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Abstract  26 

The increasing availability of microbial genomes is essential to gain insights into microbial ecology 27 

and evolution that can propel biotechnological and biomedical advances. Recent advances in 28 

genome recovery have significantly expanded the catalogue of microbial genomes from diverse 29 

habitats. However, the ability to explain how well a set of genomes account for the diversity in a 30 

given environment remains challenging for individual studies or biome-specific databases. Here 31 

we present EcoPhylo, a computational workflow to characterize the phylogeography of any gene 32 

family through integrated analyses of genomes and metagenomes, and our application of this 33 

approach to ribosomal proteins to quantify phylogeny-aware genome recovery rates across three 34 

biomes. Our findings show that genome recovery rates vary widely across taxa and biomes, and 35 

that single amplified genomes, metagenome-assembled genomes, and isolate genomes have 36 

non-uniform yet quantifiable representation of environmental microbes. EcoPhylo reveals highly 37 

resolved, reference-free, multi-domain phylogenies in conjunction with distribution patterns of 38 

individual clades across environments, providing a means to assess genome recovery in 39 

individual studies and benchmark biome-level genome collections.  40 
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Introduction 41 

Establishing comprehensive genome catalogues is a fundamental objective in microbiology as 42 

genomes are essential to develop insights into microbial life and to advance biotechnology and 43 

biomedicine (Eren and Banfield 2024). Indeed, the rapidly increasing number of microbial 44 

genomes (1) provides an evolutionary framework to resolve the branches of the Tree of Life (C. 45 

T. Brown et al. 2015; Spang et al. 2015), (2) enables hypothesis generation and testing through 46 

comparative genomics (Paoli et al. 2022; Al-Shayeb et al. 2022; Durrant et al. 2023; J. Chen et 47 

al. 2024a), (3) offers resources to search for novel biosynthetic capabilities and natural products 48 

(Paoli et al. 2022; J. Chen et al. 2024b), (4) contributes to the body of nucleotide data used to 49 

train biological language models (Cornman et al. 2024; Nguyen et al. 2024; Hwang et al. 2024) 50 

and more, while well-structured databases aim to consolidate and give access to the outcomes 51 

of genome recovery efforts (Parks et al. 2022; Schmidt et al. 2024). 52 

Increasing availability of microbial genomes is a result of multiple complementary breakthroughs 53 

that include (1) advances in high-throughput or targeted cultivation that enable the recovery of 54 

isolate genomes (Jiang et al. 2016; Watterson et al. 2020; Cross et al. 2019), (2) the use of 55 

environmental shotgun sequencing that enables the recovery of metagenome-assembled 56 

genomes (MAGs) (L.-X. Chen et al. 2020), and (3) the use of microfluidics and cell sorting that 57 

enables the recovery of single amplified genomes (SAGs) (Woyke, Doud, and Schulz 2017). 58 

These strategies have not only been used in large-scale characterization of many of the Earth’s 59 

biomes (Pasolli et al. 2019; Parks et al. 2017; Pachiadaki et al. 2019; Ma et al. 2023), but also 60 

have been applied to many specific questions or niche systems that span a wide range of research 61 

priorities, collectively resulting in over 500,000 non-redundant bacterial and archaeal genomes 62 

(Parks et al. 2022). The recovery of microbial genomes is now a relatively well-established 63 

practice, yet it is not straightforward to assess (1) how taxonomic or biome-specific biases impact 64 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.15.633187doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.15.633187
http://creativecommons.org/licenses/by/4.0/


 

on genome recovery efforts, and (2) the ecological or evolutionary importance of unrecovered 65 

populations. As a result, individual studies that recover genomes, or efforts that curate biome-66 

specific or global genomic collections, rarely offer quantitative insights into one of the key 67 

questions they aim to address: “how well do these genomes represent this environment?”. 68 

Attempts to benchmark genome recovery often rely upon metagenomic read recruitment statistics 69 

to quantify the fraction of reads that map to genomes with the assumption that the proportion of 70 

reads recruited by a genomic collection is a proxy for the degree to which a genome collection 71 

represents the genomic fragments found in a given environment. In individual studies that 72 

reconstruct genomes directly from environmental metagenomes, the proportion of metagenomic 73 

reads that are recruited by resulting MAGs can vary from as low as 7% in the surface ocean 74 

(Delmont et al. 2018a) to as high as 80% in the human gut (Carter et al. 2023). While read 75 

recruitment statistics are easy to generate and communicate, they fail to contextualize what is 76 

present in the unmapped fraction and thus leave considerable ambiguity about the microbial 77 

community. For instance, a large fraction of metagenomic reads not mapping to the genome 78 

catalogue could belong to a single organism or multiple taxonomically diverse microbes with 79 

critical ecological roles in the system. Furthermore, genome collections often systematically 80 

underrepresent certain portions of the tree of life, as the rate of genome recovery differs across 81 

taxa as a function of genome recovery methodology: while cultivation efforts often struggle to 82 

capture slow-growing organisms (Imachi et al. 2020) or those that depend on others for survival 83 

(He et al. 2015), genome-resolved metagenomics often struggle to reconstruct genomes from 84 

taxa that form highly complex populations (Giovannoni 2017; Pachiadaki et al. 2019). Altogether, 85 

biological and non-biological factors confound accurate interpretations of read recruitment results, 86 

and the ability to measure genome recovery rates requires alternative strategies that can 87 

contextualize the ecological and evolutionary relationships of organisms recovered in genome 88 

collections with environmental populations accessible through metagenomics.  89 
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One approach to gaining insight into microbial life underrepresented in genome catalogues  90 

involves the use of marker genes. De novo assembly, in which individual sequencing reads are 91 

stitched together to recover much longer contiguous segments of DNA (contigs), is common to 92 

the vast majority of genome recovery efforts. While in most cases contigs only represent 93 

fragments of genomes, they still explain a much greater genomic context than unassembled reads 94 

and give access to entire open reading frames, including phylogenetically informative marker 95 

genes. Employing such phylogenetically informative genes assembled from metagenomes in 96 

conjunction with metagenomic read recruitment enables fine-grained analyses of phylogeny and 97 

biogeography of individual taxa, as demonstrated by previous studies that used the rpoC1 gene 98 

to characterize the phylogeography of marine bacteria (Kent et al. 2019; Ustick, Larkin, and 99 

Martiny 2023) or RNA and DNA polymerases to identify and guide the genomic recovery of major 100 

viral clades (Weinheimer and Aylward 2020; Gaïa et al. 2023).  101 

Among all phylogenetically informative genes, ribosomal proteins represent a special class as 102 

they (1) occur as a single-copy gene in genomes across the tree of life, (2) are consistently 103 

assembled even for complex or relatively rare populations in metagenomes due to their relatively 104 

short length, and (3) contain enough phylogenetic information to delineate distinct branches of life 105 

at relatively high levels of resolution (Olm et al. 2020). Recognizing their utility, many studies have 106 

leveraged individual ribosomal proteins to analyze community composition (Wu and Eisen 2008; 107 

Crits-Christoph et al. 2022), integrating ribosomal protein phylogenies with metagenomic read 108 

recruitment to track individual clades of microbes (Hug et al. 2013; Emerson et al. 2016; Hamilton 109 

et al. 2016; Diamond et al. 2019; Matheus Carnevali et al. 2021). Ribosomal proteins are thus 110 

ideally suited gene markers for tracking microbial populations underrepresented within genome 111 

collections.  112 

Here we present EcoPhylo, a workflow to simultaneously visualize the phylogenetic relationships 113 

and biogeographical distribution patterns of sequences that match any given gene family from 114 
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genomes and metagenomes, and demonstrate its application to the phylogeography of ribosomal 115 

proteins for quantification of genome recovery rates across biomes. Our results show that bringing 116 

together multi-domain ribosomal protein phylogenies with distribution patterns of individual clades 117 

across environments in a single interface offers a valuable data analysis and visualization strategy 118 

to benchmark genome recovery efforts scaling from individual projects to global surveys of large 119 

genome collections and metagenomes.  120 

Results 121 

EcoPhylo enables integrated surveys of gene family 122 

phylogeography  123 

EcoPhylo implements a computational workflow to integrate the phylogeny and biogeography of 124 

any given gene family and enables its users to track the distribution patterns and evolutionary 125 

relationships between homologous genes across environments and/or experimental conditions 126 

(Figure 1, also see Materials and Methods).  127 

When applied to phylogenetically tractable single-copy core genes, such as ribosomal proteins, 128 

in tandem with metagenomes and a genome collection, EcoPhylo identifies populations 129 

assembled in metagenomes but absent in the genomic collections (and vice versa), highlighting 130 

the ecological and evolutionary relevance of organisms detected through metagenomic 131 

assemblies but lacking genomic representation (Figure 1). This allows for the quantification of 132 

genome recovery rates of different methods (e.g., isolate genomes, MAGs, SAGs) across taxa 133 

and provides a means to investigate phylogenetic and ecological features of organisms without 134 

genomic representation. Importantly, the unbroken link between genes and contigs enables 135 

downstream targeted binning efforts when necessary. 136 
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 137 

Figure 1: Schematic of the EcoPhylo workflow applied to a single gene family. The proposed workflow 138 
integrates biogeography from metagenomic read recruitment and protein phylogenetics to display the 139 
phylogeographical distribution of closely related lineages. When including genome sources, the workflow highlights 140 
which genome recovery strategies are more effective for sampling specific taxa. Although this manuscript focuses on 141 
ribosomal proteins, the proposed workflow is generalizable to any gene family. 142 

Using ribosomal proteins to de novo characterize the phylogenetic makeup of microbiomes and 143 

benchmark genome recovery rates has numerous advantages. However, these advantages also 144 

pose noteworthy challenges. Ribosomal proteins are short protein sequences (~300 amino acids), 145 
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which substantially limits their ability to resolve deep phylogenetic branching patterns. 146 

Furthermore, their evolution is subject to strong purifying selection, as a result, the average 147 

nucleotide identity (ANI) threshold often used to define 'species' boundaries between whole 148 

genomes is 95% (Jain et al. 2018) increases to 99% for ribosomal protein sequences (Olm et al. 149 

2020). Therefore, ribosomal proteins are more vulnerable than other genes to non-specific read-150 

recruitment from closely related proteins within metagenomes. To identify criteria for reliably 151 

resolving taxa, we started our investigation by developing a series of benchmarks to optimize the 152 

use of ribosomal proteins in EcoPhylo with appropriate parameters to maximize the ecological 153 

and evolutionary signal they can offer while minimizing non-specific read recruitment. These 154 

benchmarks, which are detailed in the Supplementary information (1) inspected hidden Markov 155 

model (HMM) alignment coverage thresholds to accurately detect ribosomal proteins in genomes 156 

and metagenomes; (2) examined the copy number distribution of ribosomal protein HMMs across 157 

archaeal and bacterial genomes to only consider single-copy candidates; and (3) explored 158 

nucleotide similarity thresholds to cluster ribosomal gene sequences to maximize the taxonomic 159 

resolution of representative sequences while maintaining sufficient nucleotide distance between 160 

distinct representative sequences to reduce non-specific read recruitment from metagenomes 161 

(Supplementary information). 162 

Based on these considerations, we implemented routines and adjusted default EcoPhylo 163 

parameters to (1) use a minimum of 80% model coverage for ribosomal protein HMMs for a match; 164 

(2) filter for complete open reading frame sequences to remove assembly artifacts; and (3) cluster 165 

HMM hits with target coverage to ensure grouping of extended open reading frames and leverage 166 

97% nucleotide similarity as the most appropriate clustering threshold to minimize non-specific 167 

read recruitment (Supplementary information). We also compared broad ecological insights 168 

recovered from EcoPhylo to state-of-the-art taxonomic profiling tools, confirming that this 169 

framework offered qualitatively comparable results (Supplementary information). Altogether, 170 
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these evaluation and optimization steps yielded EcoPhylo default parameters to obtain 171 

representative ribosomal protein sequences that are suitable for investigations of the phylogeny, 172 

biogeography, and genome recovery of populations they describe. 173 

Ribosomal proteins quantify and contextualize genome recovery 174 

rates from metagenomes  175 

Thanks to its diverse physiological properties that promote a variety of chemical gradients and 176 

surfaces (Bowen et al. 2018), the human oral cavity is home to diverse communities of microbes 177 

(Dewhirst et al. 2010). The human oral microbiome is a relatively well-characterized environment 178 

with a wealth of isolate genomes accessible through the Human Oral Microbiome Database 179 

(HOMD) (Escapa et al. 2018; T. Chen et al. 2010), and numerous genome-resolved 180 

metagenomics surveys that have captured representative genomes of microbial clades that have 181 

largely eluded cultivation efforts. Using EcoPhylo we first focused on a genome-resolved 182 

metagenomics survey which reconstructed multiple high-quality MAGs from tongue and plaque 183 

samples from the human oral cavity (Shaiber et al. 2020). While Shaiber et al. (2020) reported 184 

numerous genomes for elusive taxa, such as Saccharimonadia (TM7), Absconditabacteria (SR1), 185 

and Gracilibacteria (GN02), the genome-resolved metagenomic workflow failed to reconstruct 186 

MAGs that resolved to some of the best-represented organisms in culture collections from the 187 

oral cavity, such as members of the genus Streptococcus, (Escapa et al. 2018), which was 188 

represented by only two MAGs in Shaiber et al. (2020). This discrepancy compelled us to combine 189 

isolate genomes from the HOMD together with metagenomes and MAGs from Shaiber et al. 190 

(2020), to investigate whether EcoPhylo could reveal the differential recovery of genomes through 191 

distinct recovery approaches. 192 
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We started our analysis by combining 790 non-redundant MAGs and 14 metagenomic co-193 

assemblies of tongue and plaque metagenomes reported by Shaiber et al (2020) with 8,615 194 

isolate genomes we obtained from the HOMD (Supplementary Table 1). To characterize these 195 

data, we elected to use EcoPhylo with rpL19 HMM, since it was the most frequent ribosomal 196 

protein with an average length of 393 nucleotides across all genomes in our collection, occurring 197 

in 98.59% of the HOMD genomes and 81.81% of the Shaiber et al. MAGs (Supplementary 198 

information). To assess the generalizability of observations made from rpL19, we also ran 199 

EcoPhylo on the same dataset with rpS15 and rpS2, with the average length of 275 and 781 200 

nucleotides, respectively (Supplementary Table 2, Supplementary information). 201 

The EcoPhylo analysis of the rpL19 genes found in the genomes and metagenomic assemblies 202 

resulted in a phylogenetic tree with 277 non-redundant bacterial representative sequences 203 

(Figure 2A, Supplementary Table 3). Hierarchical clustering of metagenomes based on the 204 

detection patterns of these rpL19 sequences organized metagenomes into tongue and plaque 205 

sampling sites de novo (Figure 2A, Supplementary Figure 1), demonstrating that a single 206 

ribosomal gene family is able to capture the known ecological differences between these habitats. 207 

Many closely related rpL19 genes that resolved to prevalent oral taxa, such as Prevotella and 208 

Steptococcus, showed within-genus differences in site specificity, a previously observed 209 

phenomenon (Eren et al. 2014) that is attributed to divergent accessory genomes (Mark Welch, 210 

Dewhirst, and Borisy 2019; Utter et al. 2020). Multiple ribosomal protein representative sequences 211 

recruited reads from tongue as well as plaque metagenomes, also matching prior observations of 212 

cosmopolitan taxa (Figure 2A, Supplementary information). Overall, the ecological insights 213 

revealed by rpL19 recapitulated known ecology of oral microbes (Mark Welch, Dewhirst, and 214 

Borisy 2019) and provided a framework to assess genome recovery rates. 215 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.15.633187doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.15.633187
http://creativecommons.org/licenses/by/4.0/


 

 216 

Figure 2: Ribosomal protein phylogeny and detection patterns across metagenomes from the human oral 217 

cavity and gut microbiomes. In the heatmaps in both panels, each column represents a ribosomal protein 218 

representative sequence, each row represents a metagenome, and each data point indicates whether a given ribosomal 219 

protein was detected in a given metagenome. The columns of heatmaps are ordered by a tree which represents a 220 

phylogenetic analysis of all ribosomal protein representative sequences, and the rows are ordered by a hierarchical 221 

clustering dendrogram that is calculated based on the ribosomal protein detection patterns across metagenomes. The 222 

panel (A) represents the EcoPhylo analysis of rpL19 sequences across Shaiber et al. (2020) metagenome-assembled 223 

genomes (MAGs), Shaiber et al. (2020) oral metagenomes, and HOMD genomes, and includes three additional rows 224 
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that indicate the origin of a given ribosomal protein, whether it is a metagenome-assembled genome (MAG, blue), 225 

HOMD isolate genome (red), or only recovered from metagenomic assemblies with no representation in genomes 226 

(green). Smaller red boxes in the phylogenetic tree mark microbial clades that were absent in the collection of MAGs 227 

and assemblies reported by Shaiber et al. (2020), but detected in Shaiber et al. (2020) metagenomes solely due to the 228 

inclusion of HOMD isolate genomes. The panel (B) represents the EcoPhylo analysis of rpS15 sequences across the 229 

Carter et al. (2023) metagenome-assembled genomes (MAGs) and Carter et al. (2023) gut metagenomes from a Hadza 230 

tribe, and includes an additional row that indicates whether a MAG was reported for a given ribosomal protein (blue). 231 

EcoPhylo tracks the origins of each sequence in each sequence cluster. Some rpL19 clusters, 232 

representatives of which are shown in the phylogenetic tree in Figure 2A, were composed of 233 

sequences found only in metagenomic assemblies and not in MAGs or isolate genomes, 234 

highlighting clades present in the environment but not in genome collections. Other rpL19 clusters 235 

only contained sequences represented in HOMD isolate genomes; despite their consistent 236 

detection in oral samples through metagenomic read recruitment, they were absent in 237 

metagenomic assemblies or MAGs, highlighting clades that are less accessible to short-read 238 

metagenomic assembly approaches (Figure 2). To calculate genome recovery rates for any given 239 

taxon, we divided the number of sequence clusters that contained a sequence from a given 240 

genome recovery method by the total number of representative sequences EcoPhylo reported for 241 

that taxon (Materials and Methods). This analysis revealed that 60.3% of the bacterial populations 242 

defined by rpL19 gene clusters that were detected in metagenomic reads also appeared in MAGs. 243 

In other words, the overall bacterial MAG recovery rate in the study by Shaiber et al. (2020) was 244 

60.3% (rpS15:  62.8%, rpS2:  53.2%) (Figure 2A, Supplementary Table 3, Supplementary Table 245 

4). However, this rate of recovery was not uniform across individual taxa. EcoPhylo revealed 246 

higher MAG recovery rates for taxa such as Saccharimonas at 69.2% (rpS15: N/A, rpS2: 63.6%), 247 

and Prevotella at 76.9% (rpS15: 82.6%, rpS2: 84%). In contrast, the MAG recovery was lower for 248 

populations in other clades, including Gammaproteobacteria and Fusobacteriia, with MAG 249 

recovery rates of 47.1% (rpS15: 58.1%, rpS2: 44.8%) and 41.7% (rpS15: 46.2%, rpS2: 31.2%), 250 
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respectively (Figure 2A, Supplementary Table 3, Supplementary Table 4). The MAG recovery 251 

rate was particularly low for Streptococcus at 30% (rpS15: 15.4%, rpS2: 10%), consistent with 252 

the presence of only two MAGs in Shaiber et al. (2020). However, the MAG recovery rate for 253 

Actinomyces was also very low at 23.1% (rpS15: 36.4%, rpS2: 13.3%) despite the 254 

characterization of nine Actinomyces MAGs by Shaiber et al. (2020) reveals a large number of 255 

distinct Actinomyces populations missed by MAGs even though they were present in the 256 

assemblies (Figure 2A, Supplementary Table 3, Supplementary Table 4). Overall, this analysis 257 

not only confirmed that MAG recovery rates are not uniform across microbial clades, but also 258 

showed that quantification of these rates is possible and may yield unexpected insights into the 259 

extent of diversity that is not represented in the final set of MAGs for some clades. 260 

The inclusion of genomes from the HOMD increased the number of rpL19 sequence clusters that 261 

contained genomes in this dataset, i.e., the total genome recovery rate, from 60.3% to 73.3% 262 

(rpS15: 74.8%, rpS2: 81.3%), and led to the representation of 35 additional microbial clades for 263 

which the metagenomic sequencing and analysis workflow implemented in Shaiber et al. (2020) 264 

did not assemble. As with MAGs, the improved detection of taxa among HOMD genomes was 265 

not uniform across clades (Figure 2A). For example, HOMD genomes offered genomic context 266 

for five additional Streptococcus populations, increasing the genome recovery rate from 30% with 267 

MAGs only, up to 80% when including the HOMD collection. When taking into account both MAGs 268 

and isolate genomes, the overall genome recovery rate of Shaiber et al. (2020) from a human 269 

oral microbiome dataset determined by EcoPhylo was 73.3%, showing that ribosomal protein 270 

phylogeography is an effective means to quantify genome recovery statistics for individual 271 

studies. Conversely, EcoPhylo results showed that 26.7% of the individual clades that could be 272 

detected through the presence of rpL19 sequences in assemblies of Shaiber et al. (2020) 273 

metagenomes lacked genomic representation in both Shaiber et al. (2020) MAGs and HOMD 274 

isolates (Figure 2A). Clades that were solely detected through their assembled yet not binned 275 
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ribosomal proteins increased the detection of populations of Lachnospiraceae, Actinomyces, 276 

Gammaproteobacteria, and Patescibacteria (Figure 2A). As EcoPhylo clusters ribosomal proteins 277 

at 97% nucleotide similarity, a conservative threshold that underestimates biodiversity by often 278 

grouping genomes with gANI below 95% (Olm et al. 2020). 279 

Next, we applied EcoPhylo to another genome-resolved metagenomics study that recently 280 

characterized the gut microbiome of a Hadza hunter-gatherer tribe with a deep sequencing effort 281 

by Carter et al. (2023), in which the authors reported nearly 50,000 redundant bacterial and 282 

archaeal MAGs from 338 metagenomes with an average of 76 million paired-end reads 283 

(Supplementary Table 1). EcoPhylo analysis of this dataset with rpS15 with an average length of 284 

276 nucleotides, along with rpS16 and rpL19, with the average length of 297 and 370 nucleotides 285 

respectively (Supplementary Figure 2), revealed a relatively high bacterial MAG recovery rate of 286 

67.7% (rpS16: 72.8%, rpL19: 69.5%) (Figure 2B, Supplementary Table 2). While there were some 287 

clades, such as Actinomycetia, for which the genome recovery rate was as low as 31.9% (rpS16: 288 

32.4%, rpL19: 33.3%), the high MAG recovery rate was generally uniform across all major taxa 289 

(Supplementary Table 5, Supplementary Table 6, Supplementary Information). 290 

Through these analyses, we are able to demonstrate that the MAGs obtained by Carter et al. 291 

(2023) more comprehensively represents the populations captured by their metagenomic 292 

assemblies of the human gut compared to the MAGs obtained by Shaiber et al. (2020) given their 293 

metagenomic assemblies of the oral cavity (Figure 2B, Supplementary Table 5, Supplementary 294 

Table 6, Supplementary Information). The ability to make such a statement highlights the utility of 295 

EcoPhylo at providing quantitative insights into the efficacy of genome-resolved surveys 296 

independent of biomes while offering a phylogenetic and biogeographical context for the 297 

populations that were detected in the assemblies. 298 
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Overall, EcoPhylo results from the human oral cavity and human gut ecosystems show that our 299 

workflow can scale to large metagenomic surveys, combine genomes from multiple sources to 300 

compare distinct recovery strategies at the level of individual phylogenetic clades, and 301 

recapitulate known ecological patterns. 302 

Genome collections represent a small fraction of microbial diversity 303 

in the global surface ocean microbiome 304 

Marine systems support fundamental biogeochemical cycles that maintain the Earth's habitability, 305 

and comprehensively documenting the genomes of marine microbes that are intimately 306 

connected to these processes has been one of the key aims of microbiology. In addition to 307 

decades of cultivation efforts, recent years witnessed a rapid expansion of marine microbial 308 

genome catalogues for bacteria and archaea with new MAGs (Delmont et al. 2018b; Tully, 309 

Graham, and Heidelberg 2018; Paoli et al. 2022) and SAGs (Pachiadaki et al. 2019; Martínez-310 

Pérez et al. 2022). Studies that recover genomes from marine systems recognize that the extent 311 

to which these collections represent marine environmental populations is limited (Delmont et al. 312 

2019a; Paoli et al. 2022). Yet, quantifying the extent of representation at the level of individual 313 

environmental clades across genome collections is a challenge. Having established the utility of 314 

EcoPhylo to elicit quantitative answers to such questions, we next surveyed a state-of-the-art 315 

globally distributed collection of microbial genomes from marine systems (Paoli et al. 2022) in the 316 

context of metagenomes generated by the Tara Oceans Project (Salazar et al. 2019; Sunagawa 317 

et al. 2015), the Hawaii Ocean Time-series (HOT) (Biller et al. 2018), the Bermuda Atlantic Time-318 

series (BATS) (Biller et al. 2018), BioGEOTRACES expeditions (Biller et al. 2018), and the 319 

Malaspina Project (Sánchez et al. 2024) to simultaneously compare genome recovery rates of 320 

MAGs, SAGs, and isolate genomes. Of all 1,038 metagenomes, we focused on those that were 321 

collected from up to 30m depth and had a size fraction of 0.22μm to 3μm (Supplementary Figure 322 
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3, Supplementary Table 1), which left us with a total of 237 metagenomes containing a total of 323 

18,832,767,852 short reads (79,463,155 reads per metagenome on average). Our collection of 324 

genomes included 7,282 MAGs, 1,474 SAGs, and 1,723 isolate genomes from The Ocean 325 

Microbiomics Database (subsetted from samples of < 30m depth when possible) (Paoli et al. 326 

2022). We expanded this collection with an additional 52 isolate genomes that historically have 327 

low MAG recovery rates, such as Pelagibacterales (SAR11) and Cyanobacteriota, and a 328 

collection of 41 SAGs obtained from below the Ross Ice Shelf to improve detection of cold-329 

adapted clades (Martínez-Pérez et al. 2022) (Materials and Methods), yielding a total of 10,479 330 

genomes (Supplementary Table 1). For characterization of these data by EcoPhylo we primarily 331 

used the ribosomal gene rpL14 with an average length of 363 nucleotides, which we detected in 332 

82% of the final list of genomes (Supplementary information), but we also conducted additional 333 

analyses using the ribosomal genes rpS8 and rpS11, with an average length of 398 and 415 334 

nucleotides respectively, to confirm our key observations (Supplementary Figure 1, 335 

Supplementary Table 2). 336 
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 337 

Figure 3: Ribosomal protein L14 phylogeny and detection patterns across metagenomes from the global 338 

surface ocean (depth < 30 m; size fraction: 0.22 to 1.6 μm, 0.22 to 3 μm). In the heatmap of panel (A), each column 339 

represents a ribosomal protein representative sequence, each row represents a metagenome, and each data point 340 

indicates whether a given ribosomal protein was detected in a given metagenome. The heatmap columns are ordered 341 

by a tree which represents a phylogenetic analysis of all ribosomal protein representative sequences, and the rows are 342 

ordered by a hierarchical clustering dendrogram that is calculated based on ribosomal protein detection patterns across 343 

metagenomes. Metagenomes are colored by temperate (gold) or polar (purple) biomes. Each leaf of the phylogenetic 344 

tree is decorated below the heatmap with metadata denoting the origin of the RP: metagenome-assembled genome 345 

(MAG) (blue), isolate genomes (red), and single amplified genomes (green). In panel (B), each map corresponds to 346 
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phylogeographical patterns highlighted in panel (A). Colored sampling points correspond to the boxed phylogeographic 347 

signals  in panel (A). 348 

EcoPhylo analysis of rpL14 genes across 236 global surface ocean metagenomes characterized 349 

8,075 bacterial, 370 archaeal, and 33 eukaryotic clades and computed their distribution patterns 350 

across environments (Supplementary Table 7). Hierarchical clustering of metagenomes based on 351 

rpL14 detection patterns split samples into two major groups, whereby one of the groups 352 

represented samples collected from polar regions and the other represented samples collected 353 

from temperate oceans (Figure 3, Supplementary information); a result that is in line with previous 354 

observations that documented water temperature as a major driver of microbial diversity in the 355 

surface ocean (Sul et al. 2013; Sunagawa et al. 2015). Notably, temperate and polar water 356 

samples did not partition when we included metagenomes with lower sequencing depths in our 357 

analysis. This was likely caused by increasing noise in detection patterns of various prevalent 358 

populations, which compelled us to only consider metagenomes with 50 million or more paired-359 

end reads for our downstream analyses (Supplementary information), which left us with a total of 360 

100 metagenomes (Supplementary Table 1, Supplementary information). Overall, EcoPhylo 361 

captured (1) differential distribution patterns among closely related taxa as a function of 362 

temperature and latitude, a form of phylogenetic overdispersion likely due to greater competitive 363 

exclusion among closely related organisms in the same ecological niche, and (2) showed that the 364 

majority of taxa contained both warm- and cold-adapted clades that exclusively occurred either in 365 

polar or temperate waters, an expected observation since marine thermal adaptation is not 366 

correlated with phylogenetic signal (Thomas et al. 2012) and is likely acquired through 367 

independent processes within each major clade (Figure 3). Furthermore, the rpL14 368 

phylogeography captured well-understood biogeographical patterns of prevalent pelagic taxa 369 

(Figure 3), in agreement with previous studies that showed the dominance of SAR11 subclade 370 

Ia.3.V in temperate waters (Delmont et al. 2019b) and the exclusivity of cold-adapted SAR11 371 

clades Ia.1 and Ia.3.II to polar regions (M. V. Brown et al. 2012; Delmont et al. 2019a). It also 372 
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corroborated the global distribution of Prochlorococcus HL-II in temperate waters (Johnson et al. 373 

2006; Biller et al. 2015; Ustick, Larkin, and Martiny 2023) and the contrasting distribution of this 374 

group with Prochlorococcus HL-III and Prochlorococcus HL-IV, which are mainly found in the 375 

Equatorial Pacific  (Rusch et al. 2010; Huang et al. 2012; Malmstrom et al. 2013; Kent et al. 2016), 376 

as well as Prochlorococcus HL-I, which is confined to higher latitudes (Johnson et al. 2006; Biller 377 

et al. 2015; Delmont and Eren 2018). The concordance of our results from EcoPhylo with known 378 

ecological patterns in marine microbiology underscores the reliability of ribosomal protein 379 

phylogeography in characterizing the interplay between microbial ecology and evolution in global 380 

surface ocean microbiome (Figure 3, Supplementary information). 381 

Using these data, we first compared the overlap between surface ocean microbial populations in 382 

the environment and publicly available MAGs generated from this biome by calculating genome 383 

recovery rates. The MAG recovery rate for Archaea was relatively high at 49.5% (rpS8: N/A, 384 

rpS11: 50%), however, the MAG recovery rate for Bacteria was only 19.9% (rpS8: 22.7%, rpS11: 385 

22.2%). In contrast to the MAG recovery rates we observed in individual studies from the human 386 

oral and gut microbiome (60.3% and 67.7%, respectively), this much lower recovery rate from 387 

multiple sequencing projects reflects the relatively poor efficiency and the contemporary 388 

challenges of reconstructing genomes from metagenomes in the ocean biome (Figure 3, 389 

Supplementary Figure 1, Supplementary Table 7, Supplementary Table 8). Some phyla had 390 

relatively high MAG recovery rates, such as 48.2% for Actinomycetota (rpS8: 50.8%, rpS11: 391 

48.9%), 43.9% for Bacteroidota (rpS8: 47.3%, rpS11: 44.3%), and 49.7% for Verrucomicrobiota 392 

(rpS8: 51.2%, rpS11: 44.4%). MAG recovery rates were much lower for other clades, including 393 

those containing some of the best-studied autotrophs and heterotrophs of open surface oceans, 394 

for example, the MAG recovery rate was only 11% for Cyanobacteriota (rpS8: 11.7%, rpS11: 395 

9.93%). Many clades of Alphaproteobacteria had some of the lowest MAG recovery rates, 396 

including 12.7% (rpS8: 9.21%, rpS11: 7.2%) for the uncharacterized order HIMB59 397 
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(Supplementary Table 7, Supplementary Table 8). Poor MAG recovery rate was also true for the 398 

order Pelagibacterales, which remained at 3.76% (rpS8: 3.98%, rpS11: 4.25%) (Supplementary 399 

Table 7, Supplementary Table 8). Compared to taxonomic classification of shotgun metagenomic 400 

reads or sequencing of 16S rRNA gene amplicons, prior studies observed much lower relative 401 

abundance estimates for populations resolving to Cyanobacteriota and Pelagibacterales based 402 

on MAGs (Pachiadaki et al. 2019; Chang et al. 2024). By elucidating clade-specific discrepancies 403 

between different methods of genome recovery, EcoPhylo offers a context for the extent of 404 

missing MAGs in prior surveys, which likely is a by product of fragmented metagenomic 405 

assemblies due to co-occurring closely related populations with high genomic diversity (L.-X. 406 

Chen et al. 2020).  407 

De novo characterization of rpL14 sequences with EcoPhylo uncovers the vast diversity within 408 

Pelagibacterales compared to the other clades (Figure 3). Strikingly, even with the conservative 409 

profiling of EcoPhylo that will occasionally pull together ribosomal proteins that belong to genomes 410 

from multiple 95% gANI clusters, Pelagibacterales made up 41.54% of the non-redundant rpL14 411 

sequence clusters shown in Figure 3, revealing yet another representation of its immense 412 

phylogenetic diversity (Morris et al. 2002; M. V. Brown et al. 2012; Pachiadaki et al. 2019). While 413 

both Cyanobacteriota and Pelagibacterales suffer from similar rates of poor representation in 414 

MAG collections, the missing genomes for environmental populations of Pelagibacterales 415 

resolved to ~12 times more rpL14 sequence clusters, which unveils the enormous 416 

uncharacterized genomic diversity within this order of many clades that show distinct 417 

biogeographical patterns (Figure 3), and highlights the importance of ongoing cultivation efforts 418 

to improve its genomic representation (Freel et al. 2024). 419 
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Different genome recovery methods come with different clade-420 

specific biases  421 

Finally, we explored the contribution of isolate genomes and SAGs to the genomic representation 422 

of surface ocean microbial populations. Isolate genomes had low phylogenetic breadth across 423 

the Ribosomal L14 phylogeny and only sampled a few closely related populations, indicating the 424 

repeated isolation of similar microbes. In fact, at the phylum level, isolate genomes only effectively 425 

sampled Cyanobacteriota at a recovery rate of 7.33% (rpS8: 10.7%, rpS11: 7.80%) despite the 426 

fact that we supplemented this clade with extra isolate genomes for this analysis (Supplementary 427 

Table 7, Supplementary Table 8). Interestingly, a few closely related orders within class 428 

Gammaprotebacteria were  exceptionally well-covered by bacterial organisms in culture, where 429 

40% of the ribosomal proteins matched to an isolate genome (Figure 3). These sister clades 430 

represented a relatively small fraction of the overall phylogenetic diversity and were poorly 431 

detected across the global surface ocean metagenomes, however, they collectively contained 432 

many intensely studied marine model bacterial genera, such as Vibrio (Kauffman et al. 2018; 433 

Baker-Austin et al. 2017; van Kessel and Camilli 2024; Septer and Visick 2024), Alteromonas 434 

(Pedler, Aluwihare, and Azam 2014; Manck et al. 2022; Henríquez-Castillo et al. 2022; Z. Lu et 435 

al. 2024; Halloran et al. 2025), and Alcanivorax (Sabirova et al. 2008; Naether et al. 2013; Manoj 436 

Prasad et al. 2019; M. Prasad et al. 2023). The clades with some of the highest SAG recovery 437 

rates included the order SAR86 at 16.3% (rpS8: 20.1%, rpS11: 17.8%) and the phylum 438 

Actinomycetota at 14.4% (rpS8: 16.2%, rpS11: 14.5%) (Figure 3, Supplementary Table 7, 439 

Supplementary Table 8). Furthermore, SAGs augmented the recovery of genomes from 440 

prevalent, taxonomically diverse populations with low MAG recovery rates including (1) 441 

Cyanobacteriota with a three-fold increase compared to MAGs at 37.0% (rpS8: 47.2%, rpS11: 442 

41.5%), (2) SAR86 at 16.3% (rpS8: 20.1%, rpS11: 17.8%), and (3) Alphaproteobacteria, including 443 

HIMB59 at 5.06% (rpS8: 5.61%, rpS11: 5.29%) and SAR11 at 6.35% (rpS8: 7.56%, rpS11: 444 
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7.82%) (Figure 3, Supplementary Table 7, Supplementary Table 8). Specifically, SAGs were able 445 

to effectively sample the warm-adapted SAR11 clade 1.a.3V as well as an uncharacterized cold-446 

adapted clade of SAR11 likely due to SAG sampling sites that covered both temperate 447 

(Pachiadaki et al. 2019) and polar (Martínez-Pérez et al. 2022) oceans. Considering that SAR11 448 

has been estimated to be 25% of all plankton (Giovannoni 2017) and 20-40% of cells counts in 449 

the surface ocean (Schattenhofer et al. 2009), SAG methodology, which separates individual 450 

bacterial cells from the environment, appears to be optimal for recovering this taxon and avoids 451 

the pitfalls of fragmented metagenomic assembly caused by microbiomes with closely related 452 

populations (Hosokawa and Nishikawa 2024). SAGs had greater breadth than MAGs and isolate 453 

genomes across the EcoPhylo phylogenies of Ribosomal L14, Ribosomal S11, and Ribosomal 454 

S8 (Figure 3, Supplementary Figure 1), despite being sampled from only 9 surface ocean 455 

sampling sites (Martínez-Pérez et al. 2022; Pachiadaki et al. 2019) compared to 237 456 

metagenomes encompassing higher environmental diversity in the global surface ocean. 457 

Furthermore, SAGs only represented 6.91% of Bacteria and 2.97% of Archaea populations 458 

detected across the dataset while MAGs represented 19.9% of Bacteria and 49.5% of Archaea 459 

populations detected across the dataset (Supplementary Table 7, Supplementary Table 8). These 460 

results are in line with prior observations that showed pelagic SAGs represent notably more 461 

taxonomic richness when compared to MAGs (Pachiadaki et al. 2019). 462 

Similar to the human oral microbiome, we found an uneven phylogenetic distribution of genome 463 

recovery rates among genome acquisition strategies in the global surface ocean microbiome. 464 

MAGs systematically undersampled globally prevalent clades of Alphaproteobacteria, such as 465 

SAR11. In contrast SAGs from only a few surface ocean sampling sites (n=9), substantially 466 

improved their recovery rates from these clades (Figure 3), indicating that while sequencing and 467 

assembly of single-cell genomes often lead to severely incomplete genomes due to amplification 468 

biases (Stepanauskas et al. 2017), SAGs show great potential for unbiased genome recovery. 469 
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The phylogeography of ribosomal proteins adds further evidence that a combination of genome-470 

resolved metagenomics, single amplified genomics, and innovations in microbial isolation 471 

strategies are needed to further increase genomic representation of diverse taxa in the global 472 

surface ocean.  473 

Discussion 474 

Our work illuminates the efficiencies of current genome recovery methods and their ability to 475 

sample genomes from various microbiomes. By leveraging phylogenetically informative marker 476 

genes detected in metagenomic assemblies, such as ribosomal proteins, that are absent from 477 

final genome collections, EcoPhylo provides a robust framework for benchmarking genome 478 

recovery rates across multiple genome acquisition methods and contextualizing the ecological 479 

and evolutionary of genome collections with naturally occurring microbial populations. Our study 480 

examined three microbiome projects that used multiple genome recovery strategies (MAGs, 481 

SAGs, and isolate genomes) to survey the human oral cavity, global surface ocean, and human 482 

gut. Overall, we found that the EcoPhylo workflow can quantitatively measure genome recovery 483 

rates and analyze heterogeneous genome collections to assess the efficacy of distinct recovery 484 

methods at the level of individual phylogenetic clades. We observed that deep metagenomic 485 

sequencing of the human gut microbiome yielded the highest genome recovery rate across these 486 

three biomes analyzed. Additionally, we identified that a state-of-the-art genome collection from 487 

marine environments represents a small fraction of the total diversity in the open surface ocean 488 

through the lens of ribosomal proteins found in assembled metagenomes. By generating insights 489 

into multi-domain ribosomal protein phylogeography, EcoPhylo provides a valuable interactive 490 

data visualization strategy to evaluate the underlying microbial ecology of metagenomic 491 

sequencing projects. 492 
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The de novo profiling of ribosomal proteins in metagenomic assemblies resembles reference-493 

based taxonomic profiling of metagenomic short reads to predict relative abundances of taxa, an 494 

idea that is implemented in multiple tools that use marker genes, such as Kraken (Wood and 495 

Salzberg 2014), MIDAS (Nayfach et al. 2016), Bracken (J. Lu et al. 2017), mOTUs (Ruscheweyh 496 

et al. 2022), and MetaPhlAn (Manghi et al. 2023), or processed conserved marker gene windows, 497 

such as SingleM (Woodcroft et al. 2024). As these tools typically report distinct taxa and their 498 

relative abundances, they indeed can help assess genome recovery efforts through direct 499 

comparisons of taxon names they identify to the taxonomy of recovered genomes. However, the 500 

requirement of a database of reference genomes and/or marker genes, and the absence of a 501 

direct link between the genes in assemblies and taxon names reported in tables limit applications 502 

with additional downstream opportunities such as targeted genome recovery. In contrast, the 503 

flexibility of surveying any marker gene, including ribosomal proteins, across user-provided 504 

metagenomic assemblies de novo offers an alternative approach that directly connects genes of 505 

unrecovered taxa to assemblies and estimates the number of populations detected in 506 

metagenomes regardless of their phylogenetic novelty across diverse samples and conditions. 507 

While the phylogeography of ribosomal proteins offers valuable insights into genome recovery, 508 

these genes have notable limitations. Rates of evolution as well as the likelihood to be recovered 509 

through metagenomic assembly  will differ  across ribosomal protein families, complicating direct 510 

quantitative comparisons between different ribosomal proteins and in some cases will require 511 

surveying multiple ribosomal proteins to ensure the generalizability of observations from a single 512 

ribosomal protein. Additionally, individual ribosomal protein trees will have less phylogenetic 513 

power compared to concatenated ribosomal protein trees or longer marker genes. Although this 514 

may lead to suboptimal organism phylogenetics, the efficient organization of ribosomal proteins 515 

yields informative insights into the diversity of clades within a sample. Furthermore, when working 516 

with incomplete genomes, such as MAGs or SAGs, a single ribosomal gene family will rarely be 517 
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detected across the entire genome collection and thus only a subset of genomes will be 518 

contextualized per protein. Yet the inherent trade-offs of using incomplete genomes (x ≥ 50% and 519 

less than 10% contamination) highlight ongoing challenges in genome recovery, as stricter 520 

completeness thresholds would further reduce the number of genomes available for analysis.  521 

The modular design and customizable parameters of EcoPhylo allows users to go beyond 522 

ribosomal proteins and leverage other gene families tailored for specific analyses which can 523 

improve phylogenetics and the detection of specific taxa. For example, RNApolA and RNApolB 524 

have been leveraged for phylogeny-guided binning leading to the discovery of missing branches 525 

in viral evolution (Gaïa et al. 2023). Furthermore, phylogeography of functional protein families 526 

can be leveraged as proxies for microbial metabolism, e.g. phylogeography of ABC transporters 527 

can aid in modeling cryptic fluxes of microbial metabolites (Schroer 2023). The EcoPhylo workflow 528 

provides a platform for future microbiome projects to benchmark their genome recovery rates 529 

upon release of genome collections. Ribosomal protein phylogeography in tandem with reporting 530 

read recruitment percentages to representative genome collections, provides comprehensive 531 

insights into genome recovery rates given the biodiversity detected in metagenomes. Future 532 

studies can leverage the strategy implemented in EcoPhylo to reanalyze existing metagenomic 533 

assemblies to identify missing clades or develop tailored methods to optimize overall genome 534 

recovery efforts by taking advantage of the increasing availability of genomes and metagenomes. 535 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.15.633187doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.15.633187
http://creativecommons.org/licenses/by/4.0/


 

Materials and Methods 536 

The EcoPhylo workflow 537 

EcoPhylo is a computational workflow implemented in the open-source software ecosystem anvi’o 538 

(Eren et al. 2015, 2021) using the Python programming language and the workflow management 539 

system, Snakemake (Köster and Rahmann 2012). The primary purpose of EcoPhylo is to offer 540 

an integrated means to study phylogenetic relationships and ecological distribution patterns of 541 

sequences that match to any gene family based on user-provided hidden Markov model (HMM) 542 

searches from genomic and metagenomic assemblies. A minimal command line instruction to 543 

start an EcoPhylo run is ̀ anvi-run-workflow -w ecophylo -c config.json`, where ̀ anvi-run-workflow` 544 

is a program in anvi’o that runs various workflows, and `config.json` is a JSON formatted 545 

configuration file that describes file paths (such as the locations of genomes and/or 546 

metagenomes) and other parameters (such as the HMM to be used for a homology search, and 547 

sequence identity cutoffs). Comprehensive user documentation for EcoPhylo is available at 548 

https://anvio.org/m/ecophylo. 549 

The minimum input for the EcoPhylo is a gene family hidden Markov model (HMM) and a dataset 550 

of genomic and/or metagenomic assemblies. EcoPhylo identifies and clusters target genes or 551 

translated proteins across assemblies to yield a non-redundant, representative set of open 552 

reading frames (ORFs). Next, an amino acid phylogenetic tree is calculated with the translated 553 

representative ORFs yielding the evolutionary history captured by homologues from input 554 

assemblies. An additional user input to the workflow is a metagenomic sequencing dataset 555 

representing ecological sampling or an experimental setup. With this input, the workflow performs 556 

metagenomic read recruitment against the representative ORFs to yield ecological insights into 557 
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the gene family. Finally, the separate data types are integrated into a phylogeographic 558 

representation of the gene family (Figure 1). 559 

The resulting sequences from the workflow can be organized in the EcoPhylo interactive interface 560 

either using an  amino acid phylogenetic tree or using hierarchical clustering based on differential 561 

read recruitment coverage across metagenomic samples. Additionally, metagenomes can be 562 

hierarchically clustered based on the detection of the target gene family. It is recommended to 563 

employ hierarchical clustering of metagenomes or sequences in the EcoPhylo interactive 564 

interface with the detection read recruitment statistic (rather than coverage values) to minimize 565 

the effect of non-specific read recruitment (https://merenlab.org/anvio-views/). 566 

An application of the EcoPhylo workflow with default settings will (1) identify gene families with 567 

the program `hmmsearch` in (Eddy 2011) using the user-provided HMM model, (2) annotate 568 

affiliate hmm-hits with taxonomic names with `anvi-run-scg-taxonomy` when applicable, (3) 569 

remove hmm-hits with less than 80% HMM model alignment coverage and incomplete ORFs with 570 

the anvi’o program `anvi-script-filter-hmm-hits` with parameters `--min-model-coverage 0.8` and 571 

`--filter-out-partial-gene-calls` to minimize the inclusion of non-target sequences and spurious 572 

HMM hits, (4) dereplicate the resulting DNA sequences at 97% gANI and pick cluster 573 

representatives using MMseqs2 (Steinegger and Söding 2017), (5) use the translated 574 

representative sequences to calculate a multiple sequence alignment (MSA) using (Edgar 2004) 575 

with the `-maxiters 2` flag (Edgar 2004), trim the alignment by removing columns of the alignment 576 

with trimAL with the ‘-gappyout’ flag (Capella-Gutiérrez, Silla-Martínez, and Gabaldón 2009), (6) 577 

remove sequences that have more than 50% gaps using the anvi’o program `anvi-script-reformat-578 

fasta`, (7) calculate a phylogenetic tree using FastTree (Price, Dehal, and Arkin 2010) with the 579 

flag `-fastest`, (8) perform metagenomic read recruitment analysis and profiling of non-translated 580 

representative sequences using the anvi’o metagenomic workflow (Shaiber et al. 2020), which by 581 

default relies upon Bowtie2 (Langmead and Salzberg 2012), (9) generate miscellaneous data to 582 
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annotate the representative sequences including taxonomy with `anvi-estimate-scg-taxonomy` 583 

for ribosomal proteins, cluster size, and sequence length, and finally (10) generate anvi’o artifacts 584 

that give integrated access to the phylogenetic tree of all representative sequences and read 585 

recruitment results that can be visualized using the anvi’o interactive interface and/or further 586 

processed for specific downstream analyses using any popular data analysis environment such 587 

as R and/or Python. 588 

The workflow that resulted in the recovery and characterization of ribosomal proteins in our 589 

manuscript used the following additional steps: (1) we removed input reference genomes that 590 

were not detected in at least one of the input metagenomes above a detection value of 0.9 with 591 

their ribosomal protein (we kept all MAGs originating from the samples themselves) to only 592 

visualize detected populations, (2) we manually curated the ribosomal protein tree when 593 

necessary to remove sequences that appeared to be chimeric and those that formed spurious 594 

long branches likely originating from metagenomic assembly artifacts, and/or mitochondrial or 595 

plastid genomes (Supplementary information) and recalculated new amino acid phylogenetic 596 

trees with curated sequences with `FastTree` or IQTREE with the parameters `-m WAG -B 1000` 597 

(Minh et al. 2020) and imported the new trees using the program `anvi-import-items-order`, and 598 

finally,  (3) we generated additional metadata using in-house Python or R scripts and imported 599 

additional metadata using the program `anvi-import-misc-data` to decorate trees or 600 

metagenomes. 601 

Benchmarking EcoPhylo workflow with ribosomal proteins using 602 

CAMI synthetic metagenomes 603 

We validated the EcoPhylo workflow by benchmarking it against the CAMI synthetic 604 

metagenomes (Meyer et al. 2022) to identify nucleotide clustering thresholds of ribosomal gene 605 
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families to limit non-specific read recruitment while maximizing taxonomic resolution. We applied 606 

the EcoPhylo workflow across the three CAMI biome synthetic genomic/metagenomic datasets 607 

(Marine, Plant-associated, and Strain-madness). As an initial step, we identified the top five most 608 

frequent ribosomal gene families that were detected in single-copy in the associated genomic 609 

collections for each synthetic metagenomic dataset. We then conducted a parameter grid search, 610 

spanning 95%-100% nucleotide similarity parameter grid search (Meyer et al. 2022). Next, we 611 

measured the amount of non-specific read recruitment in each EcoPhylo iteration, i.e. reads with 612 

equal mapping scores between their primary and secondary alignments (multi-mapped reads), 613 

with the following Samtools command: `samtools view $sample | grep XS:i | cut -f12-13 | sed 614 

's/..:i://g' | awk '$1==$2' | wc -l`. The percentage of non-specific read recruitment was calculated 615 

by dividing the number of multi-mapped reads by the total number of reads mapped to the 616 

representative dataset. With this, we identified that nucleotide clustering thresholds greater than 617 

97% began to show signs of non-specific read recruitment (Supplementary information). 618 

After identifying 97% nucleotide identity as the optimal threshold, we measured EcoPhylo’s ability 619 

to contextualize a genomic collection within metagenomic assemblies by quantifying the amount 620 

of genomic ribosomal genes clustering with their associated metagenomic assembly ribosomal 621 

gene (Supplementary information). Finally, we benchmarked the Shannon diversity and richness 622 

captured by different SCGs within the metagenomes and compared it to other taxonomic profiling 623 

tools submitted to CAMI (Meyer et al. 2022). To calculate Shannon diversity and richness values 624 

for SCGs processed by EcoPhylo we used the R package vegan (Dixon 2003) and Phyloseq 625 

(McMurdie and Holmes 2013). To calculate the richness and alpha diversity values for CAMI 626 

ground truth and other profiling tools we extracted relative abundance for each genera included 627 

in the associated biome files made available from CAMI. Shannon diversity for SCGs in the 628 

EcoPhylo were calculated with the anvi’o coverage statistic: Q2Q3 coverage. Datasets were 629 

cleaned and visualized with R packages in Tidyverse (Wickham et al. 2019). 630 
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Genome collections 631 

All MAG and SAG datasets were filtered for genomes with 50% completion and 10% redundancy 632 

using the single-copy core gene collections in anvi’o to meet medium-quality draft status in 633 

accordance with the community standards (Bowers et al. 2017). For the human oral cavity 634 

analysis, 8,615 human oral isolate genomes were downloaded from HOMD v10.1 635 

(https://www.homd.org/ftp/genomes/NCBI/V10.1/) (Escapa et al. 2018) and 790 MAGs were 636 

downloaded from Shaiber et al. (2020) via (doi:10.6084/m9.figshare.12217805, 637 

doi:10.6084/m9.figshare.12217961). 638 

For the Hadza tribe human gut microbiome analysis we followed the data download guidelines 639 

shared by Carter et al. (2023) to obtain genomes from doi:10.5281/zenodo.7782708. Carter et al. 640 

(2023) formed clusters at 95% gANI by including additional genomes outside of the MAGs they 641 

have reconstructed from the Hazda gut metagenomes. To exclusively analyze microbial genomes 642 

affiliated with the Hadza metagenomes, we filtered for cluster representatives with cluster 643 

members that contained at least one Hadzda adult or infant MAG which produced 2,437 644 

representative Bacterial and Archaeal MAGs. 645 

Finally, the surface ocean genomic collection was based on Paoli et al. (2022) and augmented 646 

with SAGs (Martínez-Pérez et al. 2022) and isolate genomes for SAR11 and Prochlorococcus 647 

(Delmont and Eren 2018; Delmont et al. 2019a). When metadata was available, we only used 648 

genomes sampled from x < 30 meters depth to match the surface ocean metagenomic dataset, 649 

otherwise, we retained the genomes. The (Paoli et al. 2022) MAG collection included manually 650 

curated MAGs from co-assemblies, which included samples from depths deeper than 30 meters 651 

in the deep chlorophyll maximum (Delmont et al. 2019a). The final input surface ocean genome 652 

dataset contained 1,474 SAGs,  1,723 isolate genomes, and 7,282 MAGs.  653 
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Metagenome and metagenomic assembly datasets 654 

To explore the phylogeography of ribosomal proteins, we used used 71 tooth and plaque 655 

metagenomes from the human oral cavity which were downloaded from the NCBI BioProject 656 

PRJNA625082 (Shaiber et al. 2020) along with associated co-assemblies 657 

(doi:10.6084/m9.figshare.12217799). Next, to explore deep sequencing in the human gut 658 

microbiome we used 388 metagenomes and assemblies from infant and adult members of the 659 

Hadza tribe (doi:10.5281/zenodo.7782708) using the FTP links shared in from the file 660 

`Supplemental_Table_S1.csv` and NCBI BioProject PRJEB49206 (Carter et al. 2023). Finally, to 661 

explore the global surface ocean microbiome, we used 237 surface ocean metagenomes and 662 

associated assemblies (<30 meters depth) from NCBI BioProjects PRJEB45951 and 663 

PRJEB5245228 (Paoli et al. 2022; Sánchez et al. 2023). All metagenomes and associated 664 

assembly accessions can be found at Supplementary Table 1.  665 

Preprocessing of genomic and metagenomic assemblies and 666 

metagenomic short reads 667 

Metagenomic and genomic assemblies were preprocessed with the anvi’o contigs workflow with 668 

the program `anvi-run-workflow -w contigs` to predict open-reading frames with Prodigal (V2.6.3) 669 

and identify SCGs for taxonomic inference with `anvi-run-scg-taxonomy` (Hyatt et al. 2010; 670 

Shaiber et al. 2020). No contig size filters were implemented during this process to include 671 

ribosomal proteins located on small contigs. To limit detection of misassemblies in downstream 672 

analyses, only ribosomal proteins with complete open-reading frames (as predicted by Prodigal) 673 

were analyzed with EcoPhylo (Hyatt et al. 2010). Additionally, metagenomic samples were quality 674 

controlled with the anvi’o metagenomics workflow with the program `anvi-run-workflow -w 675 

metagenomics` (Shaiber et al. 2020). This workflow uses the tool `iu-filter-quality-minoche` (Eren 676 
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et al. 2013), which implements methods described in (Minoche, Dohm, and Himmelbauer 2011). 677 

All Snakemake workflows in this manuscript leveraged Snakemake v7.32.4 (Köster and Rahmann 678 

2012). 679 

Gene-level taxonomy of ribosomal proteins 680 

To assign gene level taxonomy to ribosomal proteins, the EcoPhylo workflow relies upon the 681 

anvi’o tools `anvi-run-scg-taxonomy` and `anvi-estimate-scg-taxonomy`, which leverage the 682 

genomes and their taxonomy made available by the GTDB (Parks et al. 2022) to identify 683 

taxonomic affiliations of genes that match to any of the ribosomal proteins L1, L13, L14, L16, L17, 684 

L19, L2, L20, L21p, L22, L27A, L3, L4, L5, S11, S15, S16, S2, S6, S7, S8, or S9. During the 685 

workflow, EcoPhylo uses ̀ anvi-run-scg-taxonomy` to search for ribosomal genes annotated within 686 

each anvi’o contigs database against the downloaded marker gene dataset  with DIAMOND 687 

v0.9.14 (Buchfink, Reuter, and Drost 2021). Later in the workflow, EcoPhylo runs `anvi-estimate-688 

scg-taxonomy --metagenome-mode` on the representative set of ribosomal proteins, which 689 

assigns a consensus taxonomy to each sequence. The program `anvi-estimate-scg-taxonomy` 690 

does not provide a taxonomic annotation if the ribosomal protein is less than 90% similar to any 691 

of the ribosomal proteins found in GTDB genomes. In some cases, ribosomal proteins without 692 

taxonomic annotation can be manually annotated with taxonomy based on the annotated 693 

sequences that surround them in the phylogenetic tree, as we described in the section 694 

“Taxonomic binning to improve genome recovery estimations”. 695 
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Selection of ribosomal proteins to contextualize genomic 696 

collections in metagenomes 697 

To pick ribosomal gene families to study genome collections, we selected ribosomal genes that 698 

were annotated in the majority of genomes in single-copy. We then cross-referenced selected 699 

ribosomal genes with their assembly rates in metagenomes and disregarded candidate ribosomal 700 

gene families that were under- or over-assembled in the dataset. To do this, we ran the EcoPhylo 701 

workflow with the input dataset of genomic and metagenomic assemblies until the rule 702 

`process_hmm_hits`, which will filter for high-quality HMM-hits as described above. Finally, we 703 

extracted ribosomal protein hits from all assemblies with the anvi’o command `anvi-script-gen-704 

hmm-hits-matrix-across-genomes` and tabulated/visualized the distribution in R using the 705 

Tidyverse (Wickham et al. 2019). 706 

Distribution of HMM alignment coverage and SCG detection across 707 

GTDB 708 

To identify optimal ribosomal proteins and HMM hit filtering thresholds, we explored the 709 

distribution of SCG detection and HMM alignment coverage across GTDB genomes. The analysis 710 

used the first two rules of the EcoPhylo workflow (anvi_run_hmms_hmmsearch and 711 

filter_hmm_hits_by_model_coverage) to annotate the RefSeq representative genomes from 712 

GTDB release 95 (Parks et al. 2020), with the single-copy core gene HMM collections included in 713 

anvi’o. The first rule of the workflow used the program `hmmsearch` in (Eddy 2011)identify HMM 714 

hits, while the second rule was modified to include all HMM hit model coverage values by setting 715 

the parameter `anvi-script-filter-hmm-hits-table --min-model-coverage 0`. We stopped the 716 

workflow after this rule and visualized the raw distribution of model and gene coverage values 717 
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from `hmmsearch --domtblout` output file leading us to to identify an 80% HMM hit model 718 

coverage as an optimal filtering threshold to identify ribosomal proteins. Next, we restarted the 719 

workflow but re-modified the second rule parameter ̀ anvi-script-filter-hmm-hits-table --min-model-720 

coverage 0.8` to filter for HMMs hits with at least 80% model alignment coverage. Finally, we 721 

extracted all ribosomal gene families from the genome dataset with anvi’o program `anvi-script-722 

gen-hmm-hits-matrix-across-genomes` and visualized the genome detection and SCG copy 723 

number across the dataset in in R using the Tidyverse (Wickham et al. 2019). 724 

Detection of whole genomes in metagenomic data 725 

In some cases, ribosomal proteins clustering at 97% brought together large groups of highly 726 

similar isolate genomes. To identify the specific genome that is detected in the metagenomic 727 

datasets, we re-clustered the target EcoPhylo protein at 98% to resolve sequence clusters and 728 

thus increase the number of representative sequences. We then used the whole genomes 729 

associated with the new, larger set of representative proteins to explore their distribution in 730 

metagenomes by performing the anvi’o metagenomic workflow (Shaiber et al. 2020). Our 731 

threshold for detection of a whole-genome in metagenomic data was 50% (percent of genome 732 

covered by at least one read from metagenomic read recruitment), which was found to be efficient 733 

for human oral cavity microbes (Utter et al. 2020). 734 

Genome recovery rate estimations 735 

Genome recovery rates were estimated to measure which individual or combination of genome 736 

types (MAGs, SAGs, isolate genomes) most effectively sampled clades in the ribosomal protein 737 

phylogenetic trees calculated during the EcoPhylo workflow. To calculate genome recovery rates 738 

for any given taxon, we divided the number of sequence clusters that contained a sequence from 739 
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a given genome recovery method to the total number of representative sequences EcoPhylo 740 

reported for that taxon. Taxonomic assignments of sequence cluster representatives were 741 

determined with `anvi-estimate-scg-taxonomy`.  742 

Taxonomic binning to improve genome recovery estimations 743 

A subset of ribosomal proteins lacked taxon assignments from `anvi-estimate-scg-taxonomy` due 744 

to their sequence similarity being x < 90% to GTDB genomes (See methods section: Gene-level 745 

taxonomy of ribosomal proteins). Using the `anvi-interactive` interface, we examined the 746 

placement of these proteins in the EcoPhylo ribosomal protein phylogenetic tree and manually 747 

assigned taxon names based on the taxonomic affiliations of neighboring sequences. 748 

Unannotated sequences were assigned taxonomy only when phylogenetic clustering 749 

demonstrated clear consistency among neighboring sequences. These refined taxonomic 750 

annotations were used to improve estimations of genome recovery in the main figures (rpL19 and 751 

rpS15 in Figure 2 and rpL14 in Figure 3). 752 

Data and code availability 753 

The URL https://merenlab.org/data/ecophylo-ribosomal-proteins/ serves all code and data 754 

needed to reproduce our study. Additionally, all anvi’o artifacts that give interactive access to 755 

EcoPhylo interfaces are publicly available at doi:10.6084/m9.figshare.28207481. Publicly 756 

available genomes and metagenomes we used in our study are listed in the Supplementary 757 

Tables, which are available via doi:10.6084/m9.figshare.28200050, along with the Supplementary 758 

Information text. 759 
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