- ¹ Supporting Information for 'Diagnostic of Ocean
- ² Near-Surface Horizontal Momentum Balance from
- ³ pre-SWOT altimetric data, drifter trajectories, and
- ⁴ wind reanalysis'

Margot Demol¹, Aurélien Ponte¹, Pierre Garreau¹, Jean-François Piollé¹,

 C lément Ubelmann², Nicolas Rascle¹

¹ Ifremer, LOPS, Plouzané, France

²Datlas, Grenoble, France

- ⁷ Contents of this file
- 1. Texts S1 to S2

6

⁹ 2. Figures S1 to S4

¹⁰ Introduction This supporting information document contains demonstration of equa-

¹¹ tions (8) of the article in Text S1 as well as a theoretical development for the predictions

 $_{12}$ of the impact of colocation and scaling errors on the momentum balance reconstructions in

¹³ Text S2. Temporal mismatch sensitivity is shown on Figure S1 and geographical statistical

¹⁴ errors on the residual MS on Figure S2. Figures S3 and S4 illustrate Text S2.

Corresponding author: M. Demol, margot.demol@ifremer.fr

¹⁵ Text S1. Statistics : balanced and residual contribution decomposition's

¹⁶ demonstration This section aims at demonstrating the following equations :

$$
\begin{cases}\n\beta_i = \frac{1}{2}(A_i - \mathcal{E} + \mathcal{E}_{-i}) \\
\mathcal{E}_i = \frac{1}{2}(A_i + \mathcal{E} - \mathcal{E}_{-i}).\n\end{cases}
$$
\n(1)

¹⁷ From the definitions of the residual MS and balanced signal contributions we get:

$$
\begin{cases}\nA_i = \langle a_i(\epsilon - \epsilon_{-i}) \rangle = \mathcal{E}_i + \beta_i \\
\mathcal{E} = \langle (a_i + \epsilon_{-i})^2 \rangle = A_i + \mathcal{E}_{-i} + 2\langle a_i \epsilon_{-i} \rangle = A_i + \mathcal{E}_{-i} - 2\beta_i.\n\end{cases}
$$
\n(2)

 μ ¹⁸ Combining the two equations of the system (2) finally leads to (1).

19

²⁰ Text S2. Errors impact on momentum balance reconstruction

²¹ This section aims at deriving the impact of different type of errors on the momentum balance reconstruction diagnostic variables (e.g. $\mathcal{E}, \beta, \beta_i, \mathcal{E}_i, X_{i,j}$). The case of colocation ²³ errors and scaling errors is considered in deeper details (section 2 and 3 respectively).

1. General case

²⁴ Consider two different reconstructions that distinguish themselves by the estimation of 25 the *k*-term:

$$
\sum_{i} a_i = \epsilon \tag{3}
$$

$$
\sum_{i \neq k} a_i + a_k^* = \epsilon^* \tag{4}
$$

²⁶ where the a_k estimate of the k-term of (4) is replaced by the a_k^* estimate. Denoting all of $_{27}$ the metrics related with reconstruction (4) with an $*$ and the difference in between these ²⁸ two estimates $d_k = a_k^* - a_k = \epsilon^* - \epsilon$ (i.e. the additional error), we can derive the effect ²⁹ induced by this difference on the different relevant metrics :

$$
\beta^* = \beta - 2\langle d_k \epsilon_{-k} \rangle \tag{5}
$$

$$
\mathcal{E}^* = \langle (\epsilon + d_k)^2 \rangle \tag{6}
$$

$$
= \mathcal{E} + D_k + 2\langle d_k \epsilon \rangle. \tag{7}
$$

30 For $i \neq k$: $\sqrt{ }$ \int \mathcal{L} $\beta_i^* = -\sum$ $j\neq i$ $\langle a_i a_j \rangle - \langle d_k a_i \rangle = \beta_i - \langle d_k a_i \rangle$ $\mathcal{E}_{i}^* = \langle a_i \epsilon^* \rangle = \mathcal{E}_{i} + \langle d_k a_i \rangle.$ (8) 31 For $i = k$:

$$
\begin{cases}\n\beta_k^* &= -\sum_{j\neq k} \langle a_k^* a_j \rangle = \beta_k - \sum_{j\neq k} \langle d_k a_j \rangle = \beta_k - \langle d_k \epsilon_{-k} \rangle \\
\mathcal{E}_k^* &= \langle a_k^* \epsilon^* \rangle = \langle (a_k + d_k)(\epsilon + d_k + a_k - a_k) \rangle = \langle a_k(s - a_k) + d_k(s - a_k) + (a_k + d_k)^2 \rangle \\
&= \mathcal{E}_k + \langle d_k \epsilon_{-k} \rangle + A_k^* - A_k \\
&= \mathcal{E}_k + D_k + \langle d_k(\epsilon + a_k) \rangle.\n\end{cases}
$$
\n(9)

32 For $i,j \neq k$:

$$
X_{i,j}^* = X_{i,j}.\tag{10}
$$

33 For $i = k$ and $j \neq k$:

$$
X_{k,j}^* = X_{k,j} - 2\langle d_k a_j \rangle. \tag{11}
$$

 $_{34}$ Eq.(5) to (11) points toward several expected and desired properties:

 \bullet As d_k vanishes, all diagnostic variables associated with (4) converge towards those ³⁶ associated with (3).

 \bullet When the additional error d_k is uncorrelated with all terms from (4) and, conse-³⁸ quently, its residual, the residuals \mathcal{E} and \mathcal{E}_k are the sole diagnostics affected and the ³⁹ modification consists in the addition of the positive definite D_k term, e.g. $\mathcal{E}^* = \mathcal{E} + D_k$

⁴⁰ and $\mathcal{E}_k^* = \mathcal{E}_k + D_k$. Importantly, this points toward the fact that correlated errors are ⁴¹ necessary in order to alter balanced signal components (e.g. β^*, β_i^*).

• When the alternative formulation of the k-term a_k^* is uncorrelated with all terms $_{43}$ from (4), i.e. a terrible estimate, the paired contributions concerned by the k-term are ⁴⁴ null $(X_{ki}^* = 0)$, so the balanced signal contribution of the k-term is null too $(\beta_k^* = 0)$ 45 whereas its residual contribution is equal to its MS $(\mathcal{E}_k^* = A_k^*)$. In consequence, the ⁴⁶ balanced component decreases $(\beta^* = \beta - 2\beta_k)$ and the residual MS is $\mathcal{E}^* = A_k^* + \mathcal{E}_{-k}$. ⁴⁷ Otherwise, we also have for $i \neq k$ the following relationships $\beta_i^* = \beta_i - 1/2X_{ki}$ and ⁴⁸ $\mathcal{E}_{i}^{*} = \mathcal{E}_{i} + 1/2X_{ki}.$

⁴⁹ • As far as paired contributions are concerned, the impact of the modification of term \mathfrak{g}_k as only felt on paired contributions involving a_k .

2. Colocation error case

⁵¹ We first consider that the reconstruction (3) is a reconstruction where the estimation of $52 \text{ } a_k$ is free of colocation error i.e. it is estimated at the same position and time than other $\frac{1}{53}$ terms. Then, in reconstruction (4), we were only able to approach the k-term of (3) by ⁵⁴ its estimate at a different position and/or time a_k^* , introducing some colocation error in ⁵⁵ the reconstruction. This is typically what happens when reconstructing the momentum ⁵⁶ conservation with along-track altimetry and drifter trajectories: in this case, the k-term ⁵⁷ is the pressure gradient term, that we were able to estimate at the altimeter matchup but ⁵⁸ not at the drifter-matchup.

⁵⁹ As shown by Figures 3c and 3d, both the residual and the balanced signal contributions \mathcal{E}_i and β_i are sensitive to colocation errors. These sensitivities are also mirrored, as

 ϵ ₆₁ predicted by the equations (8) and (9) : the residual contribution of a term increases ⁶² as much as its balanced signal contribution decreases. The colocation error d_k is thus ⁶³ necessarily correlated to the other terms. The residual MS consequently grows with the $\epsilon_{\rm{4}}$ spatial mismatch (Figure 3a), and according to Eq.(7), this increase can be explained ⁶⁵ by two terms only: D_k , which is here the second order spatial structure function of ⁶⁶ the pressure gradient, and a correlation term $2\langle d_k \epsilon \rangle$. To investigate the composition σ of colocation errors in details we compare AVISO-altimeter-matchup reconstruction (i.e. ⁶⁸ with colocation error) and AVISO-drifter-matchup reconstruction (i.e. without colocation $\epsilon_{\rm 99}$ error). This analysis shows that in Eq.(7) it is the second order spatial structure function π of the pressure gradient D_k that dominates the residual MS over the correlation term $71 \t2_d_k \epsilon$ and controls its increase for spatial mismatches larger than about 10 km (Figure 72 S3). Regarding residual contributions, colocation errors mainly affect those associated ⁷³ with the pressure gradient and the Coriolis acceleration (no shown) as for reconstructions ⁷⁴ with along-track data (Figure 3).

3. Scaling error $d_k = (\alpha - 1)a_k$ case

⁷⁵ We know consider that we introduced a scaling error that misestimates a_k with a factor ⁷⁶ α , i.e. $a_k^* = \alpha a_k$. This may have happens taking global parameters in the Rio, Mulet, and π Picot (2014)'s model for the wind term. Taking $d_k = (\alpha - 1)a_k$ in section 1, we get for ⁷⁸ the residual MS :

$$
\mathcal{E}^* - \mathcal{E} = (\alpha^2 - 1)A_k + 2(\alpha - 1) \sum_{j \neq k} \langle a_k a_j \rangle.
$$
 (12)

⁷⁹ Scaling error also affect the balanced signal signal contributions and residual contribu-⁸⁰ tions :

 \sum_{s_1} For $i \neq k$:

$$
\begin{cases}\n\beta_i^* = \beta_i + (1 - \alpha) \langle a_i a_k \rangle \\
\mathcal{E}_i^* = \mathcal{E}_i - (1 - \alpha) \langle a_i a_k \rangle.\n\end{cases}
$$
\n(13)

$$
\begin{cases}\n\beta_k^* = \beta_k - (1 - \alpha)\beta_k \\
\mathcal{E}_k^* = \mathcal{E}_k + (\alpha^2 - 1)A_k + (\alpha - 1)\sum_{j \neq k} \langle a_j d_k \rangle.\n\end{cases} (14)
$$

83 And pairs contributions related to the *k*-term : For $i, j \neq k$:

$$
X_{i,j}^* = X_{i,j}.\tag{15}
$$

 s_4 For $i = k, j \neq k$:

$$
X_{k,j}^* = X_{k,j} - 2(1 - \alpha) \langle a_j d_k \rangle.
$$
 (16)

⁸⁵ The effect of applying a factor 0.5 and 1.5 on the wind term has been tested and give ⁸⁶ the reconstruction described by Figure S4.

References

87 Rio, M.-H., Mulet, S., & Picot, N. (2014, December). Beyond GOCE for the ocean ⁸⁸ circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data pro-⁸⁹ vides new insight into geostrophic and Ekman currents: Ocean circulation beyond ⁹⁰ GOCE. Geophysical Research Letters, $41(24)$, 8918–8925. Retrieved 2022-12-22, from 91 http://doi.wiley.com/10.1002/2014GL061773 doi: 10.1002/2014GL061773

Figure S1. Dependency of the mean square value (MS) of the residual on temporal colocation mismatch ΔT . Residual MS are averaged over colocations in one minute temporal mismatch bins ($|\Delta T - dt|$ < 1 min for given dt). Residual MS shows no clear tendency while the temporal mismatch increases and its variations of order 0.1 γ^2 can be related to statistical noise.

Figure S2. Relative statistical error on residual MS mapped in 5°-geographical bins. Statistical errors on the residual are computed with the bootstrap method and normalized by the binned residual value. Only bins below 50% are represented

Figure S3. Illustration of the impact of colocation errors on the residual MS. \mathcal{E} is the residual MS for the drifter-matchup AVISO reconstruction and \mathcal{E}^* the residual MS for the altimetermatchup AVISO reconstruction (with colocation errors). The difference in between these two residual is explained by the terms D_k and $2\langle d_k \epsilon$, also plotted.

Figure S4. Impact of scaling errors on the wind term on the along-track reconstruction : a) applying a factor 0.5, b) no factor, reference case, c) applying a factor 1.5