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Rémi Dulermo
remi.dulermo@ifremer.fr

RECEIVED 17 January 2025
ACCEPTED 06 February 2025
PUBLISHED 19 February 2025

CITATION

Dulermo R (2025) Archaeal DNA replication
initiation: bridging LUCA’s legacy and modern
mechanisms. Front. Microbiol. 16:1561973.
doi: 10.3389/fmicb.2025.1561973

COPYRIGHT

© 2025 Dulermo. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Archaeal DNA replication
initiation: bridging LUCA’s legacy
and modern mechanisms
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1 Introduction

DNA replication is an essential process enabling the duplication of DNA before cell

division. This process typically starts at origins of replication (ori), which are specific

sequences (except in higher eukaryotes, where they are not very well defined and

correspond to a broad chromosomal regionwhere DNA replication preferentially happens)

recognized by an initiator protein complex, leading to the unwinding and opening of

DNA. In bacteria, the initiator is DnaA (Rashid and Berger, 2024), while in archaea and

eukaryotes, it is initiated by Orc/Cdc6 proteins (Orc1/Cdc6 in Archaea and Orc1-6 and

Cdc6 in eukaryotes; Bell and Dutta, 2002; Matsunaga et al., 2007; Majerník and Chong,

2008; Ojha and Swati, 2010). Bacteria typically possess a single ori (Gao, 2015), whereas

eukaryotes can have hundreds to thousands (Hu and Stillman, 2023; Tian et al., 2024).

In archaea, the number of origins of replication varies between species, ranging from

one to four (Myllykallio et al., 2000; Lundgren et al., 2004; Duggin et al., 2008; Farkas

et al., 2011; Pelve et al., 2012; Hawkins et al., 2013). Then, initiator proteins (DnaA or

Orc1/Cdc6) recruit replicative helicase (DnaB for bacteria, Mcm in archaea and MCM

complex in eucaryotes) that unwinds DNA and replication begins with the loading of the

other components (primase, polymerases etc.).

Positioned evolutionarily between bacteria and eukaryotes (Dombrowski et al.,

2021; Imachi et al., 2020), archaea offer a unique vantage point for understanding

the mechanisms that drive cellular life. While archaea were initially thought to share

replication strategies with bacteria due to their prokaryotic nature, studies have shown that

they employ a hybrid system incorporating features from both bacterial and eukaryotic

replication processes. These microorganisms possess genes in operons and circular

genomic DNA like bacteria, but their DNA metabolism is more closely related to that

of eukaryotic cells (Edgell and Doolittle, 1997; Raymann et al., 2014). This evolutionary

bridge makes archaea fascinating subjects for scientific inquiry, offering insights that could

reshape our understanding of molecular biology.

The study of DNA replication in archaea has garnered increasing attention over the

past decade, especially since it was shown that archaea can live without ori (Hawkins

et al., 2013). Recent studies have demonstrated that archaea can use multiple origins of

replication with different levels of activity, and that homologous recombination plays an

important role in their DNA replication (Hawkins et al., 2013; Gehring et al., 2017; Mc

Teer et al., 2024; Liman et al., 2024). This article aims to explore the latest findings on

archaeal DNA replication, focusing on key studies by Hawkins et al. (2013), Mc Teer et al.

(2024), and Liman et al. (2024). These works not only challenge traditional views but also

highlight the complexity and flexibility of archaea.
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2 Evolutionary perspective on DNA
replication

DNA replication is fundamental to life, yet the processes

employed by archaea defy simple classification. Historically,

scientists grouped archaea with bacteria due to their prokaryotic

structure, but Carl Woese and coworkers revolutionized this

perception by demonstrating the existence of three distinct

domains of life (Fox et al., 1977). Although it is still debated

whether archaea are the ancestors of eukaryotes (Imachi et al.,

2020; Dombrowski et al., 2021; Da Cunha et al., 2022), certain

aspects of their biology remain intriguing. Research from Hawkins

et al. (2013), and more recently Gehring et al. (2017) and Mc

Teer et al. (2024), reveals a more complex reality. Archaea

not only use a combination of bacterial-like and eukaryotic-

like DNA replication mechanisms, but they might also retain

even more ancient processes. This suggests that archaea might

represent an evolutionary bridge linking ancient and modern DNA

replication systems. One of the most striking discoveries is the

role of homologous recombination in DNA replication in the

Euryarchaeota Haloferax volcanii (Hawkins et al., 2013). Mc Teer

et al. (2024) and Liman et al. (2024) demonstrated that RadA

is involved in DNA replication since reducing RadA expression

increases ori utilization in two other Euryarchaeota, Thermococcus

barophilus and Thermococcus kodakarensis, respectively. These

findings reveal that recombination-dependent replication (RDR)

is used by some archaea and partly or entirely ensures proper

DNA replication. However, not all archaea can live without ori,

nor do they all use RDR (Samson et al., 2013; Yang et al.,

2015). RDR relies on the formation of a D-loop through strand

invasion by homologous recombination, which then serves as a

platform to initiate DNA replication. RDR was firstly described in

T4 phage (Mosig, 1998; Kreuzer, 2000; Malkova and Ira, 2013).

This phage has a special DNA replication system, using R-loop

(a RNA invades double strand DNA to initiate DNA replication)

and RDR (Miller et al., 2003). Similar mechanisms as RDR were

also described in Escherichia coli (iSDR that used recombinase

or cSDR that used R-loop) and in eukaryotes (BIR) but they

are unable or weakly able to form colonies or replicate DNA

without error (Michel and Bernander, 2014). Interestingly, it was

shown that some Cyanobacteria are able to live without dnaA

(Richter et al., 1998; Ran et al., 2010; Ohbayashi et al., 2016, 2020).

Ohbayashi et al. (2016) suggested that multiple replication origins

fire asynchronously in this strain to explain their results. This could,

at least for some Cyanobacteria, be in accordance with the RDR

found in archaea. Unfortunately, no study has yet investigated the

importance of RecA, the bacterial recombinase, in Cyanobacteria.

Such research is necessary to determine if Cyanobacteria use RDR

or another unknown DNA replication initiation pathway. These

findings suggest a shared evolutionary origin for RDR and related

mechanisms, potentially dating back to LUCA (Last Universal

Common/Cellular Ancestor).

In my opinion, these discoveries challenge the “classical”

models of DNA replication. Archaea are not merely exceptions

to the rule but are critical in refining our understanding of the

fundamental processes shared by all life forms. Their replication

systems blur traditional evolutionary boundaries and serve as living

models of early cellular life.

3 Recombination before the origin of
replication?

Forterre (2002, 2013) proposed that replication machineries,

which differ between Bacteria and Archaea/Eucarya, could result

from viral transfer in descendants of LUCA. Similarly, Koonin

(2014) explained that a variety of replication strategies associated

with respective molecular systems may have evolved in the

primordial pool, with only some surviving in selfish elements.

Two of these strategies were ultimately adopted by evolutionarily

successful cellular life to form Bacteria and Archaea, and later

Eukaryotes. Since the RecA/RAD51/RadA protein family shares

a common ancestor dating back to LUCA (Lin et al., 2006;

Chintapalli et al., 2013), this could explain why RDR or similar

mechanisms, such as iSDR or BIR, are found in many organisms.

Kowalczykowski (2000) proposed that RecA-like proteins provided

a simple way to initiate DNA replication in primitive organisms.

Since, it has been shown that only the ATPase AAA+ domain

of DnaA/Orc/Cdc6 proteins share a common ancestor dating to

the same period (Iyer et al., 2003), it suggests that DnaA and

Orc/Cdc6 proteins was obtained by a fusion gene (specific proteins

that binds ori with the ancestor of the actual AAA+ATPase domain

of DnaA/Orc/Cdc6) independently in the descendant of LUCA

that gave the ancestor of bacteria and archaea/eukarya respectively.

Thus it is possible that only homologous recombination was

present in LUCA. Genome of LUCA remains mysterious since it

was proposed that it was composed of DNA (Forterre, 1999; Koonin

et al., 2020) and now it has been suggested that LUCA could still

have a RNA genome (Forterre, 2024). This hypothesis is based

on non-homology of replicative polymerase, DNA helicases and

primase in the archaea/eukarya and the bacteria and that actual

universal DNA proteins worked on RNA such as Topo IA or that

they were given by a virus (PCNA, RFC for example) in descendants

of LUCA. To go further with this theory, an increasing number

of studies have shown that RNA-binding proteins are involved

in DNA repair (Bader et al., 2020; Klaric et al., 2021), and some

proteins known to be involved in DNA repair are also known to

bind RNA, such as BRCA1, KU, RPA, RAD52, RAD51, and RecA

(Kirkpatrick et al., 1992; Kim et al., 1992; Yoo and Dynan, 1998;

Keskin et al., 2014; Sharma et al., 2015; Thomas et al., 2023). For this

review, and specifically for RecA/RAD51/RadA family proteins, it

is tempting to think that the ancestor of these proteins—the RecA

ancestor—already present in RNA-LUCA, could perform RNA

repair and RNA replication, such as RecA/RAD51/RadA family

proteins perform DNA repair and DNA replication in modern

organisms. In other word, it might be the first simple system to

replicate (and repair) RNA in LUCA and may be later to replicate

DNA (in LUCA’s descendants). This could actually support the view

that the R-loop generated by RNA Polymerase (a simple one was

present in LUCA) or by RecA ancestor (RecA is able to form R-loop

(Kasahara et al., 2000) acted as an ancestral system for replication

initiation. Then, ori and replicative initiator was taken by ancestor

of bacteria and archaea/eukaryotes.

In another case, it is possible that one or two DNA viruses

already carried the ancestors of the RecA/RadA/RAD51 protein

family and/or DNA replication initiators, which were then

transmitted to LUCA’s descendants. Supporting this hypothesis, it
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was recently shown that origins of replication may originate from

extrachromosomal genetic elements, as demonstrated by Robinson

and Bell (2007) and Hawkins et al. (2013, the fourth ori of H.

volcanii chromosome). This suggests that the replication origins

seen in modern organisms may have evolved from mobile genetic

elements absorbed and regulated by the cellular machinery of

LUCA’s descendants. Therefore, these elements, initially selfish and

independent, may have been co-opted to create more efficient,

centralized systems for DNA replication. Since recombination can

be used by different organisms not only to repair DNA but also

to restart or perform DNA replication, one particularly fascinating

hypothesis is that homologous recombination may have preceded,

or co-existed with, the emergence of ori as the primary method to

initiate DNA replication. Some organisms retained this mechanism

(archaea, cyanobacteria?) or a similar one (bacteria and eukaryotes)

to replicate their genomes under specific conditions.

Whereas ori seems to be the main DNA replication system

for H. volcanii (Hawkins et al., 2013), RDR appears to be the

principal mechanism used to replicate DNA in T. barophilus

and T. kodakarensis under laboratory conditions (Gehring et al.,

2017; Mc Teer et al., 2024), as ori is mainly used during the

stationary phase or not used at all except when RadA, the

recombinase, is weakly expressed (Mc Teer et al., 2024; Liman

et al., 2024). These findings underscore the versatility of archaeal

replication, which appears far more complex and adaptable

than the systems seen in bacteria. This adaptability, I believe,

positions archaea as key models for understanding how early

life forms evolved mechanisms to replicate their genomic DNA

in extreme environments. Furthermore, these insights challenge

the perception that prokaryotic replication is inherently simpler

than eukaryotic processes. I propose that before the appearance of

defined ori, early life forms might have relied on recombination-

based processes, today mainly used for DNA repair, to replicate

their genetic material (Figure 1). This reinforces the notion that

evolutionary innovation often arises from the co-option of existing,

often selfish, elements, as abundantly shown in scientific literature

(Hurst and Werren, 2001; Hazen et al., 2010; Koonin, 2016;

Haudiquet et al., 2022; Kumon and Lampson, 2022; Widen et al.,

2023).

4 Conclusion

In conclusion, DNA replication in archaea represents a

fascinating and complex area of study that bridges the gap between

prokaryotes and eukaryotes. Recent studies, such as those by

Hawkins et al. (2013), Gehring et al. (2017), Mc Teer et al.

(2024), and Liman et al. (2024), highlight the unique and versatile

nature of archaeal replication systems. These findings challenge

long-standing assumptions and point to greater complexity in

prokaryotic life than previously recognized. More effort should

be directed toward studying other archaea to determine if only

Euryarchaeota can use RDR. Badel and Bell (2024) mention that

Aeropyrum pernix, like T. barophilus, uses orimore actively during

the stationary phase, suggesting that even in some Crenarchaeota,

RDR may be employed during the exponential phase. Additionally,

analyzing the potential role of RecA in DNA replication in

Cyanobacteria could provide further insights. Moreover, because

Deinococcales are deeply branched in the tree of life and possess

ESDSA (extended synthesis-dependent strand annealing; Zahradka

et al., 2006), a specific Deinococcales double-strand break repair

system, it would be interesting to test their capacity to live without

ori or dnaA.

Archaea’s ability to survive and replicate in extreme

environments provides valuable models for understanding

the limits of life on Earth and potentially other planets. By studying

how archaea manage replication under high-stress conditions, we

can better understand the evolutionary pressures that shaped early

life forms.

Moving forward, interdisciplinary research integrating

evolutionary biology, biochemistry, and biotechnology will be

key to unlocking the full potential of these discoveries. Archaea

FIGURE 1

Schematic representation of the tree of life showing the distribution of RNA or DNA replication initiation pathway and their origins. Ancient RDR was
transmit from LUCA to the three domain of life to generate actual RDR (BIR, RDR, iSDR). Viruses provided the origins of replication (Ori/DnaA;
Ori/Orc1/Cdc6) in LUCA’s descendance.
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are not only biological curiosities; they are central to our

understanding of life’s evolutionary history and hold promise for

future biotechnological advancements.
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