.  (c-e) The focal depth distribution 91 
of earthquakes along the profile (aa′) in (a) for the three different velocity models. The other 92 
labellings are the same as those in Supplementary Fig. 7. 93 
  94 
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 96 

Supplementary Fig. 9. Depth-enforced resolution test.  A subset of 45 events at depths between 97 
10 and 20 km along the MAR axis is used for this synthetic test. Average RMS residuals as a 98 
function of iteration number. The coloured symbols show the misfit with focal depths fixed at 99 
shallow depths of 2.5 km, 5 km, 7.5 km, and 10 km (see the legend). The red stars indicate the 100 
RMS residuals when the depth is not fixed.  101 
  102 
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 104 

Supplementary Fig. 10. Histograms of local magnitudes (ML). Earthquakes in the full catalogue 105 
(a), along the Romanche TF (b), in the RTI (c), and along the MAR (d) are shown in grey, red, 106 
green, and blue columns, respectively. The cumulative number of events is marked by blue squares 107 
on each map. Catalogues are analyzed using the ZMAP software8 to obtain the magnitude 108 
completeness (MC) and B-values. 109 

110 
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 111 

Supplementary Fig. 11. Seismicity, tectonic information, and earthquake temporal 112 
distribution along the MAR. (a) Bathymetric map, events, and geological information. 113 
Hummocky seafloor and volcanic cones are shown in red and grey shades, respectively. One 114 
transect along the ridge axis is shown in (b). Triangles mark the deployed OBSs. (b) The depth-115 
section of earthquakes along profile a-a′. (c) The focal depth distribution of earthquakes as a 116 
function of dates from July 19 to August 16, 2019. Magnitude scales are shown at the top.  117 
 118 
  119 
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 120 

Supplementary Fig. 12. Examples of one possible long-period earthquake beneath the MAR 121 
axis. (a) The waveform of one example earthquake recorded at OBS11 is shown at the top, and 122 
the spectrogram plot of the vertical component is shown at the bottom. The starting time is shown 123 
in the middle, and the horizontal axis indicates the recording time in seconds. (b) The same 124 
earthquake was recorded at OBS18. 125 
  126 
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 128 

Supplementary Fig. 13. CO2 contents in the primary magma along the whole Mid-Atlantic 129 
Ridge segments. Segment-averaged CO2 content is extracted from Le Voyer et al. (2019)9, and 130 
the segment number (1-255) is shown on the top. The inset histogram shows the distribution of the 131 
primary melt CO2 contents. The orange belt shows the CO2 contents along the MAR segments 132 
between the Romanche and Chain transform faults. 133 
  134 



15 

Supplementary Tables 1-5 135 

Supplementary Table 1.  136 

Earthquakes with location quality A-D in Figs. 2 and 3 based on well-established criteria10–137 
13. 138 

 139 

Location 
quality 

Station 
gap 

Number 
of phases 

One S-
arrival 

One arrival 
within a 
focal depth 
distance 

One S-arrival 
within 1.4 focal 
depth distance 

Uncertain
ty 

Number 
of events 

A <180° >8 Yes Yes Yes <5 km 87 

B <180° >8 Yes Yes No <5 km 316 

C <180° 6-8 Yes Yes No <5 km 10 

D 180°-270° >6 Yes Yes Yes/No 5-10 km 101 
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Supplementary Table 2 140 

The maximum depth of earthquakes versus full spreading rates at 25 slow- and ultraslow-spreading Mid-Ocean Ridges. D1max 141 
and D2max indicate the maximum depth limited by several earthquakes and the deepest earthquake, respectively. Rainbow Massif (No. 142 
22) is located in an NTD. Magmatism indicates the depths are influenced by strongly magmatic processes, e.g., hotspots and/or focused 143 
melting. Lat=Latitude; Lon=Longitude; -1=dead/inactive hydrothermal vent; RTJ=The Rodrigues Triple Junction; OCC=oceanic core 144 
complex; DF=detachment fault; TF=transform fault; MAR=Mid-Atlantic Ridge; SWIR=Southwest Indian Ridge; MCSC=Mid-Cayman 145 
Spreading Centre. 146 

No. Name Ridge 
centre 

Area Lat (°) Lon (°) Full rate 
(mm/yr) 

Shallow
est (km) 

D1max
(km)* 

D2max 
(km)* 

OCC/
DF 

Vent Magm
atism 

TF 

1 Amagmatic SWEAP segment 
14 SWIR Indian -52.37  13.30  7.8  13 20 23 Y N N N 

2 13°E -14°E (Oblique super-
segment) 15 SWIR Indian -52.38  13.50  7.8  1 16 17 N N N N 

3 Magmatic SWEAP segment 14 SWIR Indian -52.35  13.60  7.8  10 17 20 Y N Y N 

4 85°E Volcanic complex 16 Gakkel 
Ridge Arctic 85.00 85.00 10.0 1 16 23 N N Y N 

5 Segment 1 17 SWIR Indian -25.70  69.80  12.6  0 10 10 n/a n/a n/a RTJ 

6 Lena Trough 18 Fram 
Strait Arctic 81.00  -5.00  12.8  N N 14 N N N N 

8 Segment 8 volcano, SWRUM 
segment 14 SWIR Indian -27.75  65.60  13.6  1 10 13 n/a Y Y N 

9 SWRUM segment 14 SWIR Indian -27.75  65.80  13.6  1 17 20 n/a n/a N N 
10 Segment 27 19 SWIR Indian -37.66  50.45  14.2  3 6 8 N -1 Y N 
11 Segment 7 20 SWIR Indian -27.58  65.95  14.2  5 12 13 n/a n/a N N 
12 SWIR 64°30'E 21 SWIR Indian -27.85  64.50  14.5  0 14 15 Y -1 N N 

13 Logachev Seamount 22,23 Knipovich 
Ridge Arctic 76.50  7.20  14.5  2 6 12 n/a n/a Y N 

14 Logachev Seamount-
Amagmatic 22,23 

Knipovich 
Ridge Arctic 76.20  7.20  14.5  7 16.5 20 n/a n/a N N 

15 Segment 28 24 SWIR Indian -37.72  49.70  14.6  2 13 15 Y Y N N 
16 Segment 28 19 SWIR Indian -37.72  49.70  14.6  0 16 20 Y Y N N 
17 Mount Dent 15 MCSC Caribbea 18.40  -81.75  15.0  1 7.5 9.5 Y Y N Y 
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147 

No. Name Ridge 
centre 

Area Lat (°) Lon (°) Full rate 
(mm/yr) 

Shallow
est (km) 

D1max
(km)* 

D2max 
(km)* 

OCC/
DF 

Vent Magm
atism 

TF 

n 

18 Reykjanes Ridge 25 MAR-
Iceland Atlantic 62.45  -25.80  20.0  0 7.5 12.5 n/a n/a Y N 

19 Lucky strike 26 MAR Atlantic 37.33  -32.30  20.3  1.5 3 3.3 n/a Y Y N 
20 Lucky strike 27 MAR Atlantic 37.33  -32.30  20.3  1.5 6 6.5 n/a Y Y N 
21 35°N-West 28 MAR Atlantic 35.20  -36.50  20.6  0 4 4.5 n/a n/a N Y 
22 Rainbow Massif 29 MAR Atlantic 36.20  -33.90  21.5  0 7.5 8 -1 Y N NTD 
23 35°N-East 30 MAR Atlantic 35.10  -35.20  22.2  1 9 14 N N N Y 
24 29°N 31 MAR Atlantic 29.20  -43.20  22.8  2.5 7.5 8 n/a Y Y N 
25 23°N 32,33 MAR Atlantic 23.50  -45.00  23.0  0.9 8 8 n/a n/a N N 
26 Logatchev Massif 34 MAR Atlantic 14.45  -45.00  24.0  1.5 5.5 7 Y Y N Y 
27 26°N TAG 35 MAR Atlantic 26.10  44.85  24.2  0 7 8 Y Y N N 
28 26°N TAG 36 MAR Atlantic 26.10  44.85  24.2  2 7 8 Y Y N N 
29 13°20′N OCC 37,38 MAR Atlantic 13.33  -44.90  25.4  3 12 15 Y Y N N 
30 13°30′N OCC 37,38 MAR Atlantic 13.50  -44.85  25.4  4 10 12 Y Y N N 
31 5°S 39 MAR Atlantic -5.20  -11.65  32.0  0 7 8 N n/a N Y 
32 0°6′S, this study MAR Atlantic -0.15  -16.45  32.0  1.5 16 18.5 N N N Y 
33 7°12′S 34 MAR Atlantic -7.20  -13.20  32.0 3 6 7 N N N Y 
34 7°56′S 34 MAR Atlantic -7.80  -13.40  32.0 2 4 7 N N N Y 
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Supplementary Table 3 148 

Average location parameters for earthquakes located with the different 1-D velocity models 149 
in Supplementary Fig. 2a. For each model, an earthquake was counted when it had an RMS 150 
residual of ≤0.3 s, a horizontal uncertainty of ≤10 km, a vertical uncertainty of ≤10 km, a station 151 
primary gap of <270°, and phases participated in the computation of >5. Model 5 (bold) was 152 
selected as the best-fitting 1-D velocity model, and 516 events are well located, of which two 153 
events were removed because they are out of the observation network.  154 
 155 

  156 

Velocity model Model 1 Model 2 Model 3 Model 4 Model 5 
Number of located events  502 505 508 509 516 

Mean RMS residual (s) 0.0832 0.0908 0.0860 0.0982 0.0851 
Mean horizontal 
uncertainty (km) 

2.62 2.71 2.70 2.96 2.76 

Mean vertical uncertainty 
(km) 

2.96 3.07 3.01 3.00 2.93 

Mean focal depth below 
the seafloor (km) 

9.21 13.22 11.49 15.79 11.64 

Mean number of phases 
used in the computation 

13.47 13.55 13.51 13.55 13.45 

Mean station primary gap 152.24 152.62 152.82 153.29 152.4 
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 157 

Supplementary Table 4 158 

Earthquake locations dependent on three velocity models are shown in Supplementary Fig. 159 
8b. Only earthquakes with depth errors of ≤5 km are included in the computation of these average 160 
values. 161 

 162 
  163 

Velocity 
model 

Number of located 
earthquakes (depth 
error ≤10 km)  

Number of located 
earthquakes (depth 
error ≤5 km) 

Mean 
depth 
(km) 

Mean 
depth error 
(km) 

Mean 
horizontal 
error (km) 

Mean 
RMS 
(s) 

-0.1 km/s 511 412 12.45 1.86 2.49 0.0915 

Final 516 418 11.63 1.89 2.45 0.0884 

+0.1 km/s 507 407 10.10 1.84 2.43 0.0851 
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 164 

Supplementary Table 5 165 

The calculated focal mechanism solutions. S1-S3 are three previous solutions for earthquake swarms from ref.40. 166 
No. Longitude 

(°) 
Latitude 
(°) 

Depth 
(km) 

Mechanism 
solution 

RMS 
uncertainty 
 

Number 
of P first 
motion 
polarities 

Misfit of 
first 
motions 
weighted 

Mechanism 
probability 
 

Station 
distribution 
ratio (%) strike dip rake fault 

plane 
auxiliary 
plane 

S1 -17.1485 0.0268 11.6430 280 48 -144 30 36 13 0 63 41 
S2 -17.4826 -0.0395 21.6340 121 44 -111 22 33 15 17 78 44 

S3 -17.5224 -0.0468 20.8370 96 39 -153 21 33 14 13 72 46 
4 -17.1022 0.0891 11.4750 257 41 -163 28 41 10 3 78 43 

5 -16.8813 0.0896 6.0015 193 87 169 43 44 9 12 60 60 
6 -16.8046 0.1327 6.5790 72 56 152 39 44 9 18 65 59 

167 
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