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Abstract14

Climate change is anticipated to considerably reduce global marine fish biomass, driv-15

ing marine ecosystems into unprecedented states with no historical analogues. The Time16

of Emergence (ToE) marks the pivotal moment when climate conditions (i.e. signal) de-17

viate from pre-industrial norms (i.e. noise). Leveraging ensemble climate-to-fish simu-18

lations, this study examines the ToE of epipelagic, migratory and mesopelagic fish biomass,19

alongside their main environmental drivers, for two contrasted climate-change scenar-20

ios.21

Globally-averaged biomass signals emerge over the historical period. Epipelagic biomass22

decline emerges earlier (1950) than mesozooplankton decline (2000) due to a stronger23

signal in the early 20th century, possibly related to trophic amplification induced by an24

early-emerging surface warming (1915). Trophic amplification is delayed for mesopelagic25

biomass due to postponed warming in the mesopelagic zone, resulting in a later emer-26

gence (2000). ToE displays strong size class dependence, with medium sizes (20 cm) ex-27

periencing delays compared to the largest (1 m) and smallest (1 cm) categories.28

Regional signal emergence lags behind the global average, with median ToE esti-29

mates of 2029, 2034 and 2033 for epipelagic, mesopelagic and migrant communities, re-30

spectively, due to systematically larger local noise compared to global one. These ToEs31

are also spatially heterogeneous, driven predominantly by the signal pattern, akin to meso-32

zooplankton. Additionally, our findings underscore that mitigation efforts (i.e. transi-33

tioning from SSP5-8.5 to SSP1-2.6 scenario) have a potential to curtail emerging ocean34

surface signals by 40%.35

Plain Language Summary36

Climate change is expected to have a significant impact on global marine fish biomass,37

leading marine ecosystems into unprecedented states. The Time of Emergence (ToE) is38

the moment when such a shift occurs. This study investigates the ToE of marine fish biomass39

is investigated using climate-to-fish simulations. Our results suggest that the emergence40

of global mean fish biomass occurs in the historical period (before 2020) and is controlled41

by small-size organisms (mesozooplankton) through food availability. We also show that42

the ToE strongly is highly dependent on organism size and varies regionally. Further-43

more, we demonstrate that implementing mitigation policies significantly reduces the ar-44
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eas in which marine ecosystems emerge, thereby limiting the potential negative impacts45

of climate change.46

1 Introduction47

Anthropogenic climate change is expected to significantly impact the abundance48

and spatial distribution of pelagic communities of high trophic level organisms (HTL)49

(Lefort et al., 2015; Lotze et al., 2019; Tittensor et al., 2021). These impacts on HTLs50

arise from a myriad of climate-related stressors encompassing changes in lower trophic51

level organisms (LTL, i.e. microzooplankton, mesozooplankton), temperature, oxygen52

concentration, pH and ocean currents (Bijma et al., 2013; Bopp et al., 2013). Yet, the53

foremost pivotal factors driving these changes remain changes in temperature and pri-54

mary production (Pörtner & Peck, 2011; Heneghan et al., 2021). Ocean warming, in par-55

ticular, is indeed expected to accelerate metabolic rates and thus energy dissipation. In56

addition, temperature changes can affect the food consumption of organisms in differ-57

ent ways depending on the available food concentration (Guiet et al., 2016), resulting58

in a complex and diverse ecosystem response to temperature changes. In general, these59

changes are anticipated to potentially reduce HTL biomass for a given level of primary60

production (Heneghan et al., 2019). Moreover, ocean temperature changes is anticipated61

to cause a global decline in primary production (Pörtner et al., 2022), notably through62

increased stratification, which reduces nutrient concentrations in the euphotic zone. This63

will induce a global decline in LTL organisms, which are the fundamental energy source64

fuelling marine ecosystems (Chavez et al., 2011), and in turn a marked decrease in fish65

biomass. Given the importance of marine resources for both food security and the global66

economy, it is imperative to identify when and where these climate-induced impacts will67

exceed the natural variations of the marine ecosystems.68

The Time of Emergence (ToE), as defined by Hawkins and Sutton (2012), repre-69

sents the moment when a climate change signal becomes distinguishable from the inher-70

ent natural variability. ToE is typically identified when the ratio of anthropogenic sig-71

nal (S) to natural climate noise (N), expressed as SNR, permanently exceeds a prede-72

termined threshold (as seen in studies such as Giorgi and Bi (2009)). Historically con-73

ceived to assess when local climates deviate from their historical norms, ToE analysis74

holds particular relevance for ecosystems with limited adaptive capacity (Beaumont et75

al., 2011; Deutsch et al., 2008). Originally applied to terrestrial areas (Giorgi & Bi, 2009;76
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Diffenbaugh & Scherer, 2011), this concept has been extended to analyse changes in key77

environmental drivers of marine ecosystems, encompassing physical (Ying et al., 2022;78

Gopika et al., In prep; Santana-Falcón & Séférian, 2022) and biogeochemical variables79

(Keller et al., 2014; Rodgers et al., 2015; Henson et al., 2017). Earth System Model pro-80

jections consistently indicate early emergence of sea surface temperature (SST) signals81

and much later emergence in primary production (Keller et al., 2014; Rodgers et al., 2015;82

Henson et al., 2017; Schlunegger et al., 2020). However, the ToE concept has not yet been83

applied to pelagic ecosystems projections.84

Marine ecosystem models (MEMs) have been pivotal in projecting and understand-85

ing the impacts of climate change on marine ecosystems, notably through initiatives such86

as the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP, Tittensor87

et al. (2018); Lotze et al. (2019); Tittensor et al. (2021)). On average, these projections88

indicate a reduction in global fish biomass at the end of the century of around 15-20%89

in a high emissions scenario (SSP5-8.5), and of around 5-7% in a low emissions scenario90

(SSP1-2.6) Lotze et al. (2019); Tittensor et al. (2021)). In addition, these studies high-91

light a spatial heterogeneity in the fish biomass response to climate change, hitting at92

potential increases in the Arctic Ocean and South Polar region while predicting decline93

elsewhere.94

The primary objective of this study is to implement the ToE concept within pro-95

jections generated by a global-scale marine ecosystem model, examining and contrast-96

ing these ToE with the pivotal environmental variables driving this model. Using the mech-97

anistic ecosystem model APECOSM forced by ensemble simulations from the IPSL-CM6A-98

LR Earth System Model, for two contrasted emission scenarios(SSP5-8.5 and SSP1-2.6),99

we will first show that, when considering global average, the ToE is very early for the100

epipelagic (1950) and slightly later for the migratory and mesopelagic fish biomass (around101

2000), with a strong dependency to the size class considered. Next, we show that the ToE102

at regional scale is considerably later than the globally averaged one, with strong depen-103

dency to the region and community considered. The paper is structured as follows. Sec-104

tion 2 describes the ecosystem and climate models, the simulation protocol and the method-105

ology used to calculate the ToEs. Section 3 compares the ToEs estimated for the main106

ecosystem drivers, namely ocean temperature and mesozooplankton concentration, with107

those estimated for fish biomass. Summary and discussion are provided in 4.108
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2 Data and method109

2.1 Marine ecosystem model110

This study uses the Apex Predators ECOSystem Model (APECOSM, Maury et111

al. (2007); Maury (2010)) to simulate changes in marine fish biomass in the global ocean.112

APECOSM is a Eulerian ecosystem model that mechanistically represents the three-dimensional113

dynamics of size-structured pelagic populations and communities. It integrates individ-114

ual, population and community levels and includes the effects of life-history diversity with115

a trait-based approach (Maury & Poggiale, 2013). Energy uptake and use for individ-116

ual growth, development, reproduction, somatic and maturity maintenance are modelled117

according to the Dynamic Energy Budget (DEB) theory (Koojman, 2010), with metabolic118

rates dependent on both food and temperature.119

APECOSM also includes important ecological processes such as opportunistic size-120

structured trophic interactions and competition for food, predatory, disease, ageing and121

starvation mortality, key physiological aspects such as vision and respiration, as well as122

essential processes such as three-dimensional passive transport by marine currents and123

active habitat-based movements (Faugeras & Maury, 2005), schooling and swarming (see124

Maury et al. (2007); Maury and Poggiale (2013); Maury (2017)).125

In this study, we used the same APECOSM configuration as in Barrier et al. (2023),126

in which the model was used to analyse the ENSO-related variability of the biomass of127

epipelagic fish in the tropical Pacific Ocean. Three generic communities are simulated:128

• The epipelagic community, which includes the organisms inhabiting surface wa-129

ters during both day and night. Its vertical distribution is influenced by light and130

visible food during the day as well as temperature and oxygen during both day131

and night, while its functional response to prey is influenced by light and temper-132

ature.133

• The migratory mesopelagic community, which includes organisms that feed at night134

in the surface layer and move to deeper waters during the day. Its vertical distri-135

bution is influenced by light during both day and night and visible food during136

the night.137
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• The resident mesopelagic community, which includes organisms that remain at depth138

during both day and night. Its vertical distribution is influenced by light and vis-139

ible food during the day.140

A more detailed description of this 3 community configuration is provided in (Barrier141

et al., 2023), in addition to a more thorough description of the model.142

2.2 Climate model143

In this study, APECOSM is forced by 3D physical (temperature, ocean currents)144

and biogeochemical (diatoms, microzooplankton, mesozooplankton, organic detritus, oxy-145

gen, light) outputs of the IPSL-CM6A-LR Boucher et al. (2020)) Earth System Model146

(ESM). This ESM has recently been used by the Fisheries and Marine Ecosystem Model147

Intercomparison Project (FishMIP) to assess the impacts of climate change on marine148

ecosystems, e.g. (Tittensor et al., 2021).149

2.3 APECOSM Simulation protocol150

The APECOSM simulation protocol used in this study is in agreement with the151

CMIP6 standards (Eyring et al., 2016). We therefore employ the same naming conven-152

tions.153

First, a 100-year spin-up simulation has been performed using the outputs of the154

piControl-spinup ESM simulation, starting from a uniform biomass distribution of 1−34J.m−2.kg−1
155

for each community and size class. The end of the spin-up simulation is then used as a156

restart to run a pre-industrial simulation, using the outputs from the piControl climate157

simulation. The latter simulation was integrated for 500 years (1850-2349). Preindus-158

trial CO2 concentrations are prescribed in both the piControl-spinup and piControl cli-159

mate simulations.160

Next, 6 members of the historical simulations have been run using specific years161

of the piControl simulation as initial state. These years are chosen to ensure consistency162

with the climate simulations. The historical climate simulations cover the period from163

1850 to 2014 and are constrained by observed annual greenhouse gas emissions. Finally,164

the end of the 6 historical simulation members have been used as initial states for the165

corresponding climate change simulations under the SSP5-8.5 and SSP1-2.6 ”Shared So-166
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Simulation Initial conditions Simulation period

piControl-spinup Uniform biomass distribution 1750-1850

piControl piControl-spinup 1850-2349

hist-r1 piControl (1909-12-31) 1850-2014

hist-r2 piControl (1869-12-31) 1850-2014

hist-r3 piControl (1929-12-31) 1850-2014

hist-r4 piControl (1949-12-31) 1850-2014

hist-r6 piControl (2029-12-31) 1850-2014

hist-r14 piControl (1969-12-31) 1850-2014

ssp-r1 hist-r1 2015-2100

ssp-r2 hist-r2 2015-2100

ssp-r3 hist-r3 2015-2100

ssp-r4 hist-r4 2015-2100

ssp-r6 hist-r6 2015-2100

ssp-r14 hist-r14 2015-2100

Table 1. Simulations performed with the APECOSM model. The middle column indicates the

initial condition used. If no date is provided, the end of the simulation is used.

cioeconomic Pathways” scenarios. These two scenarios represent the upper and lower ends167

of the CMIP6 future forcing pathways in the Integrated Assessment Modeling literature.168

SSP5-8.5 updates the CMIP5 RCP8.5 pathway and is the only SSP scenario with emis-169

sions high enough to produce a radiative forcing of 8.5 W.m−2 in 2100 (O’Neill et al.,170

2016). SSP1-2.6 updates the CMIP5 RCP2.6 pathway and is anticipated to produce a171

multi-model mean of significantly less than 2◦C warming by 2100 (O’Neill et al., 2016).172

All the simulations are summarised in Table 1. It should be noted that the lim-173

ited number of members used in this study is constrained by the availability of the bio-174

geochemical variables in the IPSL-CM6-LR climate change scenarios.175

2.4 Time of Emergence176

As discussed in the introduction, ToE typically marks the moment when the ra-177

tio of anthropogenic signal (S) to natural climate noise (N), SNR, permanently exceeds178
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a predefined threshold (Giorgi & Bi, 2009). In this section, we illustrate the presenta-179

tion of the methodology used to calculate the signal S, the noise N and the ToE using180

time series of global mean epipelagic fish biomass.181

The methodology employed in (Hawkins & Sutton, 2012) for signal estimation, which182

assumes a proportional scaling between local changes and global variations, cannot be183

applied in our context. While this assumption holds true at first order for SST, it does184

not hold for biogeochemical and biological variables, whose climate change signal shows185

strong spatial and temporal heterogeneity (Lotze et al., 2019; Tittensor et al., 2021). Rather,186

the climate change signal in our approach is derived by averaging the historical and sce-187

nario time series over the 6 members, as shown in Fig. 1a (thin black curve). Since these188

members share identical external forcings and differ only in their initial state, the multi-189

member average serves as a good first approximation of the climate change signal. How-190

ever, residual noise persists due to the limited number of available members. To remove191

this noise, a Gaussian filter with a standard deviation of 15 years is applied to smooth192

the multi-member mean (Fig. 1b). The resulting smoothed time series (thick black curve193

in Fig. 1a) is regarded as the climate change signal S.194

Natural variability is then estimated by removing this climate change signal from195

each member time series. The resulting time series (Fig. 1c) represent the anomalies in196

fish biomass due solely to high-frequency climate and ecosystem variability. The noise197

N is then estimated by calculating the standard deviation of the anomalies over the time198

and member dimensions (black dashed curve in Fig. 1c).199

Finally, we define ToE as the year when the climate change signal permanently ex-200

ceeds the envelope of natural variability (black dashed curve in Fig. 1d), which we de-201

fine as the historical multi-member mean computed between 1850 and 1900 plus or mi-202

nus the standard deviation of the anomalies (N, Fig. 1d). To avoid potential artefacts203

due to truncation of the Gaussian smoothing kernel used to extract the signal, we con-204

sider that there is no emergence if the estimated ToE is later than 2085.205

ToEs are calculated both globally and at each grid cell for temperature at the sur-206

face and averaged between 500 and 1000 m, surface mesozooplankton concentrations, and207

for the vertically integrated fish biomass density of each community and each size class.208

In addition, total fish biomass (i.e. biomass integrated over the entire size range) is also209

evaluated for each community.210
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Figure 1. Overview of steps for calculating the time of emergence. Displayed is the time

series for global mean epipelagic fish biomass. (a) Single-member time series (coloured lines),

multi-member mean (thin black line) and climate change signal (thick black line). (b) Gaussian

kernel illustration used to smooth the multi-member mean. (c) Computed noise obtained by sub-

tracting the climate change signal from the original time series. These anomalies represent the

range of natural variability (dashed lines). (d) Calculation of the time of emergence (dashed red

line) as the moment when the climate change signal is permanently outside the range of natural

variability.
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3 Results211

In this section, we first discuss the ToE for global mean temperature at the sur-212

face and between 500-1000 m, surface mesozooplankton concentrations and global mean213

total biomass for each community. Next, we investigate the ToE of mean fish biomass214

as a function of size. Finally, ToE computed from global mean time series is compared215

to the ToE computed on regional scales and the spatial patterns of ToE are described.216

3.1 Global mean ToE217

3.1.1 Environmental drivers and total fish biomass218

Fig. 2 shows the global mean anomalies of temperature at the surface (SST) and219

averaged between 500 and 1000 m, surface mesozooplankton concentrations and fish biomass220

density (integrated between 0-1000m) of each community relative to the 1850-1900 pe-221

riod. The global mean SST starts increasing from 1900. This warming notably acceler-222

ates from 2000 onwards in the SSP5-8.5 scenario (red curve), exceeding 3.5◦ by the end223

of the 21st century (Fig. 2a) with respect to pre-industrial conditions. Conversely, in the224

SSP1-2.6 scenario, the warming reaches a plateau from the middle of the century (around225

1.5◦). Because of minimal noise attributable to the global average, SST emerges very early226

(1915) in both scenarios. The warming between 500 and 1000 m is weaker than that of227

the SST and starts later, resulting in a delayed emergence (around 1945).228

Global surface mesozooplankton anomalies exhibit a strikingly similar low-frequency229

evolution in both scenarios (Fig. 2c), opposing that of temperature anomalies. They in-230

deed show a pronounced decline starting at the turn of the 21st century. This reduction231

persists almost linearly until the century’s end for the SSP5-8.5 scenario, reaching -15%.232

Conversely, in the SSP1-2.6 scenario, this decline moderates, with a relative decrease plateau-233

ing at -5% by the mid-century mark in 2050. Because of a weaker signal-to-noise ratio234

compared to temperature, the climate change signal for mesozooplankton emerges later235

(2001) compared to SST (1915).236

Epipelagic fish biomass evolution mirrors that of mesozooplankton, suggesting a237

bottom-up control mechanism. However, by the end of the 21st century, the relative de-238

cline in epipelagic biomass surpasses that of mesozooplankton for both the SSP5-8.5 and239

SSP1-2.6 scenario, with reductions of 25% and 10% respectively for epipelagic biomass240
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compared to -15% and -5% for mesozooplankton. This heightened decline in epipelagic241

biomass is likely linked to trophic amplification, potentially driven by warmer temper-242

atures, as discussed in de Luzinais et al. (2023). Furthermore, the epipelagic decline out-243

paces that of mesozooplankton throughout the 20th century, presumably for the same244

reason. This trophic amplification leads to an early emergence of global mean epipelagic245

biomass (1949).246

Mesopelagic biomass evolution closely follows that of epipelagic biomass in terms247

of both timing and amplitude. Despite exhibiting a larger relative amplitude, it also mir-248

rors the evolution of mesozooplankton and detritus concentrations (not shown), their pri-249

mary food source, further suggesting a bottom-up control mechanism likely intensified250

by trophic amplification. However, although the relative noise of global mesopelagic and251

epipelagic biomass is similar (around 2%), the former declines more slowly than the lat-252

ter, which results in a later emergence of mesopelagic fish (2001). This milder decrease253

could be attributed to a weaker trophic amplification during the early stages of the in-254

dustrial era. Initially, the warming primarily affects the surface and gradually penetrates255

in deeper layers, resulting in a delayed warming effect in the mesopelagic zone and con-256

sequently in a less pronounced trophic amplification during the initial period. The trophic257

amplification gradually intensifies as surface warming signals penetrate deeper into the258

ocean over time (Fig. 2a and b).259

In comparison to epipelagic and mesopelagic communities, global biomass changes260

of the migratory community is considerably weaker in 2100, increasing of +2% in the261

SSP5-8.5 scenario and 1% in the SSP1-2.6 scenario. Identifying a plausible mechanism262

driving these changes is more challenging than for the other communities, as the evo-263

lution of migratory biomass does not align with any of the predominant environmental264

drivers. Nonetheless, these changes emerge around the same time frame (1990) than those265

simulated for the mesopelagic community (2001), primarily because the weaker noise in266

the migratory (N of 1.07%) compared to the mesopelagic community (N of 2.35%) com-267

pensates for the weaker signal simulated at the turn of the 20th century (S of 2.32% and268

-25.56%, respectively).269
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Figure 2. Global mean anomalies of temperature at the surface (a) and averaged between

500 and 1000 m (b), relative surface mesozooplankton concentrations (c) and global mean fish

biomass for the epipelagic, migratory and mesopelagic communities (d-e-f). The thin lines repre-

sent the individual members, and the thick lines represent the climate change signal.

3.1.2 Sensitivity to the size class270

As discussed for example in (Barrier et al., 2023), the response of marine fish biomass271

to changes in environmental drivers is size dependent. Consequently, the natural vari-272

ability N, the climate change signal S and, hence, the ToE of fish biomass are expected273

to vary with size.274

Fig. 3 allows examining the ToE sensitivity to the organisms size class for each com-275

munity and the primary factor governing this sensitivity, whether it is noise or signal.276

We present only the results for the SSP5-8.5 scenario as they are insensitive to the sce-277

nario considered. The upper panels show the ToE as a function of size for each commu-278

nity, while lower panels illustrate the signal-to-noise ratio (SNR), the relative signal (S)279

and the relative noise (N). The ToE is early (1950) and stable for size classes smaller than280

1 cm (Fig. 3a) and then increases from 1950 to 2000 for sizes ranging from 1 cm to 15 cm.281

This increase can be directly related to an increase in the noise within this size range282

(Fig. 3j), resulting in a weaker SNR (Fig. 3d) and therefore a delayed emergence. For283
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sizes exceeding 15 cm, the ToE experiences a steep decline, with the largest organisms284

(1 m) reaching an emergence date of 1920. This decline can predominantly be attributed285

to a signal increase within this size range (Fig. 3g).286

The ToE for the mesopelagic varies with size in a similar way to the epipelagic com-287

munity, reaching a maximum near 25 cm, albeit for different reasons. For the mesopelagic288

community, the SNR (Fig. 3f), and consequently the ToE (Fig. 3c), are primarily driven289

by the signal (Fig. 3i), which decreases up to 25 cm and then increases.290

In contrast to epipelagic and mesopelagic communities, the signal of the migratory291

community (Fig. 3b) does not emerge for all size classes, with no signal emerging be-292

tween 5 and 15 cm. This absence of emergence for intermediate size classes is attributed293

to a change in signal sign for 10 cm organisms (Fig. 3e), leading to a negligible SNR around294

this size class. In addition, the noise increase also contributes to the ToE increase for295

sizes smaller than 20 cm 3h).296

Figure 3. Time of emergence (a-c), signal to noise (d-f) ratio, relative signal (g-i) and relative

noise (j-l) for epipelagic (left), migratory (middle) and mesopelagic (right) communities. In the

second and third rows, biomass increase and decrease are depicted by red and blue dots, respec-

tively. The y-axis are ordered in a way to facilitate the interpretation of the results.
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3.2 Regional ToE297

3.2.1 Comparison with global mean ToE298

The previous subsection demonstrates that, when globally averaged, fish biomass299

signals emerge early, mostly during the historical period. This result is likely to be re-300

lated to a significant reduction in noise through spatial averaging, leading to an increase301

in SNR. In this subsection, the ToE calculated at regional scale (at grid scale) is com-302

pared to the ToE of global mean time series. As the findings remain consistent across303

the two scenarios considered, we focus on the SSP5-8.5 scenario.304

Fig. 4 shows the percentage of the ocean surface where a signal emerges each decade305

(vertical bars) alongside the cumulative surface where a signal has emerged over time306

(continuous line). Regional SSTs exhibit early regional emergence, starting between 1920307

and 1930 and peaking between 1970 and 1990. In terms of cumulative percentage, SST308

signals have emerged over about 90% of the ocean surface by 2020, reaching 97% by the309

end of the century. In contrast, regional mesozooplankton biomass start emerging much310

later, around 1970, and peak in 2030. By 2020, mesozooplankton has emerged over only311

23% of the ocean surface, gradually increasing to 64% by the end of the century. This312

corresponds to a time lag of approximately 50 years between the regional ToE for meso-313

zooplankton and SST.314

The timing of regional emergence for total fish biomass is comparable for all three315

communities, with the mesopelagic and migratory communities emerging slightly before316

the epipelagic community. Consequently, the percentages of the ocean surface showing317

emergence are qualitatively similar between communities, ranging from 28% to 36% by318

2020 and 64 to 75% by 2100. The timing of emergence for regional fish biomass is sim-319

ilar to that of mesozooplankton (purple curve) but about a decade earlier, especially for320

epipelagic organisms, confirming both the bottom-up influence of lower trophic levels on321

higher trophic levels and the trophic amplification phenomenon already discussed for global322

scale (Fig. 2).323

For all variables considered here, the peaks of regional emergence occur later than324

the emergence of the global mean time series. For example, the peak of regional SST emer-325

gence occurs 60 years later than the emergence of the global mean SST, while the lag326
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is of about 30 years for mesozooplankton, 75 years for epipelagic and 35 years for mi-327

gratory and mesopelagic fish communities (dashed lines in Fig. 4).328

Figure 4. Percentage of the ocean surface where a signal has emerged at grid scale during a

given decade (x-axis) for SST (red bars) mesozooplankton concentration at the surface (purple

bars), biomass of the epipelagic fish community (blue), mesopelagic migratory fish community

(orange), mesopelagic resident fish community (green). The continuous lines show the corre-

sponding cumulative percentages. The dashed vertical lines indicate the ToE of global mean

time-series.

Fig. 5 compares the 10th, 25th, 50th (median), 75th and 90th percentiles of the lo-329

cal noise N (upper panels), signal S (middle panels) and ToE (lower panels) distributions330

with the values obtained from the global mean time series (red dots). In all cases, the331

noise values for global averages are either smaller or close to the 10th percentile of the332

local noise. Conversely, the global mean signal aligns more closely to the signal calcu-333

lated locally, falling between the 25th and 75th percentiles for all variables. Consequently,334

due to this considerably weaker noise and relatively consistent signal at global scale, global335

ToE precedes that of local ones. For example, the ToE for global mean SST, mesozoo-336

plankton and epipelagic fish biomass lies below the 10th percentile of the local ToE, while337

it ranges between the 10th and the 25th percentiles for migratory and mesopelagic fish338

biomass.339

–15–



manuscript submitted to Earth’s Future

Figure 5. Whisker plot showing the 10th, 25th, 50th 75th and 90th percentiles of spatial noise,

signal and time of emergence for sea surface temperature, surface mesozooplankton and fish

biomass. Red dots indicate the values obtained from the global time series. Mesozooplankton and

fish biomass noise and signal are represented in anomalies relative to the historical (1850-1950)

global mean value.

3.2.2 Spatial patterns340

In the following, the spatial patterns of ToE for SST, surface mesozooplankton and341

total fish biomass per community are analysed. The focus is laid on the SSP5-8.5 sce-342

nario, where over 60% of the ocean surface exhibits emergence at the end of the century343

for all biological variables.344

Sea surface temperature345

Fig. 6a shows the ToE map for SST. As expected from Fig. 4, most of the oceanic346

regions emerge early. In particular, the earliest emergence occurs in the tropical Indian347

Ocean, the tropical Atlantic and the Western Pacific. However, several areas exhibit a348

late emergence, such as the eastern equatorial Pacific, which manifests emergence around349

2010, along with mid-latitude regions and Antarctica. These patterns are consistent with350
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findings from previous studies derived from other ESMs (see for instance Fig. 4 of Schlunegger351

et al. (2020)).352

Fig. 6b shows the SNR map for SST, which is closely related to ToE. Here, the noise353

(Fig. 6c) is defined as the standard deviation of the anomalies relative to the climate change354

signal (see section 2.4), and the signal (Fig 6d) is defined as the difference between the355

SSP5-8.5 multi-member mean SST averaged between 2070 and 2100 and the historical356

multi-member SST averaged between 1850 and 1900. The SNR pattern mirrors the ToE357

map, indicating an early emergence in regions with a large SNR ratio and a late emer-358

gence in areas with a smaller ratio. The SST signal (Fig. 6d) shows much less spatial359

variation than the noise (Fig. 6c) and the SNR is predominantly influenced by the noise,360

with a spatial correlation between the SNR and the inverse of the noise reaching 0.71.361

In particular, the large noise and hence the late emergence of SST in the tropical Pa-362

cific are related to the strong ENSO variability (Diaz et al., 2001). Similarly, in the North363

Pacific and the Atlantic oceans, delayed emergence arises from the large noise induced364

by the Pacific North American pattern and the North Atlantic Oscillation (Hurrell &365

Deser, 2009), respectively. The correlation of SNR with the signal is 0.47. In particu-366

lar, the weak SNR and hence the late emergence of SST in the Southern Ocean is due367

to a weaker signal.368

Surface mesozooplankton369

As expected from Fig. 4, the ToE map for mesozooplankton shows broad regions370

where the signal has not emerged by the end of the century. Signals have emerged in most371

of the tropical ocean, with early emergence occurring in the equatorial Atlantic, west-372

ern Pacific and western Indian Ocean. On the contrary, ToE patterns are more patchy373

and less homogeneous at mid and high latitudes, with early emergence in the subtrop-374

ical Pacific gyres (2010) and no emergence on their flanks. Compared to the SST, the375

mesozooplankton signal displays very large spatial variations, from a strong decrease in376

the tropics, especially in the equatorial Atlantic and western Pacific, to a strong increase377

in the subtropical Pacific gyres. These regions with a prominent mesozooplankton re-378

sponse generally correspond to those with early emergence. In contrast to SST, the signal-379

to-noise ratio and hence the ToE for mesozooplankton is predominantly driven by the380

signal (spatial correlation of 0.59) rather than by the noise (spatial correlation with the381

inverse of the noise of -0.02). This is particularly true in regions where the signal-to-noise382

–17–



manuscript submitted to Earth’s Future

Figure 6. Maps of ToE (a), SNR (b), noise (c) and signal (d) for SST. Noise is calculated as

the standard deviation of the anomalies relative to the climate change signal. Signal is calculated

as the difference between the SSP585 temperature averaged over the 2070-2100 period and the

historical temperature averaged between 1850 and 1900. In a), grey shadings indicate areas that

have not emerged.

ratio is the highest (pink areas in Fig. 7b), which are associated with very strong sig-383

nals (either positive or negative). These regions are also the earliest to emerge (before384

2010).385

Fish biomass386

The SNR, and consequently the associated ToE, predominantly mirror the signal387

within the three communities, as illustrated in Fig. 8e, f and g. Areas exhibiting early388

emergence coincide with those displaying stronger signal, whether positive or negative.389

This visual assessment finds further support in the pattern correlation between the SNR390

and the relative signal, which reaches 0.76, 0.74 and 0.89 for the epipelagic, migratory391

and mesopelagic communities, respectively. Conversely, the correlation with the inverse392

of the relative noise is much lower (0.04, -0.06 and -0.004, respectively).393
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Figure 7. Time of emergence (a), signal-to-noise ratio (b), noise (c) and signal (d) for sea

surface mesozooplankton concentration. The noise is given as the standard deviation of the

anomalies relative to the climate change signal. The signal is provided as the difference between

the SSP5-8.5 mesozooplankton averaged over the 2070-2100 period and the historical mesozoo-

plankton averaged between 1850 and 1900. The latter is also used to normalise the standard

deviation and signal, which are presented as percentages. In a), grey shading indicates areas that

have not emerged.

Although the three communities display a similar emergence timeline at the global394

scale (Fig. 8a), the spatial patterns of their ToE show striking disparities, as illustrated395

in Fig. 8b-d. The epipelagic and resident communities emerge over wide regions (Fig.396

8b,d), in contrast to the migratory community, which displays a more fragmented emer-397

gence pattern (Fig. 8c). This distinctive characteristics may be attributed to differences398

in the strength of signal among these communities. Both the epipelagic and mesopelagic399

communities (Fig. 8e,g) display a decline in fish biomass across most oceanic regions,400

which explains the strong decrease of global mean biomass (about -20%, Fig. 2d and f).401

On the other hand, the migratory community exhibits both increasing and decreasing402

signals at a regional scale (Fig. 8f), which explains the small increase (about +2%) of403

global mean migratory fish biomass (Fig. 2e).404
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The epipelagic fish biomass emerges before 2020 in various regions such as the trop-405

ical Pacific and Atlantic on both sides of the equator, the northern and southern Pacific406

and Atlantic Oceans and southeast of Madagascar (Fig. 8b). These regions of early emer-407

gence align with the early emergence of mesozooplankton biomass (Fig. 7a), which cor-408

responds to a pronounced decline in mesozooplankton concentration (Fig. 7e) and epipelagic409

fish biomass (Fig. 7d). The projected patterns for the epipelagic community resemble410

those for mesozooplankton (pattern correlation of 0.61), indicating that changes in meso-411

zooplankton concentration are the predominant drivers of projected changes in epipelagic412

fish biomass, as already inferred from global mean time series (Fig. 2). This influence413

is more substantial than that of temperature, which exhibits a much earlier emergence414

and distinctly different patterns (Fig 6d, pattern correlation of -0.00). Although not struc-415

turing the ToE spatial patterns for the epipelagic community, warmer temperatures likely416

induce early emergence (median value around 2025, Fig. 5), presumably through trophic417

amplification (de Luzinais et al., 2023).418

Regarding the migratory community, the most striking feature is the very early emer-419

gence (around 1950) that occurs in the central Pacific, at about 15◦N. This area of early420

emergence coincides with a strong positive mesozooplankton concentrations signal in the421

gyres (Fig. 7d), which in turn leads to a marked increase in the migratory fish biomass422

(Fig. 7f).423

The mesopelagic community shows an emerging signal across extensive regions of424

the Pacific and Atlantic Oceans, particularly in areas characterised by moderate to pro-425

nounced mesopelagic biomass decline. Signals emerge before 2020 in specific areas, such426

as the north of the equatorial western Pacific, off New Zealand and around the Fiji Is-427

lands, as well as in the equatorial and South-West Atlantic and the south-western re-428

gion of the Indian Ocean off the island of Madagascar. The projected patterns for the429

mesopelagic community (Fig. 8c) also demonstrate some resemblance to those of meso-430

zooplankton (Fig. 7d, pattern correlation of 0.48), although to a lesser extent compared431

to the congruence observed in the epipelagic community. This discrepancy is likely re-432

lated to the model representation, where mesopelagic organisms feed on the migratory433

community that inhabits mesopelagic waters during the day and on organic detritus, both434

of which exhibiting different horizontal distributions than mesozooplankton.435
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Figure 8. (a) Surface of the ocean in which the epipelagic, migratory and mesopelagic total

fish biomass emerge in a given decade. The continuous lines show the cumulated percentage. The

red and purple lines show the cumulative percentage for temperature and mesozooplankton (cf.

Fig 4). (b-c-d) ToE maps for each of the three communities, with non emerging areas in gray. (e-

f-g) Relative climate change signal for each of the three communities, computed as the difference

between the SSP585 average over the 2070-2100 period and the historical average between 1850

and 1900. The latter is also used to normalise the signal and represent it as percentage.

4 Discussion and summary436

4.1 Discussion437

In the above, regional ToE patterns have been investigated for the SSP5-8.5 sce-438

nario, in which 60% of the ocean surface will emerge by the end of the century. We have439

also shown that global mean time series emerge during the historical period (before 2020).440

One question that arises is whether mitigation policies can reduce the regional emergence.441
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Fig. 9 compares the cumulative percentage of the emerging ocean surface for temper-442

ature, mesozooplankton and fish biomass climate change signal for both SSP5-8.5 and443

SSP1-2.6 scenarios. While the scenario has a marginal impact on the ToE of SST, with444

93% of the ocean surface emerging by the end of the century in SSP1-2.6 (compared to445

97% in SSP5-8.5), it significantly reduces the surface impacted by climate change com-446

pared to SSP5-8.5 for biological signals. By the end of the century, mesozooplankton emerges447

in 31% of the ocean in the SSP1-2.6 scenario compared to 64% in the SSP5-8.5 scenario.448

Similarly, epipelagic, migratory and mesopelagic fish biomass emerge in 41%, 38% and449

49% of the ocean in the SSP126 scenario and in 72%, 64% and 75% in the SSP585 sce-450

nario. Therefore, while the emergence of global fish biomass occurs during the histor-451

ical period (prior to 2020), mitigation policies can maintain future marine ecosystems452

within the range of their natural variations in most of the ocean’s regions. These differ-453

ences in the response of global mean and regional ToEs to mitigation are also a conse-454

quence of the weaker noise in the former. Considering global time series, the weaker sig-455

nal of the SSP1-2.6 scenario is sufficient to exceed the range of natural variability, which456

is not the case when grid-scale ToEs are considered.457

Figure 9. Cumulative percentage of the ocean surface in which the signal emerges for environ-

mental variables and fish biomass in the SSP585 and the SSP126 scenarios
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Our analysis also underscores the influence of the size class on the ToE. Notably,458

small (< 1 cm) and large (> 50 cm) epipelagic and mesopelagic organisms exhibits ear-459

lier emergence than their intermediate-sizes counterparts (about 20 cm). The later emer-460

gence of intermediate size organisms results from a larger noise within the epipelagic com-461

munity and a weaker signal within the mesopelagic community. On the other hand, mi-462

gratory fish of intermediate size fail to emerge due to a shift of their climate change sig-463

nal from positive (for small sizes) to negative (for large sizes). While understanding the464

changes in natural variability and in the response to climate change with size is beyond465

the scope of this study, it presents a compelling avenue for future investigation. Poten-466

tial approaches may involve decomposing biomass changes into their main contributions467

(predation, growth, advection, diffusion, Barrier et al. (2023)), or conducting sensitiv-468

ity analyses akin to those performed in Heneghan et al. (2019).469

Furthermore, previous literature highlighted the large persisting uncertainties re-470

garding the climate change signal and ToE of biogeochemical variables. For example, us-471

ing large ensembles from four Earth System Models (ESMs), Schlunegger et al. (2020)472

findings point to robust climate change signal and ToE for SST across four different ESMs473

ensemble but far less consistency for chlorophyll concentration and carbon export. Un-474

certainties in the climate change signal of biogeochemical processes are well known (e.g.475

Bopp et al. (2022)) and can lead to large uncertainties on the fish biomass response to476

climate change, especially when the biogeochemical models are driven by the primary477

production, which is more uncertain than the planktonic biomass (Tittensor et al., 2021).478

Although APECOSM uses plankton biomass, which is more sounded as a forcing vari-479

able, it is reasonable to anticipate large uncertainties on the ToE estimates for fish biomass.480

Another source of uncertainties stems from the limited number of members used in our481

study. Due to the limited availability of the biogeochemical forcing variables required482

to run APECOSM, stored from the IPSL-CM6-LR model, only 6 members could be con-483

sidered, in comparison to the 30 members that were used in Schlunegger et al. (2020).484

Additionally, only one marine ecosystem model has been considered in this study. How-485

ever, large uncertainties remain in the mechanisms driving the response of marine ecosys-486

tems to climate change Heneghan et al. (2019). One way to address these uncertainties487

would be to derive multi-model ensembles of ToE estimates from the ensemble simula-488

tions that have been carried out as part of the Fisheries and Marine Ecosystem Model489

Intercomparison Project (FishMIP, Tittensor et al. (2018); Lotze et al. (2019); Titten-490
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sor et al. (2021)), which includes 16 climate-to-fish simulations, with 9 ecosystem mod-491

els forced by two different climate models.492

Finally, we only considered the impact of climate change on the ecosystem. How-493

ever, fishing also has a significant impact on fish biomass. For example, using data from494

the Pacific tuna fisheries, Sibert et al. (2006) have shown that the fish biomass of tunas495

larger than 175 cm declined by about 40% at the end of the 1970s due to longline fish-496

eries. At the same time, purse-seine fishery began to affect smaller fish (≈ 75 cm) in the497

1980s. This decline in fish biomass due to fishing would superimpose on the decline due498

to climate change, inevitably affecting the estimated ToE of marine fish biomass. Recog-499

nising this, the FishMIP community has begun to develop a new socio-economic scenario500

framework derived from the SSPs, called Ocean System Pathways (the OSPs, Maury et501

al. (2024), this issue). The OSPs are designed to project the spatio-temporal dynamics502

of fisheries and marine ecosystems. Using this innovative scenario framework, it will be503

possible to explore the impact of both fisheries and climate change on the emergence of504

fish biomass changes, and to identify potential synergies between these factors. OSPs505

could be used to address the additive effects of fishing on the emergence of marine ecosys-506

tems.507

4.2 Summary508

This study represents the first attempt to estimate the Time of Emergence (ToE)509

of climate change driven in fish biomass changes. ToE refers to the moment when these510

changes have or will emerge from the natural background variability. Using ensemble cli-511

mate to fish simulations based on the APECOSM ecosystem model forced with the IPSL-512

CM6-LR Earth System physical and biogeochemical outputs, we determine the ToE of513

the epipelagic, migratory and mesopelagic communities and their two main environmen-514

tal drivers, temperature and mesozooplankton.515

Globally averaged fish biomass signals emerge during the historical period across516

all three communities. The epipelagic and mesopelagic fish biomass decline mirrors that517

of mesozooplankton, suggesting a bottom-up control of their response to climate change.518

However, the signal of epipelagic fish biomass emerges earlier (1950) than that of meso-519

zooplankton (2000) due to a stronger signal in the early 20th century, likely related to520

trophic amplification induced by an early emerging surface warming (1915). Conversely,521
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the trophic amplification for the mesopelagic community lags due to a delayed warm-522

ing in the mesopelagic zone (500-1000 m), resulting in a later emergence (2000). While523

global migratory fish biomass also emerges during the historical period, its signal is con-524

siderably weaker than that of the other two communities.525

Regional emergence lags behind that of global mean signals. For example, the peak526

of regional mesozooplankton emergence occurs 30 years later than that of the global mean527

mesozooplankton, 75 years for epipelagic and 35 years for migratory and mesopelagic fish528

communities. This delay can be tracked back to a considerably weaker globally-averaged529

noise compared to regional one. Consequently, mitigation policies could strongly reduce530

the ocean surface where biogeochemical and biological signals emerge (about 60% in the531

SSP5-8.5 scenario and about 30% in the SSP1-2.6 scenario).532
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Pörtner, H.-O., & Peck, M. A. (2011). Effects of Climate Change. In ENCYCLO-668

PEDIA OF FISH PHYSIOLOGY: FROM GENOME TO ENVIRONMENT,669

VOLS 1-3 (pp. 1738–1745). ELSEVIER ACADEMIC PRESS INC.670
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