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A B S T R A C T

Benthic biogenic habitats are crucial for coastal marine ecosystems, supporting food and shelter for a large 
range of marine species, but they are increasingly threatened by increasing anthropogenic impacts. While 
large-scale monitoring data are increasingly available, tools to describe benthic habitat changes in 
standardised and yet finely resolved manner are still needed. The aim of this study was to define reef benthic 
habitat states and explore their spatial and temporal variability on a global scale using an innovative clustering 
pipeline. For this purpose, we used substrate cover data collected along 6554 transects worldwide by citizen 
scientists contributing to the Reef Life Survey program. We applied an innovative clustering pipeline that 
combines three algorithms — Uniform Manifold Approximation and Projection (UMAP) for dimension reduction; 
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) — to identify benthic habitat 
states and Shapley values to interpret the clusters identified. This unsupervised pipeline identified 17 distinct 
clusters worldwide, representing typical temperate and tropical benthic habitats such as large canopy forming 
algae and branching corals, respectively, as well as transitional states between different habitat states. Tem-
poral site-specific analyses further demonstrated the pipeline’s effectiveness in capturing fine-scale habitat 
dynamics. By providing a standardised, scalable approach, this work enables consistent tracking of benthic 
habitat changes across spatial and temporal scales worldwide. This study also showcases the potential of 
integrating the UMAP-HDBSCAN pipeline with Shapley values for clustering noisy ecological data from citizen 
science initiatives.

1. Introduction

Benthic habitats host diverse species and communities (Sunday et al., 
2017). They contribute to the functioning of marine coastal ecosystems 
and the services they provide to humanity (Barbier et al., 2011). These 
services include shoreline protection (Barbier, 2017), carbon seques-
tration (Fourqurean et al., 2012), and commercial fisheries (Barbier, 
2017). As modifiers to abiotic substrates, foundation species, such as 
kelp, seagrass, and coral, engineer biogenic habitats that contribute to 
specific functions of coastal ecosystems (Elith and Leathwick, 2009). For 
instance, the three-dimensional structure of coral reefs can shelter fish 
assemblages from predators (Hixon and Beets, 1993); seaweed or mussel 
beds can buffer environmental conditions (Jurgens et al., 2022; 

Whitaker et al., 2023); and kelp forests are both habitat and food sources 
for various fish and invertebrate species (Edgar et al., 2004). Thus, 
changes in coastal benthic habitats have direct cascading consequences 
on marine ecosystem structure, functioning, and services.

As hotspots of human activity, coastal ecosystems can be adversely 
affected by multiple anthropogenic stressors (Halpern et al., 2019), 
including global climate change (Bowler et al., 2020; Burrows et al., 
2014). The impact of these multiple stressors on benthic communities 
and ecosystems is frequently mediated by the response of biogenic 
habitats such as kelp, seagrass or coral (Harley et al., 2006; Rocha et al., 
2015a). For example, in the vicinity of urban areas, eutrophication can 
induce replacement of kelp forests by turf algae (Filbee-Dexter and 
Wernberg, 2018; Pessarrodona et al., 2021); marine heatwaves can lead 
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to coral bleaching, and, with intensification in magnitude and fre-
quency, long-term decline in tropical coral reefs (Bellwood et al., 2004); 
and overfishing of herbivorous coral reef fishes can lead to macroalgae 
overgrowth (Hughes et al., 2007). Therefore, habitat changes are among 
the greatest symptoms of anthropogenic impacts on shallow marine 
systems, with major consequences for marine biodiversity (Rocha et al., 
2015b).

As anthropogenic stressors in marine ecosystems increase and 
diversify (Halpern et al., 2019), habitat changes will likely become more 
frequent in the world’s seas (Conversi et al., 2015). Detecting and 
anticipating future habitat changes in benthic ecosystems requires a 
thorough understanding of the current state and distribution of benthic 
habitats and characterisation of underlying drivers across multiple 
scales. Currently, detailed knowledge of habitat distribution is mostly 
local, i.e., at scales ranging from study sites (10 m - 100 m) or bay (100 m 
- 10 km) up to regions (10 km - 100 km) (e.g., Robert et al. (2015); 
Wicaksono et al. (2019)). At larger scales, habitat distribution maps are 
primarily based on physical, geomorphological, and biogeochemical 
ocean properties (e.g., Brown et al. (2011); Lecours et al. (2015); Son-
newald et al. (2020)). At such scales, habitat maps either disregard 
biogenic habitats or focus on a small number of specific habitat-formers 
(Assis et al., 2020; McKenzie et al., 2020), and thus rarely provide in-
formation on community composition. Large-scale seafloor habitat maps 
of either abiotic or biogenic features also tend to integrate data over 
large timescales (e.g. decades).

Knowledge of benthic habitat changes thus remains highly regional 
(see, e.g., Cattano et al. (2020)). In that context, several global studies 
have collated heterogeneous regional monitoring data to document 
changes in emblematic habitat-formers, such as seagrass spp. (Dunic 
et al., 2021; Waycott et al., 2009), kelp beds (Filbee-Dexter and Wern-
berg, 2018; Krumhansl et al., 2016), or coral reefs (Eddy et al., 2021). 
However, these independent studies on specific habitat forms are not 
sufficient to gain a comprehensive understanding of how the seafloor 
habitat mosaic has changed through time at a global scale in the face of 
anthropogenic pressures. Our understanding of current changes in the 
mosaic of habitats on the seafloor is impeded by the lack of a large-scale, 
standardised, data-driven definition, and maps describing benthic 
habitat and their potential states.

In this study, we aim to develop a data-driven pipeline that distin-
guishes different iconic benthic habitats observed spatially, and apply 
this to characterise stepwise changes in habitat ecological states through 
time. Because scientific monitoring programs are often expensive (Edgar 
et al., 2016) and restricted in their spatial and/or temporal cover 
(Rhodes et al., 2015), participatory science programmes have emerged 
as a valuable means to increase monitoring programme cover and res-
olution. In this study, we leverage the benefits of a citizen science pro-
gram to characterise benthic habitat states at the global scale.

Reef Life Survey (RLS) relies on standardised diver-based assessment 
along 50-m-long transects to estimate fish and invertebrate species 
abundance, as well as image-based percentage cover of coastal benthic 
habitats (Edgar and Stuart-Smith, 2014). Estimates of habitat percent-
age cover have already proven useful for defining habitat states at a 
regional scale through the use of unsupervised machine learning tech-
niques (Cresswell et al., 2017; Pelletier et al., 2020). However, the 
methods proposed in these previous studies come with a number of 
limitations when upscaled at a global level. In particular, the occurrence 
and abundance of habitat-forming species are expected to show 
nonlinear responses to environmental changes (Oksanen and Minchin, 
2002), especially across large environmental gradients.

Consequently, we applied a new workflow that combines two algo-
rithms selected for their effectiveness in both handling heterogeneous, 
noisy, high-dimensional data, such as the RLS dataset, and capturing 
non-linear relationships as commonly described in ecological datasets. 
Specifically, we used (1) Uniform Manifold Approximation and Projection 
(UMAP), a dimension reduction technique that preserves complex 
nonlinear structures and patterns (McInnes et al., 2020), and (2) 

Hierarchical Density-Based Spatial Clustering of Applications with Noise 
algorithm (HDBSCAN) that can identify clusters of varying shapes and 
sizes while filtering outlier noise (Campello et al., 2013; McInnes et al., 
2017).

These two algorithms have been successfully applied across a wide 
range of research fields. For example, UMAP has been used to analyse 
and visualise genomic datasets from single-cell analysis (see for instance 
Becht et al. (2019), Funnell et al. (2022) or Packer et al. (2019)), while 
HDBSCAN has been employed for unsupervised classification of stellar 
objects (Logan and Fotopoulou, 2020) and clustering molecular dy-
namics data (Melvin et al., 2018). In combination, UMAP and HDBSCAN 
have proven effective in clustering solar wind data (Bloch et al., 2020) 
and also for clustering data from scanning transmission electron mi-
croscopes (Blanco-Portals et al., 2022). Within the field of ecology, 
UMAP has been utilised for community visualisation and as a pre-
processing step prior to clustering (Milošević et al., 2022), and the 
combination of UMAP and HDBSCAN has been applied to identify areas 
of similar food web structures (Ohlsson and Eklöf, 2020). Our study 
presents a novel application of these algorithms to analyse benthic or-
ganisms’ cover data, with the goal of classifying coastal marine habitats 
and potentially distinguishing between different habitat states, ulti-
mately providing a template for tracking seafloor changes on a global 
scale.

In this study, our primary aim is to identify habitat states on a global 
scale using UMAP and HDBSCAN. Secondly, we aim to validate these 
groupings by thoroughly characterising the composition of each cluster 
and examining their biogeographical distribution. Lastly, we demon-
strate the utility of our classification by investigating the temporal 
variability in the composition of habitat states at selected sites.

2. Materials and methods

2.1. Data

2.1.1. Reef Life Survey photoquadrat dataset
The RLS http://www.reeflifesurvey.com/ is a hybrid citizen science/ 

professional researcher program that monitors reef communities around 
the world using scuba-diving visual census. Survey methodology, 
including protocols, diver training, data quality assurance and data 
management, is detailed by Edgar and Stuart-Smith (2014), Edgar et al. 
(2020) and Cooper and Oh (2023). Following a dive-based visual census 
of mobile megafauna along a 50-m transect, trained citizen scientists 
collect digital pictures of the seabed (hereafter referred to as “photo-
quadrats”). A total of 20 photoquadrats, which each approximately 
covers 0.3 m × 0.3 m, are collected every 2.5 m along the transect 
(Edgar et al., 2020). Photoquadrats are then visually processed using the 
Squidle+ https://squidle.org/ software and point counts annotation. A 
minimum of 100 point counts per transect (i.e. ≥ 5 point counts per 
photoquadrat) are thus used to estimate percentage covers for various 
benthic substrate categories defined based on the CATAMI benthic im-
agery classification scheme (Althaus and Hill, 2015; Edgar et al., 2020). 
All analyses presented in this paper rely on these mean percentage cover 
estimates at the 50-m transect level. To reduce biases related to high- 
level classification into detailed CATAMI groups for specific applica-
tions, we grouped the original benthic habitat categories into 24 broader 
categories that can overall contribute to seascape features along RLS 
transects (see Table 1 and Appendix A for descriptions and rationale). 
This aggregation was informed by the expertise of RLS specialists to 
better capture the range of dominant coastal substratum types present 
along RLS transects at a global scale. The majority of aggregations 
aligned with a ‘parent node’ on the CATAMI scheme, and were deemed 
necessary where data from the child nodes were patchy. With the 
exception of habitat-forming corals, sessile invertebrates were grouped 
to provide consistency between regions, and because image resolution 
sometimes prohibits consistent classification of these taxa, for instance 
ascidians and sponges can be difficult to tell apart.
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We extracted the RLS photoquadrat dataset on 24 January 2023. 
From the original 8154 transects, we removed partially scored transects. 
For transects annotated multiple times on various research projects, 
mean percentage cover estimates were considered. After fully curating 
the dataset, the photoquadrat dataset consisted of 6554 transects at 
2249 sites worldwide. All subsequent analyses were performed at the 
transect level to consider local-scale variation in the state of benthic 
habitats.

2.2. Dimension reduction and clustering pipeline

To account for the nonlinear, high-dimensional, and complex nature 
of the ecological data, we combined a graph theoretical dimension 
reduction technique and a density-based classification technique, as 
previously applied to identify ecoprovinces based on biogeochemical 
ocean data at a global scale (Sonnewald et al., 2020). Among alternative 
methods available, we applied the UMAP algorithm (McInnes et al., 
2020) and the HDBSCAN algorithm (Campello et al., 2013; McInnes 
et al., 2017) for dimension reduction and clustering, respectively.

2.3. Dimension reduction - UMAP

The UMAP algorithm is a nonlinear reduction technique (McInnes 
et al., 2020). Unlike more traditional methods applied in ecology, such 
as Principal Component Analysis, UMAP preserves both the local structure 
(the distance between neighbouring points) and the global structure (the 
distances between the most different points) of the raw dataset (McInnes 
et al., 2020). These two key properties are useful in reducing the 
dimension of complex genomic (Dorrity et al., 2020) or ecological 
(Milošević et al., 2022) data before clustering.

2.3.1. Principles of UMAP and details of its main hyperparameters
UMAP reduces the dimensionality of a dataset by first creating a 

high-dimensional graph that connects each data point to its k-nearest 

neighbours. Then, UMAP produces a low-dimensional representation of 
this high-dimensional graph that reflects the original dataset (McInnes 
et al., 2020). UMAP requires a distance matrix to construct the initial k- 
nearest-neighbour graph. Here, we applied the Chord transformation to 
standardise percentage cover data as relative cover per transect before 
computing Euclidean distances between transects (Legendre and Gal-
lagher, 2001).

In addition to the choice of a suitable distance metric, two UMAP 
hyperparameters can influence the dimension reduction. The first is the 
number of neighbours (n_neighbors) that UMAP must consider when 
creating its k-nearest neighbour graph. Low values of n_neighbors allow 
the embedding to preserve the local structure of the original distance 
matrix while larger ones better preserve the global structure (McInnes 
et al., 2020). The second parameter, min_dist, controls the packing 
density at which UMAP is allowed to clump similar points in the 
reduced-dimensional space. A high value of min_dist will tend to preserve 
the overall topological structure of the data, whereas a low value allows 
UMAP to clump closely similar points on the embedding. The value of 
n_neighbors has been tuned in this study (see following section and Ap-
pendix B for details), while the value of min_dist has been set to 0.0, since 
this value allows a denser representation of the low-dimensional dataset, 
an important transformation before using a density-based classification 
algorithm (Vermeulen et al., 2021).

2.4. Clustering - HDBSCAN

After embedding our data into a two-dimensional space, we clustered 
the generated projections of the data with the machine learning algo-
rithm named “Hierarchical Density-Based Spatial Clustering of Applications 
with Noise“ (HDBSCAN).

HDBSCAN shares both similarities and differences with traditional 
clustering algorithms used in ecology. Like Ward’s hierarchical clustering, 
HDBSCAN does not require the user to define the number of clusters in 
advance and provides a hierarchical clustering solution. However, unlike 

Table 1 
Description of the 24 categories used in this study to capture the overall diversity of habitat types sampled by Reef Life Surveys around the world. The 50 original RLS 
categories were grouped into these 24 categories that represent ecologically consistent groups associated with different levels of structural complexity.

Habitat Categories Description

Erect algae
Large canopy forming algae Large overstorey algae forming a canopy, including kelps or large fucoids

Bushy Fucoid like Robust erect leaf-shaped brown algae
Other Brown algae Thick or thin-sheet like erect brown algae

Red algae Foliose erect red algae
Green algae Thin-sheet like, thick, or ribbon-like, erect green algae

Erect calcareous algae
Geniculate coralline algae Red erect calcified segmented algae

Green calcified algae Small calcified green algae
Encrusting algae

Crustose coralline algae Red algae forming a small calcified crust over hard substrate
Encrusting algae Non-coralline algae forming a leathery crust over substrate

Mat-forming Algae
Filamentous algae Filamentous algae, epiphyte or rock-attached

Turf algae Fine and mat-forming filamentous algae growing on hard substrate
Plant

Seagrass Vertical ribbon-like marine plant
Sessile invertebrates

Encrusting corals Stony corals forming a crust over hard substrate
Branching coral Branching coral forming large colonies

Foliose/Plate corals Stony corals forming tabular or foliaceous colonies
Massive corals Stony corals characterised by large, ball- or boulder-shaped colonies with a compact structure

Large-polyp stony corals Large lobed stony coral, usually free-living
Soft corals and gorgonians Soft coral or gorgonian in the sub-class Octocorallia

Calcareous hydrocorals and octocorals Branching or foliaceous coral-like
Other sessile invertebrates Habitat-forming sessile invertebrates (e.g. sponges, ascidians, bryozoans or molluscs) excluding corals

Seabed Materials
Dead coral Dead attached coral skeleton

Bare rocky substrate Bare rock
Unconsolidated substrate Gravel, shell, coral rubble

Sand Sand and fine sediments
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K-means and Ward’s clustering algorithms, HDBSCAN allows for clusters 
with varying shapes and densities. Additionally, HDBSCAN offers both 
hard clustering (where each sample is assigned to a single cluster) and 
soft clustering (where samples are assigned probabilities of belonging to 
different clusters). Beyond identifying clusters of different shapes and 
densities from a dendrogram, HDBSCAN has several advantages for 
ecological applications. Firstly, it can exclude noisy observations, leav-
ing them unclustered, a particularly useful property when dealing with 
citizen science dataset where some outliers are possible. Secondly, 
HDBSCAN can highlight most representative members of each cluster, 
enhancing both classification and interpretation (Campello et al., 2013; 
McInnes et al., 2017).

2.4.1. Principles of HDBSCAN and details of its main hyperparameters
The HDBSCAN clustering algorithm firstly computes the core dis-

tance for the k-nearest neighbours for all points in the dataset. Then, it 
computes the extended minimum spanning tree from a weighted graph, 
where the edges are weighted by the distance between two points while 
taking into account the density of points around them. Then, HDBSCAN 
builds a hierarchy from the extended minimum spanning tree by cutting 
it at different levels of density. If the cut results in the creation of clusters 
smaller than the minimal number of observations set by the user min_-
cluster_size, all points members of these clusters are declared as noise by 
the algorithm. The algorithm stops when it declares all points as noise 
and produces a tree-like structure where each node corresponds to a 
cluster varying in shape and density (Campello et al., 2013; McInnes 
et al., 2017). In this study, we tuned only one parameter – the mini-
mum_cluster_size, controlling for the minimal number of observations 
required to form a cluster, and otherwise used the default parameters.

2.5. Hyperparameter tuning and evaluation of the clustering output

For this pipeline, we search for the best combination of hyper-
parameters for both UMAP (n_neighbors) and HDBSCAN (mini-
mum_cluster_size) using a complete grid search. We exhaustively explored 
the results sensitivity to the two hyperparameters from 10 to 500, 
resulting in 241081 models evaluated. The best combination was found 
by optimising both the quality of the embedding and the clustering, 
using two criteria. The UMAP embedding was evaluated with the 
trustworthiness metric (Venna and Kaski, 2001), ranging from 0 to 1 
(the higher the index, the more the local structure of the original data is 
preserved). The quality of the clustering was evaluated using the Density- 
Based Clustering Validation (DBCV) as it is one of the few evaluation 
metrics capable of handling both noise in the data and the non-convex 
shape of clusters (see Moulavi et al. (2014) for a detailed discussion 
on these challenges and comparisons with other clustering evaluation 
indices). DBCV measures both compactness within and separations be-
tween clusters (Moulavi et al., 2014) and ranges between − 1 and 1, 
where higher scores indicate better clustering quality (Moulavi et al., 
2014). The sensitivity of the pipeline to the choice of hyperparameters is 
described in Appendix B.

A previous analysis by Cresswell et al. (2017) on a national subset of 
this dataset yielded nine groups of habitats. We expected to find at least 
that many groups at the global scale, and thus constrained our search of 
the best hyperparameter combinations to the solution yielding at least 
the same number of clusters as Cresswell et al. (2017). Among these 
solutions, we selected the best combination of hyperparameters 
(n_neighbors = 400; min_cluster_size = 74) in terms of both their trust-
worthiness and DBCV scores, while maximizing the number of clusters 
for a finer granularity. We finally compared outputs from the best 
UMAP-HDBSCAN solution to Agglomerative clustering used in Cresswell 
et al. (2017) at 212 common transects and also compared the pipeline 
results with K-means as well as Ward’s hierarchical clustering (Appendix 
E).

2.6. Interpretation of the clusters

To interpret individual clusters identified with UMAP-HDBSCAN, we 
calculated the mean percentage cover of each habitat in each cluster. 
Then we used the SHAP framework to further explore how potential 
nonlinear interactions between variables can determine clustering out-
comes (Lundberg and Lee, 2017). Because of the computational cost of 
applying SHAP to our complete pipeline, we used a classification tree 
(Breiman et al., 1984) to approximate the clustering pipeline (i.e., to 
predict label cluster membership based on the raw percentage cover 
variables) before applying the SHAP framework. Classification trees 
were trained with the default scikit-learn (version 1.2.0) with the 
following hyperparameter (i.e. criterion = ‘gini’, splitter = ‘best’, max_-
depth = None, min_samples_split = 2, min_samples_leaf = 1, min_weight_-
fraction_leaf = 0.0, max_features = None, random_state = None, 
max_leaf_nodes = None, min_impurity_decrease = 0.0, class_weight = None, 
ccp_alpha = 0.0, monotonic_cst = None). We trained the classification 
trees and estimated their ability to mimic our clustering pipeline using a 
stratified train-test split to ensure that the relative frequency of each 
cluster label is preserved in the train and test fold. The training and test 
sets contain 80 % and 20 % of the data, respectively. Then, we used a 
minimal cost-complexity pruning algorithm to avoid overfitting of our 
classification tree (Breiman et al., 1984). We estimated classification 
error rates using the F1-score (Van Rijsbergen, 1979). The classification 
error rates were satisfactory, with F1-scores of 0.99 and 0.94 on the 
training and test sets, respectively. Based on the SHAP values that esti-
mate the influence of each variable in the definition of the cluster, we 
examined potential interactions between the two most characteristic 
variables for each cluster by performing a piecewise-linear interpolation 
of the SHAP values. Finally, we completed the interpretation by 
extracting the photoquadrats for these transects considered by 
HDBSCAN as the most representative members of their cluster.

2.6.1. Spatio-temporal distribution of benthic habitat states
We first explored the latitudinal distribution of each cluster. We also 

summarised their occurrence within each of the Marine Ecoregions of the 

Fig. 1. Two-dimensional UMAP embedding of the benthic cover data of the 
6554 RLS transects. Each point corresponds to an RLS transect, colored ac-
cording to membership for the selected UMAP-HDBSCAN pipeline. Black dots 
represent points classified as noise (n = 1464). The 17 clusters can be inter-
preted as follows (see Fig. 2 and 1–17 in Appendix B): 1. Foliose brown algae (n 
= 148) 2. Filamentous algae (n = 208) 3. Other Sessile invertebrates (n = 185) 
4. Foliose red algae (n = 123) 5. Seagrass (n = 83) 6. Soft coral and gorgonians 
(n = 98) 7. Bushy fucoids (n = 577) 8. Large Canopy forming algae (n = 894) 9. 
Unconsolidated substrate (n = 151) 10. Crustose coralline and turf algae (n =
286) 11. Green calcified algae (n = 166) 12. Bare substrates (n = 329) 13. 
Crustose coralline algae (n = 409) 14. Sand (n = 220) 15. Branching coral (n =
110) 16. Turf and sand (n = 207) 17. Turf algae (n = 897). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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World (MEOW; Spalding et al. (2007)) sampled by the RLS. In addition to 
examining dominant clusters per ecoregion, we also computed the 
proportion of transects classified as noise, as well as the Gini-Simpson 
diversity index. We chose this diversity index because it focuses on 
changes in dominance patterns, is more indicative of changes in land-
scapes, and is more robust to low sampling issues than other diversity 
indices (Lande et al., 2000).

Finally, we investigated temporal trends at the site level by 
comparing the proportion of transects classified into the different 
habitat states at five different temperate Australian locations previously 
reported by Stuart-Smith et al. (2022). We were interested in deter-
mining the extent to which changes in the proportion of transects clas-
sified in the different habitat states at a location could be an indicator of 
ecological changes.

3. Results

Based on exploration of hyperparameter space, both the trustwor-
thiness score of 0.98 ± 0.002 (mean ± sd) and DBCV score of 0.46 ±

0.08 (mean ± sd) for solutions containing at least 9 groups suggest that 
these solutions produce reliable clustering of the RLS photoquadrat 
dataset (Fig. 1 in Appendix B). Among the top 100 solutions, the optimal 
number of clusters varied between 9 and 184 (number of clusters 
22.81 ± 18.37; mean ± sd), while the mean number of points classified 
as noise was 2,207.33 ± 364.95 (mean ± sd). Hereafter, we focus on the 
single solution yielding the highest resolution (i.e. the greatest number 
of clusters; see Fig. 1 for a description of the habitat states uncovered), 
and the smallest number of transects classified as noise (1464 transects). 
This solution has a trustworthiness score of 0.98 for UMAP and a DBCV 
score of 0.60 for HDBSCAN. The number of clusters identified by this set 
of hyperparameters is 17 (Fig. 1).

The 17 clusters identified can be summarised as four broad habitat 
groups (Fig. 2; Fig. 3; see Fig. 2-19 in Appendix B for their distribution 
on the globe and 1-17 in Appendix C for their interpretation with SHAP 
framework): (1) temperate habitats, (2) subtropical and tropical habi-
tats, (3) broadly distributed habitats and (4) opportunistic habitats (i.e., 
habitats characterised by the presence of filamentous algal species or 
turf, generally with strong anthropogenic influences).

Transects within temperate regions can be classified into five major 
clusters with contrasting dominance of sessile invertebrates, foliose red 
algae, seagrass, bushy foliose algae and canopy-forming algae, as fol-
lows: cluster 3 is dominated by at least 30 % and on average 42 % of 
sessile invertebrates. Cluster 4 is dominated by at least 40 % cover of 
foliose red algae. Cluster 5 is dominated by at least 30 % and on average 
40 % seagrass. Cluster 7 is dominated by at least 20 % cover, an average 
of 56 % fucoid bushy algae, and the absence of canopy-forming algae. 
Cluster 8 is characterised by a cover of at least 20 % and an average of 
55 % of canopy-forming algae with fucoid bushy algae absent.

Three clusters correspond to tropical and subtropical habitat types. 
Cluster 6 which is characterised by at least 30 % and on average 37 % of 
soft corals and gorgonians. Cluster 11 is composed of 20 % cover and an 
average of 35 % green calcified algae. Finally, cluster 15 is composed of 
at least 35 % and on average 55 % branching coral. This is the only group 
of corals identified in the dataset, which is unusual given four categories 
of corals that form colonies were originally defined.

Five clusters correspond to broadly distributed habitats that can 
occur across both temperate and tropical latitudes. Cluster 1 is domi-
nated by at least 30 % and on average 46 % brown foliose algae. Cluster 
9 is dominated by the presence of at least 30 % and on average 41 % 
unconsolidated substrate. Cluster 12 has at least 30 % and on average 42 
% bare substrate. Cluster 13 is characterised by 40 % and on average 51 
% of crustose coralline algae with an absence of turf algae. Cluster 14 has 
at least 30 % and an average of 53 % sand without turf algae.

Finally, four groups correspond to opportunistic habitats. Cluster 2 is 
dominated by at least 30 % cover and an average of 39 % filamentous 
algae. Clusters 10, 11 and 17 are all dominated by turf algae. Cluster 10 

is composed of at least 30 % and on average 39 % turf algae, at least 20 
% and on average 28 % crustose coralline algae. Cluster 16 is charac-
terised by the presence of at least 30 % and on average 48 % turf algae, 
and a minimum cover of 20 % and on average 26 % sand. Cluster 17 is 
composed of at least 40 % and on average 60 % turf algae with crustose 
coralline algae absent.

These 17 clusters are consistent with (i) previous identifications of 
nine major clusters along the Australian coastline (Cresswell et al. 
(2017) based on a subset of the dataset used here; see Fig. 1 and 2 in 
Appendix E); as well as (ii) clustering results obtained using commonly- 
used clustering algorithms (i.e. Ward’s clustering and K-means; Fig. 3 
and 4 in Appendix E). Overall, UMAP-HDBSCAN yields more homoge-
neous clusters than alternative algorithms (constrained to the same 
number of clusters) as assigning a fraction (22 % of observations) to the 
noise category, rather than forcing these into the closest group. The 17 
clusters identified offer a finer insights into reef habitat states relative to 
Cresswell et al. (2017)’s nine broad categories (for instance, the “barren” 
habitat identified by Cresswell et al. (2017) gets subdivided in our 
classification according to dominance of crustose coralline algae, other 
sessile invertebrates or bare substrate).

The clusters identified by the UMAP-HDBSCAN pipeline show a 
marked latitudinal gradient (Fig. 3). Red algae, filamentous algae, fucoids, 
large canopy-forming algae and seagrass are essentially distributed overall 
in the temperate zones across latitudes higher than 25◦ (Fig. 3). In 
contrast, four habitat states, namely soft corals and gorgonians, green 
calcified algae, sand and turf, and branching coral, essentially occur in 
tropical latitudes (lower than 25◦; Fig. 3). However, some groups are 
relatively ubiquitous across all surveyed latitudes, such as those asso-
ciated with transects classified as bare substrate and unconsolidated sub-
strate, brown algae, crustose coralline algae with and without turf algae, 
and turf algae (Fig. 3). It should also be noted that the transects 
considered noisy are also evenly distributed across all latitudes (Fig. 3).

The spatial distribution of transects sampled by RLS volunteers is 
particularly concentrated in Australia (Fig. 4). However, other areas 
such as the Caribbean, the Canary Islands and French Polynesia have 
also been extensively surveyed with more than 50 transects (Fig. 4. a). 
Globally, three habitat types dominate in terms of occurrences in all 
ecoregions surveyed, namely bare substrate (n = 20), turf algae (n = 17), 
and large canopy-forming algae (n = 11). These three habitat types 
dominate in 37 % of the ecoregions sampled by the RLS (Fig. 4 b). Two 
habitat types identified by the UMAP-HDBSCAN pipeline, seagrass and 
red algae, are not dominant on the surveys of reef habitats in any of the 
world’s ecoregions. The patterns of dominance of the different clusters 
also vary along the latitudinal gradient (Fig. 4 b), in line with the lat-
itudinal distribution of each cluster (Fig. 3). These latitudinal variations 
of dominance are visible both at a global scale, but also along the coasts 
of certain regions. For instance, a decrease in prevalence of sites in the 
large canopy-forming algae cluster accompanies an increase in sites in the 
turf algae cluster along the coastline from southern to northern Australia 
(Fig. 4).

The proportion of noisy transects is highly heterogeneous across the 
globe (Fig. 4 c). Noisy transects represent 23 % of all transects analysed 
but are present in some areas more than in others. For example, in the 
Southern California Bight (Western USA), Bight of Sofala/Swamp Coast 
(Eastern Africa), the Seychelles, and in Three Kings-North Cape 
(Northern New Zealand), at least 60 % of transects are classified as noisy 
(Fig. 4 c). Although these four ecoregions share a low number of tran-
sects sampled (Fig. 4 a), no significant correlation was found between 
the proportion of transects classified as noisy and the number of tran-
sects done in each ecoregion (τKendall = 0.05, p = 0.54; Fig. 1 in Ap-
pendix D). Furthermore, 12 of the 83 ecoregions sampled by the RLS did 
not have transects that were classified as noisy (Fig. 4 c). Overall, a large 
proportion of temperate transects identified as noise by the UMAP- 
HDBSCAN pipeline corresponds to transects classified as “barren” or 
“kelp” by Cresswell et al. (2017). In tropical areas, transects identified as 
noisy are spread more or less evenly in the five different clusters they 
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Fig. 2. a. HDBSCAN condensed clustering tree of the UMAP 2D embedding b. Heatmap of the mean substrate cover (rounded to the nearest integer) for each cluster 
identified by the UMAP-HDBSCAN pipeline.
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defined (Fig. 2 in Appendix E).
Areas with the highest diversity of habitat types, based on both the 

number of clusters occurring and their relative proportions in the 
ecoregions, are concentrated in Eastern and Western Australia, as well as 
in the Caribbean and Tuamotus (Fig. 4). The areas with the lowest Gini- 
Simpson values are the Southern California Bight (Western USA) and the 
Bight of Sofala/Swamp (Eastern Africa) coast with a Gini index of 
0 (Fig. 4 d). However, it should be noted that there is a weak correlation 
between the Gini-Simpson index and the number of transects carried out 
in the ecoregion (τKendall = 0.29,p < 0.001; Fig. 2 in Appendix D).

At the Reef Life Survey monitoring location level, temporal changes in 
the occurrence of the different clusters can provide useful indicators of 
ecological changes (Fig. 5). For instance, at a given monitoring location, 
changes in yearly proportions of transects classified as large canopy 
forming algae tend to match with annual mean percentage cover of large 
canopy forming algae estimated across transects (Fig. 5 and Fig. 3 in 
Appendix D). Moreover, at certain locations where the cover of large 
canopy forming algae decreased, changes in the dominance patterns of 
habitat states offer insights about ongoing ecological changes. At 
Beware Reef (Fig. 5 b), large canopy forming algae disappeared in favour 
of other sessile invertebrates, whereas at Port Phillip Heads (Fig. 5 d), a 
decrease in the proportion of transects classified as large canopy forming 
algae between 2013 and 2017 was counterbalanced by an increase in the 
proportion of transects classified as bushy fucoids or filamentous algae. 
This area also experienced moderate interannual variability in the pro-
portion of transects classified as noise. However, a long-term decrease in 
the proportion of transects classified as noise was observed at other sites 
(e.g., Batemans or Beware Reef; Fig. 5 a and b), where a turnover 
through time in the dominating habitat state occurred.

4. Discussion

The UMAP-HDBSCAN clustering pipeline identified 17 distinct 
clusters within all RLS transects surveyed globally in a range of coastal 

temperate and tropical regions. Within these groups, we found different 
biogenic habitats whose distribution patterns match with current 
biogeographic knowledge of benthic ecosystems: for example, bushy 
fucoid algae, and large canopy-forming algae predominantly occur in 
temperate waters (Assis et al., 2020; Jayathilake and Costello, 2020), 
while soft corals and gorgonians, and branching coral, are more frequent in 
tropical waters (Jones et al., 2019; Wirabuana et al., 2019). Our analysis 
also highlights habitat types that occur throughout the world, including 
(1) different granulometric facies such as sand, unconsolidated substrate, 
and bare substrate, as well as (2) different habitat types dominated by 
low-profile algae, such as crustose coralline algae or turf algae. The latter 
are known to occur globally and can dominate benthic substrates under 
a wide range of conditions (Connell et al., 2014; Liu et al., 2018). Thus, 
this classification distinguished between different ecological states of 
these habitats (hereafter referred to as “habitat state”), including known 
alternative succession stages, or different degradation states of these 
habitats (Fig. 6).

Our results align with those of Cresswell et al. (2017), who focused 
on a subset of data centered on the Australian region. However, our 
findings offer additional insights into habitat states on both regional and 
global scales. Specifically, our analysis, which identified 17 clusters, 
includes all nine clusters defined by Cresswell et al. (2017), with a 
similar distribution of transects across categories (e.g., large canopy- 
forming algae, turf algae, filamentous algae, and branching coral). These 
match closely with Cresswell et al. (2017)’s classifications of “Canopy 
algae”, “Turf”, “Epiphytic filamentous algae–caulerpa”, and “Coral” (see 
Figs. 1 & 2 in Appendix E).

Furthermore, our results reveal a more refined resolution of habitat 
states compared to Cresswell et al. (2017). For example, our separate 
clusters for crustose coralline algae and bare substrate are combined into a 
single “Barren” cluster by Cresswell et al. (2017). Similarly, our classi-
fication distinguishes between red algae and other brown algae clusters, 
refining the broader “Foliose algae” group from Cresswell et al. (2017). 
Thus, while our large-scale spatial approach generally confirms the 

Fig. 3. Violin plot of the absolute latitudinal distribution of the different hard cluster solutions.
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habitat types defined by Cresswell et al. (2017), it also provides a more 
nuanced distinction among habitats, identifying transitional states such 
as crustose coralline algae and turf.

Our comparative analysis with Cresswell et al. (2017) also sheds light 
on the nature of transects categorised as noise in our UMAP-HDBSCAN 
pipeline. In temperate regions, most noisy transects correspond to 
“Barren” or “Kelp” in Cresswell et al. (2017), suggesting they may 
represent heterogeneous or transitional temperate habitats where kelp 
forests are either declining or patchy. In tropical regions, noisy transects 
span various groups defined by Cresswell et al. (2017), highlighting the 
advantage of our UMAP-HDBSCAN pipeline, which provides a more 
finely resolved classification of habitat states, effectively handling out-
liers or noisy observations.

Unexpectedly, our analysis captured only a single coral reef habitat 
state, while Cresswell et al. (2017) described several coral related 
habitat states. Potential reasons for this include the significant vari-
ability in coral cover across reefs, as noted by De’ath et al. (2012), which 
complicates the characterisation of coral reef states based on cover data 
alone. Furthermore, the morphological diversity of these reefs is 
extensive, including variations in surface areas (Zawada et al., 2019). 

Such high variability in their percentage cover, might explain why 
branching coral is the single group of corals identified, since some species 
of Acropora spp. are able to establish colonies with expansive surface 
areas. Conversely, other coral reef habitat states probably failed to be 
detected due to their rarity in the dataset and are classified by our 
pipeline as noise, while categorised by Cresswell et al. (2017) in one of 
the four categories characterised by the presence of corals (see Fig. 2 in 
Appendix E). Subsequent analysis could help interpret noisy transects, 
and further refine habitat state categories.

This pipeline also offers a valuable framework for describing habitat 
transitions and assessing their ecological impacts. Our results reveal a 
habitat state gradient transitioning from dominance by crustose coralline 
algae, through crustose coralline algae and turf, to a turf algae-dominated 
state. This progression has major ecological implications, including by 
modifying the carbonate production within reefs (Cornwall et al., 2023). 
Likewise, clusters such as branching coral, turf and sand, and turf provide 
a standardised way to characterise the increasing transitions between 
coral and turf dominated habitats, driven by anthropogenic pressures 
(Jouffray et al., 2015). Fig. 5 b illustrates examples along southeastern 
Australia’s coastline, where dense macroalgal canopies, typically 

Fig. 4. a. Spatial distribution of reef surveys from the Reef Life Survey database used for analyses. b. Map of dominant clusters in each MEOW ecoregion. Dominant 
clusters were determined as the greatest count of transect labels in each ecoregion. c. Spatial distribution of the proportion of transects classified as noise in each 
ecoregion. d. Gini-Simpson diversity index calculated by the occurrence of clusters in each ecoregion of the world.
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dominated by the kelp Ecklonia radiata (large canopy-forming algae), can 
shift to barren substrates (bare substrate or crustose coralline algae) 
following intense grazing by the long-spined sea urchin Centrostephanus 
rodgersii (Ling, 2008). Consequently, our approach enables classification 
of reef cover data collected globally with the RLS protocol into an 
ecologically robust framework for exploring common reef habitat 
transitions under anthropogenic influence (Donovan et al., 2018). The 
strength of this data-driven classification lies in its ability to encapsulate 
common benthic habitats (e.g., seagrass meadows, coral reefs, kelp 
forests) shared across major seafloor habitat classification systems (e.g., 
European Nature Information System; Bajjouk et al. (2015)).

At a global scale, our global classification of RLS data highlights 
hotspots of diversity in terms of benthic habitats and habitat states. Four 
ecoregions in particular, the Eastern (Manning-Hawkesbury ecoregion) 
and Western Australia (Houtman ecoregion), the Caribbean, and the 
Tuamotus Archipelago, showed a high diversity of habitat types 
(considering both richness and evenness). In the transition zones 

between temperate and tropical waters, such as the Manning- 
Hawkesbury or the Houtman ecoregions in Eastern and Western 
Australia, respectively, the high diversity of benthic habitat types we 
observe potentially results from a high diversity of foundation species. 
Indeed, high biodiversity is typical of transitional environmental con-
ditions where species with temperate and tropical environmental niches 
overlap (Ferro and Morrone, 2014). This phenomenon is well known for 
multiple taxa such as birds (Altamirano et al., 2020), plants (Lemessa 
et al., 2023) or reef fishes (Pinheiro et al., 2018), and also apparently 
applies to biogenic habitats such as coralline red algae (Sissini et al., 
2022). Such subtropical or warm temperate zones are also recognized as 
regions where both mobile fauna (Vergés et al., 2014) or sessile habitat- 
forming species assemblages (Marzloff et al., 2018) are likely to undergo 
tropicalisation, with poleward climate-driven range shifts of warmer 
water species at the expense of temperate species. Our finely resolved 
classification could be modelled against environmental predictors in 
future work to understand and predict the state of benthic habitats under 

Fig. 4. (continued).
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Fig. 5. Temporal evolution of the proportion of transects classified into different habitat states at different sites: a. Batemans, b. Beware Reef, c. Encounter, d. Port 
Phillip Heads, e. Port Stephens. Habitat states are colour-coded as follows: light blue for large canopy-forming algae; pink for crustose coralline and turf; deep green 
for crustose coralline algae; deep blue for sand; yellow for filamentous algae; light green for bushy fucoid; neon green for other sessile invertebrates; light blue for red 
algae; purple for turf. Noise appears in black). The dots represent the proportion of transects in each category in each year, and the trend lines are LOESS regression 
models weighted by the number of transects per year. For visual clarity, the left column only shows the subset of groups, which proportion most varied over time (see 
Fig. 4 in Appendix D). The right-hand column focuses solely on the yearly proportion of transects classified as Canopy forming algae (blue line) compared with the 
annual mean percentage cover of Canopy forming algae estimated across all transects (black dotted line). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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current and future conditions (see, e.g., Belanger et al. (2012)).
Beyond exploring spatial patterns of benthic biodiversity, our clas-

sification of the RLS dataset offers a new perspective to explore temporal 
changes in benthic habitat states at the site level. In fact, the proportion 
of transects classified in the different groups seems to be an interesting 
indicator for researchers and managers, providing a metric for 
expressing the dominant ecological state, less affected by the inherent 
variability at the scale of individual transects. This metric may be 
particularly useful for identifying regional-scale changes in the structure 
of ecosystems. One of the temperate reef monitoring locations investi-
gated by (Stuart-Smith et al., 2022), Beware Reef, underwent a major 
ecological change following an overgrazing event in 2013 by Cen-
trostephanus rodgersii sea urchins (Barrett et al., 2014). Our metric allows 
us to observe that the regime change towards a urchin barren state is not 
complete. In fact, this species of sea urchin is omnivorous, capable of 
attacking sessile invertebrates (Byrne and Andrew, 2013), but showing a 
clear preference for species belonging to the large canopy forming algae 
group (Hill et al., 2003). Our metric indicates that many transects at this 
site are classified as red algae, or other sessile invertebrates, showing 
that the proliferation of these urchins appears to be constrained, in 
agreement with in situ observations (State of the marine and coastal 
environment report, 2021).

Overall, changes in benthic habitat whether on an ecoregional or site 
level may reflect a variety of processes. These processes include 
ecological factors, such as temporal variability in cover of habitat- 

forming species or response to climate-driven environmental changes 
(i.e., marine heatwaves Wernberg et al. (2016)), tropicalisation of 
tropical-temperate transition zones (Horta e Costa et al., 2014). Addi-
tionally, changes in benthic habitat can also reflect gradients in human 
stressors (i.e. nutrients and organic pollution runoffs, impacts from 
coastal human populations; Halpern et al. (2019)). Moreover, some 
methodological factors can also explain some of the variability observed 
in this study due to irregular transect location or sampling effort through 
time (e.g., Stuble et al. (2021)). Identifying the processes driving the 
observed habitat transitions could better characterise the impact of 
anthropogenic activities on benthic habitats (see, for example, Donovan 
et al. (2018) for a similar approach at a finer spatial scale). Our classi-
fication could thus provide an interesting template to further explore 
changes in benthic habitats across the world with expanded monitoring 
efforts (Edgar et al., 2023).

Nevertheless, not all expected transitions between habitats or alter-
native ecological states resolve among different clusters. Some transi-
tory states may be classified as noise if they are insufficiently observed to 
constitute a cluster of their own. Understanding the drivers behind the 
transects classified as noise can reveal valuable information about the 
factors influencing habitat variability, and the ecological processes 
driving shifts between different states. This includes deciphering the 
reasons for a noise classification, such as variations in environmental 
conditions, biotic interactions, or anthropogenic disturbances. By 
investigating these aspects, researchers should gain crucial insight into 

Fig. 5. (continued).
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the dynamics and transitions that occur between habitat states and 
alternative ecological states.

5. Conclusion

In conclusion, this study highlights the value of UMAP-HDBSCAN for 
ecological clustering. Due to its hierarchical structure, this pipeline 
aligns with established classification standards and facilitates an initial 
data-driven description of global patterns in habitat states. Furthermore, 
the pipeline’s ability to handle non-linear data and accommodate for 
noise underscores its adaptability to various ecological contexts and 
data sources. Thus, this clustering pipeline could help revisit the defi-
nition of groups in community ecology and for instance more finely 
distinguish nuances within functional groups from trait data.

Here, the UMAP-HDBSCAN clustering pipeline helped leverage a 
global dataset coming from citizen science to identify fine-scale habitat 
patterns within coastal temperate and tropical benthic ecosystems. 
Compared with a previous study using a national subset of the data used 
here, we highlight a more nuanced distinction between similar habitats 
previously considered homogeneous. We moreover identify habitat 
groups associated with different ecological states, which makes it 
possible to monitor ecosystem health across broad spatial and temporal 
scales. For instance, at the scale of monitoring locations, temporal 
changes in the proportion of transects classified according to the 
different categories can provide a relevant indicator of ecological dy-
namics. Thus, applying this habitat state classification on a fine spatial 

scale can effectively help assess ongoing trends and monitor outcomes of 
management interventions. At a regional scale, similar metrics related to 
relative proportion of habitat types can also help track consequences of 
global changes on coastal ecosystems and explore the influence of local 
and global drivers on benthic habitat states. This classification therefore 
provides a standardised template for tracking benthic habitat change 
across space and time at a global scale.
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Blanco-Portals, J., Peiró, F., Estradé, S., 2022. Strategies for EELS data analysis. 
Introducing UMAP and HDBSCAN for dimensionality reduction and clustering. 
Microsc. Microanal. 28, 109–122.

Bloch, T., Watt, C., Owens, M., McInnes, L., Macneil, A.R., 2020. Data-driven 
classification of coronal hole and streamer belt solar wind. Sol. Phys. 295, 41.

Bowler, D.E., Bjorkman, A.D., Dornelas, M., Myers-Smith, I.H., Navarro, L.M., Niamir, A., 
et al., 2020. Mapping human pressures on biodiversity across the planet uncovers 
anthropogenic threat complexes. People Nat. 2, 380–394.

Breiman, L., Friedman, J., Stone, C.J., A., O.R, 1984. Classification and Regression Trees. 
Hall/CRC, Chapman. 

Brown, C.J., Smith, S.J., Lawton, P., Anderson, J.T., 2011. Benthic habitat mapping: A 
review of progress towards improved understanding of the spatial ecology of the 
seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 92, 502–520.

Burrows, M.T., Schoeman, D.S., Richardson, A.J., Molinos, J.G., Hoffmann, A., 
Buckley, L.B., et al., 2014. Geographical limits to species-range shifts are suggested 
by climate velocity. Nature 507, 492–495.

Byrne, M., Andrew, N., 2013. Chapter 17 - Centrostephanus rodgersii. In: Sea Urchins: 
Biology and Ecology, Developments in Aquaculture and Fisheries Science. Elsevier, 
Lawrence, JM, pp. 243–256.

Campello, R.J.G.B., Moulavi, D., Sander, J., 2013. Density-based clustering based on 
hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. 
(Eds.), Advances in Knowledge Discovery and Data Mining. Springer Berlin 
Heidelberg, Berlin, Heidelberg, pp. 160–172.

Cattano, C., Agostini, S., Harvey, B.P., Wada, S., Quattrocchi, F., Turco, G., et al., 2020. 
Changes in fish communities due to benthic habitat shifts under ocean acidification 
conditions. Sci. Total Environ. 725, 138501.

Connell, S., Foster, M., Airoldi, L., 2014. What are algal turfs? Towards a better 
description of turfs. Mar. Ecol. Prog. Ser. 495, 299–307.

Conversi, A., Dakos, V., Gårdmark, A., Ling, S., Folke, C., Mumby, P.J., et al., 2015. 
A holistic view of marine regime shifts. Philosoph. Trans. Royal Soc. B Biol. Sci. 370, 
20130279.

Cooper, A., Oh, E., 2023. NRMN database QA/QC protocols. Version 1.4.. Reef Life 
Survey.

Cornwall, C.E., Carlot, J., Branson, O., Courtney, T.A., Harvey, B.P., Perry, C.T., et al., 
2023. Crustose coralline algae can contribute more than corals to coral reef 
carbonate production. Commun. Earth Environ. 4, 105.

Cresswell, A.K., Edgar, G.J., Stuart-Smith, R.D., Thomson, R.J., Barrett, N.S., Johnson, C. 
R., 2017. Translating local benthic community structure to national biogenic reef 
habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125.

De’ath, G., Fabricius, K.E., Sweatman, H., Puotinen, M., 2012. The 27–year decline of 
coral cover on the great barrier reef and its causes. Proc. Natl. Acad. Sci. 109, 
17995–17999.

Donovan, M.K., Friedlander, A.M., Lecky, J., Jouffray, J.-B., Williams, G.J., Wedding, L. 
M., et al., 2018. Combining fish and benthic communities into multiple regimes 
reveals complex reef dynamics. Sci. Rep. 8, 16943.

Dorrity, M.W., Saunders, L.M., Queitsch, C., Fields, S., Trapnell, C., 2020. Dimensionality 
reduction by UMAP to visualize physical and genetic interactions. Nat. Commun. 11, 
1537.

Dunic, J.C., Brown, C.J., Connolly, R.M., Turschwell, M.P., Côté, I.M., 2021. Long-term 
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