Supplementary materials

Table S1. Contextualisation of meteorological parameters measured during the four seasonal 24-h cycles (in 2021) with regards to 3-year reference periods (from 2020 to 2022). Each meteorological parameter measured by the EC station during the 24-hour cycles was compared to a mean and standard deviation of the parameter measured continuously (i.e. every 10-min) over three full reference seasons (2020, 2021 and 2022). For all parameters, means and standard deviations were done in bold and ranges were done in brackets. Ta: air temperature (°C), PAR: photosynthetically active radiation (µmol photon $m^{-2} s^{-1}$), RH: relative humidity (%). n.a.: not available.

		Та	Daytime PAR	Wind speed	RH
		(°C)	$(\mu mol m^{-2} s^{-1})$	$(m s^{-1})$	(%)
Wintor	2 year reference	03+27	151 + 375	1 50 ± 2 21	83 3 + 10 2
vv IIItel	5-year reference	9.3 ± 2.7	434 ± 373	4.37 ± 2.21	03.3 ± 10.2
	period	(-0.7 – 19.1)	(10 - 1770)	(0.05 - 14.01)	(41.4 – 99.5)
	C1-winter 01/03-02/03/2021	11.4 ± 1.9	762 ± 465	2.33 ± 1.19	75.2 ± 10.0
		(8.7 - 15.3)	(10 - 1335)	(0.45 - 5.09)	(54.8 - 89.5)
Spring	3-year reference	14.8 ± 4.4	946 ± 668	3.94 ± 1.96	72.8 ± 14.2
	period	(2.5 - 35.7)	(10 - 2539)	(0.04 - 14.29)	(24.5 - 99.4)
	C2-spring	13.8 ± 2.9	1134 ± 668	3.80 ± 1.29	65.6 ± 14.4
	27/04-28/04/2021	(9.4 - 20.1)	(10-1964)	(0.38 - 6.27)	(31.5 - 84.1)
Summer	3-year reference	19.9 ± 3.1	970 ± 662	3.56 ± 1.54	74.0 ± 13.9
	period	(12.2 - 36.3)	(10 - 2428)	(0.03 - 10.49)	(16.6 – 99.6)
	C3-summer	19.6 ± 0.6	976 ± 728	3.11 ± 0.83	78.6 ± 2.6
	26/07-27/07/2021	(18.5 - 20.8)	(10 - 2216)	(1.14 - 5.05)	(73.2 - 88.9)
Fall	3-year reference	12.7 ± 4.1	476 ± 393	n.a.	81.9 ± 9.5
	period	(-0.5 - 23.7)	(10 - 2062)		(42.2 - 99.4)
		. ,	. /		
	C4-fall	10.3 ± 0.7	160 ± 93	n.a.	87.8 ± 6.5
	06/12-07/12/2021	(7.9 - 11.3)	(10 - 340)		(73.4 - 97.5)
			· /		(-····)

Table S2. Seasonal comparisons of water pCO_2 measured every 10-min between the 5-day reference periods and the corresponding 24-h cycles (see section 2.2). Means and standard deviations are in bold and ranges are in brackets. n.a.: water pCO_2 could not be measured during low tide periods over the winter reference period (from 26/02 to 01/03/2021).

		Water pCO ₂ (ppmv)
Winter	Winter reference period 26/02-02/03/2021	n.a.
	C1-winter	669 ± 327
	01/03-02/03/2021	(321 – 1461)
Spring	Spring reference period	296 ± 113
	23/04-28/04/2021	(106 – 596)
	C2-spring	239 ± 105
	27/04-28/04/2021	(106 – 416)
Summer	Summer reference period	307 ± 178
	23/07-27/07/2021	(85 - 668)
	C3-summer	271 ± 182
	26/07-27/07/2021	(89 - 597)
Fall	Fall reference period	452 ± 88
	03/12-07/12/2021	(260 - 753)
	C4-fall	422 ± 73
	06/12-07/12/2021	(311 – 541)

Fig. S1. Hourly variations of water biogeochemical parameters sampled during the seasonal 24-h cycle from March to December 2021: DOC and POC (μ mol L⁻¹) as organic carbon parameters, DIC and TA (μ mol kg⁻¹) as carbonate system parameters, Chla (μ g L⁻¹) as biological parameter, DSi, DIP and DIN as ecological parameters (nutrients, μ mol L⁻¹). Simultaneously, water heights (Hw, m) were also measured every 10-min by the STPS probe (Fig. 1). Grey areas correspond to night-time periods. Each graduation of the x-axis corresponds to two hours. Graduations of DSi and DIN were not the same between C1-winter and other cycles to a better visualization of tidal variations. Vertical dotted lines allow to distinguish the periods of low tide day (LT/Day, 1), high tide day (HT/Day, 2), low tide night (LT/Night, 3) and high tide night (HT/Night, 4).

Table S3. Multiple factor variance analysis of biogeochemical parameters measured from hourly water samples during the four 24-h cycles (n = 59). Seasonal factor assesses variability between 24-h cycles (C1-winter, C2-spring, C3-summer and C4-fall); tidal factor assesses variability between high tide (Hw > 0.50 m) and low tide (Hw = 0.50 m); diurnal factor assesses variability between daytime (PAR > 10 μ mol m⁻² s⁻¹) and night-time (PAR < 10 μ mol m⁻² s⁻¹). Parameters that did not respect a normal distribution were transformed into $\log_{10}(x)$ or $\log_{10}(x+1)$ for variance analysis. The F values of the Fisher test were added. The higher the value of F, the greater the influence of the factor on the parameter.

	Seasonal factor	Tidal factor	Diurnal factor
log ₁₀ (Chla)	Yes	Yes	No
	F = 5.9	F = 30.2	F = 0.1
	p < 0.001	p < 0.0001	p = 0.74
log ₁₀ (DIC)	Yes	Yes	No
	F = 47.9	F = 18.1	F = 0.3
	p < 0.0001	p < 0.0001	p = 0.61
log ₁₀ (TA)	Yes	Yes	No
	F = 25.9	F = 91.0	F = 0.1
	p < 0.0001	p < 0.0001	p = 0.79
log ₁₀ (POC)	No	Yes	No
	F = 2.2	F = 161.2	F = 0.8
	p = 0.10	p < 0.0001	p = 0.37
log ₁₀ (DOC)	Yes	Yes	No
	F = 4.2	F = 188.5	F = 0.8
	p < 0.05	p < 0.0001	p = 0.36
log ₁₀ (PON)	Yes	Yes	No
	F = 5.1	F = 174.3	F = 0.7
	p < 0.05	p < 0.0001	p = 0.41
$log_{10}(NO_3_NO_2 + 1)$	Yes	Yes	No
	F = 151.6	F = 53.8	F = 1.8
	p < 0.0001	p < 0.0001	p = 0.19
$log_{10}(NH_4 + 1)$	Yes	Yes	No
	F = 39.2	F = 60.0	F = 0.8
	p < 0.0001	p < 0.0001	p = 0.39
$\log_{10}(\text{DIP}+1)$	Yes	Yes	Yes
	F = 25.7	F = 23.2	F = 6.3
	p < 0.0001	p < 0.0001	p < 0.05
log ₁₀ (DSi +1)	Yes	Yes	No
	F = 28.0	F = 40.8	F = 1.1
	p < 0.0001	p < 0.0001	p = 0.31

Fig. S2. Planktonic aquatic metabolism and associated standard errors at diurnal/tidal scale over the seasonal 24-h cycles: (a) NEP_{pk/Chla} (b) $R_{pk/Chla}$ and (c) GPP_{pk/Chla} are planktonic metabolism rates standardized per unit of Chla biomass (µmol µg⁻¹ h⁻¹). (d) $R_{pk/Dac}$ are planktonic respiration rates standardized per unit of bacteria abundance (µmol cell⁻¹ h⁻¹). NEP_{pk/Chla} > 0 corresponds to an autotrophy (C sink in water) and NEP_{pk/Chla} < 0 corresponds to a heterotrophy (C source in water). LT/Day: low tide day; HT/Day: high tide day; LT/Night: low tide night; HT/Night: high tide night.

	DIN:DIP	DIN:DSi	DSi:DIP
C1-winter	45.1	1.5	33.3
	(29 – 57)	(0.6 - 2.6)	(16-65)
C2-spring	17.0	0.3	37.1
	(6.0 – 34)	(0.0 - 0.9)	(26 – 132)
C3-summer	3.3	0.1	32.3
	(0.2 - 8.4)	(0.0 - 0.2)	(20-67)
C4-fall	23.1	0.7	31.7
	(19 - 64)	(0.5 - 1.0)	(19 - 92)

Table S4. Seasonal medians of DIN:DIP, DIN:DSi and DSI:DIP molar ratios (medians in bold and ranges in brackets) measured from water samplings at the Bossys perdus salt marsh.