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Abstract. Sea ice and snow volume are essential variables for polar predictions, but operational systems still struggle to 

accurately capture their evolution. Satellite measurements now provide estimates of sea ice freeboard and snow depth. The 

combined assimilation of sea ice concentration (SIC), along-track altimetry radar freeboard data from Cryosat-2 and 

observations of snow depth from Cryosat-2 and SARAL is implemented in a multivariate approach in a global ¼° ocean/sea 15 

ice coupled NEMO4.2/SI3 model. A multivariate experiment, performed on two full seasonal cycles 2017–2018, is compared 

to a free (no assimilation) and a SIC-only assimilation simulations. The multivariate technique increases the sea ice volume, 

even in the absence of freeboard and snow measurements during summer, and rapidly changes the spatial patterns of ice and 

snow thicknesses in both hemispheres, in accordance with the assimilated observations. The sea ice volume from the 

multivariate approach compares better with independent (not assimilated) estimates from IceSat-2 and CS2SMOS or SMOS 20 

in both hemispheres. The multivariate system performs better in the Arctic than in Antarctica where the ice and ocean separate 

analyses seem not designed to consider the strong interactions between upper oceanic layers and sea ice cover in the Southern 

Ocean and to prevent localised degradations. These results also confirm the importance of using variable snow and ice densities 

in a freeboard assimilation context. This study shows promising results for enhancing the capacity of assimilation systems to 

monitor the volume of sea ice and snow and paves the way for future satellite missions. 25 

1 Introduction 

In response to climate change, Arctic sea ice is continuing to decline and is regularly breaking historically low records, 

and, more recently, the entire year of 2023 showed the lowest sea ice extent in Antarctica ever seen in the satellite record 

(Gilbert and Holmes, 2024). October 2020 was the lowest end-of-summer sea ice volume since 2010 in the Arctic (Perovich 

et al., 2020). Given the rapid transformations affecting sea ice due to climate change, sea ice monitoring is of the utmost 30 
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importance. Assimilation techniques allow us to combine models and observations to improve our ability to monitor the ocean 

and sea ice state. Sea ice concentration (SIC) is currently assimilated in most sea ice data assimilation systems using different 

methods: nudging, Kalman filter variants, or 3DVAR variants (Uotila et al., 2019). However, one of the challenges in 

assimilating SIC is to extend the SIC information to other prognostic model variables such as sea ice thickness (SIT). Tietsche 

et al. (2013) concluded that in their Arctic model configuration, a proportional relationship between SIT and the SIC update 35 

was most effective for adjusting the modelled SIT. Massonnet et al. (2015) and Kimmritz et al. (2018) used the model 

covariances with a multivariate Ensemble Kalman Filter (EnKF) to update different sea ice variables, propagating the 

information from the observed SIC to the unobserved variables. Experiments have used EnKF or variations of this multivariate 

scheme with multidata frameworks: both SIC and SIT products have been assimilated in the Arctic (e.g. Cheng et al., 2023; 

Williams et al., 2023; Chen et al., 2024). The assimilation methods can vary, but the assimilated SIT products are usually thin 40 

SIT from the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, thick SIT measured by the 

ESA satellite mission CryoSat-2 (CS2), with two processing techniques available (Ricker et al., 2014 or Kurtz and Harbeck, 

2017), or an observational product that statistically combines information from the two (CS2SMOS, Ricker et al., 2017). 

 Xie et al. (2016) found that assimilating SMOS thin SIT data had significant benefits for SIC and SIT modelling in 

some regions near the ice edge. Mu et al. (2018) combined the use of both SMOS thin SIT and CS2 SIT product in their 45 

assimilation system and obtained better results than the observation-only CS2SMOS product, demonstrating the added value 

of the model dynamics. The assimilation of CS2SMOS merged product (Xie et al., 2018) reduced model biases compared to 

the assimilated data, and results were in better agreement with independent datasets, with no degradation of other sea ice 

variables. Fritzner et al. (2019) compared the assimilation of SIC combined separately with either CS2 SIT, SMOS SIT, or a 

snow thickness (SNT) dataset in a short simulation and concluded that CS2 SIT provides the best long-term model 50 

improvements compared to SMOS SIT. They also found that SNT assimilation had a weaker effect on the model than SIT 

assimilation. Other teams methods updated SIT in the Arctic with nudging (Fritzner et al., 2018; Blockley and Peterson, 2018; 

Balan-Sarojini et al., 2021), with ensemble optimal interpolation (Lee and Ham, 2022, 2023), and with an enthalpy-adjusting 

scheme to ensure a consistent update of all sea ice variables (Liu et al., 2024). These numerous studies highlight that sea ice 

assimilation remains an active and evolving research area. The absence of a clear consensus on the optimal method reflects 55 

the complexity of balancing model uncertainties, data availability, and computational efficiency to achieve the best possible 

agreement with observations. 

Mu et al., (2020) and Cipollone et al., (2023) implemented multidata and multivariate sea ice assimilation in global 

configurations, but with Arctic-only CS2, SMOS, and CS2SMOS SIT products. They both found their experiments to agree 

with in-situ data.  Luo et al., (2021) implemented a multivariate assimilation system in Antarctica and successfully assimilated 60 

SIC and SMOS SIT. They had to inflate their atmospheric ensemble forcing, even though it was unnecessary in a similar Arctic 

assimilation scheme, suggesting that differences in the impact of sea-ice data assimilation between the two poles. They stated 

that the implementation of Arctic sea-ice data assimilation cannot be simply extended to the Antarctic. 
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SIT can be retrieved from altimeter radar freeboard (RFB) measurements by using hydrostatic equilibrium and taking 

into account the height of the snow penetrated by the radar wave, a medium where the radar velocity is modified (Garnier et 65 

al., 2022). The sea water, ice and snow densities and the snow depth above the ice are required for the RFB-SIT conversion, 

and the assumptions made on these variables result in a significant uncertainty in the sea ice volume products (Kern et al., 

2015; Kwok and Cunningham, 2015). The snow layer accounts for most of the uncertainty in the calculation of SIT from RFB 

(Garnier et al., 2021). The CS2 SIT products mentioned above use the Warren 99 (W99) snow climatology (Warren et al., 

1999) or a modified version of it which is now known to be outdated and unreliable on most regions of the Arctic (Kern et al., 70 

2015). Fiedler et al. (2022) is the first study to use the along-track CS2 RFB data in the Arctic, and to convert it into SIT using 

the modelled snow cover prior to the assimilation step. Their study results in a general improvement of the modelled SIT, with, 

in particular, a bias reduction in the Canadian Basin. This improvement extends into summer period, when no data is 

assimilated. However, they noted no substantial improvement in the Beaufort region due to a degradation of ice thicknesses 

below 1 m. Mignac et al. (2022) performed the same experiment, adding the SMOS SIT data to the along-tracks SIT computed 75 

from CS2 RFB and modelled snow, arguing that the SMOS SIT product performs better in thin ice areas of the Arctic. The 

thin SMOS ice assimilation was able to counteract the SIT overestimation that happens in the Arctic marginal seas when 

assimilating only CS2 products. 

Other sources of uncertainty in the RFB-SIT conversion stems from the choice of ice and snow densities. The NEMO 

model uses constant snow and ice densities, whereas the observation products usually parametrize the ice density depending 80 

on the ice type (multi-year ice MYI, or first-year ice FYI, see Alexandrov et al., 2010) in the Arctic and on the season (see 

Kurtz and Markus, 2012) in the Antarctic. The choice of snow density varies in different SIT retrievals from RFB 

measurements, including options such as constant density, seasonally varying density, climatology-based density, or modelled 

density. Kern et al. (2015) stated the importance of having well calibrated density for the ice and they recommend using 

seasonally varying snow density instead of a constant. Positive model biases in sea ice volume compared to satellite altimetry 85 

estimates have been attributed mainly to ice density differences (Bocquet et al., 2024). New efforts are currently being made 

to get fresh measurements of sea ice densities: Jutila et al. (2022) measured ice densities on average higher than the values 

from Alexandrov et al. (2010) for both the FYI and MYI, resulting in 12.4 % and 16.7 % larger sea ice thickness values for 

FYI and MYI. 

Knowing the large uncertainty associated with the sea ice volume products derived from RFB measurements, Sievers 90 

et al. (2023) directly assimilated the radar freeboard in the Arctic. In their assimilation scheme, they used a varying density for 

the ice, set as a function of the modelled salinity of the ice, and a linearly varying snow density depending on the season, 

following Mallett et al. (2020). The densities were not modified in the sea-ice model physics. They used the modelled snow to 

convert the freeboard to ice thickness and they updated sea ice concentration and sea ice thickness through data assimilation. 

They compared the resulting sea ice thickness with in-situ data, showing improvements in some regions of the Arctic and 95 

degradation in others, using a simulation without assimilation and another with assimilation of sea ice concentration only as 

references. 
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Our work is in line with that of Sievers et al. (2023). However, we decided to assimilate RFB together with snow 

thickness observations to update the snow in addition to the sea ice variables at a global scale, i.e. including the Arctic and 

Antarctica. Moreover, we kept a coherent parametrization between the assimilation scheme and the sea ice model, so we used 100 

the model fixed snow and ice densities. 

In this study, we use the operational Kalman filter scheme deployed in the production of global reanalysis and forecast 

at Mercator Ocean to implement a multivariate sea ice assimilation scheme with sea ice concentration (SIC), sea ice volume 

(SIV) and snow volume (SNV). In contrast to the usual ice assimilation where the SIC model variable (univariate) is updated 

using SIC observations (monodata), this approach aims to assimilate along-track radar freeboard and altimetric snow depth 105 

observations in addition to the SIC observations (multidata) and to update SIC, SIV and SNV model variables (multivariate). 

We use the same assimilation method for the Arctic and Antarctic. We aim to provide first answers to the following scientific 

questions: 

- Does the multivariate/multidata approach provide added value over the widespread univariate/monodata method? What 

are the impacts of using altimetric radar freeboard and altimetric snow observations in addition to the SSMIS SIC data? 110 

- Are the current parametrizations in sea ice models sufficient for accurate assimilation of radar freeboard and snow 

measurements? 

- What challenges arise when applying the same sea ice assimilation scheme to both the Arctic and Antarctic, given their 

differing physical environments and ice dynamics? 

We describe the modelling and assimilation components, the data assimilated in the analysis system, and the experimental 115 

design in Section 2. Section 3 focuses on the performances of the assimilation setup while section 4 presents a comparison 

with independent satellite observations.  Section 5 discusses the main results and conclusions are given in section 6. 

2 Analysis system and experimental design 

2.1 Modelling and assimilation system 

2.1.1 Global ice-ocean coupled model configuration 120 

We use the ocean/sea ice coupled model Nucleus for European Modelling of the Ocean (NEMO) version 4.2 (Madec et al., 

2022), coupled to the Sea Ice modelling Integrated Initiative (SI3, Vancoppenolle et al., 2023). Simulations are run on a ¼ 

degree tripolar horizontal grid (Madec and Imbard, 1996) with 75 oceanic vertical levels. The atmospheric forcing is the 

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis (Hersbach et al., 2020) with 

a 1h frequency 125 

The sea ice model SI3 describes the ice and snow behaviour with assumptions that for dynamics, ice is a non-newtonian 2D 

continuum, whereas for thermodynamics, it is a mushy layer covered by snow. Subgrid variability is represented through 11 

sea ice thickness categories, with fixed boundaries. Global prognostic variables in SI3 are the sea ice velocity 𝒖 and its stress 
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tensor 𝛔, and quantities computed in each thickness category: sea ice concentration, sea ice and snow volume per unit area, 

sea ice and snow enthalpy per unit area, and sea ice salt content. The model uses constant densities for the sea water, sea ice 130 

and snow with respective values of 1026, 917 and 330 kg/m3. Snow exclusively comes from the solid precipitations of the 

atmospheric forcing and disappears either by melting processes or by snow-ice conversion when the snow base gets below the 

sea level. In this study, we use the adaptative elastic-viscous plastic rheology and a parametrization to represent landfast sea 

ice. The ice model component is called every 3 ocean timesteps, that is, every 30 minutes. 

2.1.2 Assimilation scheme 135 

The assimilation system is the one used in the current near real time operational system (Lellouche et al., 2021). The 

7-day assimilation cycle proceeds as follows: firstly, the model runs for the full cycle length for a ‘forecast’ trajectory, resulting 

in a forecast state. Observations available during the cycle time are loaded and processed as needed, with special care taken to 

define the observation errors. Using the forecast output and an observation operator, model variables are transformed into 

observation-equivalent variables that are consistent in space and time with the assimilated observations. Then, the analysis 140 

step produces 4D increments or model updates of the forecast trajectory. The increment depends on the innovation (observation 

minus model equivalent), weighted by the Kalman gain. We use a reduced-order Kalman filter derived from a singular 

evolutive extended Kalman (SEEK) filter (Brasseur and Verron, 2006; Lellouche et al., 2021). The Kalman gain is meant to 

balance the information from the model and the observations to get closer the real ocean and sea ice state: as such, it is based 

on the error covariance of the forecast and the observation errors. The model forecast error covariance is computed from a 145 

fixed ensemble of 4D ocean and ice state anomalies that vary seasonally. 

The anomalies are computed from a long simulation without assimilation, using the same model configuration and 

parameters with respect to a running mean. Anomalies are computed on a reduced grid for the ocean (1 out of 2 points) and on 

a full grid for the sea ice. The increments at each model grid point are calculated independently in a local scheme, where a 

localization algorithm controls the spatial influence of observations. This approach helps to limit the impact of sampling noise 150 

on the increments. The last step of the assimilation cycle is the Incremental Analysis Update (IAU) that allows us to gradually 

introduce the analysis increments into the model (Benkiran and Greiner, 2008). The model runs a second time over the 7-day 

cycle for a ‘best’ trajectory; and at each timestep a tendency term is added to the model variables in the prognostic equations. 

The tendency term comes from the increment, modulated by a distribution function (Lellouche et al., 2013). 

The ice and ocean analysis are separate, which means that ocean covariances are used for the ocean variables only, 155 

and the same applies for sea ice variables. The ocean analysis is multivariate and multidata, using sea level anomaly datasets 

from satellite altimetry (SEALEVEL_GLO_PHY_L3_NRT_008_044, 2023), sea surface temperature (SST) from OSTIA 

(Operational Sea Surface Temperature and Sea Ice Analysis, SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001, 2023), 

and temperature and salinity vertical profiles from in situ ARMOR and CORA-REP measurements 

(INSITU_GLO_PHYBGCWAV_DISCRETE_MYNRT_013_030, 2024). The ocean observations are not assimilated under 160 

the sea ice; except for the SST OSTIA because the product is calibrated with our assimilated SIC product and sets the under-
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ice ocean surface temperature to the freezing point, which is consistent with the ice assimilation. Additionally, given the 

scarcity of in-situ data in the Southern polar ocean, no in-situ vertical profiles are assimilated below 60°S. 

Two different methods are used for the ice assimilation: univariate and multivariate. They refer to the number of 

variables in the Kalman filter state vector, determining for which variables increments are calculated. In the univariate 165 

configuration, only a SIC increment is created, which means that only SIC observations can be assimilated. In the multivariate 

configuration, the state vector is made of sea ice concentration SIC, sea ice volume SIV, snow volume SNV, radar freeboard 

volume RFBV, and snow thickness SNT. This multivariate configuration allows us to assimilate a larger variety of data and 

to update the modelled ice accordingly. It is not required to use observational data on each of the state vector variables: when 

no data are given, the Kalman filter uses the model covariances to propagate the information from the observed variables to 170 

the unobserved ones. RFBV and SNT variables are included in the state vector due to the availability of observation datasets 

for these quantities. SIV and SNV are included because they are global prognostic variables of the ice model, essential for 

accurately describing the model state. SIC is included for both reasons. 

The different variables updated in the sea ice assimilation cycle are listed in Table 1. The increments do not distinguish 

ice categories, they present total values aggregated over each grid cell. All increments are tempered by the IAU factor. The 175 

first updated model variable is the SIC. The analysis is created by adding the increment to the forecast: 𝑆𝐼𝐶𝑎 = 𝑆𝐼𝐶𝑓 + 𝑆𝐼𝐶𝑖𝑛𝑐. 

Then, the total ice concentration is redistributed into each existing thickness category using a Gamma distribution, which adds 

most of the increment to the middle thickness categories and less to the extreme categories. 

In the univariate system, all other updates are computed from this SIC increment: following Tietsche et al. (2013), 

the SIV is proportional to the sea ice concentration, with a constant varying depending on the hemisphere: ℎ𝑆𝐻
∗ = 1𝑚 and 180 

ℎ𝑁𝐻
∗ = 2𝑚. The SNV increment is set to zero in the univariate method. In the multivariate method, SIV and SNV increments 

come directly from the Kalman filter algorithm. The algorithm updates the total ice and snow volumes for each grid cell, and 

then redistributes the updates to the individual ice categories. For the SIV, the algorithm adjusts the SIT in each category, 

starting with the thinnest ice. This prioritizes melting thinner ice first when the ice volume increment is negative. Changes are 

applied proportionally to the analysis SIC in each category, ensuring larger changes in categories with greater ice surface area. 185 

The SNV update accounts for the forecast SNT, analysis SIC, and SNV increment. When the SNV increment is zero, 

corrections are still applied, aiming at maintaining a constant SNV even under varying SIC conditions. Redistribution preserves 

the snow distribution across ice categories by adjusting the forecast SNT by the same ratio in each category. If the updated 

SNT exceeds a threshold defined as half the analysis SIT, it is capped to avoid unrealistic values. In such cases, the total snow 

volume may decrease compared to the forecast. 190 

Then, the volumetric ice salinity and enthalpy are corrected in both methods by adjusting the previous ice salinity and 

enthalpy to the new ice volume 𝑆𝐼𝑉𝑎 = 𝑆𝐼𝑉𝑓 + 𝑆𝐼𝑉𝑖𝑛𝑐. The volumetric snow enthalpy is also corrected following the same 

procedure. The updated volumetric ice salinity and enthalpy and the volumetric snow enthalpy are used to compute the ice 

salinity vertical profile, the salt mass content, and the snow and ice vertical temperature profile. 

 195 
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Updated variable Univariate method Multivariate method 

SIC Increment Increment 

SIV 𝑆𝐼𝑉𝑖𝑛𝑐 = ℎ∗ × 𝑆𝐼𝐶𝑖𝑛𝑐 Increment 

SNV 𝑆𝑁𝑉𝑖𝑛𝑐 = 0 Increment 

Volumetric ice salinity Computed from 𝑆𝐼𝑉𝑖𝑛𝑐 and forecast value. 

Volumetric ice enthalpy Computed from 𝑆𝐼𝑉𝑖𝑛𝑐 and forecast value. 

Volumetric snow enthalpy No update Computed from 𝑆𝑁𝑉𝑖𝑛𝑐 and forecast value. 

Table 1: Variables updated during the assimilation cycle and their origin in both the univariate and multivariate systems. 

The different experiments presented in this paper show the evolution of the sea ice assimilation methods from a 

univariate and mono-data system, updating only SIC, to a multivariate and multidata setup. 

2.2 Assimilated observing network 

2.2.1 Sea ice concentration SSMIS 200 

The observation data used for sea ice concentration (SIC) assimilation is the global daily reprocessed passive microwave 

dataset from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice 

Satellite Application Facility (OSISAF) OSI-450 (OSI SAF, 2022). Considering the large errors in satellite measurement in 

low SIC regions (Ivanova et al., 2015), we arbitrarily set to 0 the data values below 7.5%. Moreover, we only consider nominal 

data from the OSISAF algorithm, excluding data with coastal correction, interpolation, or climatology corrections. We use the 205 

spatial pattern of the “standard_error” provided with the dataset to construct the observation error for the assimilation but we 

inflate linearly the error to obtain a maximum of 25% in the Arctic (same value as Lellouche et al., 2021) and 40% in Antarctica, 

and we set a minimum value of the error to 1%. 

2.2.2 Radar freeboard RFB-LEGOS 

The “laboratoire d'etudes en géophysique et océanographie spatiales” (LEGOS) scientists have used along tracks measurement 210 

from the CS2 satellite to create a freeboard dataset (Guerreiro et al., 2017; Laforge et al., 2021). Thanks to hydrostatic 

equilibrium, freeboard can provide sea ice thickness values using information of snow depth, and water, ice and snow densities. 

Altimetry measurements detect radar freeboard (RFB) due to the slower velocity of the radar wave when travelling through 

the snow (see equations in Bocquet et al., 2023). Radar freeboard values can be negative because of the term accounting for 

the radar speed reduction in the snow layer: it is not a real physical distance contrarily to ice freeboard. 215 

We multiply the RFB values by the SSMIS data to assimilate radar freeboard volume per unit area (RFBV) in consistency 

with volumetric prognostic model quantities. We use the uncertainty provided with the dataset as the observation error, 
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constraining it to a range of 0.01 m to 5 m. The RFBV model equivalent is calculated from Bocquet et al. (2023) with constant 

sea water, sea ice and snow densities (Eq. 1). 

𝑅𝐹𝐵 =  
𝜌𝑤−𝜌𝑖𝑐𝑒

𝜌𝑤
∙ 𝑆𝐼𝑇 − (

𝜌𝑠𝑛𝑜𝑤

𝜌𝑤
+ (1 + 0.00051𝜌𝑠𝑛𝑜𝑤)1.5 − 1) ∙ 𝑆𝑁𝑇 = 0.106 ∙ 𝑆𝐼𝑇 − 0.584 ∙ 𝑆𝑁𝑇  (1) 220 

We use the LEGOS data because it provides concomitant RFB and snow data in both hemispheres. We assimilate two modes 

of CS2 instruments: the Synthetic Aperture Radar (SAR) for offshore regions and SAR Interferometric (SARin) for coastal 

areas. Due to potential truncation problems with the filtering of RFB measurements, and to be able to use the same method 

across different spatial resolutions of the configuration, we kept the full scales of SAR and SARin measurements.The data are 

only available during winter in both hemispheres. CS2 satellite tracks cover the entire ice domain of each hemisphere in about 225 

a month: during each assimilation cycle, important areas remain unobserved, especially at lower latitudes (Antarctica). 

2.2.3 Snow thickness SNOW-KaKu 

Snow thickness (SNT) data come from the KaKu LEGOS data (Garnier et al., 2021) and consist in the difference between CS2 

Ku-band altimetric measurements, reflected by the ice, and SARAL Ka-band altimetric measurements, reflected by the snow. 

The data are provided in monthly gridded files, available in winter in each hemisphere. A temporal linear interpolation is 230 

applied to get SNT data at each weekly analysis. Due to SARAL orbital characteristics, no data are available for latitudes 

below 81.5°N. The observation error used in the analysis comes from the uncertainty supplied with the data, constrained to an 

arbitrary range of 0.01 m to 5 m. The snow data are assimilated as a thickness quantity, with the snow volume increment 

subsequently computed using the Kalman filter. It is important to note that the snow volume increment depends on all the 

assimilated data and reflects how well the volume correlates with them. 235 

2.3 Experiments setup 

Three experiments have been performed to assess the performance of the assimilation and the impact of the multivariate 

approach: 

• FREE: experiment without any assimilation, used as a baseline of the model capacities; 

• UNIVAR: experiment similar to the current operational system, using the previously described univariate SIC assimilation 240 

method; 

•  MULTIVAR: experiment with the multivariate assimilation scheme described previously, assimilating SIC, RFB and 

SNT observations, and updating the SIC, SIV and SNV model variables. 

Characteristics of the three experiments are summarized in Table 2. All three experiments were conducted over two full annual 

cycles, 2017 and 2018, covering the period from 14/12/2016 to 26/03/2019. Initial conditions are based on the reanalysis 245 

GLORYS12V1 (Lellouche et al. (2021). 

 

Experiment name Assimilated data Analysis increments Updated model variables 
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FREE None None None 

UNIVAR SSMIS SIC SIC, SIV 

MULTIVAR SSMIS, RFB-LEGOS, SNOW-KaKu SIC, SIV, SNV, RFBV, SNT SIC, SIV, SNV 

Table 2: Experiments setup in terms of assimilated data, analysis increments and updated model quantities. 

3 Performances of the assimilation system 

3.1 Sea ice leads 250 

 We assess the experiments on their ability to correctly reproduce the amount of open waters within the sea ice extent, 

referred to “leads” hereafter. The area of sea ice leads offers valuable insights for predicting the Arctic sea ice extent (Zhang 

et al., 2018). The daily sea ice leads area timeseries are represented on Figure 1(a) in the Arctic and Figure 1(b) in the Antarctic. 

The sea ice leads content is computed by subtracting the sea ice area from the sea ice extent defined by cells where SIC>15%. 

We use two others different SIC datasets in order to quantify the spread among observations (Ivanova et al., 2015):  the OSI-255 

408 product (OSI SAF, 2017), derived from AMSR-2 satellite measurements and processed by the EUMETSAT OSISAF; and 

the CDR dataset (Meier et al., 2017; Peng et al., 2013) from the National Snow and Ice Data Center (NSIDC). All SIC data 

are interpolated on the polar stereographic SSMIS grid and use a consistent continental mask, ensuring the same area coverage. 

As expected, the two assimilation experiments outperform the FREE experiment during summertime in terms of sea 

ice concentration coverage. In both hemispheres, FREE is not able to prevent excessive melting and shows a significant lack 260 

of sea ice, mainly in marginal areas, during July-October in Arctic and in January-April in Antarctica (not shown). 

In the Arctic, the maximum lead surface area occurs in summer, more precisely at the beginning of the melting season. 

The daily surface area of leads peaks in July and then decreases with the retreat of the sea ice extent. The amount of leads 

remains constant from October to May in all the observations. In Antarctica, the lowest lead surface area is synchronous with 

the sea ice extent minimum in February-March. The observations then show an increase in leads area until its peak in 265 

November–December, corresponding to the first third of the melting season. The southern observational datasets show strong 

agreement regarding the minimum lead surface; but diverge as the lead area increases. In both hemispheres, NSIDC and SSMIS 

observations respectively display the smallest and the largest amount of leads. The FREE experiment shows the smallest 

amount of leads remaining outside the range of the observations for most of the year in both hemispheres, and has a weaker 

seasonal amplitude in the Arctic than the assimilated experiments and SSMIS and AMSR2 estimates, but comparable to 270 

NSIDC’s amplitude. The assimilation process rapidly and realistically increases the amount of leads in both the Arctic and 

Antarctic sea ice cover. The two assimilated experiments remain very close to the NSIDC leads area estimates during the 

northern hemisphere constant sea ice leads period, and they reproduce very well the rapid increase in lead surface area during 

spring. The UNIVAR experiment remains within the range of observational estimates throughout the year. The MULTIVAR 

simulation exhibits the highest amount of leads during the peak period in July, even higher than the SSMIS observations. 275 
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Figure 1: Daily time evolution of Arctic (a) and Antarctic (b) sea ice leads in millions of km² for SSMIS (black), AMSR2 (dashed 

black), NSIDC (dotted black) satellite data with the surface covered by them (shaded grey) and for FREE (blue), UNIVAR (green) 

and MULTIVAR (pink) experiments. 

In Antarctica, both the UNIVAR and MULTIVAR experiments have a consistently higher sea ice leads area than the FREE 280 

experiment and are thus in better agreement with the observations. They correctly reproduce the minimum leads area and its 

maximum, with the MULTIVAR experiment showing the highest amount of leads during the peak period in early December, 

still coherent with the SSMIS observations.  However, during the second half of the increase in lead surface, the assimilated 

experiments show significant fluctuations that exceed the range of the observations. The fluctuations are linked to the 

occurrence of localized low-SIC and thin ice areas in the ice cover, called polynyas when they become open-water areas. Maps 285 

of the sea ice concentration in the assimilated observations and their difference to the experiments are shown on Figure 2 for 

both hemispheres. The well-known Weddell Sea “Maud-rise polynya” that appeared in winter 2017 (Jena et al., 2019) is not 

reproduced by the FREE experiment (Figure 2(b)). The UNIVAR and MULTIVAR experiments are able to reproduce this 
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polynya. However, in the assimilated simulations, the Maud-rise polynya begins to take shape from June 2017, earlier than in 

the observations, and the system struggle to keep an ocean uniformly covered in ice in the Weddell Sea. Other polynyas are 290 

present in few locations around the Antarctic: in the Amundsen Sea offshore of Pine Island Bay at 120°W in the UNIVAR and 

MULTIVAR simulations (Figure 2(b)), and near Iselin Bank at 180°E in the Ross Sea in the MULTIVAR simulation. These 

events appear repeatedly during the ice freezing period in 2017 and 2018.  

 

Figure 2: July 2018 in the Arctic (a) and September 2017 in the Antarctic (b) maps of the sea ice concentration, representing the 295 
observation SSMIS on the first column, and the difference between the experiences and the reference SSMIS observation on the 

following columns. The simulations are, in that order: FREE, UNIVAR and MULTIVAR. Root mean squared errors (RMS) are 

provided under each map. 

On the maps on Figure 2, sea ice concentration modelled by the UNIVAR simulation stands out and compares very 

well with the assimilated SSMIS dataset in the Arctic (RMSE of 0.04 in July 2018) and remains below the observation error 300 

in Antarctica (RMSE of 0.06 in September 2017). Despite leads metrics that moderately resemble SSMIS on average in the 

FREE experiment, its Arctic RMSE of 0.15 highlights inconsistencies in the modeled spatial patterns of sea ice concentration. 

Multivariate assimilation of RFB and SNT data reduces the Arctic SIC compared to SSMIS, mainly in the central Arctic. This 

lower SIC in central Arctic results in a RMSE of 0.18 for July 2018, the highest among the experiments. In that summer period, 

there are no RFB and SNT observations and the multivariate assimilation system creates the SIV and SNV increments from 305 

SIC observations and model covariances only. During the other months, the RMSE for the MULTIVAR simulation is lower, 

falling between the mean RMSEs of the UNIVAR and FREE simulations, which are 0.04 and 0.13, respectively. The Arctic 
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mean RMSE of the UNIVAR and MULTIVAR simulations are similar in winter, but they differ in summer with the 

MULTIVAR simulation RMSE being 0.07 higher. In Antarctica, the FREE simulation presents mainly positive SIC biases in 

winter, particularly in the marginal ice zone (MIZ, defined by SIC values between 15% and 80%), and places the ice edge too 310 

far north compared to SSMIS observations (not shown) with mean RMSEs of 0.16 in September 2017 and 0.23 over the whole 

2017-2018 months. The ice edge overestimation in the FREE experiment is corrected by the SIC assimilation in both UNIVAR 

and MULTIVAR simulations with comparable RMSEs of respectively 0.06 and 0.08 in September 2017 and the same values 

for the mean RMSEs over the whole 2017-2018 months. 

In both hemispheres, the assimilation of SIC creates a higher presence of leads in the sea ice cover, in accordance 315 

with the SSMIS assimilated observations. The multivariate experiment alone even overestimates the quantity of leads during 

the seasonal maximum in the Arctic summertime. In the Antarctic, the two assimilated experiments reproduce the same 

variability and the occurrence of unobserved polynyas. 

3.2 Snow volume 

Figure 3(a) shows the probability density functions for snow thickness, radar freeboard using SAR mode, and radar 320 

freeboard using SARin mode, along with their model equivalents for the three experiments in the Arctic in April 2017. The 

SNOW-KaKu data in the Arctic present a zero-inflated bimodal, asymmetrical and positively skewed snow distribution with 

the first mode representing a snow thickness of 0 cm (no snow observed on the grid cell), and the second mode increasing in 

thickness as winter progresses and peaking at 13.6 cm in April 2017. The MULTIVAR snow distribution is very close to the 

Arctic SNOW-KaKu during winter (not shown) and matches perfectly in April. The UNIVAR and especially the FREE 325 

simulations accumulate excessive snow as winter progresses, leading to a positive bias by the end of the winter assimilation 

period as shown on Figure 3(a). The linear correlation (r-value) computed against the SNOW-KaKu observations in the Arctic 

results is consistently above 0.5 for MULTIVAR, peaking at 0.7 in December 2018 (not shown). The FREE and UNIVAR 

experiments exhibit systematic lower r-values, with the UNIVAR experiment having the lowest average correlation of 0.37. 

Compared to SNOW-KaKu estimates, the FREE and UNIVAR simulations present a spatially homogeneous overestimated 330 

snow thickness in Central Arctic and an underestimation in few areas such as north of the Canadian Archipelago, the east coast 

of Greenland, and in the Barents and Greenland seas (Figure 3(b)). This results in an excessive total snow volume of 1.24 

Mkm3 in the FREE experiment compared to that of 0.94 Mkm3 estimated by SNOW-KaKu observations. In April 2017 (Fig. 

3 (b)), the MULTIVAR simulation represents closely both the SNOW-KaKu spatial pattern and the total snow volume amount 

with 0.91 Mkm3. This result is robust and remains valid for the other months of the year. 335 
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Figure 3: Top panels (a): Probability density functions (%) of the snow thickness, the radar freeboard SAR and radar freeboard 

SARin observations (dotted black) and their model equivalent for the FREE (blue), UNIVAR (green) and MULTIVAR (pink) 

experiments in the Arctic for April 2017. Middle (b), resp. bottom (c), row panels: snow volume per unit area [m³/m2] , resp. radar 340 
freeboard volume per unit area, from SNOW-KaKu, resp. RFB LEGOS, (first column) and differences with FREE, UNIVAR and 

MULTIVAR experiments. Total snow and RFB volumes values and root mean squared difference (RMS) are provided under each 

map. 
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Figure 4: Top panels (a): Probability density functions (%) of the snow thickness, the radar freeboard SAR and radar freeboard 345 
SARin observations (dotted black) and their model equivalent for the FREE (blue), UNIVAR (green) and MULTIVAR (pink) 

experiments in the Antarctic for May and October 2017. Middle (b), resp. bottom (c), row panels: snow volume per unit area, resp. 

radar freeboard volume per unit area, from SNOW-KaKu, resp. RFB LEGOS, (first column) and differences with FREE, UNIVAR 

and MULTIVAR experiments in October 2017. Total snow and RFB volumes values and root mean squared difference (RMS) are 

provided under each map. 350 

 

https://doi.org/10.5194/egusphere-2024-3633
Preprint. Discussion started: 20 December 2024
c© Author(s) 2024. CC BY 4.0 License.



15 

 

In the Antarctic, the SNOW-KaKu data again exhibit a bimodal and positively skewed distribution, with a mode at 

0.6 cm another at 11.6 cm in the first month of assimilation in May 2017 on Figure 4(a). As winter progresses, the second 

mode gets thicker and more frequent, peaking at 17.6 cm in October 2017. Among the simulation, the FREE experiment 

diverges the most from the observations, showing an increasing accumulation of snow as winter progresses, with a main mode 355 

11.2 cm higher than the observed mode in October 2017. The UNIVAR and MULTIVAR experiments present lower snow 

thickness values compared to the observations during the whole 2017 and 2018 seasons, with main modes respectively 8.2 cm 

and 7.5 cm lower than the observed mode. The most significant snow positive biases in the FREE experiment are associated 

with thinner snow measurements in the SNOW-KaKu data, suggesting a thicker and more uniform snow cover, with a snow 

accumulation in the interior of the Weddell Sea, resulting in an excess of 1.06 million km3 of snow compared to the SNOW-360 

KaKu estimate (see Figure 4(b)). In comparison, the UNIVAR simulation presents a general thinner snow depth, maintaining 

however the accumulation in the Southwestern part of Weddell Sea. The MULTIVAR simulation has the weakest biases and 

is even able to reduce the high snow accumulation in the Weddell Sea present in the FREE simulation and to represent the 

thicker snow pattern measured in the SNOW-KaKu product downstream the Antarctica Peninsula. The biggest incoherence 

between the MULTIVAR simulation and the SNOW-KaKu observations is on the Pacific Ocean/Eastern Antarctic coastal 365 

sector, where the assimilated experiment does not reproduce the high snow thicknesses. The UNIVAR and MULTIVAR 

simulations have respectively 1.02 and 0.85 million km3 less snow than SNOW-KaKu estimations in October 2017. The two 

simulations underestimate the SNOW-KaKu snow volume estimate for all the winter months of 2017 and 2018. 

In both hemispheres, the MULTIVAR experiment consistently simulates snow depths closest to those used in the 

multivariate assimilation scheme. The assimilation of SNT is also able to rapidly modify the snow spatial distribution in 370 

accordance with the SNOW KaKu observations distribution. The agreement between the MULTIVAR experiment’s snow 

thickness and the observations is higher in the Arctic than in the Antarctic. 

3.3 Radar freeboard volume 

The FREE simulation exhibits lower RFB values than the other experiments especially at the end of summer (not 

shown). FREE and UNIVAR have biases of respectively -6.6 cm and -7.9 cm in RFBV compared to the LEGOS observations 375 

in April 2017 (Figure 3(c)). The MULTIVAR simulation exhibits a very small biase of -0.5 cm in the assimilated region and 

a RMSE of 2.2 cm, below the observation error of both the SAR and SARin data. The largest differences compared to the 

LEGOS RFB estimates are located along the coasts around the Canadian Archipelago and to the east of Greenland, i.e. in 

SARin areas. The SARin data are assimilated with higher observation errors compared to SAR data, with mean values of 19.2 

cm and 9.2 cm, respectively. The highest difference (> 40 cm) between MULTIVAR RFB values and LEGOS RFB estimates 380 

arises at the end of both 2017 and 2018 winters in the north of Greenland, an area where snow observations are not available. 

In summer, when no RFB observations are assimilated, the probability density function of the MULTIVAR RFB values 

remains more positively skewed than in other simulations. In November, when the observed data return after the summer 

break, the MULTIVAR experiment shows the lowest RMSE (2.6 cm) compared to the FREE (7.6 cm) and UNIVAR (8.3 cm) 
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experiment based on the 2017 and 2018 averages. However, the MULTIVAR simulation presents larger RFB biases in 385 

November, still below the mean observation error, than during the rest of the winter months when the errors relative to the 

RFB LEGOS dataset stay consistent.  

LEGOS RFB measurements in the Antarctic present a similar gamma-type distribution as in the Arctic, with a 

decreasing SAR mode (from 3.3 cm to 0.5 cm) and increasing SARin mode (from 3.9 cm to 4.9 cm) between May and October 

2017 (Figure 4(a)). The simulations exhibit more uniform RFB values than in the Arctic with up to 20% of the RFB having 390 

the same value in the UNIVAR experiment in May 2017. The FREE, UNIVAR and MULTIVAR experiments have similar 

RFB SAR modes of respectively -0.4 cm, -1.0 cm and 0.3 cm in May 2017, lower than the observed SAR mode of 3.3 cm. As 

the season progresses, the FREE and UNIVAR simulations present an even more negative bias, with RFB modes respectively 

8 cm and 3 cm lower than the LEGOS RFB SAR mode in October 2017. A similar behaviour is shown for RFB SARin model 

equivalents, with the FREE and to a lesser extent the UNIVAR simulations frequently modelling negative RFB values that 395 

decrease as winter progresses. The MULTIVAR experiment is the only experiment to show a positively skewed distribution 

with positive modes in both SAR and SARin model equivalents throughout the duration of the simulation, aligning more 

closely to the LEGOS observations variability for the positive RFB values. The FREE and UNIVAR simulations display a 

general low bias in RFB all around the Antarctic (respectively -13.1 cm and -9.6 cm in average), with the most significant 

negative biases located in the two thicker RFB areas, indicating a more uniform RFB spatial distribution (Figure 4(c)). The 400 

MULTIVAR experiment has the lowest biases, -3.5 cm in average, and a RMSE of 4.47 cm. The FREE, UNIVAR and 

MULTIVAR simulations represent respectively 1.80, 1.33 and 0.48 million km3 less RFBV than the LEGOS dataset. The 

underestimation of the southern RFB in the FREE simulation is likely due to the overestimation of the snow thickness in the 

Antarctic. 

For all simulations and in both hemispheres, SAR measurements are in better agreement with the RFB model 405 

equivalent values compared to the SARin measurements. The MULTIVAR experiment shows the closest agreement with the 

observations among the simulations. The agreement between the RFB and SNV model equivalents from the MULTIVAR 

experiment and the observations is not as high in the Antarctic as in the Arctic. 

4 Validation with independent datasets 

4.1 Total freeboard: ICESat-2 data 410 

Figure 5 presents the scatterplots between the monthly NSIDC ATL-20 gridded along-tracks total freeboard product 

measured by the ICESat-2 (Ice, Cloud and Land Elevation Satellite) ATLAS laser altimeter (Petty et al., 2023), and the total 

freeboard collocated in time and space for the LEGOS data and the FREE, UNIVAR and MULTIVAR experiments in the 

Arctic. The LEGOS total freeboard is made using LEGOS RFB and SNOW-KaKu data, and the constant water, ice and snow 

model densities. The MULTIVAR simulation and LEGOS data present similar linear correlation statistics (slopes and r-values) 415 

and MULTIVAR has better statistics than the FREE and UNIVAR experiments. The MULTIVAR simulation and the LEGOS 
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data have similar mean RMSE compared to ICESat-2 data (6.7 cm and 7.2 cm respectively). The MULTIVAR simulation and 

LEGOS data also display comparable mean total freeboard in January-February 2019, with values of 22.2 cm and 22.0 cm 

respectively, slightly thinner than the ICESat-2 estimate of 23.7 cm. The mean total freeboard for the FREE and UNIVAR 

experiments was found to be 19.4 cm and 15.0 cm, respectively, for the same period. The FREE and UNIVAR simulations 420 

consistently underestimate ICESat-2 total freeboard, especially in October 2018 with mean values of 9.2 cm and 6.6 cm 

respectively while the MULTIVAR experiment shows a mean value of 15.8 cm, aligning better with the mean total freeboard 

ICESat-2 estimate of 23.9 cm. The FREE experiment is not able to prevent excessive summer melting and exhibits unrealistic 

ice-free zones in October 2018. Higher statistical agreement in October 2018 for the MULTIVAR experiment shows that the 

data assimilation from the last winter positively impacts the simulation during the entire summer. However, compared to 425 

ICESat-2, MULTIVAR still underestimates the thickness of the total freeboard at the end of Arctic summer. All the 

experiments exhibit correlations higher than 0.6 reflecting a general consistency with ICESat-2 total freeboard in terms of 

spatial distributions. 

In Antarctica, simulated total freeboards show less agreement with ICESat-2 measurements compared to those in the 

Arctic (Figure 6). All the experiments and the LEGOS estimations present a general more scattered plot in the south than in 430 

the north. In October 2018, the last month of the assimilation season in the southern hemisphere, the MULTIVAR total 

freeboard shows a greater variability than the FREE and UNIVAR total freeboard, in accordance however with the dispersion 

of the assimilated CS2 LEGOS RFB and SNOW-KaKu datasets. Both the MULTIVAR experiment and LEGOS data have a 

positive mean bias compared to the ICESat-2 data, of respectively +10.7 cm and +8.6 cm. The FREE simulation has a positive 

bias cluster for thin total freeboard but underestimates the thicker freeboard values, resulting in a mean bias of +2.4 cm. The 435 

UNIVAR experiment is mostly underestimating ICESat-2 total freeboard values, with a mean bias of -11.9 cm. The melting 

season (January-February 2019) highlights the excessive thinning of the total freeboard in the simulations compared to the 

ICESat-2 data. The FREE experiment again has large unobserved ice-free zones with total freeboard values at 0 cm. The 

MULTIVAR experiment presents the highest total freeboard summer values among the experiments, with mean value of 19.6 

cm (resp. 7.3 cm and 4.4 cm and for the FREE and UNIVAR experiments), still underestimating to a lesser extent the ICESat-440 

2 mean values of 34.2 cm. The MULTIVAR simulation improves the concordance with ICESat-2 measurements with a 

systematic increase of the slopes in winter as in summer. 

Assimilating radar freeboard and snow depth observations in the multivariate framework significantly reduces biases 

found with IceSat-2 total freeboard in both hemispheres. The agreement between modelled variables and IceSat-2 estimates is 

stronger in the north than in the south. 445 
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Figure 5: Scatterplots of the monthly Arctic ICESat-2 total freeboard against FREE, UNIVAR, MULTIVAR experiments and 

LEGOS RFB/SND-KaKu data computed with model densities (black) for October 2018, beginning on the 14/10/2018 (experiemnts 

respectively in blue, green and pink; no LEGOS data), and for January-February 2019 (experiments respectively in orange, red and 450 
cyan).  The x=y line (grey) and linear regressions for Oct 2018 (dotted black) and Jan-Feb 2019 (dashed black) are shown. Values of 

the linear slopes (s) and the r-values (r) are provided and all statistics are significant. 

 

 

Figure 6: Idem Figure 5 but for Antarctica.  455 

 

4.2 Sea ice volume 

4.2.1 Total sea ice volume 

The daily total ice volume values for each experiment are shown on Figure 7 (dotted lines). Figure 7 also presents the 

experiments collocated within the spatial coverage of the assimilated observations, which includes the central Arctic orbital 460 

gap and limited coverage of marginal seas (solid lines). Three different products are shown: (1) LEGOS_og, the original SIV 
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LEGOS (Guerreiro et al., 2017), based on CS2 RFB and SNOW-KaKu measurements with varying snow and ice densities; 

(2) LEGOS_mD, which uses the same measurements but applies constant snow and ice densities from the SI3 model; and only 

in the Arctic (3) CS2SMOS AWI, which combines SIV estimates from CS2 altimetric freeboard measurements of thicker ice 

and SMOS brightness temperature measurements of thinner ice (Ricker et al., 2017), using a modified W99 snow climatology 465 

and variable ice and snow densities. 

 

Figure 7: Time evolution of Arctic (a) and Antarctic (b) sea ice volume. The daily values are presented for the simulations FREE 

(blue), UNIVAR (green) and MULTIVAR (pink), integrated over the whole hemisphere (dotted) and over the observation domain 

(plain lines). SIV observations used for comparison are computed over the LEGOS observation domain: LEGOS original SIT 470 
(LEGOS_og, grey L in circles), SIT constructed from LEGOS observations of RFB and snow and the model constant ice and snow 

densities (LEGOS_mD, black stars), and CS2SMOS AWI data in the Arctic (black dashes). The SIVOLU is computed using either 

SIC data provided by the supplier or the SIC OSISAF SSMIS data. 
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In the Arctic, the amount of sea ice remains consistently high throughout the entire simulation in the MULTIVAR 475 

experiment, resulting in sea ice maximums in average 13% and 48% higher than respectively the FREE and UNIVAR 

experiments. The FREE and UNIVAR simulations start each winter with a low sea ice volume compared to the observations. 

The MULTIVAR experiment presents systematically higher volume estimates and align better with CS2SMOS product in the 

beginning of November 2017 and 2018. The MULTIVAR SIV values increase rapidly during the first month of assimilation 

and follow closely the LEGOS_mD observations. Even in summer, the MULTIVAR simulation maintains more ice volume 480 

in the Arctic than the other simulations. The UNIVAR simulation shows a particularly drastic decrease in its ice volume 

estimate relative to the FREE experiment and is consistently lower than all the observation products. On average over the 

entire simulation period, the UNIVAR experiment shows a decrease in sea ice volume of 23% while the MULTIVAR 

experiment shows a 21% increase compared to the FREE experiment. The assimilation of CS2 LEGOS RFB and SNOW-

KaKu in the MULTIVAR experiment modifies the seasonal cycle of the sea ice volume estimates, with a maximum earlier 485 

than in the other simulations, and is more consistent with the observations. 

In both hemispheres, the MULTIVAR experiment shows the largest sea ice volume, while UNIVAR has the smallest. 

Among the different products, LEGOS_mD has the highest volume, followed by LEGOS_og and ─only in the Arctic─ 

CS2SMOS. Notably, the products are highly sensitive to variations in snow and ice densities, with LEGOS_mD showing in 

average respectively 1.48 million km³, resp. 5.6 million km³, more sea ice volume than the original LEGOS_og in the Arctic, 490 

resp. the Antarctic. 

4.2.2 Comparison with SMOS satellite measurements 

The CS2SMOS AWI product uses measurements from the SMOS satellite in addition to CS2 measurements. SMOS 

is known to have less uncertainties than CS2 on thin ice measurements (less than 1 m, Ricker et al., 2017). The LEGOS_og 

displays a coherent sea ice thickness spatial distribution compared to the CS2SMOS product with the smallest RMSD (resp. 495 

mean difference) of 30 cm (resp. 5 cm, Figure 8). LEGOS_mD presents a higher RMSD (resp. mean difference) of 39 cm 

(resp. 34 cm). The FREE simulation shows thinner ice than the CS2SMOS data in the central Arctic and on the east coast of 

Greenland, and thicker ice elsewhere. The UNIVAR simulation has a globally much thinner ice coverage with approximately 

half of its ice area covered by ice below 1 m thickness and the other half with ice between 1 m and 2 m height. The MULTIVAR 

experiment shows a higher ice volume compared to the other experiments, with a significant ice accumulation thicker than in 500 

the CS2SMOS product on the north of the Canadian Archipelago and Greenland. In that area of important deviation between 

CS2SMOS and MULTIVAR values, the assimilated SNOW-KaKu measurements are not available. In the LEGOS SIV 

observation domain, the simulations present a similar RMSD against the CS2SMOS product of 33 cm (FREE, MULTIVAR) 

and 31 cm (UNIVAR). The MULTIVAR modelled ice thickness has the same positive biases as the LEGOS_mD product but 

keeps a thinner ice than the CS2SMOS data on the east coast of Greenland, similarly to the two other simulations. Outside of 505 

the LEGOS observations domain, the UNIVAR simulation shows the highest RMSD (65 cm) for the CS2SMOS SIT values 
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thicker than 1 m, while the FREE simulation has the highest RMSD (48 cm) for CS2SMOS SIT values thinner than 1 m among 

the three experiments. The RFB and snow assimilation in the MULTIVAR simulation corrects the FREE and UNIVAR 

underestimation of the ice thickness in the central Arctic region (RMSD of 38 cm) and presents fewer positive biases than the 

FREE simulation for the thin ice around the ice edge (RMSD of 27 cm).  510 

 

Figure 8: April 2017 sea ice volume maps in the Arctic for CS2SMOS dataset (reference) and its difference with the FREE, UNIVAR, 

and MULTIVAR experiments (first line) and the observations LEGOS_og (original) and LEGOS_mD (with model constant 

densities). Table: root mean square error (RMS) and mean difference (MD) between FREE, UNIVAR, MULTIVAR, LEGOS_og, 

LEGOS_md and CS2SMOS data, calculated on the LEGOS zone and outside the LEGOS zone and for CS2SMOS sea ice thickness 515 
of less than or greater than 1m. The table colours highlight the values close to 0 (white) and the extremes (green for the RMS, and 

blue/red for the negative/positive MD). 

The LEGOS observations, considering both fixed and varying densities, present a very thick ice volume in the 

southern hemisphere (Figure 9). Similarly to the Arctic, the LEGOS_mD shows thicker ice volumes than the LEGOS_og data. 

Compared to SMOS data, both LEGOS estimates show a different ice field: the CS2 Antarctic ice thickness processed by the 520 

LEGOS is thicker with RMSE values of 78 cm (resp. 97 cm) for LEGOS_og (resp. LEGOS_mD) and the ice accumulations 

are measured on the northernmost part of the Weddell Sea with CS2 measurements, whereas SMOS satellite detects thick ice 

on the southernmost part of the Weddell Sea. The FREE and UNIVAR simulations have spatially homogeneous SIV 

distributions and similar RMSD compared to the SMOS data on the LEGOS domain (respectively 24 and 26 cm). The FREE 

experiment has a consistent positive SIV bias compared to the SMOS dataset. Although most of the UNIVAR experiment’s 525 

ice thickness is below 1 m, it underestimates SMOS ice thickness, except on areas close to the ice edge, where UNIVAR values 

align well with the SMOS measurements (mean difference of -2 cm). Compared to FREE and UNIVAR, the MULTIVAR 

simulation shows more important ice accumulations, in consistency with both LEGOS SIV data, and therefore has the highest 
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RMSE relative to the SMOS data on the LEGOS domain (38 cm). The MULTIVAR simulation does not reproduce the largest 

LEGOS SIV values and is therefore closer to the SMOS data than the LEGOS estimates. Outside the LEGOS domain, 530 

MULTIVAR corrects the positive bias noticed along the ice edge in the FREE simulation but degrades the performances of 

the UNIVAR simulation with a higher error (mean difference of 7 cm). The FREE simulation is the only experiment that does 

not reproduce correctly the Maud Rise polynya, which is seen in all observation products and in the two assimilated 

experiments. 

 535 

 

Figure 9: September 2017 sea ice volume maps in the Antarctic for the SMOS data (reference) and its difference to the FREE, 

UNIVAR, and MULTIVAR experiments (first line) and to the observations LEGOS_og (original) and LEGOS_mD (with model 

constant densities). Table: root mean square error (RMS) and mean difference (MD) between FREE, UNIVAR, MULTIVAR, 

LEGOS_og, LEGOS_mD and SMOS data, calculated on the LEGOS zone and outside the LEGOS zone. The table colours highlight 540 
the values close to 0 (white) and the extremes (green for the RMS, and blue/red for the negative/positive MD). 

 In both hemispheres, for SIT < 1 m, using the multivariate assimilation scheme better aligns the modelled sea ice 

volume with the SMOS data, presenting a lower RMSE for the MULTIVAR experiment than the FREE experiment and the 

LEGOS_mD data. However, the UNIVAR experiment shows more accurate sea ice volume estimates for thin ice than the 

MULTIVAR experiment when using SMOS measurements as a reference. 545 

https://doi.org/10.5194/egusphere-2024-3633
Preprint. Discussion started: 20 December 2024
c© Author(s) 2024. CC BY 4.0 License.



23 

 

5 Discussion 

5.1 Performances of the multivariate assimilation 

The radar freeboard and snow thickness assimilation allows the multivariate assimilation experiment to correct the 

model biases against the assimilated datasets: the MULTIVAR simulation has the closest results to the RFB LEGOS and 

SNOW-KaKu products in both hemispheres. However, the comparison of the Antarctic snow and RFB equivalents shows less 550 

agreement with the assimilated observations than in the Arctic. 

The univariate assimilation system only corrects the SIC variable and aims at keeping a constant SNV, with a dynamic 

threshold on the SNT. In the Antarctic, and to a lesser extent in the Arctic, the UNIVAR experiment displays a lower SNV 

compared to the FREE experiment. This result shows that our threshold is not appropriate in most of the Antarctic, and in 

some regions in the Arctic. Thanks to the snow assimilation, in the MULTIVAR simulation, the total volume of snow is 555 

adjusted but does not recover the total amount of observed snow in the Antarctic. A modification of the SNT threshold would 

improve the snow assimilation algorithm in that sense. Nevertheless, the SNOW-KaKu assimilation enables the simulations 

to reproduce the snow observations spatial distribution in both hemispheres. The snow cover completely melts in summer in 

each hemisphere and shows no long-term effect of the winter snow assimilation. 

The MULTIVAR simulation shows higher RFB values than the FREE and UNIVAR simulations in both hemispheres, 560 

even in the absence of observations during the summer. However, a drift in the RFB equivalent is still observed during this 

season, leading to a negative bias in November/May, when the assimilation begins. This small negative bias suggests that the 

model's trajectory is below the observed values, a hypothesis supported by the significantly more pronounced bias observed 

in the FREE and UNIVAR simulations. In the Antarctic, the RFB underestimation is particularly significant: the FREE and 

UNIVAR simulations show mostly negative radar freeboard values due to an imbalance between their snow and ice 565 

thicknesses: their snow cover is too thick compared to their ice thickness. The initial state of ice and snow in the southern 

hemisphere found in the FREE experiment is much more different from the assimilated observations compared to the north. 

The multivariate assimilation process is then less effective in aligning the model with the observed data in the Antarctic than 

it is in the Arctic. 

In both hemispheres, the MULTIVAR simulation produces RFB extremums that extend beyond the minimums and 570 

maximums observed in the FREE and UNIVAR simulations, and more closely align with the LEGOS observations. Despite 

this improvement, the MULTIVAR simulation does not capture the thickest and thinnest RFB LEGOS measurements. This 

discrepancy could be attributed to the spatial resolution mismatch between the observations and the model. Furthermore, it is 

important to recognize that the MULTIVAR simulation is not designed to replicate every extreme observation (such as a 

notably high SARin RFB of 4.3 m observed in October 2017 in Antarctica) as the assimilation scheme seeks to balance 575 

observational data with the model's physical constraints. Given the use of unfiltered RFB data in the assimilation, we do not 

expect the model to reproduce the exact observed values but rather a smoothed representation that respects the model’s inherent 

dynamics. 
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The LEGOS observations are characterized by spatially significant data gaps in central Arctic and in the Canadian 

Archipelago. The MULTIVAR simulation smoothly assimilates the RFB and SNOW-KaKu data in these areas without any 580 

visible demarcations. Furthermore, due to the choice of parameters for the localisation algorithm in the assimilation scheme, 

the assimilated satellite tracks do not print on the modelled patterns. However, the largest RFB differences between the 

MULTIVAR experiment and the RFB LEGOS assimilated observations are located on the north of the Canadian Archipelago 

and Greenland, with an especially thin RFB in our simulation north of Greenland. No snow observations are available in this 

area, and the MULTIVAR presents thicker snow values than the FREE and UNIVAR simulations, suggesting either that in 585 

the absence of snow observations, an inaccurate modelled snow depth affects the RFB assimilation performance; or that the 

background error covariances matrix do not assess correctly the relationships between snow and radar freeboard variables.  

When considering the sea ice volume, the experiments provide similar results in both hemispheres: the assimilation 

of SIC with the univariate method decreases the ice volume compared to the FREE simulation. The assimilation of RFB 

LEGOS and SNOW-KaKu creates the highest sea ice volume of all the simulations. The MULTIVAR experiment also displays 590 

a more accurate spatial distribution of the ice than the other experiments. The MULTIVAR modelled ice volume in the Arctic 

is very coherent with the LEGOS_mD dataset in the Arctic, which is more consistent with our observation operator in terms 

of sea water, snow and sea ice densities. In the Antarctic, the modelled sea ice volume is consistently lower than the 

LEGOS_mD product, probably due to lower model skills in representing sea ice in the Antarctic than in the Arctic (Massonnet 

et al., 2011) and more divergence between the modelled initial state and the assimilated observations, as discussed earlier. 595 

5.2 Comparison with independent data 

The IceSat-2 satellite measures the total freeboard through laser altimetry instruments, it is therefore completely 

independent from the radar altimetry-based LEGOS freeboard estimates. Previous section shows that assimilating LEGOS 

data reduces the errors in the simulations total freeboard estimates compared to ICESat-2 measurements. The comparison in 

the Antarctic also shows weaker correlations between IceSat-2 data and the experiments than in the Arctic. It should be 600 

emphasized that most of the comparisons made in the southern hemisphere with ICESat-2 data is done during summertime, 

without assimilation of radar freeboard and snow. The summer period of the southern ice is also known to be poorly represented 

by the models (e.g. Shu et al., 2020; Roach et al., 2020). In addition, the LEGOS data present less coherence with ICESat-2 

compared to the Arctic. Nevertheless, the MULTIVAR simulation exhibits higher performance in terms of total freeboard 

compared to the other two simulations, particularly during the summer months. This demonstrates that the multivariate 605 

assimilation process induces changes in total freeboard that persist even when radar freeboard and snow are not assimilated. 

Further comparison with in-situ independent observations in the Arctic show similar improvement with the 

multivariate assimilation system compared to the FREE and the UNIVAR experiments (see more details in Appendix A). 

Sea ice thickness products obtained from brightness temperature measured by the SMOS satellite can be considered 

complementary to the altimetric ice products because they provide thin ice estimates (Kaleschke et al., 2024). In the Arctic, 610 

the CS2SMOS data shows thinner ice thicknesses than the LEGOS products (same as other CS2 products in Sallila et al., 2019) 
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but the observational datasets are still coherent (better spatial alignment and RMSD of the same order as the FREE simulation). 

In that hemisphere, differences between the simulations and the CS2SMOS data show a generally better agreement for the 

MULTIVAR simulation compared to the FREE and UNIVAR simulations. The predominant positive biases observed in the 

MULTIVAR simulation are consistent with the biases in the LEGOS_mD product (i.e., north of the Canadian Archipelago 615 

and Greenland). However, Sallila et al., (2019) established that the CS2SMOS product tends to underestimate the thickness of 

thick ice in the Arctic when compared to in-situ measurements. Therefore, an overestimation of the CS2SMOS estimates is 

not an unexpected outcome for thicker ice. The CS2SMOS product estimates of thin ice, however, are in closer alignment with 

the in-situ Arctic measurements (Sallila et al., 2019). The more precise thin ice estimates from the UNIVAR experiment are 

compromised by the assimilation of CS2 data in the MULTIVAR experiment, when compared to the CS2SMOS values. It 620 

may be beneficial to increase the observation errors for the thicker RFB or in the marginal ice zone in order to reduce this 

degradation in comparison to the UNIVAR simulation. 

 In Antarctica, the SMOS product is restricted to ice with SIT < 1 m, and a similar situation as with the thin Arctic ice 

arises: the comparison with the SMOS Antarctic data shows a better agreement with the UNIVAR simulation. The 

MULTIVAR simulation predominantly overestimates the SMOS measurements, due to an overestimation of the assimilated 625 

LEGOS data compared to the SMOS estimates. The SMOS data however display a systematic underestimation of sea ice 

thickness in areas of ice divergence (Kaleschke et al., 2024); and the Antarctic sea ice shows generally divergent ice drifts (e.g. 

Petty et al., 2021). Moreover, the assimilated LEGOS data present little resemblance with the SMOS Antarctic measurements. 

However, the Southern Ocean lacks consistent in-situ data measurements of sea ice and snow to better evaluate satellite 

observations and models estimates. Here, The MULTIVAR simulation provides better statistics than the two other experiments 630 

against the IceSat-2 data thanks to the multivariate assimilation of LEGOS observation product, and it shows a better alignment 

with the SMOS data than the FREE simulation despite the assimilation of a LEGOS product that does not align with the SMOS 

data. The validation against these two independent datasets hence proves that the multivariate ice assimilation scheme in the 

Antarctic created an intermediate sea ice state between the LEGOS observations and the model. 

5.3 Ice and snow densities 635 

Sea ice thickness products obtained from CS2 radar altimetry measurements have significant uncertainties due to the 

assumptions made on values of snow thickness and ice and snow densities during the radar freeboard to ice thickness 

conversion (Kern et al., 2015; Kwok and Cunningham, 2015;  Mallett et al., 2020; Garnier et al., 2021). Assimilating directly 

the radar freeboard allows us to control the origin of the uncertainties by using the rawest measurement possible and controlling 

all the assumptions made during the assimilation process. We decided to assimilate a satellite observed altimetry snow 640 

thickness, which uses the same radar altimetry techniques as the RFB product. Garnier et al. (2022) show that using coherent 

measurement techniques between the snow and freeboard datasets gives an accurate total freeboard value even when the snow-

ice interface is biased. 
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The multivariate data assimilation proceeds for the RFB volume observations by constructing a model equivalent 

using the model SIV and SNV variables and the model fixed densities for water, ice and snow. The water density is nearly 645 

consistent in all the sea ice volume datasets, with values varying by only a few kg/m3. However, the ice and snow density 

values vary a lot. The model’s constant ice density is 917 kg/m3, but the ice density in the Arctic depends on the ice age for 

LEGOS_og and CS2SMOS with the values from Alexandrov et al. (2010) as extremums: 882 kg/m3 for the MYI and 917 

kg/m3 for the FYI. Hence, assimilating radar freeboard and snow with the model constant ice density does affect mostly the 

MYI regions in the Arctic, which corresponds to the thicker ice regions that do not melt during summer, in the north of the 650 

Canadian Archipelago and Greenland. The difference of ice density results in an ice thickness 32% higher on MYI in the 

Arctic. The model constant snow density is 330 kg/m3. Garnier et al. (2022) used a constant snow density of 300 kg/m3 in the 

Arctic for the LEGOS_og product, with a consequently lower sea ice thickness than the model for equal RFB, snow thickness 

and ice density values. Densities in the observation products in the Antarctic are generally seasonally varying densities. The 

model's ice density exceeds that of the LEGOS_og observations (mean: 895 kg/m3), with a particularly pronounced 655 

discrepancy in October. The model snow density is comparable on average to the LEGOS observation’s snow densities in 

Antarctica but presents differences up to 40 kg/m3 for some winter months. This discrepancy between ice and snow densities 

brings additional variability in sea ice volume even when similar radar freeboard and snow measurements are used, as 

illustrated by the difference between the LEGOS_og and LEGOS_mD datasets. The constant densities parametrization in the 

model enhances the positive bias of the sea ice volume in the Arctic compared to the CS2SMOS product. In the experiments 660 

presented here, the uncertainties due to the densities are related to the RFB observation operator. Hence, these uncertainties 

increase the representation error in the analysis. Varying ice and/or snow densities are crucial features to be incorporated in 

the next version of the sea ice model: it would ensure a more accurate radar freeboard assimilation by lowering this 

representation error. One could for instance use the method from Zhang et al. (2022) to select the optimal freeboard-to-

thickness conversion ratios values by fitting the resulting ice thickness to in-situ or airborne measurements. Moreover, 665 

implementing seasonally evolving densities in our model would increase the physical accuracy of the sea ice modelling. For 

instance, Mallett et al. (2020) offers a linear evolution of the snow density to account for the densification of the snow as 

winter passes. Sievers et al. (2023) use this relationship to implement a radar freeboard assimilation scheme with a varying 

snow density, but did not modify the density in the model physics. 

5.4 Sea ice openings in Antarctica 670 

In both hemispheres, results showed that all assimilated experiments successfully corrected the biases of the FREE 

experiment with respect to the SIC variable. Univariate SIC assimilation provides the best performance for sea ice 

concentration as the covariances are not negatively affected by other quantities. The addition of freeboard radar and snow in a 

multivariate assimilation configuration takes the modelled SIC away from the OSISAF data during summer, i.e. when RFB 

and SNOW-KaKu data are unavailable and the SIV and SNT increments are built from model covariances. Summer remains 675 
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the most difficult season for systems to reproduce in both hemispheres. SIC passive microwave observations also have the 

greatest uncertainties during the melting season (Ivanova et al., 2014). 

Sea-ice models using VP or EVP rheologies have been shown to reproduce the observed sea ice deformations only 

with high resolution horizontal grids (4.5 km grid spacing or lower, Wang et al., 2016; Spreen et al., 2017; Hutter et al., 2018). 

Both assimilated experiments increased the amount of open water compared to the FREE experiment and increase the amount 680 

of sea ice leads on a coarser grid of ¼°, i.e. grid cells of size between 10 km and 24 km in the Arctic. The multivariate 

experiment shows an even higher presence of open waters than the UNIVAR experiment during peak period in the boreal 

summer. 

The assimilated experiments timeseries in the Antarctic display oscillations that are due to the occurrence of very 

localized low-SIC or open water areas, e.g. the so-called polynyas (Figure 1(b)). These openings only appear in the assimilated 685 

experiments. As none of these openings occur in the FREE experiment, the thick snow + ice layer likely insulates the ice and 

prevents melting from the ocean beneath. The occurrence of the Maud Rise Polynya in Sept-Oct 2017 (Jena et al., 2019) is 

reproduced by the UNIVAR experiment, but its size is underestimated (Fig 2b)). On the other hand, the size of this polynya is 

greatly overestimated by MULTIVAR and appears about 3 months in advance of the one observed by satellite. Furthermore, 

the MULTIVAR (and UNIVAR to a lesser extent) experiments show the presence of other polynyas this winter 2017 and a 690 

few more during winter 2018. These events are the combination of a general reduction of snow and increase of ice freeboard 

with respect to the FREE simulation, but in specific areas where SIC or RFB observations show local minima. These reductions 

in the areas covered by ice finally expose the surface to the warm waters of the ocean. Once triggered, assimilation is no longer 

able to counteract the strong vertical instability and oceanic warming that prevent these openings from closing. However, some 

of these activation zones correspond to fracture zones that have already been identified, either for reasons of atmospheric 695 

divergence (low pressure systems in Kwok et al., 2017) or linked to the local bathymetry (Reiser et al., 2019). These polynyas 

are the consequences of intense interactions between the ocean and the surface in our simulations on places where the 

equilibrium of model is very sensitive to any disturbance. Changes have been implemented in the assimilation system to 

mitigate the occurrence of these simulated polynyas (see paragraphs 2.1.2 and 2.2.1). The SST assimilation under the ice has 

been activated to keep the surface waters close to the freezing point. Very few in situ profiles are available in the Southern 700 

Ocean, and some of them were radically changing the thermohaline properties of the ocean in a large area and over a long 

period of time, thus we did not activate the in-situ profile assimilation poleward 60°S to keep the modelled ocean stratification. 

We increased the maximum SIC observation error to 40% to moderate the intensity of sea ice assimilation in the Southern 

hemisphere. These modifications have reduced the likelihood of triggering polynyas in both UNIVAR and MULTIVAR 

simulations. 705 
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6 Conclusion 

This study presents the first implementation of a multivariate sea ice assimilation scheme in both the Arctic and 

Antarctica within a global ¼° modelling and analysis system. This system, largely based on the Mercator operational system, 

already includes a multivariate ocean assimilation but currently only assimilates sea ice concentration (SIC). Our study 

enhances this capability by incorporating a multivariate ice assimilation approach, assimilating along tracks radar freeboard 710 

and snow depth jointly with sea ice concentration. By comparing simulations without assimilation, with univariate SIC 

assimilation, and with this innovative multivariate system, we assess the capabilities of the assimilation scheme. The univariate 

SIC assimilation method systematically decreases the ice volume compared to the FREE experiment and shows a thin ice bias 

compared to observations. The multivariate assimilation increases the sea ice volume in both hemispheres, enabling the 

modelled sea ice to converge on assimilated data sets. The spatial distribution of the sea ice and the snow is modified in 715 

accordance with the assimilated observations. Even in summer and in the observation’s spatial holes, when no satellite 

altimetry observations are assimilated, the MULTIVAR experiment’s ice variables are favorably modified by the multivariate 

ice assimilation. Moreover, the diagnosed freeboard from the multivariate system compares better with Iceat-2 independent 

observations in the Arctic and, to a lesser extent, in Antarctica. 

The comparison with observations coming from SMOS satellite shows that the UNIVAR experiment agrees better 720 

with the more reliable SMOS sea ice volume estimates for thin ice (less than 1 m) than the MULTIVAR experiment. In the 

Antarctic, CS2 and SMOS sea ice volume estimates diverge, so assimilating CS2 radar freeboard takes the model results away 

from SMOS measurements. Increasing the error of altimetry measurements over marginal zones and thin ice surfaces or 

merging altimetry with SMOS estimates for ice are potential options in this multi-variate approach. Ultimately, the results of 

the assimilation scheme reflect a balance driven by our selection of assimilated observations: the simulation is restricted to an 725 

intermediate position between the assimilated data and the model's trajectory. Therefore, a degree of consistency between the 

assimilated and independent validation datasets is essential to effectively detect an improvement of the sea ice fields thanks to 

data assimilation techniques. 

The multivariate assimilation system performs better in the Arctic than in the Antarctic, largely due to differences in 

the model’s initial free state. In the southern hemisphere, the initial biases in the free simulation are larger than those in the 730 

northern part, making it more challenging for the assimilation to reconcile the model with observations. This highlights the 

critical role of the model’s baseline state in a data assimilation system. Further, the significant differences in ice volume 

estimates due to the use of constant or non-constant densities show and confirm the importance of having a comprehensive 

modelled physics with observations measurements. 

The results for the southern hemisphere also show the strong interactions with the oceanic surface layers in the life 735 

cycle of the sea ice cover. The choice of the assimilation parameters (analysis snow depth threshold, observation errors, 

localization radius) is still an ongoing work and further study in the assimilation methodology is needed to fully handle the 

strong coupled ocean/ice interactions at work in the Southern Ocean. 

https://doi.org/10.5194/egusphere-2024-3633
Preprint. Discussion started: 20 December 2024
c© Author(s) 2024. CC BY 4.0 License.



29 

 

This multivariate assimilation system paves the way for the future integration of CIMR and CRISTAL satellite 

measurements in synergy into operational systems. The CRISTAL satellite, set for launch in 2028, will carry altimetry radar 740 

instruments equipped with both Ku-band and Ka-band radars, enabling simultaneous altimetry measurement of the air–snow 

and ice–snow interfaces. The CIMR satellite will measure the sea ice concentration with passive microwave imagers, allowing 

for sub-daily and high resolution (5 km) polar measurements. 
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Appendix A. Comparison with in-situ measurements. 

 

BGEP ULS measurements, available all year long, are available for the whole duration of the simulations, and the NPI ULS 

data are available until August 2018. Airborne OiB-QL observations are collected only in spring, but they sample a variety of 

ice (MYI and FYI) and cover a significant area in the Arctic. OiB-QL measurements campaigns took place during 7 days in 785 

March 2017, 3 days in April 2017, 1 day in March 2018 and 6 days in April 2018. The comparison for all measurements is 

made at monthly frequency. The LEGOS values presented in this appendix are made from the LEGOS RFB data, the SNOW-

KaKu data, and the model fixed densities (LEGOS_mD). 

 

The in-situ data include Upward-Looking Sonar (ULS) 

moorings measurements in the Beaufort Sea, from the 

Beaufort Gyre Exploration Project (BGEP) with moorings 

A, B and D; and in the Fram Strait, from the Norwegian 

Polar Institute (NPI) (Sumata et al., 2021) with moorings 

F11, F12, F13 and F14. We also use airborne laser and radar 

altimeter measurements in the western Arctic from the 

Operation Ice Bridge Quick Look product (OiB-QL, Kurtz 

et al., 2016). 

The ULS moorings are located in regions where the LEGOS 

data are fully available (both RFB and SNOW-KaKu). A 

distinction is made for OiB-QL measurements based on the 

availability of LEGOS data, highlighting the orbital hole 

that results from using SARAL-AltiKa measurements. 

 
Figure A1: Map of the Arctic and the different in-situ 

measurements used for validation of the simulations. 
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A.1 Beaufort Sea: BGEP ULS 790 

 

Figure A2: Comparison of monthly average ice draft from LEGOS data, FREE, UNIVAR and MULTIVAR experiments within 200 

km of the Beaufort Gyre Experiment Program ULS Moorings (Mooring A: triangle, Mooring B: circle, Mooring D: square) for the 

summer (empty symbols) and winter (solid symbols). The linear regression (dashed black line), slope (s) and r-value (r) are shown 

for each dataset. Methodology from Laxon et al. (2013). 795 

The Figure  shows a remarkable agreement of ice drafts between BGEP data and all experiments. The LEGOS observations 

have less coherence with the BGEP ULS measurements than the experiments but still with very high statistics. The values that 

underestimate the BGEP measurements in all 3 experiments are mostly during summertime (empty markers). The MULTIVAR 

experiment exhibits less accuracy than the FREE and UNIVAR simulations, with more scattered values, inheriting the 

behaviour of assimilated LEGOS data. However, MULTIVAR ice drafts have higher correlation than those from LEGOS 800 

estimates and, further, the MULTIVAR experiment is able to keep the strong correlation obtained with the FREE ice draft 

values during summertime. 

A.2 Fram Strait: NPI ULS 

 

Figure A3: Comparison of monthly average ice draft from LEGOS data, FREE, UNIVAR and MULTIVAR experiments within 200 805 
km of the Norwegian Polar Institut (NPI) Fram Strait ULS Moorings for the summer (empty symbols) and winter (solid symbols). 

The slope (s) and r-value (r) are given for each dataset. 

The ULS ice draft measurements are thicker in the Fram Strait than in the Beaufort Sea. The LEGOS data is in general 

agreement with the NPI data but presents mostly thicker ice drafts than the ULS measurements. The FREE and UNIVAR ice 
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drafts consistently underestimate the ULS measurements, with very low slopes and r-values. Most of the summer values (empty 810 

markers) in these two experiments have ice drafts at 0 m. Assimilating LEGOS RFB and SNOW-KaKu results in higher ice 

drafts, especially in winter when the assimilation is effective.  Large errors in the MULTIVAR experiment’s summer ice drafts 

values compared to the NPI ULS measurements still remain in this region of the Fram Strait, where the ice front is highly 

variable. 

A.3 Operation IceBridge QuickLook sea ice thickness 815 

 

Figure A4: Comparison of monthly average ice thickness from LEGOS data, FREE, UNIVAR and MULTIVAR experiments 

collocated with OiB-QL airborne measurements in the Arctic. Areas where LEGOS SNOW-KaKu and RFB measurements are 

available are respectively in black, blue (FREE), green (UNIVAR) and pink (MULTIVAR); otherwise orange (FREE), red 

(UNIVAR) and cyan (MULTIVAR) refer to regions where SNOW-KaKu data are not available. All ice thickness values are gridded 820 

onto a 0.4° latitude by 4° longitude Arctic grid, following the methodology of Tilling et al. (2018). The slope (s) and r-value (r) are 

given for each dataset. 

The LEGOS data and the OiB-QL ice thickness measurements are in general good agreement. The OiB-QL data presents a 

cluster of measurements between 1 and 2 m that is well reproduced by all experiments and by the LEGOS data. Thicker 

measurements from the OiB-QL 2017 and 2018 campaigns are underestimated by the FREE and UNIVAR experiments. These 825 

2 experiments do not show ice thickness values higher than 4 m, whereas the OiB-QL measurements signal ice up to 6.6 m 

thick. The MULTIVAR simulation is able to reproduce thicker ice, resulting in a general better agreement with the OiB-SL 

measurements, in all regions: where all the assimilated data is available, and also where some or all of the assimilated data are 

missing. However, the MULTIVAR experiment’s ice thickness values are very scattered, especially in the region where the 

LEGOS data is not entirely available (no SNOW-KaKu poleward of 81.5°N; and no RFB LEGOS poleward of 88°N). 830 
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