communications biology

Article

A Nature Portfolio journal

https://doi.org/10.1038/s42003-025-07634-7

Continuity in morphological disparity in
tropical reef fishes across

evolutionary scales

M| Check for updates

Giulia Francesca Azzurra Donati ® 2*"!, Camille Albouy ® ">

, Thomas Claverie ®*,

David Mouillot ® *¢, Rodney Govinden’, Oskar Hagen ® 2, Shameel Ibrahim®, Julius Pagu™,

Irthisham Zareer®, Fabien Leprieur®'? & Loic Pellissier ® ">

Tropical reef fishes exhibit a large disparity of organismal morphologies contributing to their

astonishing biodiversity. Morphological disparity, scaling from differences among individuals within
populations to differences among species, is governed by ecological and evolutionary processes.
Here, we examined the relationship between intra- and interspecific disparity in 1111 individuals from
17 tropical reef fish species, representing 10 families with different dispersal abilities, across four
Indian Ocean regions. We compared intraspecific measurements with species-level measures from a
database of 1061 reef fish species. Species with high morphological disparity among individuals from
distinct regions are found to be nested in families that display a high disparity among their genera.
We show an association between the morphological disparity at the intra- and interspecific levels for
several morphological ratios such as the caudal peduncle elongation. We evaluated the link between
morphological disparity and genetic diversity with species dispersal ability. A structural equation
model indicates that dispersal ability correlates positively with species genetic diversity, which

is associated with morphological disparity. Our results suggest that traits associated with dispersal
may foster gene flow and morphological evolution. Future works combining genomic, morphological

and environmental data across more species is necessary to generalize these findings to other

regions.

Animals display spectacular disparity in their morphology, prompting
questions about how such variations emerge from ecological and evo-
lutionary mechanisms'’. The morphological disparity among indivi-
duals and species is partly derived from underpinned genetic
diversity™, which in turn is determined by ecological’ and evolutionary
processes“. Gene flow, modulated by dispersal, controls the overall gene
pool of a species’ and potentially determines its adaptive capacity””.
Evaluating the link between species’ dispersal ability and their
capacity to express different phenotypes across geographically distant
populations in distinct environments’ requires the combination of

genetic, morphological and dispersal information in a regional inter-
connected system.

The micro- and macroevolution of species morphologies have been
proposed to arise from corresponding processes'’, where disparity emerging
among individuals becomes fixed in deeper phylogenetic lineages''. In
contrast, other studies have argued that micro- and macroevolutionary
processes are decoupled because they happen at different time scales'.
Studies comparing micro- to macroevolutionary changes in more biological
systems could help better understand evolutionary scaling”. To disentangle
phenotypic plasticity and adaptation, which act at different temporal scales
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but can promote intraspecific morphological disparity', we must investigate
the association between morphological variations measured within species
(microevolution) and morphological variations measured in deeper phy-
logenetic lineages (macroevolution, e.g., genera within families'”). The
correspondence across evolutionary scales would support the heritability of
morphological variations, while a lack of correspondence would suggest that
such variations predominantly arise from plasticity or that other processes
increase the complexity of the relationship (e.g., ref."). Geographically
segregated populations can display different morphologies, as shown for
isolated sister species and this can reflect differences detected among deeper
evolutionary lineages'”. Hence, geographic sampling can be leveraged to
quantify variation between individuals across distant locations to the var-
iation observed at macro-evolutionary levels between species from the same
genera.

Tropical reef fishes exhibit a wide range of dispersal abilities'*"” that can
be influenced by the interplay between current dynamics and larval dis-
persal abilities, different levels of genetic diversity among species™, and large
morphological disparities*”, so could help to decipher the links between
morphological disparity and genetic diversity among and within species.
Coral reefs, known for their complex habitats and varied hydrologic con-
ditions at the interface between benthic and pelagic environments™, exert a
variety of selective pressures on resident fish species. These pressures can
lead to significant morphological adaptations as species optimize their body
shape to thrive in distinct reef environments>*. Therefore, coral reef habitats
are prone to promote the evolution of morphological disparity within
associated fish families™. This intraspecific morphological disparity has
been shown to mirror the differences observed between species in some
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Fig. 1 | Morphospaces of both interspecific and intraspecific tropical reef fishes
data sets. Morphospaces of the a interspecific and b intraspecific data sets of
tropical reef fishes. Morphological spaces were obtained by performing principal
component analyses (PCAs) on fish shapes characterized by 14 common body
landmarks. a The morphological space of 1061 Indo-Pacific reef fish species,
gathered from a subset of **, b the morphological space of 1111 individuals
belonging to 17 reef fish species sampled in 4 geographically distant locations

specific cases™, providing a unique opportunity to explore an evolutionary
continuum from microevolutionary changes between geographically dis-
tant reefs to macroevolutionary changes between species. Understanding
these patterns not only elucidates the mechanisms driving morphological
diversity but also contributes to broader insights into the evolutionary
processes shaping biodiversity in this very diverse ecosystem™.

Here, we combined measurements of genetic diversity with data on
body morphology at multiple geographic locations to test whether dispersal
is associated with morphological disparity in tropical reef fishes at both
intra- and interspecific levels. To do so, we selected 17 tropical reef fish
species, from 10 common families, with varying adult body size and pelagic
larval duration (PLD; Fig. 1 and Supplementary Tables 1 and 2), which are
recognized as major dispersal traits in tropical reef fishes””. We sampled a
total of 1111 individuals of these species in 4 geographically distant locations
across the Western Indian Ocean (mean distance between pairwise loca-
tions: ca. 2200 km; Supplementary Table 2 and Supplementary Fig. 1a). We
measured 13 morphological traits per individual based on distances between
landmarks at specific locations on the fish body (Supplementary Table 3 and
Supplementary Fig. 2). We used these ratios to compute morphological
disparity between geographic locations (intraspecific level, see Methods,
Egs. 1-2), which we compared between the genera of the corresponding
families based on interspecific level.

Results and Discussion

Dispersal and genetic diversity

Using a PCA based on adult body size and pelagic larval duration, we ranked
the 17 species along a gradient of dispersal ability (Supplementary Fig. 3).
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across the Western Indian Ocean. Polygons represent a the spread of species in
families and b the spread of individuals in species. The total amount of morpho-
logical space occupied by the considered tropical reef fishes and families, i.e.,

the morphological richness (MRic), is shown by the light grey polygons for the
interspecific level (a, MRic = 0.09) and the intraspecific level (b, MRic = 0.049).
The deformation grids illustrate the shape change at the extremes of the mor-
phospace across a families and b species.
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The first PCA axis was strongly associated with body size (Pearson corre-
lation test, r=0.91, t = 8.2, DF = 15, P < 0.05) and PLD (Pearson correlation
test, r =091, t=8.2, DF =15, P<0.05). We then related the species coor-
dinates on the first PCA axis to genetic diversity, assessed using double-digest
restriction-site-associated DNA sequencing (ddRAD-seq; Supplementary
Table 4). We found a positive association with the regional genetic diversity
(Ordinary Least Square regression; OLS: coeff = 0.017, R*=0.32, P=0.018;
Supplementary Fig. 3) and a negative association with the genetic differ-
entiation among sample locations (OLS: coeff=-0.0013, R*=0.17 P=0.01;
Supplementary Fig. 3). This finding suggests that dispersal contributes to
shaping the spatial genetic structure of tropical fish species™ ™.

Correspondence in intra- and interspecific morphological
disparity

We compared intraspecific morphological disparity between geographic
locations, based on 1111 individuals from 17 species (Fig. 1b) to interspecific
disparity using a morphometric data set that includes 1,061 Indo-Pacific reef
fish species. (Fig. la, Supplementary Table 5). We used a co-inertia analysis
based on two separate principal coordinates analyses (PCoA) and showed a
general correspondence between the morphological disparity at the intra-
and interspecific levels (RV coefficient 0.44; COIA, P=0.02, rep = 99).
Species that presented higher morphological disparity among geographic
locations than expected by a null model (Fig. 2 and Supplementary
Figs. 4-5) were also those with elevated disparity within their family (e.g.,
Labridae, Acanthuridae). For each morphological trait, we also related the
intraspecific morphological disparity among locations to the disparity
among genera within their respective families using both ordinary Least
squares (OLS) and phylogenetic generalized least squares (PGLS) models.
We found that individual relationships were significant for 6 out of the 13
morphological traits after having controlled for phylogenetic non-
independence in our data set, namely caudal peduncle elongation, caudal-
peduncle body height, jaw-head length, standardised anal fin length, stan-
dardised pre-anal length and body elongation (Fig. 3, Supplementary
Table 3 and Supplementary Fig. 6). These relationships were found to be
particularly marked for the caudal peduncle body height (OLS: R* = 0.59;
PGLS: coeff = 0.29, P < 0.001; Fig. 3), the standardized anal fin length (OLS:
R*=0.73; PGLS: coeff = 0.28, P<0.001) and the jaw-head length (OLS:
R’ =0.45; PGLS: coeff = 0.53, P < 0.001, Fig. 3, see Supplementary Fig. 6 for
all traits considered). Those relationships were robust for 5 out of the 13
morphological traits after the removal of Caranx melampygus which dis-
plays the largest body size and greatest dispersal ability in our data set (see
Supplementary Figs. 7-8). However, it is worth noting that the removal of
this species strongly reduced the % of explained variance (R?) in the OLS
models for body elongation (OLS R = 0.62 and 0.25, for the models with
and without Caranx melampygus, respectively, see Supplementary Figs. 6a
and 8a). Overall, our analyses suggest a correspondence of morphological
disparity, from within species to within families for certain traits (e.g., caudal
peduncle length, caudal peduncle height anal fin length) and call for further
exploration including a broader spectrum of species, particularly large-
bodied species with a high dispersal ability.

Association between genetic diversity and morphological
disparity

To quantify the different components of genetic diversity (Jr, total genetic
diversity; Js, mean within-population genetic component and Jsr the
between-population component) and relate them to morphological dis-
parity we applied a multiplicative partitioning framework based on Hill’s
number (J1=Js x Jsr'; Supplementary Table 6). The total genetic diversity
(Jr) of each reef fish species considered in this analysis, and not the variation
(Jst), was significantly associated with intraspecific morphological disparity
(Table 1; PERMANOVA J: R* = 0.21; P = 0.007) for several morphological
traits. The relationships between genetic diversity and morphological dis-
parity were significant for 9 out of the 13 morphological traits considered
(caudal peduncle elongation, standardised anal fin length, eye-head size
relationship, jaw-head length relationship, body elongation, standardised

pre-dorsal fin length, eye-head position relationship, standardised Pre-anal
length, standardised dorsal fin length; (Fig. 4 and Supplementary Figs. 9;
Supplementary Table 3), and for 7 out of 13 when removing the Carangidae
family (Supplementary Figs. 10-11). Associations between genetic diversity
and morphological disparity were particularly marked for morphometric
features related to the fish head region, with variations in the relative
position and size of the eye, in the relative jaw length and relative head length
(Supplementary Fig. 2), and in features related to fins (Supplementary
Fig. 2). A synthetical structural equation model (SEM) supported positive
relationships between dispersal capacity, total genetic diversity, and mor-
phological disparity within species (SEM: PCA axisl vs. y diversity,
Std.estimate = 0.66, DF =14, P=0.0019; PCoA_intra vs. y diversity,
Std.estimate = 0.74, DF =14, P=0.0037; Supplementary Fig. 12). The
positive causal path between species dispersal capacity, regional genetic
diversity, and morphological disparity indicates an association between
dispersal, genetic diversity and adaptation. In contrast, we found a negative
relationship between dispersal and genetic differentiation (SEM: PCA axisl
vs. 5 diversity, Std.estimate=-0.53, DF=14, P<0.05 Supplemen-
tary Fig. 12).

Morphological disparity and associated functions

Fish morphological traits are closely tied to their biological functions™*. Fin
features enhance speed and agility, aiding in predator evasion and efficient
foraging”, while mouth and head shapes and sizes reflect feeding
strategies”’. We found that morphological traits associated with the fish head
and fins showed correspondence from intra- to interspecific, typically
associated with nutrition and movement’*. Longer jaw features relative to
their bodies are often adapted for biting or capturing larger prey’*”, while
smaller jaws are suited for grazing or filter feeding. Similarly, fin size and
shape affect swimming efficiency’>* with larger fins aiding in stability and
maneuverability in complexly structured environments, and more
streamlined fins supporting fast, sustained swimming in open water.
Therefore, changes in shape along these axes are thought to have implica-
tions for swimming performance, defense from gape-limited predators,
suction feeding performance and access to specific habitats. Our results
agree with the significant increase in morphological disparity in species with
larger body size documented by’ and support the heritability of the
measured variations for the traits that showed significant congruence in
morphological disparity across evolutionary scales'’.

Dispersal, genetic diversity and morphological disparity

Dispersal modulates the level of gene flow which determines population
genetics, their degree of local adaptation” and speciation”. We found that
dispersal was positively associated with both genetic y diversity and mor-
phological diversity in tropical reef fishes. Theory predicts that dispersal can
influence distinct adaptation among populations, both positively” and
negatively****, depending on the frequency at which non-neutral genetic
differentiations arise*. When genetic differentiations arise locally at sufficient
frequency, divergent environmental selection can promote morphological
disparity among populations in the absence of any other driver”. In that case,
dispersal tends to homogenize the phenotypic disparity among geographic
groups”. In contrast, when genetic differentiations arise only rarely, dispersal
can increase the exchange of genetic variations between geographically iso-
lated populations, which can fuel selection and phenotypic differentiation™.
Our results suggest that morphological disparity emerges faster in species with
higher dispersal and genetic exchanges. This process may allow selection to
act on a broader range of genetic material to shape intraspecific morpholo-
gical disparity among locations. In contrast, we found a negative relationship
between dispersal and genetic differentiation meaning that low dispersal
ability is likely to limit gene flow between geographic groups, eventually
generating new species through allopatric speciation***’. Limited dispersal can
attenuate gene flow and promote population structure and ultimately allo-
patric speciation”. Species with the most limited dispersal abilities and most
distinct genetic structure typically belonged to the most species-rich families,
such as Pomacentridae and Serranidae. While our findings agree with a
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Fig. 2 | Morphological trait disparity in tropical reef fishes at both interspecific
and intraspecific levels. Illustration of the morphological trait disparity in tropical
reef fishes at the a interspecific and b intraspecific levels. The top panel represents
axes of morphological disparity in tropical reef fishes. Colored dashed segments on
fish shapes illustrate the relevant morphological trait, while the letter code indicates
the morphological measure components of the morphological traits (BD body

depth, SL standard length, AL anal fin length, PH caudal peduncle height, JL jaw
length, HL head length). The bottom panels represent the observed values of body
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elongation, caudal peduncle and Anal fin length variabilities (colored dashed seg-
ments) and the distribution of morphological disparity obtained under null
models (black shaded distributions: 999 randomizations; a: of the genus; b: of
the population) for five families (a) and for five species of the same family (b), taken
as an example (for more detail see Supplementary Figs. 4 and 5). The * indicates
that the observed morphological disparity differs from that expected at random
(SES > 1.96).
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Fig. 3 | Relationships between the intraspecific and interspecific morphological
disparity in tropical reef fishes. Relationships between intraspecific and inter-

specific variability for (a) caudal peduncle height (PL: caudal peduncle length, PH:
caudal peduncle height); (b) anal fin (AL: anal fin length) and (c) Jaw-head length
relationship (JL jaw length, HL head length). Each symbol contains two colors, one

corresponding to the intraspecific data set and the other to the interspecific data set.
The dashed line represents the Ordinary Least Square regression between intra- and
interspecific morphological variability. The reported P-values in each panel corre-
spond to the significance of the relation accounting for the phylogenetic relationship
between species (PGLS phylogenetic generalized least-squares).

Table 1 | Linking intraspecific morphological disparity to
genetic diversity

DF SS R? F P
Genetic Jr 1 0.21 0.21 4.08 0.007*
Gl Jor 1 0065 00652 1190  0.289
Residuals 14 0732  0.727
Total 16 1.008 1

Permutational analysis of variance (PERMANOVA) performed between the 13 morphological traits
used to compute intraspecific morphological disparity between geographic locations and the
genetic diversity descriptors obtained by applying a Hill number framework on genome-wide SNP
data (see methods for details).

For the 17 species of the intraspecific data set (Supplementary Table 1), tests were run using
Euclidean distances among samples and 999 permutations. The model terms were added
sequentially: total genetic diversity (J1) followed by genetic differentiation (Js1). Degrees of freedom
(DF), sum of squares (SS), and significance (P) are reported. Significant effects (P < 0.05) are
indicated with asterisks.

ecline in speciation rate as dispersal ability increases™", the positive corre-
declin ti te as dispersal abili 59 th th

lation between dispersal ability and morphological disparity suggests that the
process determining the number of species neutrally, (e.g., via Dobzhansky-
Muller incompatibilities) differs from the process that shapes morphological
disparity among lineages.

Limitations and future perspectives

The observed correspondence between intra- and interspecific morpholo-
gical disparity suggests that the expression of morphological disparity may
be heritable and thus would partly arise from local adaptation through
natural selection® rather than from environmentally induced plasticity'.
However, we cannot refute that neutral processes and phenotypic plasticity
also contribute to morphological disparity in tropical reef fishes”. In
addition, the neutral markers from Rad-seq that we used are not a direct
measurement of adapted loci™ and genetic diversity may not reflect adaptive
potential. It is also worth noting that the collection of intraspecific data for
tropical fishes across multiple locations and species requires a significant
effort and our analyses are limited by the number of species considered with
only 17 species across 10 families. Future studies should aim to take similar

measurements across more individuals, species and sites. In addition, the
selection of species was partly determined by their relative abundance on the
sampled reefs, which means that our set of selected species is not evenly
distributed across reef fish families and lacks representation of species from
the larger size spectrum. Because some families were over-represented with
more than one species (i.e., Labridae and Pomacentridae), we used phylo-
genetic regression to account for shared ancestry, as well as an averaging
approach based on their taxonomic classification (Supplementary Fig. 13),
which did not affect our main conclusion. Future work combining genomic,
morphological and environmental data over a large spatial scale for multiple
species could help to provide a mechanistic link between gene expression
pathways, morphological disparity and speciation™.

Conclusion

Morphological disparity among species emerges from processes hap-
pening within and among populations, as evidenced by correspondence
across evolutionary scales. However, it remains to be explored whether
the relationships documented here in the Western Indian Ocean are
confirmed with more species and in other regions to test their generality.
We further demonstrated associations between dispersal, genetic diver-
sity and morphological disparity. Connectivity among populations is key
to avoiding inbreeding depression™, and our results suggest that dispersal
might increase rates of adaptation across different habitats. Given the
unprecedented rate of changes in marine environmental conditions
associated with increasing anthropogenic pressure”, maintaining the
connectivity between populations, especially across marine protected
areas™, is essential to foster the exchange of genetic materials to facilitate
adaptation.

Methods

Sampling design and species selection

Before sampling, 17 target species were selected, through a multi-
dimensional ecological trait analysis”, ranging from small- to large-
bodied and short to long PLDs, and including various abundances on the
reef, to ensure that the species were representative of the tropical reef fish
dispersal ability in the Western Indian Ocean (Supplementary Table 1).
To perform this species selection we ran a principal coordinate analysis
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Fig. 4 | Relationships between the total intraspecific genetic diversity (J1) and the
morphological trait variation for 17 tropical reef fish species. Phylogenetic gen-
eralized least squares (PGLS) relationships between total intraspecific genetic
diversity of the Western Indian Ocean and the variability in (a) relative anal fin size
(AL anal fin length, SL standard length) (b) caudal peduncle elongation (PL caudal
peduncle length, PH caudal peduncle height), and (c) the dorsal fin insertion (DL

dorsal fin length) at the intraspecific level. The dotted line represents the Ordinary
Least Square regression between total genetic diversity (J1) and intraspecific mor-
phological disparity. The reported P-values in each panel correspond to the sig-
nificance of the relation accounting for the phylogenetic relationship between
species (PGLS phylogenetic generalized least-squares).

(PCoA) over all species co-occurring in the target sampling locations
(n=2292) using five ecological traits gathered from Fishbase™ and the
literature, namely: (i) adult body size (cm); (i) PLD (days); (iii) adult
home range mobility (narrow versus wide); (iv) reproductive guild
(pelagic versus benthic spawners); and (v) schooling (groups with less
than 20 versus greater than 20 individuals). For the selected species, we
considered an estimation of their regional scale species abundance as a
proxy of population census size” (i.e., the cumulative number of indi-
viduals per transects over the WIO, gathered from the Reef Life Survey
program, https://reeflifesurvey.com).

Following this selection, a total of 1111 individuals belonging to
these 17 tropical reef fish species were sampled from populations near the
Maldives (central atolls), Mafia Island (Tanzania), Mayotte Island
(Comoros Archipelago), and Seychelles (Supplementary Table 2, Sup-
plementary Fig. 1). Sampling was conducted using hand barrier nets
while scuba diving, in compliance with local regulations. For the largest-
bodied target species (e.g., Caranx melampygus), were additionally col-
lected from local fish markets, where the fishing location of the fish was
known’".

DNA extraction and genotyping

Muscle tissues were sampled from the individuals of the 17 target species
collected from all four Western Indian Ocean geographically isolated
locations® (i.e., Maldives, Mayotte Island, Mafia Island and Seychelles;
Supplementary Fig. 1). High-quality genomic DNA was extracted from the
muscle tissue using the sbeadex livestock kit (LGC Biosearch Technologies,
Teddington, UK; catalog numbers 44701 and 44702). ddRAD-seq libraries
were prepared using EcoRI and Taqla (New England Biolabs, Inc., Ipswich,
MA, USA) following the protocol used in®, which is a modified version of
the procedure used in ref. 62. In total, 24 ddRAD-seq library pools con-
taining 2 x 48 internal barcodes each were sequenced in 12 lanes on the
Hiseq 2500 Ilumina platform using the 2 x 125bp protocol (Fasteris,
Geneva, Switzerland). The default settings of the dDocent pipeline v.2.2.25”
were used to obtain the genotypes. Briefly, raw reads were demultiplexed
using Stacks (v2.0b)*. A reference catalogue was built de novo for each
species. To find the optimal parameters, the remapping rate was maximized
by varying the coverage of unique sequences within individuals, the number
of shared loci among samples, and the sequence identity (%)’'. The reads
were remapped to the reference catalogs using BWA v.0.7.17°° and SNPs
were called using FreeBayes v.1.3%. As recommended in ref. 67, total SNPs
were filtered using VCFtools v.0.1.16 and vcflib v.1.0.1°" to retain only high-

quality SNPs. Only variants (SNPs) that had been successfully genotyped
with a minimum quality score of 20, minimum mean depth of 3, mean
depth of 10, minor allele count of 3, and minor allele frequency of 5% were
retained. Additionally, loci with >20% missing data per population were
removed. Filtering for allele balance and mapping quality between the two
alleles was carried out, loci with coverage that was too high were removed,
complex SNPs were decomposed into single SNPs, indels and sites with
missing data (>5%) were removed, and only biallelic sites in Hardy-
Weinberg equilibrium were kept. Finally, a RAD (restriction site associated
DNA) haplotyper” was used with the default settings to remove putative
paralogous loci. Differences in population sampling success were accounted
for by standardizing the sample size to a maximum of 10 individuals per
population (median and tradeoff value of the overall sampling). Addition-
ally, the filtered SNP data were down-sampled 99 times to the lowest
common number of SNPs (i.e., 4479) found across all species (Supple-
mentary Table 4).

Experimental photographic design

Each specimen was pinned head facing left on a board to have the most
accurate view of the full body shape including fin extensions. To overcome
occasional post-mortem rigidity deformations, the epaxial muscle was
massaged. Each specimen was photographed together with a scale bar using
a digital-single-lens-reflex camera (24.2 megapixels, D7200, Nikon, Tokyo,
Japan). An AF Micro-NIKKOR 60 mm F/2.8D lens (Nikon) was used to
avoid distortion. The geometric morphometric data were collected for 1111
individuals (17 species, 10 families, Supplementary Table 2), forming the
“intraspecific” data set. The resulting images were first imported into
tpsUtil327°. Next, a collection of discrete anatomical landmarks described by
two-dimensional cartesian coordinates (morphological landmarks), were
digitized by one observer, using tpsDIG v.3.2” to capture significant body-
shape feature measurements related to fish feeding and locomotion
mechanics (Supplementary Fig. 2). A subset of overlapping landmarks
(n=14) was gathered from™ and described 1061 Indo-Pacific reef fish
species from the same families. Based on these landmarks a morphospace
representation was done through relative warp analysis. This “interspecific”
data set included one adult individual per species, with measurements made
on photographs from Dr. Jack Randall (Bishop Museum, Honolulu, Hawaii,
USA; http://pbs.bishopmuseum.org/images/JER/images.asp). Each land-
mark data set was first aligned using Generalized Procrustes Analysis
(GPA), which rotates, translates and scales landmark conﬁgurations”. GPA
makes it possible to isolate shape information, removing all other
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components of variation™. All subsequent analyses were conducted on the
data sets with procrustes-aligned landmark coordinates (shape data).

Intraspecific and interspecific morphological trait disparity
From the procrustes-aligned landmark data sets, two data sets were
created representing the intra- and interspecific morphological trait
disparity (mtD) for the 13 morphological traits (Supplementary Fig. 2;
Supplementary Table 3). First, in both data sets, the morphological trait
lengths were extracted from the Euclidean distances between landmarks.
Second, the linear distances were converted into ratios to describe
components of body and head shape (Supplementary Table 3). To
compute the intraspecific morphological trait disparity (mtD), the dis-
parity of traits per species across all populations in the Western Indian
Ocean was considered, while the disparity of traits across all genera
constituting a given family was considered in calculating the interspecific
mtD. mtD was computed using Eq. 1:

IRERES

Xall

mtD = 1

where x stands for the mean value of a morphological trait (e.g., body
elongation). For the intraspecific data set X; refers to the mean of a
morphological trait for location i (e.g., Maldives and X, refers to the mean
of a morphological trait for another location j (e.g., Mayotte island), while
for the interspecific data set x; refers to the mean of a morphological trait
for genera i. X,; represents the mean value relative to the same mor-
phological trait (e.g., body elongation) considered over the both location
together for the intraspecific data set (i.e., mean of the mean of the four
populations) and over the family for the intraspecific data set (i.e., mean
of the mean of all genera in a family). x,; was calculated according to
Eq. 2:

i 1
Xai = ) Xi* 2 )
¢ i=1 l N

We applied a null model approach to test whether interspecific
mtD differed from that expected at random, we first calculated the
observed trait variability between separated locations of the Western
Indian Ocean using Eq. 1. Second, we randomized individuals between
locations to obtain a distribution of 999 values of intraspecific trait
variations. We then calculated the standard effect size (SES) to reject the
null hypothesis (HO: the interspecific mtD does not differ from expected
at random) or not. Similarly, to test whether intraspecific mtD differed
from that expected at random, we first calculated the observed trait
variability between genera for a considered family using Eq. 1. Second,
we randomized species between genera of a family to obtain a dis-
tribution of 999 values of interspecific trait variations. We then calcu-
lated the SES to reject HO (HO: the intraspecific mtD does not differ from
expected at random) or not. The statistical framework was applied to
each morphological trait ratio (n=13).

Linking genetic diversity in the Western Indian Ocean metapo-
pulation to within-species morphological trait disparity

The a,  and y components of genetic diversity were quantified by
applying a multiplicative partitioning framework for genetic diversity
based on Hill's number”', expressed as J; = J¢ X J g1, where ] represents
the overall genetic diversity. Js represents the mean within-population
genetic component («) and is expressed as J; = 1/ (1 —H s): where Hg is
the heterozygosity of populations’. Jsr, expressed as J¢r = 1/(1 — Hgp),
represents the between-population () component, where Hgy =
(Hy — Hg)/(1 — Hg) and Hy represents the overall genetic diversity. In
calculating Hy and Hg, a correction was applied to account for the
number of individuals for each species and each of the 999 x 4479 SNP

data sets, using the basic.stats function (“hierfstat” R package”) in
Rv4.2.1.

To investigate whether the 13 morphological traits used to compute
intraspecific morphological disparity between geographic location were
related to the spatial components of genetic diversity (i.e., Jsr and Js)
obtained by applying a Hill number framework on genome-wide SNP data,
we implemented a permutational multivariate analysis of variance (PER-
MANOVA) with 999 permutations with the adonis2 function (R package
“vegan™*). For the significant associations, each morphological trait dis-
parity (i.e., ratio) was related individually as the response variable by means
of a complete phylogenetic generalized least-squares (PGLS) regression
using the pgls function (R package “caper””).

Congruence between intra- and interspecific morphological
disparity

To evaluate the congruence between intra- and interspecific morpholo-
gical disparity, we applied two complementary methods: a co-inertia
analysis (CIA) and a phylogenetic regression method to account for
phylogenetic dependency. First, we applied CIA to assess the congruence
between the morphological trait variation at the species level (intraspe-
cific disparity) and the family level (interspecific disparity). Since the
datasets differed in dimensions, we replicated the interspecific data
(family-level trait variation) for the number of species within each family,
aligning it with the intraspecific dataset. In the CIA, the two data sets
produced representations of the morphological variations in two
hyperspaces. The CIA maximized the squared covariance between the
projections of all the pairs of morphological trait variabilities on the co-
inertia axes’. The congruence between the two data sets was measured
using the RV coefficient of correlation which ranges from 0 (no corre-
lation) to 1 (perfect correlation), with higher values indicating a stronger
congruence between the data sets. Second, for each trait, we tested
whether the individual relationships between the intraspecific and
interspecific morphological disparity were robust to phylogenetic relat-
edness by using PGLS methods’”. For this PGLS analysis, we pruned the
phylogeny to include only the 17 species in our data set using the most
comprehensive time-calibrated phylogeny of fishes™.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The data files used to generate the genetic data are available from the Dryad
Digital Repository: https://doi.org/10.5061/dryad.5qfttdz4d. Data related to
fish morphology are available at: https://doi.org/10.16904/envidat.565

Code availability

The scripts used to generate the genetic data are available from the Dryad
Digital Repository: https://doi.org/10.5061/dryad.5qfttdz4d. The files and
codes required to reproduce the results of this paper, are available at:
https://github.com/Camillealbouy/Donati_et_al COMMSBIO-23-3727
and https://doi.org/10.16904/envidat.565.
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