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Abstract Over the last decades, back‐calculation (BC) techniques for ocean anthropogenic carbon (Cant)
estimation have improved and evolved into different methodologies that are not exempt from various
assumptions and limitations. No single optimal BC method exists to date for computing Cant; therefore, it is
necessary to continue advancing the broad range of approaches. Here, we present a novel method based on the
BC fundamentals that combines marine‐carbonate‐system (MCS) data and the Total Matrix Intercomparison
(TMI) framework. This MCS‐TMI approach differs from other BC methods by using the TMI to reconstruct
deep‐ocean biogeochemical properties and their preformed conditions. It also incorporates a global sea‐air
oxygen disequilibrium term, and a dynamic stoichiometric carbon‐to‐oxygen ratio that depends on the water‐
mass ideal time. The MCS‐TMI yields a total Cant inventory of 124 ± 7 Pg C (referred to 1995), in good
agreement with previous global Cant climatologies. The MCS‐TMI method uncertainty (±5.6 μmol kg

− 1) is
controlled by input‐data errors that, nonetheless, have a minimal impact on the total Cant inventory. In contrast,
our total Cant inventory uncertainty is governed by methodological errors, specifically those related to the TMI's
boundary conditions. Our study demonstrates the effectiveness of MCS data‐based climatologies in
reconstructing a 3D gridded Cant climatology, and the validity of ocean circulation transport operators for
obtaining BC preformed conditions.

Plain Language Summary Since the industrial revolution, human‐induced excess carbon dioxide
(Cant) has been disrupting the carbon cycle. The ocean absorbs part of it, reducing atmospheric excess but
causing severe consequences for marine systems. Oceanic Cant storage is uneven, and estimates rely on indirect
methods due to the impossibility of an analytical procedure for discerning the signal. To date, there is no optimal
method for calculating Cant. Progress is essential, and advancements are needed across various approaches.
Back‐calculation methods differ from the rest by using marine‐carbonate‐system (MCS) data, and their results
serve as observational references. In this study, we present a novel approach for estimating marine Cant globally,
which relies on an improved back‐calculation formulation and is based exclusively on climatological MCS
high‐quality data. Our resulting Cant climatology agrees with previous global studies, underscoring the
feasibility of our approach and emphasizing the relevance of accurate MCS data for climate change related
research.

1. Introduction
The ocean plays a key role in climate regulation, storing 40 times more carbon than the atmosphere (Friedlingstein
et al., 2023). Since the industrial revolution, the carbon cycle has been altered by the excess of atmospheric carbon
dioxide (CO2) emissions from human activities (Cant), leading the ocean to counteract such CO2 increase by
absorbing nearly a third of it (Gruber et al., 2019). The anthropogenic carbon (Cant) invasion into the ocean is
increasing ocean acidity and causing severe impacts on marine systems (Bednaršek et al., 2023; Feely et al., 2023;
IGBP, IOC, SCOR, 2013). Therefore, it is crucial to understand and quantify the oceanic CO2 uptake, storage, and
distribution, particularly the anthropogenic component (Intergovernmental Panel on Climate Change
IPCC, 2019). Nevertheless, both components of CO2, that is, anthropogenic and natural, have high variability and
uncertainties that are difficult to observe and quantify (Müller et al., 2023). This is particularly true for the Cant
signal, as it represents only a small fraction of the dissolved inorganic carbon pool (CT). Moreover, the Cant signal
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is not directly distinguishable from the natural component (Brewer, 1978; Chen & Millero, 1979), which has led
to the development of various techniques to derive it indirectly.

Significant progress has been made in ocean Cant estimates over the last few decades, as evidenced by the within‐
uncertainty agreement between Cant inventories derived from independent methods (Khatiwala et al., 2013). This
highlights the importance of using multiple approaches, each with its own limitations and regional biases. Cant
methodologies can be categorized into (a) model‐based and (b) observation‐based approaches. The model‐based
category includes Global/Regional Ocean Biogeochemical Models (GOBMs/ROBMs) and data assimilation
models (e.g., OCIMv2021, DeVries, 2022), which provide Cant estimates and forecasts that are highly valuable
for climate‐related predictions and decisions. Observation‐based approaches include methods that use transient
tracers' data (e.g., Green Function methods) or marine‐carbonate‐system (MCS) data (i.e., back‐calculation
techniques or repeated observations to infer decadal changes, such as the eMLR* of Gruber et al., 2019;
Müller et al., 2023). The synergy between model‐based and observation‐based approaches is fundamental. For
instance, observational products are frequently used to assess GOBMs/ROBMs performance (e.g., DeVries
et al., 2023; Fu et al., 2022), thereby emphasizing the importance of further advancement in observation‐based
Cant estimates.

Marine data acquisition is advancing significantly by increasing the number, frequency and coverage of obser-
vations (e.g., https://www.glodap.info/), especially for MCS measurements. The quality standards implemented
for MCS (e.g., https://www.go‐ship.org/DatReq.html) are leading to the highest levels of accuracy inMCS data to
date (Dickson et al., 2003). In addition, progress in BGC‐Argo sensors (Johnson et al., 2017) supports the ongoing
improvement ofMCS data collection in the future. Therefore, the use ofMCS data for Cant estimation is becoming
increasingly important, particularly given the limited lifespan of transient tracers, such as Chlorofluorocarbons
(CFCs), and their uncertain long‐term traceability.

Assessing Cant‐change rates (i.e., relative changes in Cant storage) is fundamental (e.g., Müller et al., 2023) to fully
understand how the ocean is storing the CO2 excess since pre‐industrial times. However, to quantify the storage in
terms of absolute total Cant inventories, year‐referenced Cant estimates are necessary (e.g., Sabine et al., 2004).
This, combined with the growing efforts by the scientific community to improve the acquisition, quality and
availability of MCS data, fosters the advancement of back‐calculation techniques, which were previously limited
by the lack of high‐quality MCS data (Bockmon & Dickson, 2015).

The back‐calculation techniques (Brewer, 1978; Chen & Millero, 1979) were the first Cant methods proposed.
They attempt to deduce the anthropogenic fraction from the total CT pool, basing this partition on CO2 obser-
vations. To do so, the biological activity is first subtracted from the CT measurements, often inferred through
changes in oxygen (O2) and total alkalinity (AT), to obtain its preformed condition, that is, the state at the time of
last ventilation before biological activity had an impact. Subsequently, from the resulting preformed CT, a pre-
industrial reference value of preformed CT is subtracted. Over time, back‐calculation techniques have evolved,
differing in their approaches while undergoing improvements that have resulted in methods for Cant estimation at
global (ΔC* method, Gruber et al., 1996; TrOCA method, Touratier & Goyet, 2004a, 2004b; Touratier
et al., 2007) and regional (C°

IPSL, Lo Monaco et al., 2005; φCt° method, Pardo et al., 2011; Vázquez‐Rodríguez
et al., 2009), scales. All of these methods have been extensively applied and validated (e.g., Pardo et al., 2014;
Sabine et al., 1999, 2002, 2004; Vázquez‐Rodríguez et al., 2012; see Khatiwala et al. (2013) for an extended
review). However, some of their common assumptions are, to a certain extent, restrictive and could be addressed
more realistically, such as O2 saturation (ΔC*, TrOCA, φCt°), the use of linear methods for mixing modeling
based on conservative variables (as in ΔC* or φCt°), the exclusion of denitrification (TrOCA), the computation of
pre‐industrial tracers through parametrizations (e.g., AT, sea‐air CO2 disequilibrium, TrOCA), or the use of a fixed
oxygen‐to‐carbon stoichiometric ratio (ro:c).

The effect of organic matter (OM) remineralization on carbon is often estimated by a fixed ratio from oxygen
consumption. ro:c is actually subject to differ from that expected from the Redfield composition (Redfield
et al., 1963) depending on the nature of the OM, that is, in the percentage of proteins, lipids and carbohydrates
(Anderson, 1995; Anderson & Sarmiento, 1994; Fraga et al., 1998; Körtzinger et al., 2001). In fact, below depths
of 1,000 m, where the flow of particulate material decreases, dissolved organic material (DOM) becomes more
prevalent (e.g., Middelburg, 2019), coinciding with the presence of older water masses. DOM has different
compositions and lifetimes (Hansell, 2013; Hansell & Carlson, 2014) and its reactivity has been demonstrated to
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decrease along the deep branch of conveyor circulation (Sulpis et al., 2023), so the ro:c could change depending on
the age of the water masses. Additionally, back‐calculation methods assume that during the formation of water
masses they are in perfect equilibrium with the atmosphere, thus neglecting the sea‐air oxygen disequilibrium that
is frequently observed at the time of water mass formation and subduction (Duteil et al., 2013; Ito et al., 2004).
This omission can lead to overestimations of oxygen consumption by up to 25% when calculated from Apparent
Oxygen Utilization (AOU; Duteil et al., 2013). However, including the sea‐air oxygen imbalance can be chal-
lenging because of the difficulty in obtaining the preformed oxygen content (Ito et al., 2004).

The behavior of the preformed variables matches that of the conservative tracers, and therefore they are not
significantly altered as they circulate in the ocean, allowing for the tracking of the steady‐state ocean circulation
(Broecker, 1974). For variables that are subject to biological activity, and thus deviate from conservative
behavior, back‐calculation techniques have adopted different parameterizations as for the conservative tracers,
even though they can exhibit non‐conservative behavior in some regions (Matsumoto & Gruber, 2005). Addi-
tionally, preformed variables have also been estimated from surface parametrizations and later reconstructed in
the deep ocean through an Optimum Multiparameter analysis (OMP; Tomczak & Large, 1989). However, the
OMP mixing framework may neglect water masses with potential significance in the overall deep‐ocean property
distribution, which data‐assimilated inversion models represent more accurately (Gebbie & Huybers, 2010). With
higher resolution, and lower computational demand, such tools provide transport operators of a steady‐state ocean
circulation that have proven to be versatile for numerous applications, such as the modeling of preformed var-
iables (Carter et al., 2021; Lauvset et al., 2020; Liang et al., 2023).

Here, we present a new approach for estimating the steady‐state component of Cant globally (see Text S1 in
Supporting Information S1) that relies on a back‐calculation formulation and input climatological data that are
based on high‐quality MCS data. Our approach includes: 1) a novel, 2° × 2° grid resolution, water mass mixing
framework (TMI: Total Matrix Intercomparison; Gebbie & Huybers, 2010), which 2) avoids the use of linear
regressions to estimate preformed variables, 3) allow us to pioneering account for global oxygen disequilibrium,
and 4) to propose a dynamic stoichiometric, carbon to oxygen, ratio depending on the ideal time of the water mass.
This synthesis paper is structured as follows. Section 2 provides details of the data used, the back‐calculation
formulation followed, the procedure for deep‐reconstruction of variables, the estimation of their preformed
conditions with the TMI, and the uncertainties associated. Section 3 presents the results and their discussion by:
3.1 showing the biogeochemical processes and other back‐calculation formulation terms representation, 3.2 the
resulting Cant distribution and total inventory, including a validation through comparison with other methodol-
ogies, 3.3 sensitivity analysis, and 3.4 Cant distribution at depth to assess and validate Cant results. Section 4
summarizes the main conclusions of the study and provides insights on remaining challenges and future work.

2. Materials and Methods
2.1. Back‐Calculation Approach

Proposed by Brewer (1978) and Chen and Millero (1979), back‐calculation techniques aim to separate the
anthropogenic component from the total inorganic carbon pool by representing Cant as the difference between the
preformed total inorganic carbon content (CT°) and the analogous in pre‐industrial conditions (CT°

π) (Equation 1).
Note that preformed conditions (denoted as ° hereafter) are the water parcel properties at the time of last
ventilation, deduced by correcting non‐physical effects experienced since the parcel left the (sub)surface
(Equation 2).

Cant = C°
T − CT

°π (1)

C°
T = CT − biogeochemical (bgc) effect (2)

In a back‐calculation approach, the removal of the biogeochemical effect to obtain the preformed total inorganic
carbon is based on the representation of the remineralization and the carbonate pump through changes in oxygen
(ΔO2) and total alkalinity (ΔAT), respectively. Constant stoichiometric ratios are assumed, despite relationships
that sometimes deviate from a fixed pattern of behavior (Anderson, 1995; Fraga et al., 1998; Körtzinger
et al., 2001). For AT changes (ΔAT = AT − AT°), no preformed alkalinity change over time is considered, this
assumption being reasonably acceptable (Feely et al., 2004; Matsumoto & Gruber, 2005). However, how to
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compute its preformed condition is subject to more debate. So far, all back‐calculation methods assume that
during water masses formation they are in perfect oxygen equilibrium with the atmosphere. Oxygen changes are
often derived from Apparent Oxygen Utilization (ΔO2=AOU=O2,sat − O2,measured) assuming that AOU is equal
to zero at surface, neglecting significant oxygen disequilibrium regions (Duteil et al., 2013; Ito et al., 2004).

The recognized ΔC* method (Gruber et al., 1996) does contemplate the pre‐industrial CO2 drift compared to
saturation at the time of water mass formation and subduction when obtaining the preformed condition of the pre‐
industrial CT. This step introduced the pre‐industrial sea‐air CO2 disequilibrium term (ΔCdis

π) in the CT°
π

calculation (Equation 3; Equation 4), expressed as the difference between the ocean‐atmosphere partial pressure
of CO2, converted to carbon concentrations.

CT
°π = CT

πSAT + ΔCdis
π (3)

Based on the original back‐calculation framework by Brewer (1978) and Chen and Millero (1979) (Equation 1),
including the preindustrial sea‐air CO2 disequilibrium term proposed by Gruber et al. (1996) (Equation 3) leads to
the expression:

Cant = CT − bgc effect − CT
πSAT − ΔCdis

π (4a)

where CT is the total inorganic carbon content of a sample; bgc effect is the biogeochemical effect; CT
πSAT is the

pre‐industrial CT in saturation; and ΔCdis
π is the pre‐industrial sea‐air CO2 disequilibrium. Replacing the

biogeochemical effect:

Cant = CT −
1
ro:c

· AOU −
1
2
· [AT − A°

T + AOU · (
1
ro:n

+
1
ro:p

)] − CT
πSAT − ΔCdis

π (4b)

where AT is the Total Alkalinity; A°
T is the preformed Total Alkalinity; and ro:c, ro:n and ro:p are the oxygen to

carbon, oxygen to nitrogen and oxygen to phosphorus stoichiometric ratios. According to Gruber et al. (1996),
this leads to:

Cant = ΔC∗ − ΔCdis
π (4c)

where ΔC* includes the first three terms of (Equation 4a).

As a novelty in this study, we considered a (i) preformed AOU term to capture the oxygen disequilibrium, and a
(ii) denitrification correction, as proposed by Gruber and Sarmiento (1997), but following Carter et al. (2021):

(5)

where AOU° is the preformed Apparent Oxygen Utilization (see Section 2.3); rc:n is the carbon to nitrogen
denitrification ratio; and ΔN* is equal to = (NO3

− − NO3
− °)–16 (PO4

3− − PO4
3− °), where NO3

− ° and PO4
3− °

are the preformed nitrate and phosphate (see Section 2.3), respectively.

2.2. Data

We used the observation‐based gridded products from Broullón et al. (2019, 2020), which provide global 3D
monthly climatologies of Total Alkalinity (AT) and total inorganic carbon (CT) at 1° × 1° resolution. Both
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products are centered in 1995 and encompass 102 surface‐to‐bottom vertical levels. AT and CT are the outputs
from neural networks (NN) trained with data from Global Ocean Data Analysis Project version 2.2016 (GLO-
DAPv2. 2016; Olsen et al., 2016) and applied to World Ocean Atlas 2013 V2 (WOA13 V2, here on WOA13;
Locarnini et al., 2013; Zweng et al., 2013) monthly climatologies of temperature (T ), salinity (S) and dissolved
oxygen (O2). Nutrient fields were derived by applying CANYON‐B NN (Bittig et al., 2018) to WOA13 T, S and
O2 as input data, getting nitrate (NO3

− ), phosphate (PO4
3‐) and silicate (SiO4

4‐). In our study, we used these same
T, S, O2 and nutrients fields. Monthly climatological data were averaged to obtain a unique annual climatological
value and interpolated to a 2° × 2° and 33 vertical levels resolution grid to match the TMI grid (see Section 2.3),
using the Data‐Interpolating Variational Analysis (DIVA; Troupin et al., 2012). Potential temperature (θ) and
Apparent Oxygen Utilization (AOU) were calculated with theGibbs Seawater (GSW) OceanographicMATLAB
Toolbox, by McDougall and Barker (2011). The pre‐industrial CT in saturation (CT

πSAT) was calculated with
CO2SYS forMATLAB (Lewis &Wallace, 1998; Sharp et al., 2021; van Heuven et al., 2011) with a pre‐industrial
CO2 partial pressure (pCO2

π) set to 280 μatm, an input pressure of 0 dbar, and using θ and preformed AT, PO4
3− ,

SiO4
4− (see Section 2.3) along with the K1 and K2 from Sulpis et al. (2020), as they cover a wide range of low

temperatures, KSO4 from Dickson (1990), KF from Pérez and Fraga (1987) and TB of Uppström (1974).

Stoichiometric carbon to nitrogen denitrification ratio (rc:n) was adopted from Gruber and Sarmiento (1997).
Different relationships have been proposed for oxygen to carbon, oxygen to nitrogen and oxygen to phosphorus
stoichiometric ratios (Anderson, 1995; Anderson & Sarmiento, 1994; Fraga et al., 1998). We used the ratios
proposed by Anderson and Sarmiento (1994) for oxygen to nitrogen and phosphorus. For oxygen to carbon ratio,
the ratio proposed by Anderson (1995) is a better fit for older water masses that present more resistant DOM
(Hansell, 2013), so we tested both Anderson and Sarmiento's (1994) and Anderson's (1995) and finally used an
average of the two weighted by the TMI ideal age, that is, the average time since a water parcel was last in contact
with the surface, according to:

ro:c T = ro:c (S&A 1994) · (1 + αo:c · T),where

αo:c = (ro:c (A 1995) − ro:c (S&A 1994))/(ro:c (S&A 1994) · 1000)

where ro:c
T is an age‐based oxygen to carbon stoichiometric ratio; ro:c (S&A 1994) is the ratio proposed by Anderson

and Sarmiento (1994) of 117/170; ro:c (A 1995) is the ratio proposed by Anderson (1995) of 106/150; and T is the
mean or ideal age in years, at grid level, provided by the TMI (Gebbie & Huybers, 2012). Note that we adopt
1000 years as the maximum average age.

2.3. TMI and Estimate of Preformed Variables

The preformed variables refer to the properties of a water mass parcel that remain unchanged from the time of its
last ventilation. In the case of conservative properties, their off‐(sub)surface value is equivalent to that of the last
ventilation, together with the result of mixing processes acting on the tracer (Broullón et al., 2019; Vázquez‐
Rodríguez et al., 2012). In contrast, the observed value of non‐conservative properties is equal to the sum of its
value if it were conservative (mixing) along with the biogeochemical effect.

Rather than relying on preformed (sub)surface‐properties parametrization, and their subsequent deep ocean
reconstruction through a classical OMP (Gruber et al., 1996; Pardo et al., 2011; Vázquez‐Rodríguez et al., 2009),
we assumed that winter surface properties represent the preformed conditions. This assumption is based on the
fact that subduction primarily occurs during the respective winters of each hemisphere (Qiu & Huang, 1995;
Williams et al., 1995), and thus the conditions of these months influence the preformed state of the variables
(Iselin, 1939; Stommel, 1979). Therefore, we can reconstruct deep‐ocean conditions from winter surface prop-
erties by using the geometry of water masses pathways provided by an ocean transport model (Transport Matrix
Intercomparison, TMI hereafter; Gebbie & Huybers, 2010; Gebbie et al., 2023). The TMI is a data‐assimilation
inverse model constrained almost entirely from observations, since it is based on the inversion of modern‐day
climatologies of temperature, salinity, phosphate, nitrate, oxygen, and oxygen‐18/oxygen‐16 isotope ratios and
provides a steady‐state circulation in a 2º‐by‐2º horizontal resolution with a vertical discretization of 33 levels. A
wider description of the TMI and its applications can be found in Gebbie and Huybers (2010, 2011, 2012).
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We forced the surface boundary condition of the TMI with two types of data, that is, conservative and non‐
conservative tracers, and reconstruct their interior ocean distribution: for each ocean grid point the TMI pro-
vides the mixing fraction contribution that comes from the surface grid points. The three‐dimensional (3D) field
obtained only represents physical effects, as we excluded any sink‐source processes in the deep ocean recon-
struction. This results in preformed values for non‐conservative properties or a deep reconstruction for conser-
vative tracers. Then, we assume that differences between the observed properties and the analogous TMI‐
reconstructed properties (Figure 1), if any, can be attributed to biogeochemical processes.

Surface‐boundary TMI input layers were estimated as the average of the monthly climatologies that best represent
the water masses formation conditions according to latitude, that is: north of 20°N (south of 20°S) the average of
January, February and March winter‐months (July, August, September), and between 20°N and 20°S annual‐
average. The resulting winter‐surface nitrate, phosphate and silicate layers were directly propagated, along
with winter‐AOU and ΔCdis

π, obtaining their preformed conditions (NO3
− °, PO4

3− °, SiO4
4− °, AOU°) or deep

reconstruction (ΔCdis
π). Pre‐industrial surface sea‐air CO2 disequilibrium was estimated from Khatiwala

et al. (2009) at surface by subtracting the product to the already computed CTº and CT
πSAT, and then deep‐

reconstructing it with the TMI as a conservative tracer. The effect of the surface salinity was removed from
the surface total alkalinity by a factor of 66.4 proposed by Carter et al. (2014), and the detached value was
propagated into the ocean interior. The resulting field was undone by the same factor obtaining the preformed
total alkalinity (AT°).

2.4. Results Validation

We used results from four independent Cant methodologies (a back‐calculation based method, two transient tracer
data‐based methods and a data‐assimilated inversion model) to have a reference for our MCS‐TMI estimates. In
addition, we applied the TrOCA back‐calculation method (Touratier et al., 2007) to evaluate the consistency of
spatial patterns in our Cant estimates. It is important to note that the TrOCA method has been shown to over-
estimate global Cant inventories by up to 50% (Yool et al., 2010). Therefore, we used TrOCA to validate our
spatial distribution of Cant rather than comparing absolute inventory values.

The first product used was Sabine et al. (2004), that provides a Cant climatology centered in 1994, based on the
back‐calculation ΔC* method (Gruber et al., 1996), and whose formulation served as a basis for our approach.
The ΔC* method assumes no sea‐air oxygen disequilibrium but does include the ΔCdis

π with two ways to obtain
the term, both assuming bulk advection and a single ventilation age. The second product used came from Lauvset
et al. (2016), which follows a transit time distributions (TTD) approach. The methodology considers that the Cant
is a conservative tracer that can be reconstructed in the entire ocean through the ocean circulation transport
represented by a ‐ boundary propagator (Hall et al., 2002)—Green's function. Instead of using MCS data, the

Figure 1. Simplified propagation scheme from a surface 2D variable to its 3D reconstruction at depth through the Total
Matrix Intercomparison (TMI): imposing a surface boundary condition that best represents the surface preformed condition,
this 2D layer propagates into the ocean interior through a steady‐state inversion (no sink‐sources considered). The 3D output
provides a reconstruction of the ocean interior preformed property that is only affected by mixing, since the model does not
account for non‐physical effects. Thus, the difference between the observed property and the propagated one can be
attributed to biogeochemistry; if it is a conservative tracer the difference must be equal to zero, if there are no residuals in the
propagation.
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TTD approach relies on transient tracers as CFCs to derive the statistical description of the age distribution.
Lauvset et al. (2016) product provides a Cant climatology centered in 2002 that we brought to 1995 for comparison
to our results, according to

Cant 1995 = Cant 2002 · [(1 + 0.0191) 1995− 2002]

where Cant 1995 is the corrected Cant for 1995 year; Cant 2002 is the original product; and 0.0191 is the annual
increase rate determined by Gruber et al. (2019) between 1994 and 2007 for the global ocean.

In line with the TTD approach but refined, we also used the Khatiwala et al. (2009) product, which presents an
evolution of the Green's function (GF) method. It considered twenty‐six Cant source regions and allowed the
ΔCdis

π to undergo temporal and spatial changes for the first time. We used a 5‐years Cant average, centered at
1995. The product was regridded to the WOA13 1º × 1º × 33 levels grid by profile interpolation, and a constant
density of 1024.5 kg m− 3 was used for volumetric to mass conversion.

The last product we included was a data‐assimilated inversion model that estimates Cant distribution by
considering it as a passive tracer within an abiotic carbon cycle model forced with atmospheric CO2 (DeV-
ries, 2022), that would represent, in a way, an advance in the resolution of transient tracer data methods, both at
the level of mixture scale and source regions.

Once all the products were homogenized (i.e., same resolution gridding and same reference year), the Cant
concentrations were vertically integrated to get the column inventories. Additionally, Cant column inventories
were horizontally integrated in five oceanic regions (North Atlantic, South Atlantic, North Pacific, South Pacific
and Indian oceans), as well as in the sum of these, to quantitatively evaluate the differences of our results with
respect to four other reference methodologies, following the regions evaluated in Müller et al. (2023) (Figure S1
in Supporting Information S1). Given the difference in spatial coverage and product grids, total Cant (integrated at
vertical and horizontal level, up to depth of 3.5 km) was normalized per product area and scaled to a reference area
(see Table S1 in Supporting Information S2) to better compare among products. The TrOCA method was
excluded in the total Cant inventories comparison. Note that for ΔC* total Cant inventories, negative values were
set to zero according to literature (Müller et al., 2023; Sabine et al., 2004).

2.5. Sensitivity Analysis and Uncertainties

The MCS‐TMI approach to estimate Cant is subject to uncertainties that arise from two main sources: data‐related
errors and methodological errors. To evaluate the impact of each and quantify the overall uncertainty of our
method, we conducted three sensitivity tests (Case I, II and III, described below) based on aMonte‐Carlo analysis,
with 300 simulations for each case.

In Case I (data‐related errors) we quantified the uncertainty arising from errors in input data (WOA13 clima-
tologies for T, S, O2) and their propagation to derived variables (NN‐nutrients and AT and CT). Since WOA13
climatologies do not provide error fields for the objectively analyzed T, S, O2 climatologies, we used the standard
error of the mean (SE). We used surface SE values (with no spatial correlation for any of the variable pairs), and
we computed the SE's standard deviation (STD) for each variable. To ensure a conservative final error estimate,
we adopted a two‐sigma criterion (p < 0.05), resulting in introduced errors of 0.32°C, 0.12 PSU and 4% for T, S
and O2, respectively.We then generated 300 randomly perturbed fields for T, S, and O2, which served as inputs for
the CANYON‐B NN to estimate nutrients (resulting in 300 new 3D fields of NO3

− , PO4
3− , SiO4

4). Ultimately,
this ensemble data set (300 newly generated fields of T, S, O2, NO3

− , PO4
3− and SiO4

4‐) was used as input to
NNGv2 (for AT) and NNGv2LDEO (for CT), generating 300 3D fields each of AT andCT. This procedure allowed
errors in the derived variables (i.e., nutrients, AT and CT) to more accurately reflect the data processing flowchart
and any potential correlations or interactions among them. To isolate data‐related errors, we kept the ro:c

T term
and TMI surface boundary conditions constant in Case I, by only altering from the second vertical layer to the
bottom and, therefore obtaining the same 3D‐TMI reconstructed variables (preformed properties and ΔCdis

π) for
each simulation.

In Case II (methodological errors) we evaluated the uncertainty that results from variations in the ro:c
T term and

the TMI surface boundary conditions. This analysis was divided into two sub‐cases: Case II ‐ subtype 1, in which
we assessed the sensitivity of the method to the ro:c

T term by setting a 10% of error in this parameter while keeping
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the rest of variables unaltered; andCase II ‐ subtype 2, in which we evaluated the uncertainty directly related to the
TMI by introducing random errors only into the surface boundary conditions. For Case II ‐ subtype 2, we used the
300 perturbed T, S and O2 fields as in Case I, but only for the surface layer (while keeping the original data from
the second vertical and below), and followed the subsequent processing workflow for nutrients and AT and CT as
indicated for Case I. In addition, we considered a 5 μmol kg− 1 error for the surface ΔCdis

π TMI input layer
(Khatiwala et al., 2009 product).

Finally, Case III (combined uncertainty) represents the combined effect of both data‐related and methodological
errors (i.e., Case I and Case II), thereby serving as the reference case for estimating the total uncertainty in the
MCS‐TMI method. The total method uncertainty (μmol kg− 1) was calculated as the mean of the STD 3D‐matrix
that resulted from the 300 Monte Carlo simulations in Case III. Additionally, the uncertainty of the total Cant
inventory (Pg C) was computed as the STD of the 300 total Cant global inventories from Case III.

3. Results and Discussion
3.1. Biochemical Processes Representation

The CTº in 1995 (Figure 2, panel H) results from the subtraction of the biological effect (Figure 2, panel B and C)
to the CT. Biogeochemical processes representation is one of the most important steps in a back‐calculation
approach. We represented them through changes in CT due to the organic matter (OM) remineralization and
the carbonate pump. Both the OM remineralization (Figure 2, panel B), and the excess of alkalinity due to CaCO3
dissolution (i.e., carbonate pump; Figure 2, panel C), presented a similar distribution, increasing their values from
the North Atlantic as moving toward the North Pacific, after passing through the SO. Biogeochemical processes
low‐values in the North Atlantic coincide with the newly formed, and recently ventilated, North Atlantic Deep
Water (NADW) water mass. The NADW is the most abundant water mass in the deep Atlantic (Liu & Tan-
hua, 2021), and spreads southward mixing with the older Antarctic Bottom Water (AABW), that moves north-
wards in depth, along with the ventilated Antarctic Intermediate Water (AAIW), positioned above the NADW.
Likewise, the AABW spreads toward the North Pacific and the Indian Ocean at depth, representing the dominant
water mass at depth, with the AAIW also spreading northwards above the AABW. Consequently, both
biogeochemical processes reach their maximum accumulation in the North Pacific, coinciding with the oldest
water masses ages (Figure S2 in Supporting Information S1), and consistent with the well‐described ocean cir-
culation (Broecker & Peng, 1982; Talley, 2013). This evidences that, in terms of circulation patterns given by the
TMI, biological processes are overall well reproduced in our approach, since they present an overall aging trend
characterized by the extended time that water masses spend without contact with the atmosphere (Craig, 1971;
Figure S2 in Supporting Information S1). Additionally, that the CTº has a consistent pattern when compared to its
analog under pre‐industrial conditions (CTº

π; Figure 2, panel I) also suggests a good integration and representation
of the biological activity.

3.1.1. Organic Matter Remineralization and O2 Disequilibrium

The OM respiration (Figure 2, panel E), represented as the difference between the AOU and its preformed
condition, controls most of the OM remineralization pattern and contributes up to 98.8% of its variability.
Opposite, the denitrification pattern (Figure 2, panel K) has a low impact on OM remineralization when compared
to respiration. The denitrification process contributes, in average, to the OM remineralization around
0.8 μmol kg− 1, which is ∼80 times lower than the average contribution of respiration (64 μmol kg− 1).

In general, respiration process is correlated with the water mass age. The more the time since the water mass left
contact with the atmosphere the more biological aging (Craig, 1971; Figure S2 in Supporting Information S1), as
the oxygen consumption due to respiration and then CT release. This inverse pattern between the CT and the
respiration and their correlation with the water masses age is reflected in the age‐based oxygen to carbon stoi-
chiometric ratio proposed (Figure 2, panel D), that represents a function of the water masses ideal age according to
respiration. Using the fixed ro:c ratios from Anderson and Sarmiento (1994) and Anderson (1995) results in an
average difference of ∼5 μmol kg− 1 of Cant among them from ideal ages over 500 years (Figure S3 in Supporting
Information S1), but particularly both generated an upward trend in the mean Cant values as the water masses ideal
age increases that the ro:c

T proposed attenuates (Figure S3 in Supporting Information S1). Even so, in terms of OM
respiration, shallow—recently formed—layers (up to ∼500 m) also present high oxygen utilization coinciding
with high biological activity, wherein AOU may not be that elevated but increases rapidly. In particular, the
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Atlantic Ocean presents a shallow low‐oxygen pool that coincides with the well‐known Atlantic oxygen mini-
mum zone, possibly generated because of a mixing limitation due to vertical and horizontal constraints, as
boundaries formed by interactions with subtropical gyres, or warm temperatures (Carter et al., 2021).

As an improvement in a back‐calculation approach, we considered a global sea‐air O2 disequilibrium independent
of the sea‐air CO2 disequilibrium. Our approach uses the AOU, that reflects oxygen depletion relative to satu-
ration, and the subtraction of its preformed condition (AOUº) corrects for the oxygen disequilibrium (Figure S4 in
Supporting Information S1) that is often observed in deep water formation regions (Ito et al., 2004). Therefore, we
inferred respiration from True Oxygen Utilization (TOU) instead of AOU (e.g., Ito et al., 2004; Koeve &
Kähler, 2016). Until now, the only gaseous disequilibrium considered was the pre‐industrial CO2 disequilibrium
(Gruber et al., 2019; Sabine et al., 2004), which, when considered on its own, could erroneously include the O2
imbalance on it (Equation S1 in Supporting Information S1), and may underestimate the relevance of disequi-
librium in carbon storage (Khatiwala et al., 2019). The correction increased the total Cant inventory by 7.2 Pg C,
indicating that not accounting for the O2 disequilibrium underestimates the total global Cant inventory by 6%.
When examining the respiration process, a bigger impact is observed, as it corrects the overestimation of oxygen
consumption by up to 8.5%, when integrated globally. Thus, our results confirm the evidence that AOU‐based

Figure 2. Transoceanic section, showing vertical Cant distribution and biogeochemical and physicochemical processes (centered in 1995), from 73ºN Atlantic up to 47ºN
Pacific, connecting the start‐end section through the Southern Ocean (SO). The two vertical lines define the end of the Atlantic basin through the SO (SO‐Atl 59ºS), and
the beginning of the Pacific basin (SO‐Pac 65ºS). Panels: (a) Anthropogenic carbon (Cant), (b) remineralization term (see Section 2.1), (c) carbonate pump term (see
Section 2.1), converted to carbon concentrations, (d) age‐based oxygen to carbon stoichiometric ratio, (e) difference between AOU and preformed AOU, (f) difference
between Total Alkalinity and preformed Total Alkalinity, (g) total inorganic carbon from Broullón et al. (2020), (h) preformed total inorganic carbon, from subtracting
biological panels B and C to panel G, (i) pre‐industrial preformed total inorganic carbon, (j) sea‐air CO2 disequilibrium and, (k) denitrification process, expressed in
carbon concentrations.
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estimations overestimate respiration (Carter et al., 2021; Duteil et al., 2013), in particular in the South Atlantic and
deep horizons, which agrees with Carter et al. (2021) that found the deep ocean and the Southern Ocean are the
most impacted regions.

Furthermore, including the sea‐air O2 imbalance (i.e., using AOU‐AOUº, or TOU, instead of AOU) in oxygen
consumption reduces the unexplained variability of nitrate and phosphate depletion by 17% and 28% (Figure S5 in
Supporting Information S1). Indeed, ro:n stoichiometric ratio (inferred from the inverse of the linear regressions
slope), resulting from the adjustment after including sea‐air O2 imbalance in the AOU term (TOU), gets more
centered between those of Anderson and Sarmiento (1994) for NO3

− and Anderson (1995) than the ones from
assuming that O2 is fully equilibrated in winter surface layer. Our results agree with a strong correlation between
nutrients and oxygen consumption, presenting a similar correlation pattern with the ideal water masses age
(Figure S2 and S5 in Supporting Information S1). This is also consistent with the most ΔN* negative values, that
is, higher denitrification, found in the Pacific Ocean (Figure 2) and Indian Ocean (Figure S6 in Supporting In-
formation S1), as nitrate consumption increases when oxygen becomes limiting (Middelburg, 2019). However,
the overall denitrification pattern does not exhibit a strong relationship with the ideal water masses age
(R2 = 0.41), or with TOU (R2 = 0.55). The lack of correlation could be attributed to the presence of N2 fixation
zones or high TOU values in ventilated waters with high biological activity.

3.1.2. The Carbonate Pump

The carbonate pump (Figure 2, panel C) represents changes in AT due to formation and dissolution of calcium
carbonate (CaCO3), along with the AT reduced by respiration‐derived acids. The term is mostly mediated by the
pattern of the difference between the AT and its preformed condition (Figure 2, panel F). However, the impact of
the acid‐derived biological effect (OM respiration) also affects, coinciding with previous studies that note its
contribution throughout the water column (Liang et al., 2023). This is especially evident in the North Pacific,
where respiration contributes to locate the accumulation carbonate pump maximum shallower than that of the
total and preformed alkalinity difference by itself. This suggests that, when inferring the excess of alkalinity due
to CaCO3 dissolution, respiration representation is relevant, especially in old water masses. In turn, the deeper
location of the carbonate pump maximum versus the remineralization maximum would be consistent since
organic matter remineralization is potentially a faster, and shallower, occurring process (Carter et al., 2014, 2021;
Francois et al., 2002; Klaas & Archer, 2002).

On the other hand, the carbonate pump presents a strong correlation with ideal water masses age (Figure S2 in
Supporting Information S1), as well as the one that silicate opal dissolution (silicate increase) shows (Figure S5 in
Supporting Information S1). In addition, there is a relationship between the carbonate pump and silicate con-
sumption of 0.98 (Figure S5 in Supporting Information S1) close to the relationship of 0.96 shown by Rubin and
Key (2002), which enforces the consistency of the TMI model when obtaining preformed nutrients.

3.2. Validation of the Cant Distribution at Global and Regional Scale

The Cant invasion in depth since the pre‐industrial era is shown at Figure 2 at panel A, and shows an overall
decrease in the Cant signal as depth increases. The largest Cant concentrations are found at the surface, where
shallow and warm ocean layers are located, consistent with the fact that warmer waters present lower Revelle
factor values (Broecker et al., 1979; Hauck & Völker, 2015; Zeebe & Wolf‐Gladrow, 2001), meaning that are
more efficient in the anthropogenic CO2 uptake (Hauck & Völker, 2015; Sabine et al., 2004; Völker et al., 2002)
than colder waters (Figure S7 in Supporting Information S1). In particular, the highest Cant concentrations are
observed within subtropical regions, coinciding with Central Waters formation (Cianca et al., 2007; Talley, 2013;
Álvarez et al., 2004). In these warm regions, the Cant signal penetrates in depth consistent with the described
circulation of subtropical gyres (Reid, 1997), in contrast to equatorial upwelling regions where Cant vertical signal
raises (Figure 2, panel A). Additionally, ocean circulation plays a key role in transporting Cant‐rich waters from
other regions to the subtropical gyres (DeVries et al., 2023), thereby enhancing the accumulation of Cant in these
areas.

The depth‐integrated spatial distribution of Cant (Figure 3, panel A) reveals the North Atlantic basin as the greatest
Cant reservoir, with the Labrador Sea exhibiting the highest concentrations within the region. Thus, the deepest
and strongest Cant vertical invasion is found in the North Atlantic (NA) basin (Figure 2, panel A), which coincides
with previous studies (e.g., Gruber et al., 1996; Kötzinger et al., 1999; Wanninkhof et al., 1999), even extending
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the Cant signal below 3,000 m. Moreover, such invasion is consistent with the own basin circulation, where strong
Cant invasion is linked to the strong deep‐ventilation (Fröb et al., 2018; Pérez et al., 2010). The Cant pattern in the
region shows a very similar distribution when compared to other methodologies (Figure 3), validating these
results. Furthermore, when comparing total inventories quantitatively (Figure 4; see Section 2.4), our results (26.4
Pg C) are also consistent since they are inside the interquartile range for the NA, and in good agreement with the
other four methods. In addition, the NA stands out as the largest Cant reservoir per area globally (Table S1 in
Supporting Information S2). However, our Nordic Seas Cant column‐inventory seems to be underestimated when
compared to the TTD (Lauvset et al., 2016) and OCIMv21 (DeVries, 2022) approaches (Figure 3), which could
also be supported by the fact that the region has been shown to be a present absorption area (Jeansson et al., 2023).
This underestimation does not affect the NA total Cant inventory, as the Nordic Seas is not included in the
calculation of the NA total Cant inventory. Not all products provide data for the Nordic Seas and Arctic region.
Even so, a noticeable distinction is observed between our results and the TrOCA method (employed solely as an
evaluative exercise of MCS data consistency) when compared to the GF and OCIMv2021. Both back‐calculation
approaches exhibit an almost identical lower pattern, suggesting a potential issue in the MCS data for the area.
The fact that with the TrOCA exercise we utilize the same data aids in identifying possible flaws, indicating that
divergences reflect genuine differences in approaches rather than arising from the use of different data sets.
Conversely, convergences suggest consistency between the approaches.

There is a gradual decline in Cant storage as we move southward into the South Atlantic (SA), culminating in a
more significant accumulation within the SA subtropical gyre. Additionally, a zonal gradient is observed with
elevated Cant values along the western margin of the Atlantic. The described pattern coincides with the rest of
methodologies (Figure 3), with which we also agree on the presence of a Cant accumulation belt that connects the

Figure 3. Cant column inventories (molC m
− 2), centered in 1995, integrated from surface up to 3,500 m from six independent Cant methodologies. Gray Arctic marine

zones in panels (a) and (b) are negative out‐of‐scale values. For Sabine et al. (2004) product negative Cant values have been maintained.
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subtropical gyres of the Southern hemisphere. However, with respect to the other methodologies, and even among
them, there are differences in the magnitude and location of that accumulation (Figure 3). In particular, our results
agree with the TTD method and the OCIMv2021 model in the Argentine Basin, with a decreasing Cant content
toward the east. Interestingly, when looking to the total Cant inventories, our results in the SA (16.9 Pg C) are
slightly lower than other methodologies (Figure 4; Table S1 in Supporting Information S2), and are closer to
Khatiwala et al. (2009) method (GF method hereafter) and the ΔC* method (Sabine et al., 2004). This suggests
that, although our Cant spatial pattern is consistent with other methodologies (Figure 3), our SA total Cant in-
ventory may be slightly underestimated (Figure 4). This potential underestimation is reasonable given that the SA
region shows low dispersion among methods, and our results are quite close to the mean (Table S1 in Supporting
Information S2). The lower value could be attributed to our relatively low Cant values south of 60ºS (Figure 3)
which are included in the total SA inventory computation. South of 60ºS, our Cant depth‐integrated values exhibit
a significant reduction, making the Antarctic region one of the areas with our lowest Cant column inventories
(Figure 3). In the Antarctic region, our approach yields slightly higher values compared to the ΔC* method, with
both methods reporting the lowest values. Further discussion will be addressed at Section 3.4.

In the Pacific basin, a contrast in Cant column inventories becomes noticeable when comparing the southern and
northern regions. The South Pacific (SP) region presents higher Cant concentrations in comparison to its northern
counterpart (Figure 3, panel A). Moreover, the SP has a higher total Cant inventory (37.8 Pg C vs. 23.4 Pg C in the
North Pacific), even when taking into account their respective areas (Table S1 in Supporting Information S2).
This north‐south difference is consistent with the rest of methodologies (Figure 3). Notably, this spatial distri-
bution is characterized by a zonal gradient wherein Cant concentrations gradually diminish from east to west in the
southern region. In contrast, the northern region exhibits higher Cant values closer to its western margin and the
Sea of Okhotsk. The North Pacific (NP) Cant column inventory (Figure 3, panel A) presents a similar pattern to the
TTD method and OCIMv2021 model ones (Figure 3), but with a higher inventory (Figure 4). Interestingly,
TrOCAmethod has been shown to overestimate Cant globally and regionally (Table S1 in Supporting Information
S2), but for the NP there is almost no detectable Cant signal. The difference between our results and that of

Figure 4. Boxplots of Cant total inventories (Pg C), resulted from integration of Cant column inventories over each ocean
basin, normalized by each basin's product area and multiplied by a reference area (see Table S1 in Supporting Information
S2). Individual data points represent results obtained from five independent methodologies of Cant, as specified in the figure
legend: DeVries (2022; OCIMv2021, data‐assimilation model), Khatiwala et al. (2009; Green function), Lauvset et al. (2016;
TTD method), López‐Mozos et al. (this issue; Back‐Calculation) and Sabine et al. (2004; Back‐Calculation). Each box plot
corresponds to a specific ocean basin, with the last one (All regions) representing the sum of the first five. Negative values
were removed for Sabine et al. (2004).
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TrOCA, despite using a common MCS data, reveals a feasible methodological divergence. We showed that the
denitrification process has a low impact on the remineralization term compared to respiration (see Section 3.1.1).
However, when integrated over depth can have a bigger impact on remineralization, especially in regions with
high denitrification as the NP (Figure 2, panel K), supporting the relevance of accounting for denitrification in
back‐calculation approaches (e.g., Gruber & Sarmiento, 1997).

In the SP, we agree with the rest of methodologies by presenting a more horizontal‐extensive Cant column in-
ventory (Figure 3). We present a maximum of Cant in the subtropical region, coinciding with that of the TTD
method, in a cyclonic structure, as already evidenced (e.g., Sabine et al., 2002). This maximum is more intense
than that of the other methodologies, showing a wider structure than, for example, the TTD method, which is
narrower. The similarity between our wider structure and the one presented by TrOCA and even the ΔC*, which
presents a less intense accumulation, could be attributed to the MCS data of the region. On the other hand, the
Indian Ocean has the same cyclonic structure of Cant over the 30ºS, which also appears in the methods that do not
use MCS data, pointing such accumulation as quite realistic. In the Southern Indian, there is a similar pattern
between our approach and OCIMv2021 model, and we also present similarities with the TTD and GF methods. In
contrast, for the northern Indian, all methodologies present low values with a two‐by‐two agreement between
OCIMv2021 and the GFmethod, the ΔC* and TTDmethods, and TrOCA and our results. In the Indian Ocean, we
show the regional total Cant inventory farthest from the average of the methodologies used, almost 5 Pg C below it.

The total ocean Cant inventory given by our approach is 124 ± 7 Pg C, close to the median value among the other
methods (Figure 4 and Table S1 in Supporting Information S2). Despite this, we present disparities at regional
level compensated on a global scale (Figure 4 and Table S1 in Supporting Information S2). As already mentioned,
our approach provides consistent values for the Atlantic Ocean (Figure 4), both at Northern and Southern basins,
with slightly below‐mean values for both regions. In contrast, in the Pacific Ocean we present slightly higher
values when compared to the rest of methodologies, with the highest data dispersion among methods found in the
South Pacific. Finally, in the Indian Ocean we provide the lowest values when compared to the rest. The next
sections (Sections 3.3 and 3.4) will combine the outcomes of the sensitivity analysis and the deep‐Cant column
inventories. The results integration will contribute to discern if the differences can be attributed to the MCS data
used and/or the proposed approach.

3.3. Sensitivity Analysis

Three sensitivity cases were considered (Section 2.5) to discern between the uncertainty generated by data‐related
errors (Case I) and methodological errors (Case II), as well as to quantify the final uncertainty of our method and
the global Cant inventory uncertainty (Case III). Data‐related errors (Figure S8 in Supporting Information S1)
contribute to the total method uncertainty by ± 4.5 μmol kg− 1, which, when integrated over depth, actually
generates a low uncertainty in the total inventory of Cant (STD = 0.3 Pg C; N = 300). This is consistent with the
fact that random errors in measurements do not have a strong influence on total inventories, as long as they are not
spatially biased (Müller et al., 2023) and compensate each other. In contrast, methodological errors (Figure S9 in
Supporting Information S1) have a smaller impact on the total method uncertainty, of about ±0.1 and
2.2 μmol kg− 1 for subtype 1 and subtype 2 respectively but, when integrated over depth, their contribution to the
total inventory of Cant uncertainty is larger than that of data‐related errors (STD = 2.0 Pg C for subtype 1;
STD = 6.7 Pg C for subtype 2; both N = 300). The combination of the last two cases, that is, Case III (Figure S10
in Supporting Information S1), results in a total method uncertainty of±5.6 μmol kg− 1, which is mainly governed
by data‐related errors along the water column (Case I); and a total Cant inventory uncertainty of ±7.1 Pg C,
primarily governed by methodological errors (Case II)—more specifically, by the effect of errors on the TMI
surface boundary conditions.

3.4. Cant Distribution at Depth

The total ocean Cant inventory at depth (from 3,500 to 5,500 m) estimated by our approach is 4.4 ± 3.4 Pg C. This
amount, when multiplied by the mean annual Cant growth rate from Gruber et al. (2019) of 1.9%, yields to an
annual rate of 0.08 PgC yr− 1. Over the 13 years of Gruber et al. (2019) study, this rate accounts for 1.2 Pg C at
depth, which is consistent with Gruber et al. (2019) estimate of 1 Pg C at depth. The averaged Cant below 3,500 m
(Figure 5) also assesses and validates Cant estimations by discerning whether the Cant presence could be attributed
to methodological uncertainty or a feasible presence of Cant (Figure S11 in Supporting Information S1). Globally,
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the spatial pattern of our deep‐Cant results falls between the TTD method versus OCIMv2021 model GF method.
In contrast, we mainly differ at depth with the ΔC*, with which, although we also show negative values in the
global integral, the biases are not as negative and neither coincide spatially.

The elevated Cant presence in the deep western NA coincides with the results of other methodologies and is also
consistent with previous evidences of deep‐Cant invasion in the NA (Gruber et al., 2019; Pérez et al., 2008;
Raimondi et al., 2021; Rhein et al., 2017; Vázquez‐Rodríguez et al., 2009). This suggests that a deep‐Cant signal in
the western NA is realistic, supported by the sensitivity analysis results (Figure S11 in Supporting Informa-
tion S1). Moreover, we observe local Cant signals along the Atlantic, such as in the deep Eastern NA basin or the
Argentine Basin, which coincide with the TTD method and OCIMv2021, and are also consistent with previous
studies (Ríos et al., 2010, 2012). The deep‐Cant pattern in the SO, which matches the TTD method, suggests a
realistic accumulation, as supported by the GF method and OCIMv2021 model which also show such invasion,
especially between 10ºW–60ºE longitudes that comprises the Lazarev to Cooperation seas (Figure S11 in Sup-
porting Information S1). This agrees with recent Cant findings in the dominant water mass at depth (i.e., the
AABW) in the SO for one decade later (Ohashi et al., 2023). In addition, it seems reasonable that our approach
shows less accumulation of Cant in the SO than the TTD method because of its full CFCs equilibrium assumption
(Matear et al., 2003; Waugh et al., 2006). The SO is a region where the uncertainties of climate change are high

Figure 5. Averaged Cant column concentration (μmolC kg
− 1) integrated below 3 500 m up to 5,500 m (5,580 m for OCIM v2021), centered in 1995, from six independent

Cant methodologies. For Sabine et al. (2004) negative Cant values have been maintained.
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(Hauck et al., 2023), but there is increasing evidence, such as deep‐warming (Kouketsu et al., 2011), suggesting
that there could be more anthropogenic signal than expected from an ice‐sheet isolated ocean. Additionally, in the
Pacific‐SO region we also present a deep‐Cant signal, coinciding with both the TTD method and TrOCA patterns.

Similar to the Cant integration above 3,500 m, the Indian and North Pacific regions exhibit distinct deep Cant‐
accumulation patterns compared to the rest (Figure 5). In both regions, our method cannot demonstrate that Cant
presence is distinguishable from zero (Figure S11 in Supporting Information S1), indicating that the Cant presence
is not statistically significant. The North Pacific shows a slight mean positive Cant concentration
(1.7 μmol kg− 1± 1.0; Figure 5) when compared to the methodologies that are not based onMCS data. In contrast,
we observe a negative pattern in the Indian Ocean which aligns with the negative TrOCA pattern, a method used
as an input‐data consistency exercise. The match in negative bias suggests there may be an issue with the MCS
data used. Furthermore, sensitivity testCase II revealed that the Indian Ocean has greater uncertainty at depth than
other regions when altering imposed TMI surface boundary conditions. Additionally, bottom points around
Australia and from Mawson to Ross Sea are subject to increased uncertainty (Gebbie & Huybers, 2010).
Therefore, our biased results in the Indian Ocean could result from a combination of input‐data quality and the
methodological approach.

Interestingly, a recent study (Müller et al., 2023) showed that some cruises used for the GLODAPv2 database in
the Indian Ocean provided their CO2 data slightly biased during the period used in this study, generating un-
derestimations of Cant in the Indian Ocean. This means that such bias could also affect the neural network (NN)‐
derived CT and AT climatological data we used here, which, once integrated over depth, could generate an impact
because of the large volume of deep layers (Müller et al., 2023). Particularly, the study proposed corrections for
the next update GLODAPv3 for the Indian Ocean that would explain ‐ as they fit with ‐ our negative‐biased Cant
results in the region. Since our MCS data comes from a NN‐derived climatology, we consider that such correction
must be included in a new NN‐MCS derived climatology with the next GLODAPv3 data, supporting the need for
the program's continuity and its data quality control.

4. Summary and Conclusions
We presented a back‐calculation method to estimate the steady‐state component of oceanic anthropogenic CO2
(Cant), that relies on marine carbonate‐system (MCS) data‐based climatologies and the steady‐state ocean cir-
culation model TMI (Gebbie & Huybers, 2010). This novel approach provides a coherent total Cant inventory that
compares well with other (four) independent methodologies, proving it to be a valid tool for back‐calculation
approaches, and supporting the versatility of data‐assimilated inverse models for biogeochemistry studies (as
in e.g., Carter et al., 2021; Davila et al., 2022; Lauvset et al., 2020; Liang et al., 2023; Sulpis et al., 2023).

As a novelty to former back‐calculation methods, our method refined the oxygen saturation assumption by ac-
counting for the sea‐air oxygen disequilibrium, which enhances the global Cant inventory estimate by 6%.
However, and as inherent to all back‐calculation approaches, the method is not exempt from limitations. The
sensitivity analysis performed led us to conclude that the deep (below 3,500 m) inventories in the Indian and
Pacific Oceans were the least confident estimates at the regional scale. Tracking‐back potential sources of error,
we related such regional discrepancies to limitations inherent to the input data and the TMI performance. Small
surface areas in the TMI surface boundary conditions can have a large impact on the deep‐ocean (Gebbie &
Huybers, 2011). As such, if the quality of the data in these boundary‐condition regions is compromised due to, for
example, scarce sampling coverage, then the propagation of its less accurately determined surface properties to
depth might influence the deep regional Cant inventories. Besides, since most of the total Cant inventory uncer-
tainty also comes from the errors at the surface TMI boundary conditions, it would also influence the magnitude of
the final uncertainty. In this study, the MCS data climatology used was centered in 1995, and based on in‐situ data
spanning 1972–2012. Thus, our result is subject to the propagation of surface boundary conditions in certain
under sampled regions, as in the Southern Ocean, which might have impacted the regional deep Cant inventory
estimates of the Indian and Pacific Oceans. The advancement in new climatologies based on the most recent
observations (e.g., WOA23, Keppler et al., 2023; Kolodziejczyk et al., 2024) will open up the possibility of
extending MCS based‐Cant inventories beyond the 2000s, and thus likely reducing the input‐data limitation of the
present method.

Another important point to consider is the surface boundary condition for the ΔCdis
π term. Getting this term is not

trivial, and future work should be addressed to explore alternative ways to compute it, for instance, by means of
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numerical simulations (Matsumoto & Gruber, 2005) and/or a compendium of the most recent Coupled Model
Intercomparison Project (CMIP6) models. Finally, recent advances are also opening the door to include the
seasonal variability of the ocean circulation transport operators in inverse modeling (Huang et al., 2021), so the
approach presented here could be applied to other mixing schemes.

Assessing the distribution and storage of Cant in the ocean is crucial in the context of climate change (Inter-
governmental Panel on Climate Change IPCC, 2019). Nevertheless, it implies distinguishing a signal of less than
4% from the dissolved inorganic carbon ocean reservoir, for which no single optimal method exists. Hence, we
need to continue advancing with a broad range of approaches. In situ MCS data are the most accurate ocean
carbon data sets to date. Sustained international research programs like GO‐SHIP, along with the Global Ocean
Data Analysis Project (GLODAP) quality control efforts, are essential for providing the research community with
full‐depth global ocean highly accurate MCS data, which serve as a key reference data set for, for example, model
validation, artificial intelligence (AI) learning and verification, or novel autonomous sensor calibration. This
study emphasizes the value of MCS data‐based approaches to compute Cant inventories by providing a useful
proof‐of‐concept method that will serve as a base for further progress.
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