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A B S T R A C T

The influence of forcing mechanisms on the variability of suspended sediments in an estuary is, for the first time, 
synoptically quantified over prevailing (’normal’) conditions and extreme events. This study investigates the 
complex and non-linear influence of tides, river discharge, and winds on the variability of suspended sediments 
in the macrotidal Gironde Estuary, France. Employing a machine learning-based framework, we integrated high- 
frequency field data, hourly numerical modeling outputs, and semi-daily satellite remote sensing to spatially 
quantify the relative contributions of forcing mechanisms. Our results reveal that tides are the primary driver of 
sediment variability (42.3–58.9%), followed by river discharge (21.2–34.7%) and wind (8.7–16.9%). Un
certainties range between 7% and 13.6%. In addition, the spatial variability of their contributions is consistent 
across numerical modeling and satellite remote sensing data, with differences not exceeding 10%. However, 
satellite data is limited by cloud cover and may miss extreme events. In contrast, hourly numerical modeling 
indicates tides are the dominant forcing mechanism under extreme events significantly affecting suspended 
sediment variability in the estuary. This study verifies the effectiveness of our machine learning approach against 
traditional Singular Spectral Analysis using field data. We demonstrate that machine learning techniques can 
effectively synthesize spatial distribution patterns of hydrodynamic and sedimentological variability, including 
the influence of winds. Our findings highlight not only the potential of satellite observations to analyze pre
vailing conditions despite data gaps but also that with hourly numerical modeling, the impact of forcings can be 
synoptically quantified under prevailing (’normal’) conditions and extreme events.

1. Introduction

Estuaries, as dynamic transitional zones between riverine and ma
rine environments, have an important role in buffering excess conti
nental drainage and regulating the transport of nutrients (Wetz and 
Paerl, 2008), sediments, and other components like pathogens and 
pollutants (Robins et al., 2016) to the coastal sea. Much of the ability of 
estuaries to regulate transport between land and sea is also defined by 
the dynamic interplay of forcing mechanisms such as tides, river 
discharge, and winds (Meade, 1972; Dalrymple et al., 2012). These 
forcing mechanisms are critical in shaping the variability of sediment 

dynamics by influencing sediment transport, deposition, and resus
pension patterns. For example, tides and river discharge influence the 
transport of sediments to the coastal zone. During ebbing tides, the 
exportation of sediments is favored, often resulting in turbid plumes, 
while flooding tides may modulate the entrainment of sediments in 
turbid maximum zones (TMZs; Doxaran et al., 2009). In addition, winds 
promote erosion and resuspension, especially in shallow regions 
(Constantin et al., 2018; Mulligan et al., 2019).

To effectively manage estuarine systems, it is critical to quantify the 
relative contributions of forcings mechanisms to suspended sediment 
variability in a range of hydrodynamic and meteorological settings. 
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Understanding these contributions is key to developing strategies aimed 
at adapting to (or mitigating) the impacts of human activities on the 
coast, such as dredging and port development, as well as climate change- 
driven impacts (Jalón-Rojas et al., 2017; e.g., extreme events) that are 
known for altering hydrodynamic circulation and by consequence 
sediment variability. Despite this need, efforts to measure and quantify 
the relative contributions of forcings to suspended sediments are still 
limited (French et al., 2008), especially in diverse hydrodynamic set
tings (e.g., ‘normal’ conditions and extreme events). Furthermore, the 
interaction of forcing mechanisms is not only central to sediment dy
namics but also crucial for maintaining the ecological diversity and 
health of estuarine systems. Meteorological and oceanographic changes, 
ranging from prevailing (’normal’) conditions to extreme events, are 
likely to alter the complexity of these interactions, thus posing signifi
cant challenges to the resilience of estuaries. Within the context of a 
global increase in the frequency and intensity of extreme events (Calvin 
et al., 2023), efforts to improve the understanding of the impacts of 
extreme events on coastal ecosystems are still evolving (e.g., Poppeschi 
et al., 2022; Tavora et al., 2023a) and efforts to develop adaptations are 
ongoing. In general, the primary effects of extreme events include but 
are not limited to heat waves, river floods, intensified wave conditions, 
and storm surges. Secondary impacts of extreme events include 
temporarily or permanently altered water quality, disruptions in the 
exportation of suspended sediment, particulate organic carbon, nutri
ents, and pollutants from land to the coastal ocean (e.g., Geyer et al., 
2018; Wetz and Paerl, 2008; Wetz and Yoskowitz, 2013).

To understand and mitigate such disruptions to sediment dynamics 
in estuaries, either field data collection (from shipboard surveys or 
moored stations), observations from satellite sensors, or numerical 
model simulations are necessary. However, neither data source inde
pendently fully captures the variability driven by extreme events. For 
instance, satellite observations, while offering synoptic coverage, may 
be limited by clouds, tidal aliasing (Eleveld et al., 2014) or mismatched 
overpass timing during extreme events, and shipboard surveys may be 
unpractical due to unsafe meteorological and oceanographic conditions 
(Tavora et al., 2023a). While moored sampling stations provide high 
temporal data, their limited spatial coverage hinders their efficacy with 
discrete spatial sampling. Numerical models incorporating diverse 
temporal and spatial scales are used to overcome these challenges. 
However, refining their outcomes (for example, realistic flow of sus
pended sediment concentration (SSC) importation or accurate sediment 
class distribution), especially capturing extreme events, is challenging 
(Guinot and Gourbesville, 2003). By combining the different ap
proaches, such as satellite, field observations, and numerical models, we 
maximize the extraction of information in the data sources and gain 
crucial insights into spatial and temporal dynamics. For instance, 
merging high-temporal-resolution data from moored stations and sat
ellite observations, beyond just validation purposes, can provide 
essential information about high-frequency variability and spatial dis
tribution of suspended sediments (Tavora et al., 2023a). Spectral anal
ysis of long time series of high-frequency data from moored stations has 
shown the relative influence of environmental factors on the temporal 
fluctuations of suspended sediments within sub-hourly to daily scales 
(Jalón-Rojas et al., 2017; Schoellhamer, 2002). Satellite observations 
have been instrumental in tracking turbid river plumes, e.g., Tavora 
et al. (2023b), charting estuarine water quality, and investigating sedi
ment resuspension driven by tidal fluctuation, winds, and river 
discharge within days to weeks (e.g., Tang et al., 2021). Numerical 
modeling contributes by providing hindcast or forecast scenarios at the 
water surface or by providing the hydrodynamical state of a system at 
depth.

However rich the synergy of all data sources, traditional data-driven 
analysis is often challenged due to noise, spatial or temporal gaps, or 
uneven sampling (Liang et al., 2023). These might hinder numerical 
modeling applications (which require input boundaries) and traditional 
statistical analysis. The latter has limitations assuming non-linear 

relationships and is frequently hampered by missing values and outliers 
(Liang et al., 2023). In contrast, the new generation of tools for data 
analysis using machine learning (ML) techniques provides extensive 
possibilities (Lary et al., 2016), particularly for problems where empir
ical knowledge is still incomplete but a comprehensive amount of data is 
available. As described by Lary et al. (2016), ML-based methods operate 
as “universal approximators” implying that these algorithms learn the 
relationship among variables from a set of training data without prior 
physical knowledge (Rubbens et al., 2023). That property has popular
ized the use of ML techniques in recent years for a variety of applications 
on water quality or its biogeochemical components. Examples include 
the works of Skákala et al. (2023) emulating hypoxia in the water col
umn, Shin et al. (2020) predicting chlorophyll-a, Saccotelli et al. (2024)
focused on salinity, and Nguyen et al. (2024) predicting suspended 
sediment concentration. The multiple possible applications and 
numerous ML approaches (e.g., neural networks, decision trees, random 
forests) – each technique with a trade-off among accuracy, interpret
ability, and data requirements – are further described in reviews of Lary 
et al. (2016), Rubbens et al. (2023), and Goldstein et al. (2019). Lary 
et al. (2016) address ML application in geoscience and remote sensing, 
Rubbens et al. (2023) describe ML applications and techniques for ma
rine ecology, and Goldstein et al. (2019) discuss techniques applied to 
coastal sediment transport and morphodynamics. Here, we apply the 
unsupervised ML technique Self Organizing Maps (SOM) (Kohonen, 
2013). The SOM is widely applied in meteorological and oceanographic 
studies (Liu and Weisberg, 2011) because it has been demonstrated to be 
an effective technique for pattern recognition and feature extraction, 
capable of capturing and reducing the complexity of non-linear patterns. 
The SOM’s major advantage is the ability of reducing the dimensionality 
of the data while preserving the topological relationships among data
points. This makes SOM useful for visualizing high-dimensional data in 
2-dimensions, facilitating pattern recognition and clustering, while 
robustly dealing with noisy or incomplete data. However, SOM requires 
tuning of parameters like the number of learning neurons. SOM has, for 
example, facilitated the identification of phytoplankton groups (e.g., El 
Hourany et al., 2019; El Hourany et al., 2024; Yala et al., 2020), assessed 
uncertainties on sea level rise estimates (e.g., Camargo et al., 2023), and 
predicted oil spills (e.g., Mata et al., 2009).

In this study, we aim to quantify the interplay of meteorological and 
hydrodynamic forcings (i.e., river discharge, tides, and winds) over the 
variability of surface suspended sediments within the context of extreme 
events and prevailing (’normal’) conditions. For this purpose, we pro
pose a ML-based framework for estuaries and apply this to the Gironde 
Estuary, France. The proposed ML-based framework benefits from the 
inherent advantages of SOM handling high-dimensional data like hy
drodynamic and sediment data. We feed the framework with numerical 
modeling and remote sensing data supplemented by field measure
ments. The framework allows the automatic assignment of different 
hydrodynamic and sediment distribution patterns within an estuary 
while attributing the influence of hydrodynamic forcings to the surface 
sediment variability at broad spatial scales, hereon referred to as syn
optic scales.

2. Study site

The Gironde Estuary (Fig. 1), located on the Atlantic French coast, is 
the largest estuary in Western Europe. It exhibits a funnel-shaped system 
with increasing width (15 km at the mouth) towards the sea and about 
75 km in length. The Gironde Estuary is a system extensively investi
gated under diverse hydrological conditions via numerical simulations 
(e.g., Diaz et al., 2020; Diaz et al., 2024; Jalón-Rojas et al., 2021), 
remote sensing methods (e.g., Constantin et al., 2017; Normandin et al., 
2019), and high-resolution moored turbidity data (e.g., Etcheber et al., 
2011; Jalón-Rojas et al., 2015; Jalón-Rojas et al., 2017).

The tidal regime in the estuary is characterized by high amplitudes 
(from 2.5m during neap tide to 5.5m during spring tide at Le Verdon). 
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The amplitude of the tides increases as one moves upstream, with a 
maximum range of 6.3m (Jalón-Rojas et al., 2018) being recorded at a 
distance of approximately 100–126 km from the estuary’s mouth.

The Gironde Estuary receives freshwater inputs from two main 
rivers, the Garonne and the Dordogne rivers. The average freshwater 
discharge from these rivers is approximately 680 m3 s− 1, with reported 
peaks exceeding 4100 m3 s− 1 during winter. The discharge exhibits 
seasonal variations, with minimum values occurring between July and 
September (summer) and maximum values between December and 
February (winter). Winds from the northern sector prevail with average 
wind speeds between 2 and 4 m s− 1, rarely exceeding 10 m s− 1. The 
dynamics of winds at short time scales make their seasonal tendencies 
difficult to predict. In the inland stations, Pauillac and Merignac/ 
Bordeaux, the mean wind speeds are approximately 4 m s− 1 and 3 m s− 1, 
respectively while in the Atlantic coast, at Cap Ferret station, wind 
speeds are up to three-folds stronger (refer to Section 3.5).

Previous studies have identified that tides and river discharge 
contribute up to 70% to the dynamics of sediments in the fluvial Gironde 
(Jalón-Rojas et al., 2017). As a result, the fluvial Gironde exhibits higher 
sediment concentrations during summer and lower concentrations 
during winter.

While tides and river discharge consistently influence sediment dy
namics throughout most of the estuary (tides having a stronger influ
ence), river discharge dominates during peak flow events in the fluvial 

Gironde (Jalón-Rojas et al., 2017). Winds are expected to have a sig
nificant role in the variability of sediments through wave resuspension, 
particularly in the shallow areas of the mouth and middle estuary 
(Constantin et al., 2017) such as intertidal mudflats, sandbanks, and 
shoals. Studies suggest the influence of wind events on sediment dy
namics. Normandin et al. (2019) observed an inversely proportional 
relationship between winds and suspended sediments. Additionally, 
Lesueur et al. (2002) reported storm swells exceeding 15m, offshore of 
the mouth of the Gironde Estuary, highlighting the potential impact of 
storms on the estuary.

Regarding extreme events, on average at least one storm reaches the 
Gironde Estuary region every year (i.e., MeteoFrance (http://tempetes. 
meteo.fr/spip.php?article119; accessed on August 2023) provides in
formation on storms), some of which caused widespread disruptions (e. 
g., storms Xynthia in 2010 (Kolen et al., 2013; Kolen et al., 2010), and 
Hercules in 2013–2014 (Castelle et al., 2015)). These storms, through 
intensified forcing mechanisms (such as winds) may influence sediment 
dynamics and turbidity levels in the estuary (Lesueur et al., 2002), or 
erosion of coastal areas (Castelle et al., 2015) and tidal flats, for 
example.

3. Material and methods

In this section we introduce the datasets used to compose the two 
main databases (based on hourly numerical model outputs and semi- 
daily satellite data) used for analysis of surface suspended sediment 
and the forcings related to their dynamics. We also introduce the ML 
techniques used to compose our framework for hydro-sedimentological 
regionalization. The approach handles a full time series of hydro- 
sedimentological data representing non-linear surface sediment re
sponses to estuarine forcings along the Gironde Estuary.

3.1. Field data

Field data comprised time series of river discharge, wind speed, and 
turbidity. Fig. 1 illustrates the location of wind speed and turbidity (as a 
proxy for SSC) stations (see Supplementary Material A for summary of 
all field data). Hydrometric stations record daily discharges of the 
Dordogne River and the Garonne River (EAUFRANCE; http://www. 
hydro.eaufrance.fr/). Daily river discharge between 1959 and 2021 
from each river was summed to achieve total daily amount of water 
flowing toward the coast.

Wind speed and direction were retrieved from four field stations 
(Royan, Pauillac, Merignac, and Cap Ferret) operated by the official 
service of meteorology and climatology in France (MétéoFrance; 
https://donneespubliques.meteofrance.fr/). Wind speed and wind di
rection were measured every hour at Royan (between years 1991 and 
2022), Pauillac (2004–2020), and Merignac (2004–2020) stations and 
every 3h at Cap Ferret (1985–2022).

Field turbidity measurements were provided by MAGEST (MArel 
Gironde ESTuary; https://magest.oasu.u-bordeaux.fr) and GEMMES 
(Grasso et al., 2021). The MAGEST data were sampled at stations Le 
Verdon at the mouth of the Gironde estuary (between 2017 and 2021) 
and Pauillac in the middle estuary (52 km from the mouth, 2017–2018) 
and GEMMES data were sampled between 2016 and 2017 in front of 
Gironde Estuary mouth (buoy 20). The stations record turbidity at the 
water surface (<1m depth) every 10–30 min.

3.2. Remote sensing and derived turbidity estimates

A time series of all available, full resolution, level 1 data from 
Sentinel 3A, B (2016–2021) was processed using the ACOLITE processor 
(version 20221114; https://odnature.naturalsciences.be/remsem/soft 
ware-and-data/acolite) from the Royal Belgium Institute of Natural 
Sciences (RBINS). The atmospheric correction default dark spectrum 
fitting scheme was applied to obtain water reflectance (Rw) and flags 

Fig. 1. Gironde Estuary, France. Green triangles represent the location of wind 
stations (Cap Ferret, Merignac/Bordeaux, Pauillac, and Royan). Dark yellow 
circles represent the location of turbidity data (from MAGEST program: Pauillac 
and Le Verdon, and from GEMMES buoy 20). Black contours represent the 
depth isobaths at 5m, 18m and 40m. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.)
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indicating atmospheric artifacts (e.g., non-water pixels, aerosol optical 
thickness out of range, or negative Rw). Every satellite scene was map
ped to a cylindrical equidistant projection at a spatial resolution of 
300m, and pixels attributed a flag indicating any atmospheric artifacts 
were removed.

Further, we carried out a match-up analysis between satellite over
pass and field turbidity following the practices suggested in IOCCG 
(2019) and Tavora et al. (2023c). For match-ups we (i) opted for the 
minimal time difference between satellite overpass and field data 
acquisition, never surpassing 30min, and (ii) extracted the pixel 
centered at the location of the field station. Regarding the Pauillac sta
tion, the pixel centered at the location of the station was masked as land 
due to its proximity to the shore and the spatial resolution of the satellite 
sensor. Alternatively, the pixel coordinate was shifted to the nearest 
non-masked pixel (about 300m), a solution used in similar studies (e.g., 
Vanhellemont, 2019).

Satellite-derived turbidity was estimated by applying a Singular 
Vector Machine (SVM) regression between field turbidity data and Rw in 
seven satellite bands (620, 665, 709, 768, 779, 865, 884 nm). The use of 
multiple satellite bands is known for increasing the sensitivity to 
turbidity (e.g., Tavora et al., 2020) while avoiding saturation due to 
higher sediment concentrations commonly observed in the Gironde Es
tuary. Selection of such reflectance bands excluded the range 680–700 
nm to avoid contamination of phytoplankton fluorescence in the rare 
cases of low turbidity. In addition, outliers represented by values below 
the 3rd percentile of the data distribution were removed, which corre
sponds to a threshold of 0.64 NTU. Refer to Supplementary Material B 
for metrics of satellite-derived turbidity.

3.3. Reanalysis wind data

Wind data was obtained from ECMWF-ERA5 (Hersbach et al., 2023) 
for the years 1959–2021 with 0.25o spatial resolution. Wind data com
prises both u and v components, 10m above surface with hourly fre
quency. To ensure that the dataset was not underestimating local wind 
speeds, we performed Cumulative Distribution Function (CDF) matching 
for bias correction (Singh et al., 2020; Reichle and Koster, 2004). 
ECMWF-ERA5 winds were compared for each wind component against 
each of the four field wind stations (i.e., Royan, Pauillac, Mer
ignac/Bordeaux, and Cap Ferret). Refer to Supplementary Material C.

3.4. Hydrodynamical modeled data

The “CurviGironde” dataset (Diaz et al., 2023) was used. This data 
set consisted of output from the hydrodynamic model MARS-3D and 
sediment module MUSTANG, coupled to hindcast hydro-sediment dy
namics between 2011 and 2021. Details of the model are described in 
Diaz et al. (2020). The modeled outputs were available in 10 equidistant 
sigma levels and a mesh grid ranging from 2 km offshore to 100m in the 
inner estuary. Diaz et al. (2020) validated the “CurviGironde” model 
output for hydrodynamic parameters (water level, tidal currents, wave 
height, salinity) with an ADCP and multiple tide gauging stations along 
the Gironde Estuary, and validated SSC with the MAGEST turbidity 
dataset at Pauillac station. Refer to Diaz et al. (2020) for validation 
metrics. The present study makes use of variables: depth, water level, 
tidal currents, and SSC between years 2016 and 2021, for comparability 
with satellite data. Tidal currents were further inspected for flooding 
and ebbing tidal directions, for which the data points relative to ebbing 
(flooding) tides were attributed a negative (positive) sign.

3.5. Detection of extreme events in the Gironde Estuary

An extreme event can refer to a value that exceeds a threshold 
determined from statistical methodologies, experimentally, or based on 
expert judgment (Stephenson, 2008). Here, we applied the 
peak-over-threshold to detect extreme events in the river discharge data. 

In the present study, we applied the 90th percentile threshold to detect 
extreme river discharge for data recorded between 1959 and 2021, as 
applied by Poppeschi et al. (2022) in the Bay of Brest and the Bay of 
Vilaine (France). The definition of windstorms in France; i.e., the ab
solute value of 25 m s− 1 determined by MeteoFrance (http://tempetes. 
meteo.fr/Tempetes-cyclones-tornades-et-orages.html; accessed on 
August 2023), would lead to a complete misdetection of such events 
within the Gironde Estuary (refer to Supplementary Material D for 
maximum wind speeds within this study). Therefore, instead of wind
storms, windbursts were further used. To determine windbursts, 
spatially integrated wind speed data between 1959 and 2021 (from 
bias-corrected ECMWF-ERA5) should surpass the 90th percentile of the 
time series.

3.6. The framework of hydro-sedimentological dynamics

We propose here a framework (Fig. 2) to analyze the diverse hydro- 
sedimentological scenarios of estuaries in the Gironde Estuary. The 
framework and data analysis described here were carried out with 
MATLAB software (version 2023b). We first describe the database or
ganization for training and verification (Section 3.6.1) and demonstrate 
the framework’s ability to synthesize a database into hydro- 
sedimentological coherent regions while discriminating extreme 
events from prevailing conditions (Section 3.6.2). Finally, a 
permutation-based approach was used to determine the contribution of 
each forcing mechanism to sediment variability (Section 3.6.3). The 
process is carried out for model-based outputs and for satellite-based 
outputs.

3.6.1. Database organization and processing
The goal was to prepare variables (river discharge, tidal currents, 

water level, wind speed, depth, and a proxy for sediment dynamics – 
either SSC or turbidity) from independent data sources that were later 
used to provide base for the proposed analysis. These data were avail
able under different temporal and spatial resolutions making the stan
dardization step necessary. To achieve spatial comparability all 
variables were remapped onto an equidistant 300m resolution grid, 
using the spatial grid of satellite data as reference. For river discharge 
data, in addition to remapping, we performed spatial interpolation ac
counting for the time difference of 1 day between the location of gauging 
stations and the mouth of the estuary (Constantin et al., 2018).

Two datasets were further organized: Databases A and B. Database A 
consisted of a broad range of values and conditions for variables depth, 
forcings (river discharge, tides, winds) and model-based total surface 
sediment concentration (SSC). Database B consisted of the same vari
ables as database A except for SSC, which was replaced by satellite- 
based turbidity. To achieve temporal comparability each database was 
aligned according to the most limiting data within its database. Database 
A was aligned at hourly temporal resolution (reaching over 50,000 time 
steps), and Database B was aligned with the timing of (partially) cloud- 
free satellite overpass (total of 216 satellite scenes). This standardization 
step, for each database individually, allowed for the integration of 
different data into a spatially uniform datacube (i.e., 3D arrays) orga
nized by time, longitude, and latitude.

Each datacube was further reshaped in a database of 2D arrays such 
that each pixel (i.e., specific latitude, longitude and time) was consid
ered a sampled point rearranged as a row vector and each column was 
relative to one of the six variables. These comprehensive 2D array da
tabases consisted of, in order, hydrodynamical forcings along with depth 
and their respective surrogate of sediment dynamics. The two newly 
formed 2D array databases were then inspected for missing data and 
respective rows were removed. Finally, we applied log10- 
transformation to river discharge, SSC, and turbidity due to the data’s 
broad range spanning three to four orders of magnitude.
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3.6.2. Hydro-sedimentological classification approach
Initially, a machine learning-based classification of hydro- 

sedimentological regimes in the Gironde Estuary was conducted using 
a two-step classification procedure. The first step involved using SOM 
(https://github.com/ilarinieminen/SOM-Toolbox/, accessed in August 
2023) neural network used to reduce the complexity of features of the 
database in a 2D neural map while preserving the topology and 
capturing patterns within the neural map. At the end of the learning 
process, SOM positions similar units closely together while units rep
resenting different patterns are located further apart in the neural map. 
The SOM is an unsupervised classifier used for classification, noise 
reduction, and outlier detection. In the SOM analysis, due to the large 
amount of data, each database was subset with about 600,000 randomly 
selected data points. Further, variables in databases A and B were 
normalized to their respective variance to be similarly weighted and a 
SOM was trained. The SOM requires selecting an optimal number of 
neurons, which can be empirically determined in a trial-and-error 
approach (Marchese et al., 2022) as the value that provides the best 
representation of the training with minimized topographical (how well 
the topological map preserves the neighborhood relationships of the 
input data) and quantization errors (the difference between the input 
data and its closest assigned neuron). Minimizing both errors ensures 
that the SOM not only accurately represents the input data but also 
conserves the relationships between data points, leading to a more 
meaningful and interpretable topological map. We employed an 
approximate starting point for a number of neurons M, as applied by 
Elizondo et al. (2021) and Vesanto and Alhoniemi (2000), based on the 
total number of data points in the training database (n): 

M=5
̅̅̅
n

√
Eq. 1 

By employing Eq. (1), we derived four initial reference values (i.e., 
M, M/2, 2M, and 4M) and adopted the reference value providing min
imum topographical and quantization errors. In the second step, the 
Kmeans clusterization algorithm was used to reduce the number of 
clusters from the initial SOM, as suggested in Vesanto and Alhoniemi 
(2000). Using Kmeans after SOM is beneficial because it highlights 
hydro-sedimentological patterns in the reduced and organized space 
created by SOM. By preserving important patterns, SOM enables Kmeans 
to effectively reduce the number of clusters without sacrificing key re
lationships (El Hourany et al., 2019, 2024), addressing a common 
challenge in Kmeans cluster analysis. These clusters generated from 
SOM + Kmeans are hereon called hydro-sedimentological classes. By 
classifying data into hydro-sedimentological classes, we simplified the 
complexity of the data, grouping detailed, high-dimensional data into 
simpler, low-dimensional groups with similar characteristics in terms of 
water and sediment behavior. We further verified the detection of 
extreme events with the SOM + Kmeans by identifying SOM neurons 
that captured hydro-sedimentological patterns during extreme events 
with thresholds defined in Section 3.5. These were then refined and 
presented as independent classes.

Finally, statistical tests were conducted to assess whether the SOM +
Kmeans hydro-sedimentological classes had distinct characteristics. 
First, a non-parametric, one-way analysis of variance by ranks, the 
Kruskal-Wallis H test, was conducted on each variable within the iden
tified clusters, as in Marchese et al. (2022). This analysis was based on 
hydro-sedimentological attributes computed from each class’s database. 
Complementarily, a post-hoc pairwise testing, the Dunn-Sidaks’s mul
ticomparison test, was applied to identify which classes differ 

significantly from the others, repeated to each variable (statistics are 
described in Supplementary Material E). Within the Dunn-Sidak’s re
sults, if at least one variable (either river discharge, tidal current, water 
level, wind speed, depth or suspended sediment) for a given class was 
statistically significant different from the other classes, then that class 
was different from the remaining classes.

3.6.3. Permutation-based relative importance of forcings to suspended 
sediments along estuary

To explain and estimate the relative importance of the predictors 
(river discharge, tides, and winds) to surface sediments, we applied a 
permutation-based importance method to a Random Forest (RF) algo
rithm using the MATLAB Statistics and Machine Learning toolbox 
(v23.2). This method, while computationally efficient for large datasets 
and of easy interpretability, involves randomly shuffling each predictor 
to evaluate its individual impact on surface suspended sediment pre
diction, measuring the resultant change in the RF model’s performance. 
For each class in the Gironde Estuary, we trained a Random Forest al
gorithm using the option optimizable ensemble of trees with a default 
hyperparameter search range to predict the proxies of surface suspended 
sediment (SSC or turbidity), assuming a causal effect (refer to Data 
Statement to access trained RF algorithms; refer to Supplementary Ma
terial F for performance metrics of RF algorithms). Subsequently, we 
computed the mean relative importance of each predictor variable to 
establish their respective contributions. Lastly, each fitted RF algorithm 
was provided with a coefficient of determination (R2) ranging between 
0 and 1, meaning that the RF-algorithm explains 0–100% of the rela
tionship between the proxy for surface sediment and predictor variables. 
Each R2 was pondered in the relative contributions of predictor variables 
to account for stochastic signal of data as uncertainty and noise. Further, 
the uncertainties and noise were propagated to synoptical composites.

3.6.4. Intercomparison exercise for framework verification
Each database (A and B) consists of a source of information for sus

pended sediment dynamics independent from one another (i.e., model- 
based SSC and satellite-based turbidity), and each capturing different 
instants in the time series (random sub-set 1h intervals of model-based 
data versus the semi-daily sun-synchronous satellite data). For that 
purpose, we assess whether the framework applied to the different da
tabases provides consistent relative contributions synoptically, inde
pendently of time intervals. The proposed framework was first applied 
to database A, which counts with a broader range of values for each 
variable. Then, the proposed hydro-sedimentological framework is 
independently applied to database B. For each database, the relative 
contribution of forcings per hydro-sedimentological class and synoptical 
relative contributions are compared. This comparison allows for 
assessing whether the machine learning-based framework provides 
consistent results, which is especially advantageous for data with gaps 
like satellite sensors.

Relative contribution results with the framework are compared with 
the Singular Spectral Analysis (SSA) described by Jalón-Rojas et al. 
(2016a) and Jalón-Rojas et al. (2017). The SSA decomposes a time series 
into a set of principal components of nearly periodic oscillations with the 
contribution of the variance of each principal component determined by 
its eigenvalue. While the SSA is shown to detect the periodic oscillations 
such as observed in tides and river discharge, other environmental 
forcings, such as winds, are more likely detected as noise rather than 
explained variance, as observed in Jalón-Rojas et al. (2017) for the 

Fig. 2. Sequence of approaches adopted for the proposed framework from data acquisition, pre-processing and application. Within the framework datacubes (di
mensions x1:n,y1:m,t1:i) of independent variables: river discharge (Q), tidal current, water level (WL), wind speed (U), depth (z), and surface sediment concentration 
(SSC) are reshaped into a 2D array. The 2D array was used as input to a SOM + Kmeans approach, and distinct regions (or classes) are determined. Further classes are 
refined for extreme events. Finally, with classes defined, the relative contribution of river discharge, tides (sum of contribution of tidal currents and water level), U, 
and uncertainty or noise (δ) is attributed to each recently determined class. Note that the number of classes (A, B, C + extreme events) depicted in this flowchart is a 
simplified representation and does not reflect the actual number of hydro-sedimentological classes identified in this study.
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Gironde Estuary and Loire Estuary (FRA). We applied SSA to Le Verdon 
(2017–2021) following the methodology applied and described in 
Jalón-Rojas et al. (2017) and compared it with the framework’s esti
mated relative contribution centered at the position of the station. The 
SSA was not applied to Pauillac and GEMMES stations due to the short 
time frame (Jalón-Rojas et al., 2016a), preventing a more accurate 
comparison between methods for relative contribution.

4. Results

4.1. Characteristics and patterns of identified hydro-sedimentological 
classes

The SOM + Kmeans algorithm distinguished seven hydro- 
sedimentological classes that exhibit the most significant partition of 
the database (database A). Of these, a few classes capture characteristics 
of extreme river discharge events, (potential) windbursts, or capture 
extreme river discharge and potential windbursts simultaneously. The 
hydro-sedimentological classes identified capturing extreme events 
were then refined and split into classes specific for extreme river 
discharge, windbursts, and their simultaneous occurrence. Refining 
these classes to separately capture extreme events allows the detection 
(and discrimination) of classes that are affected by extreme events and 
classes that are not (prevailing conditions) while also providing an 
overview of associated environmental patterns. Overall, a total of 10 
hydro-sedimentological classes (i.e., 7 classes of prevailing conditions 
and 3 classes of extreme events) were established summarizing the 
complex and highly dynamic system of the Gironde Estuary. The 
established number of classes is supported by both the Kruskal-Wallis H 
(p-value <0.05) and Dunn-Sidak’s multicomparison test (Q-value 
<0.05). The Kruskal-Wallis and Dunn-Sidaks’s test revealed that for a 
given class at least one variable (river discharge, tidal current, water 
level, wind speed, depth, or SSC/turbidity) was statistically significant 
different from the remainder classes (refer to results in Supplementary 
Material E).

Fig. 3 depicts the 10 hydro-sedimentological classes grouped in 
prevailing conditions (C1-C7; Fig. 4a–f) and extreme events (C8-C10; 
Fig. 3g–l). Each class is generally characterized by different surface 
sediment concentration ranges with an interchangeable combination of 
low, intermediate, or high values for the remaining variables. For 
example, while classes C3 and C4 yield similarities in most variables, 
they differ in terms of water level and river discharge with C3 repre
senting lower water levels and more intense river discharge than C4.

4.2. Quantification of forcings to surface suspended sediment variability

The dynamic nature of estuarine sediments here represented by SSC 
(database A), is attributed to a variability of forcings including river 
discharge, tides, and winds for each class. According to the results ob
tained from the framework, each and all forcings contribute to predicted 
SSC (Fig. 4). Among classes of prevailing conditions, tides (42.3%– 
58.9%) and river discharge (21.2%–34.7%) are most frequently 
observed as the dominant contributors to SSC variability, with higher 
relative contribution compared to winds (8.7%–16.9%) and uncertainty 
or noise (7%–13.6%). Classes representing extreme events yield similar 
relative contributions for forcings as classes representing prevailing 
conditions.

4.3. Synoptical relative contributions to surface suspended sediment 
variability

Once the relative contribution to surface sediment variability is 
identified per class, we can identify the relative contribution of forcings 
at any timestep, and the overall synoptical relative contributions of the 
entire timeseries. Fig. 5 depicts the overall synoptical contributions, 
using database A, for which river discharge (Fig. 5a) and tides (Fig. 5b), 

as well as winds (Fig. 5c) and uncertainties (Fig. 5d) show different 
ranges of contribution to suspended sediment variability. Wind and 
uncertainties are of secondary importance compared to river discharge 
and tides. It is also clear that the spatial variation in the relative con
tributions of the variables is low. However, the land-to-sea continuum 
displays some short-range variability, with a smooth increasing trend on 
the tidal contribution (from a mean of 47.4% ± 0.8% in the inner es
tuary to a mean of 51.5% ± 1.8% in the outer estuary). River discharge 
shows a small consistent gradient in the continuum, with a slightly 
stronger contribution in the inner estuary (mean of 29.3% ± 0.7%) but 
decreasing seawards (mean of 26.7% ± 1.1%). Winds demonstrate a 
slightly stronger contribution to SSC variability in the shallower areas, 
including the inner estuary and sand banks or shoals on the outer estuary 
(mean of 15.1% ± 0.3%) as opposed to a mean of 13.5% ± 0.6% in the 
deeper areas of the outer estuary. Uncertainties or noise are also roughly 
consistent spatially (about 8.3% ± 0.4%).

4.3.1. Comparison with Singular Spectral Analysis
Further, we compare results from the proposed hydro- 

sedimentological framework with database A to those of the estab
lished SSA approach with field turbidity data. Table 1 shows the relative 
contributions of predicting factors to sediment variability with both 
methods. Results are relatively consistent between methods, particularly 
for river discharge and uncertainty (differences <4.5%), while tides 
yield about 15% difference in relative contribution to SSC variability. 
Finally, the hydro-sedimentological framework provides estimates for 
the influence of winds on the variability of sediments in suspension. At 
the same time, for SSA, the impact of winds is unquantified, due to its 
stochastic nature, but likely contained within uncertainty estimates.

4.4. Database intercomparison verification

We compare the relative contribution results obtained from the 
hydro-sedimentological framework applied to database A and database 
B (see Supplementary Material G-1 for the relative contribution of 
classes with database B). Results achieved with each database are 
consistent, with less than 10% difference for either parameter (Fig. 6). 
Overall, results obtained from database A yield slightly lower relative 
contribution for river discharge and wind speeds. Tides and un
certainties, on the other hand, yielded slightly higher relative contri
butions to SSC variability. In general, the database intercomparison 
exercise demonstrates that the hydro-sedimentological framework 
yields similar results for the overall relative contribution of forcings and 
uncertainty, regardless of the source of suspended sediment data (hourly 
numerical model or satellite-based).

The largest differences between databases A and B are related to 
detecting relative contributions under extreme events. Contrarily to 
database A, with database B, the forcings representing extreme events 
(e.g., river discharge for extreme river discharge or winds for potential 
windbursts) consisted of a short range of values detected during 
(partially) cloud-free satellite overpass in the occurrence of extreme 
events (i.e., 5 scenes under extreme river discharge, 34 scenes of po
tential windburst, and 1 scene under simultaneous extreme events). This 
limited range of river discharge or wind speed values likely constrains 
the permutation-based approach due to the low number of degrees of 
freedom on retrieving relative contributions under extreme events 
(Supplementary Material G − 2,3).

4.5. Changes detected under extreme events in the Gironde Estuary

Although the analysis addressed extreme events, it reveals that tides 
are the primary driver of sediment variability. The influence of tides is 
greater than the effect of extreme events (river discharge and wind
bursts, as shown in Fig. 4). Additionally, the overall spatial relative 
contribution of forcings during extreme events reveals that tidal con
tributions are roughly consistently 15% higher than under prevailing 
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Fig. 3. Classes of coherent hydrodynamical and sedimentological patterns of database A (x-axis), for river discharge (Q log10 transformed; a,g), tidal current (b,h), 
water level (c,i), wind speed (U; d,j), depth (e,k) and model output of surface sediment concentration (SSC log10 transformed; f,l). Left panels (a–f) represent hydro- 
sedimentological classes under prevailing conditions, while right panels (g–i) represent classes under extreme event conditions (respectively simultaneous extreme 
river discharge, potential windburst, and simultaneous extreme river discharge and potential windburst). The shaded upper portion of (a,g) and (d,j) respectively 
represent the threshold defining occurrence of extreme river discharge (Qlog10 > 3.24 m3 s− 1) and potential windburst events (U > 6.82 m s− 1) in the Gironde 
Estuary. Classes of prevailing conditions are ordered based on increasing SSC.
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conditions whereas river discharge and winds have a lower relative 
contribution to sediment variability during extreme events.

A further investigation of parameters representing tides (i.e., tidal 
currents and water level) shows that water levels under extremes are 
above those observed under prevailing conditions (Fig. 7a–c), with 
differences reaching up to 0.5m. The spatial patterns observed for tidal 
currents (Fig. 7d–f) are more complex showing a clear influence of 
bathymetric features. Among the diverse patterns, mean tidal currents 
under extreme river discharge (Fig. 7d) are stronger than under pre
vailing conditions. Potential windbursts, however, result in lower mean 
tidal currents, especially in the deeper regions of the estuary like the 
navigation channel. The contrast between prevailing and extreme con
ditions is stronger during simultaneous extremes, splitting the inner 
estuary into three parts: (i) the region between Le Verdon and Lamena 
with stronger currents under simultaneous extremes, (ii) the region 
between Lamena and Pauillac with weaker currents under extremes, and 
(iii) a region upward Pauillac station with a smooth gradient of 
increasing tidal current speed under simultaneous extremes. The outer 
estuary yielded similar patterns between windbursts and simultaneous 
extremes, differing on the magnitude of tidal currents while spatial 
patterns observed for extreme river discharge are roughly the opposite.

The dynamics of forcing mechanisms reflect the variability of sus
pended sediments. Fig. 8 depicts the spatial differences in SSC by type of 
extreme event: river discharge (Fig. 8a), potential windbursts (Fig. 8b), 
and simultaneous extreme events (Fig. 8c). The influence of forcing 
mechanisms is observed along the entire estuarine domain, yet each type 
of extreme event leads to a distinct SSC distribution. Extreme river 
discharge, for instance, yields intensified SSC in the middle estuary and 
low SSC within the most upstream and downstream regions. Potential 
windbursts, compared to prevailing conditions, yield higher SSC 
throughout the estuary. SSC under simultaneous extremes reveals a mix 
of patterns observed under extreme river discharge and potential 
windbursts with a well-marked (and more extensive) region of higher 
SSC and plume-like features in the outer estuary.

5. Discussion

5.1. Perspectives on the use of machine learning to address the influence 
of forcings to estuarine suspended sediment dynamics

In this study, we have employed turbidity field data to validate the 
accuracy of satellite-based turbidity estimates (field data was also used 
for verification of the “CurviGironde” numerical model outputs by Diaz 
et al., 2020). We then compared results from the proposed ML frame
work applied to satellite-based information and to the model output 
“CurviGironde” to ensure consistency.

Our study used an unsupervised neural network ML (the Self Orga
nizing Maps – SOM + Kmeans) combined with an explanatory approach 
to analyze discontinuous satellite remote sensing data and consistent 
hourly numerical model outputs. This novel method not only matched 
the results from traditional approaches, i.e., SSA, but provided advan
tages over these traditional methods, such as (1) spatially resolved es
timates of the influence of forcings on suspended sediment variability 
(consistent from both numerical model outputs and satellite remote 
sensing data), and (2) accounted (and estimated) for uncertainties while 
(3) providing the influence of winds on sediment variability. However, 
despite the advantages, the framework applied to satellite remote 
sensing of Sentinel 3 (OLCI) alone is limited in capturing estuarine dy
namics under extreme events due to limited temporal data coverage. 
Instead, by leveraging a high temporal and spatial data source (i.e., 
numerical model output), we added a fourth advantage of the proposed 
ML framework: (4) isolating the influence of forcings and the resulting 
sediment response during prevailing conditions compared to extreme 
events. In comparison to the traditional statistical approach, SSA, which 
is mostly limited by gaps and length of time series as discussed in 
Jalón-Rojas et al. (2016a), and the fact that SSA cannot distinguish the 
role of winds, the proposed machine learning-based framework, has 
distinct advantages. The advantages observed with the proposed ML 
framework over traditional methods are attributed to the key skills of 
ML, especially regarding SOM. These are largely attributed to capturing 

Fig. 4. Class-specific relative contribution (%) of predicting factors (river discharge, tide, wind and uncertainty or noise) for modeled surface SSC (database A). 
Classes C1-C7 depict relative contribution of forcing mechanisms under prevailing conditions (ordered from low (C6) to high (C2) log SSC), classes C8-C10 depict 
relative contribution of extreme events (extreme high river discharge, potential windbursts, and simultaneous extremes, respectively).
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hydro-sedimentological patterns despite the uneven sampled data in
puts, gaps in the input data, and the topology preservation of SOM that 
reduces the complexity of the hydro-sedimentological data while 
keeping key relationships.

The Gironde Estuary was a perfect study site, counting with long- 
term and high-frequency data at fixed stations (especially from the 
MAGEST program), which aided in the verification of the proposed 
framework but also with a high-frequency (validated) numerical model 
output (Diaz et al., 2023) providing means to address extreme events 
(and their influence on sediment dynamics). While the Gironde Estuary 
was an ideal laboratory site to develop and test the 
hydro-sedimentological ML framework, the proposed framework may 
be employed in other estuarine environments using satellite remote 
sensing data. This versatility for spatial quantification of the influence of 
forcing mechanisms is exemplified by the comparable results obtained 

with hourly numerical modeling (database A) and satellite remote 
sensing (database B), paving the way for comprehensive environmental 
studies.

5.2. Interplay of forcing mechanisms to sediment variability in the 
Gironde Estuary

It is not new that on a macrotidal estuary like the Gironde Estuary, 
tides play a major role in sediment variability. Previous studies with 
field sampled data (e.g., Castaing and Allen, 1981; Jalón-Rojas et al., 
2017; Jalón-Rojas et al., 2016b), satellite remote sensing (e.g., Con
stantin et al., 2018; Normandin et al., 2019) or numerical modeling (e. 
g., Diaz et al., 2020), have attributed much of the sediment dynamics 
firstly to tides and secondly to river discharge – some with qualitative or 
with quantitative approaches but most of them using traditional statis
tical analysis or numerical modeling. While backed up by the literature, 
the present study aims to complement the state-of-art by providing a 
machine learning-based framework to quantify the complex role of 
major forcings to sediment variability, spatially and temporally, while 
also quantitatively attributing the role of winds. Results suggest small 
spatial ranges of relative contributions. Additionally, compared against 
the Singular Spectral Analysis (SSA) for the contribution of river 
discharge and tides, the framework suggests agreement with the role of 
the major forcings and that winds play a small part in the variability of 
surface sediments. Except for the navigation channel within the mouth 
of the estuary (Fig. 1; depth >18m), results show that the influence of 
tides decreases up estuary, with a decreasing trend consistent with 

Fig. 5. Synoptical mean contribution of predicting factors for modeled surface SSC (database A): (a) river discharge, (b) tides, (c) winds and (d) uncertainties/noise 
to variability in surface suspended sediment concentrations. Attention to the different ranges of percentage on each subplot.

Table 1 
Relative contribution of forcings and uncertainty (or noise) to suspended sedi
ment variability from the hydro-sedimentological framework (from database A) 
and the Singular Spectral Analysis (SSA) approach (from field data).

Station Predictor Hydro-sedimentological framework 
[%]

SSA [%]

Le Verdon river discharge 28.4 23.9
tide 48.3 63.5
wind 14.4 –
uncertainty 8.9 12.6
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previous studies in the Gironde Estuary and Loire Estuary (FRA; 
Jalón-Rojas et al., 2017). Right on the navigation channel, at the estu
ary’s mouth, the tidal contribution is higher than its shallower sur
roundings, likely due to stronger tidal velocity gradients. A stronger 
tidal velocity gradient in the navigation channel was also reported by 
Diaz et al. (2020) and Ross et al. (2019). With opposite trends, river 
discharge yielded increasing contributions towards the upper estuary. 
An increasing trend was also observed with SSA using field turbidity 
data between 2004 and 2015 in the fluvial section of the Gironde Es
tuary (Jalón-Rojas et al., 2017). The intercomparison exercise shows 
agreement between results applying the framework to numerical 
model-based data (database A) and satellite-based data (database B) for 
prevailing conditions. The most significant difference (<10%) is 
observed in the shallow tidal mudflat between stations Le Verdon and 
Lamena for river discharge contribution. These results suggest that 
satellite remote sensing, despite spatial and temporal gaps, applied to 
the proposed framework can provide spatial estimates of relative 
contribution of forcings to sediment variability.

As river discharge and tides are the major forcing mechanisms in the 
Gironde Estuary, the importance of winds and their effects on sediment 
dynamics have been less studied. SSA, with high-temporal resolution 
field data, cannot distinguish the role of winds from the stochastic signal 
(uncertainty or noise). Through satellite remote sensing, Constantin 
et al. (2018) attempted to retrieve the effects of winds on the turbid 
coastal plumes of the Gironde Estuary, but results were inconclusive, 
while Normandin et al. (2019) observed a weak to moderate negative 

relationship between winds and a principal component of suspended 
sediment concentration. Our proposed hydro-sedimentological frame
work provides yet another advantage by spatially resolving the role of 
wind on the variability of surface sediments. Our results show a low 
influence of winds along estuary with lower influence in the deeper 
regions at the mouth of the estuary (<14%), coinciding with the navi
gation channel. In addition, the offshore region of the Gironde Estuary 
(depth >40m) experiences lower influence of winds compared to the 
shallower regions of the inner estuary (depth <18m), where we 
observed the highest influence of winds (>17%). Similar patterns of 
stronger influence of winds in shallow areas including sandbanks, 
shoals, and intertidal mudflats were reported by Normandin et al. 
(2019). Doxaran et al. (2009) also report that winds are likely more 
important in these shallow areas contributing to erosion and consistent 
sediment resuspension.

5.3. Suspended sediments in the context of extreme events

During extreme events, the Gironde Estuary experiences higher SSC 
along the estuarine continuum. However, the spatial patterns of SSC 
differ among types of extreme events. Of all three types of extreme 
events, the spatial pattern under extreme river discharge depicts SSC 
below prevailing conditions except in the middle estuary (between 
Lamena and Pauillac) indicating the presence of a TMZ. The lower SSC 
observed in the estuary’s lower- and upper-most regions suggests that 
sediments are remobilized seawards, coinciding with stronger ebbing 

Fig. 6. Spatial difference between overall relative contribution for variability of surface sediment dynamics estimated from database A and database B. Red (blue) 
shades indicate higher overall relative contributions estimated from database A (B). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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tidal currents due to more intense river discharge and lower friction due 
to higher water levels. In the section of the estuary between Le Verdon 
and Lamena, sediments are transported seaward, as suggested by Cas
taing and Allen (1981) and Doxaran et al. (2009). Similarly, in the 
narrow, most fluvial part of the estuary, the region between stations 
Pauillac and Ambes (but likely extending further upstream as reported 
by Jalón-Rojas et al., 2015) indicates overall seaward (downstream) 
migration of the TMZ from the most fluvial to the middle Gironde Es
tuary. This migration of the TMZ has been vastly explained and dis
cussed (e.g., Jalón-Rojas et al., 2015; Normandin et al., 2019; Sottolichio 
and Castaing, 1999).

Contrary to the pattern observed within extreme river discharge, SSC 
values under windbursts are observed to be larger than those under 

prevailing conditions throughout the estuary (depth <18m). This dif
ference in SSC suggests that surface sediments remain suspended in 
shallow areas due to wind-action, either remobilizing sediments (or 
preventing sediment settling) or weakening tidal currents. SSC is the 
highest in the navigation channel (depths >18m), and patterns coincide 
with mostly weaker tidal currents under windbursts. Among all three 
types of extremes investigated, the simultaneous occurrence of potential 
windbursts and extreme river discharge yielded the highest overall SSC. 
In addition, SSC patterns under simultaneous extremes reveal similar
ities with patterns observed both under extreme river discharge and 
windbursts. During simultaneous extreme events, an extensive and more 
concentrated TMZ is found. In the outer estuary, where the turbid plume 
is often observed (Constantin et al., 2018), SSC was detected above 

Fig. 7. Spatial difference between prevailing and extreme conditions of water level (a–c) and tidal current (d–f). Regions in blue (red) depict lowest (highest) water 
level or tidal currents under prevailing conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.)

Fig. 8. Spatial difference between SSC under prevailing conditions and SSC under (a) extreme river discharge, (b) windbursts, and (c) simultaneous occurrence of 
extreme river discharge and windbursts. Regions in blue (red) depict lowest (highest) SSC under prevailing conditions. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.)
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prevailing conditions in both potential windburst and simultaneous 
extremes. Those regions of relatively higher SSC coincide with stronger 
outflowing tidal currents.

Tidal currents present a complex spatial pattern of alternate high/ 
low speeds. Overall, strong tides were observed for extreme river 
discharge when the water level is slightly higher. The condition may be 
due to a reduced friction effect of tides in higher water levels and, 
consequently, stronger tides. This was similarly described in San Fran
cisco Bay by Holleman and Stacey (2014). The weakest tidal currents are 
observed during windbursts, likely due to winds opposing or reducing 
the ebbing currents (and trapping waters within the estuary). Still, 
spatial patterns of tidal currents are relatively similar on both potential 
windbursts and simultaneous extremes, especially in the outer estuary. 
While tidal currents show variability within extremes, water levels are 
similar among types of extreme events: higher (lower) water levels 
under extreme events in the inner (outer) estuary. The difference in 
water level relies mainly on where, in the longitudinal extension of the 
estuary, water levels are above or below prevailing conditions.

5.4. Limitations and future work

The study addressed the interplay and influence of forcing mecha
nisms (river discharge, tides, and winds) on sediment variability but was 
limited at the surface. Using numerical model outputs like the “Curvi
Gironde”, the interplay of forcings on sediment variability can also be 
estimated at depth, providing additional insights into sediment dy
namics for the full water column. However, this was beyond the scope of 
this study. We anticipate, however, that under well-mixed water column 
conditions, patterns identified at the surface reflect the patterns at 
depth, but over stratified water conditions the proposed framework 
likely offers novel perspectives on bottom sediment dynamics. Being the 
Gironde Estuary well-mixed in spring tides and stratified in neap tides 
(Allen et al., 1980), we can expect that the patterns and estimated in
fluence of forcings observed during spring tides or very shallow regions 
reflect those at depth, and that during neap tides the framework may 
provide new insights also at depth.

Looking ahead, the time frame applied to the study, from 2016 to 
2021, limits the scope for climatological analyses, which require longer 
time frames (ideally >30 years). However, consistent application of the 
framework to extended time frames may indicate an evolution of 
meteorological and oceanographic scenarios and impacts over sediment 
dynamics. Further, the use of a geostationary satellite sensor, or alter
natively, the combination of various satellite sensors, i.e., Landsat 8 
(Operational Land Imager), Landsat 9 (Operational Land Imager), 
Sentinel 2 A/B (Multispectral Instrument), and Sentinel 3 A/B (Ocean 
and Land Color Instrument), applied to the proposed framework may 
provide comprehensive information for estimating the influence of 
forcings to the variability sediments including more coverage of extreme 
events, although not tested here.

6. Conclusions

This study contributes to understanding the spatial influence of 
forcing mechanisms between suspended sediments under prevailing 
(‘normal’) conditions and under extreme events of river discharge, po
tential windbursts, and their simultaneous occurrence with potential for 
application in estuaries worldwide. From this study, we conclude that 
(1) the proposed machine learning framework matches the performance 
of traditional methods, such as Singular Spectral Analysis at a single 
station, while also providing spatially-resolved estimates of relative 
contributions of forcings under extreme events; (2) the proposed ma
chine learning framework has the additional advantage of estimating the 
contributions of winds to surface sediment variability and providing 
uncertainty estimates; (3) a total of 10 classes suffice to characterize the 
hydro-sedimentological variability within the Gironde Estuary; (4) tide 
is the main forcing mechanism controlling sediment variability in the 

Gironde Estuary; (5) the relative contribution of forcing mechanisms on 
the variability of suspended sediments exhibits a small spatial vari
ability; (6) the relative role of tides increases during extreme events; and 
(7) winds have the lowest influence on surface sediment variability.
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Ser). Dartmouth, Canada: International Ocean Color Coordinating Group.

Jalón-Rojas, I., Schmidt, S., Sottolichio, A., 2015. Turbidity in the fluvial Gironde Estuary 
(southwest France) based on 10-year continuous monitoring: sensitivity to 
hydrological conditions. Hydrol. Earth Syst. Sci. 19 (6), 2805–2819. https://doi.org/ 
10.5194/hess-19-2805-2015.

Jalón-Rojas, I., Sottolichio, A., Hanquiez, V., Fort, A., Schmidt, S., 2018. To what extent 
multidecadal changes in morphology and fluvial discharge impact tide in a 
convergent (turbid) tidal river. J. Geophys. Res.: Oceans 123 (5), 3241–3258. 
https://doi.org/10.1002/2017JC013466.

Jalón-Rojas, I., Dijkstra, Y.M., Schuttelaars, H.M., Brouwer, R.L., Schmidt, S., 
Sottolichio, A., 2021. Multidecadal evolution of the turbidity maximum zone in a 
macrotidal river under climate and anthropogenic pressures. J. Geophys. Res.: 
Oceans 126 (5), 1–20. https://doi.org/10.1029/2020JC016273.

Jalón-Rojas, Isabel, Schmidt, S., Sottolichio, A., 2016a. Evaluation of spectral methods 
for high-frequency multiannual time series in coastal transitional waters: advantages 
of combined analyses. Limnol Oceanogr. Methods 14 (6), 381–396. https://doi.org/ 
10.1002/lom3.10097.

Jalón-Rojas, Isabel, Schmidt, S., Sottolichio, A., Bertier, C., 2016b. Tracking the turbidity 
maximum zone in the Loire Estuary (France) based on a long-term, high-resolution 
and high-frequency monitoring network. Cont. Shelf Res. 117, 1–11. https://doi. 
org/10.1016/j.csr.2016.01.017.

Jalón-Rojas, Isabel, Schmidt, S., Sottolichio, A., 2017. Comparison of environmental 
forcings affecting suspended sediments variability in two macrotidal, highly-turbid 
estuaries. Estuar. Coast Shelf Sci. 198, 529–541. https://doi.org/10.1016/j. 
ecss.2017.02.017.

Kohonen, T., 2013. Essentials of the self-organizing map. Neural Netw. 37, 52–65. 
https://doi.org/10.1016/j.neunet.2012.09.018.

Kolen, B., Slomp, R., Jonkman, S.N., 2013. The impacts of storm Xynthia February 27-28, 
2010 in France: lessons for flood risk management. Journal of Flood Risk 
Management 6. https://doi.org/10.1111/jfr3.12011.

Kolen, Bas Slomp, R., Balen, W. wan, Terpstra, T., Bottema, M., Nieuwenhuis, S., 2010. 
Learning from French experiences with storm Xynthia: damages after a flood. 
Rijksoverheid. ISBN 978-90-77051-77-1.

Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L., 2016. Machine learning in 
geosciences and remote sensing. Geosci. Front. 7 (1), 3–10. https://doi.org/ 
10.1016/j.gsf.2015.07.003.

Lesueur, P., Tastet, J.P., Weber, O., 2002. Origin and morphosedimentary evolution of 
fine-grained modern continental shelf deposits: the Gironde mud fields (Bay of 
Biscay, France). Sedimentology 49 (6), 1299–1320. https://doi.org/10.1046/j.1365- 
3091.2002.00498.x.

Liang, W., Liu, T., Wang, Y., Jiao, J.J., Gan, J., He, D., 2023. Spatiotemporal-aware 
machine learning approaches for dissolved oxygen prediction in coastal waters. Sci. 
Total Environ. 905 (September), 167138. https://doi.org/10.1016/j. 
scitotenv.2023.167138.

Liu, Y., Weisberg, R.H., 2011. A review of self-organizing map applications in 
meteorology and oceanography. In: Self Organizing Maps - Applications and Novel 
Algorithm Design. InTech. https://doi.org/10.5772/13146.

Marchese, C., Hunt, B.P.V., Giannini, F., Ehrler, M., Costa, M., 2022. Bioregionalization 
of the coastal and open oceans of British Columbia and Southeast Alaska based on 
Sentinel-3A satellite-derived phytoplankton seasonality. Front. Mar. Sci. 9 
(September), 1–22. https://doi.org/10.3389/fmars.2022.968470.

Mata, A., Corchado, E., Baruque, B., 2009. Solving the oil spill problem using a 
combination of CBR and a summarization of SOM ensembles. International 
Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008) 
50, 658–662. https://doi.org/10.1007/978-3-540-85863-8_78. Berlin, Heidelberg: 
Springer Berlin Heidelberg. 

Meade, R.H., 1972. Transport and deposition of sediments. Estuaries 91–120. https:// 
doi.org/10.1130/MEM133-p91.

Mulligan, R.P., Smith, P.C., Tao, J., Hill, P.S., 2019. Wind-wave and tidally driven 
sediment resuspension in a macrotidal basin. Estuaries Coasts 42 (3), 641–654. 
https://doi.org/10.1007/s12237-018-00511-z.

Nguyen, S.Q., Nguyen, L.C., Ngo-Duc, T., Ouillon, S., 2024. Applying a machine learning- 
based method for the prediction of suspended sediment concentration in the Red 
river basin. Model. Earth Syst. Environ. 10, 2675–2692. https://doi.org/10.1007/ 
s40808-023-01915-y.

Normandin, C., Lubac, B., Sottolichio, A., Frappart, F., Ygorra, B., Marieu, V., 2019. 
Analysis of suspended sediment variability in a large highly turbid estuary using a 5- 
year-long remotely sensed data archive at high resolution. J. Geophys. Res.: Oceans 
124 (11). https://doi.org/10.1029/2019JC015417, 2019JC015417. 

Poppeschi, C., Charria, G., Daniel, A., Verney, R., Rimmelin, P., Retho, M., et al., 2022. 
Interannual Variability of the Initiation of the Phytoplankton Growing Period in Two 
French Coastal Ecosystems. https://doi.org/10.5194/bg-2022-86 (April), 1–29. 

Reichle, R.H., Koster, R.D., 2004. Bias reduction in short records of satellite soil moisture. 
Geophys. Res. Lett. 31, L19501. https://doi.org/10.1029/2004GL020938, 2004. 
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