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Key points  1 

● Global marine ecosystem models projected greater biomass declines with climate 2 

change than regional marine ecosystem models for many regions 3 

● For both global and regional models, greater biomass declines were projected in CMIP6 4 

than CMIP5 and in IPSL vs. GFDL simulations 5 

● Projected impacts of climate change on marine ecosystems at regional scales are 6 

currently less certain than at global scale 7 

 8 

Abstract  9 

Climate change is affecting ocean temperature, acidity, currents, and primary 10 

production, causing shifts in species distributions, marine ecosystems, and ultimately fisheries. 11 

Earth system models simulate climate change impacts on physical and biogeochemical 12 

properties of future oceans under varying emissions scenarios.  Coupling these simulations with 13 

an ensemble of global marine ecosystem models has indicated broad decreases of fish biomass 14 

with warming.  However, regional details of these impacts remain much more uncertain.  Here, 15 

we employ CMIP5 and CMIP6 climate change impact projections using two Earth system 16 

models coupled with four regional and nine global marine ecosystem models in ten ocean 17 

regions to evaluate model agreement at regional scales.  We find that models developed at 18 

different scales can lead to stark differences in biomass projections. On average, global models 19 

projected greater biomass declines by the end of the 21st century than regional models. For 20 

both global and regional models, greater biomass declines were projected using CMIP6 than 21 

CMIP5 simulations. Global models projected biomass declines in 86% of CMIP5 simulations for 22 

ocean regions compared to 50% for regional models in the same ocean regions. In CMIP6 23 

simulations, all global model simulations projected biomass declines in ocean regions by 2100, 24 

while regional models projected biomass declines in 67% of the ocean region simulations. Our 25 

analysis suggests that improved understanding of the causes of differences between global and 26 



 

 

regional marine ecosystem model climate change projections is needed, alongside 27 

observational evaluation of modelled responses. 28 

 29 

Plain language summary   30 

 Climate change is affecting the world’s oceans, marine ecosystems, biodiversity, and the 31 

ecosystem services that they support, including fisheries that feed millions of people worldwide. 32 

Anticipating the impacts of climate change can help society and managers to prepare for, and 33 

adapt to, changes ahead. Present understanding of climate change impacts on the world’s 34 

oceans based on global models indicates a 5% loss in animal biomass with every 1 ºC that the 35 

planet warms. Here, we compare potential future biomass on regional scales that are most 36 

relevant for management decisions about sustainable resource use. We used regional scale 37 

ecosystem models tailored to the species and fisheries they represent. We compared climate 38 

change projections of ocean biomass changes from these regional models to corresponding 39 

areas from global models to see how well they agreed. We found key differences in climate 40 

change projections of ocean biomass between global and regional models. In some cases, both 41 

global and regional models projected biomass declines, while in others global models 42 

suggested a decline and regional models an increase. Our study highlights that we need further 43 

exploration and understanding of the differences in ocean biomass change between global and 44 

regional marine ecosystem models. 45 

 46 
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Introduction 53 

 Oceans play a key role in regulating global climate (IPCC 2023). Marine ecosystems and 54 

biodiversity provide a range of ecosystem services including livelihood opportunities, food 55 

provision, coastal protection, and carbon sequestration (IPBES 2019).  However, ocean 56 

ecosystems, marine biodiversity, and the ecosystem services they provide are compromised by 57 

anthropogenic climate change impacting water temperature, hydrodynamics, geochemistry, 58 

primary productivity, and species and community dynamics (IPBES 2019; IPCC 2023).        59 

 The United Nations Intergovernmental Panel on Climate Change (IPCC) assessment 60 

reports make use of standardized climate change projections from an ensemble of Earth system 61 

models (ESMs) through the coupled model intercomparison project (CMIP; Eyring et al. 2016).  62 

ESMs provide projections of many variables important for marine life, including sea surface 63 

temperature, oxygen, hydrodynamics, sea level, primary production, low trophic level biomass, 64 

among many other variables (IPCC 2023).  By using an ensemble of ESMs, climate change 65 

projections are not dependent on any one model, and variation among model projections can be 66 

evaluated to determine the level of uncertainty for a given environmental variable (IPCC 2023).  67 

For some variables, such as acidity, ensemble model agreement is very good; while others, 68 

such as sea surface temperature and primary production show much less agreement (Bopp et 69 

al. 2013; Kwiatkowski et al. 2020; IPCC 2023).  Understanding sources of uncertainty in model 70 

projections is a key research focus for climate and marine ecosystem modellers to help build 71 

confidence in climate change and impact projections (Cheung et al. 2016; Payne et al. 2016; 72 

Eddy 2019).   73 

Taking a similar approach to CMIP, the Fisheries and Marine Ecosystem Model 74 

Intercomparison Project (FishMIP) has developed standardized protocols to run climate change 75 

impact simulations for an ensemble of global and regional marine ecosystem models (MEMs; 76 

Tittensor et al. 2018; Blanchard et al. 2024).  FishMIP models use outputs provided by CMIP 77 

ESMs to run climate change scenarios following shared socioeconomic pathways (SSPs) and 78 



 

 

representative concentration pathways (RCPs).  Global FishMIP projections have been used to 79 

explore changes in marine animal biomass, evaluate the level of MEM agreement, and attribute 80 

sources of variability to MEMs, ESMs, SSP-RCPs, and fishing exploitation (Lotze et al. 2019).  81 

FishMIP projections suggest that marine animal biomass will, on average, decline by 17% by 82 

2100 under a high emissions scenario (RCP 8.5) with CMIP5 forcing data (Lotze et al. 2019) 83 

and by 19% under CMIP6 (Tittensor et al. 2021). Other key findings are that with every 1 °C that 84 

the planet warms, marine animal biomass is projected to decline by 5%, roughly in agreement 85 

with the average of observational estimates (Free et al., 2019), and that higher trophic levels are 86 

disproportionately impacted (Lotze et al. 2019; du Pontavice et al., 2021; Guibourd de Luzinais 87 

et al. 2023). While not all FishMIP models represent fishing, simulations with and without fishing 88 

produced similar magnitude and variability of the climate effect on marine ecosystems (Lotze et 89 

al. 2019). Equivalent amounts of variability in biomass projections were contributed by ESMs 90 

and MEMs, with variability increasing with higher emissions (Lotze et al. 2019). Compared to 91 

CMIP5 forced MEMs, CMIP6 forced MEMs projected regional differences in the direction of 92 

biomass changes, emphasizing the need to reduce uncertainty to support adaptation planning 93 

(Tittensor et al. 2021). Understanding regional marine ecosystem and fisheries dynamics is 94 

particularly important because many coastal communities are highly dependent on the nutrition 95 

and livelihoods they derive from the ocean (e.g. FAO 2018). 96 

Regional MEMs have often been developed to address fisheries, conservation, and 97 

management applications. In contrast to global models, regional models do not represent the 98 

entire ocean, and are generally forced by environmental variables representative of the regions 99 

being simulated. This is one of several differences in model detail between global and regional 100 

scale MEMs that has consequences for using global scale ESMs to force regional MEMs. One 101 

particularly important issue is that ESMs produce projections of physical and biogeochemical 102 

ocean properties at a coarse spatial resolution, typically on a 1 ° x 1 ° grid.  A consequence of 103 

this spatial resolution is that physical and biogeochemical processes that drive primary 104 



 

 

productivity in coastal regions – where many nationally significant fisheries occur – are not well 105 

represented (FAO 2022). For example, depths <50 m and key oceanographic processes that 106 

affect primary production, such as upwelling and dispersion of coastal nutrients, are poorly 107 

resolved (Stock et al. 2011; Bopp et al. 2013).  This has implications for representation of 108 

marginal seas, such as the Baltic Sea (Niiranen et al. 2013) and the Mediterranean Sea (Coll et 109 

al. 2010), and shallow underwater plateaus such as The Grand Banks of Newfoundland 110 

(Laurent et al. 2021).  In Australia, discrepancies in projections from global and regional MEMs 111 

for the same regions have been observed, not just in terms of the magnitude of effects but also 112 

in the direction of change (Pethybridge et al. 2020).  As there is a need to provide projections of 113 

climate change impacts at regional scales for fisheries adaptation and mitigation planning, 114 

regional MEM ensembles that allow quantification of across-model uncertainty are lacking for 115 

most regions of the world (Metcalfe et al. 2015). In this absence, the FishMIP global ensemble 116 

has been used to fill in the gap (Blanchard et al. 2017; Cinner et al 2022; Blanchard and 117 

Novaglio 2024).  Understanding how global marine ecosystem models perform at regional 118 

scales is important as many resource constrained jurisdictions do not have the capacity to 119 

generate their own regional specific models (Barange et al. 2014; Blanchard et al. 2017; Boyce 120 

et al. 2022; Cinner et al. 2022). 121 

Most global FishMIP models agree in the projected direction of change in fish production 122 

for specific climate model and emissions scenarios, albeit with regional differences (Lotze et al. 123 

2019; Heneghan et al. 2021; Tittensor et al. 2021). However, models at regional scales can 124 

project the opposite direction of change (Barange et al. 2014; Pethybridge et al. 2020). Previous 125 

FishMIP studies have analyzed variability in climate change projections of marine animal 126 

biomass as a function of: ESM (Geophysical Fluid Dynamics Laboratory Earth System Model – 127 

GFDL or Institute Pierre Simon Laplace Climate Model – IPSL); global MEM (ensemble of six or 128 

nine; Lotze et al. 2019; Tittensor et al. 2021); and SSP-RCP scenario (four scenarios or two 129 

scenarios; Lotze et al. 2019; Tittensor et al. 2021). The impact of fishing (Lotze et al. 2019) and 130 



 

 

the difference between CMIP5 and CMIP6 projections have also been investigated (Tittensor et 131 

al. 2021). What remains unknown is how climate change projections by FishMIP global MEMs 132 

compare with regional MEMs at regional scales. In this study, we explore variability in climate 133 

change projections of ocean biomass as a function of: Earth system model (ESM; GFDL vs. 134 

IPSL); marine ecosystem model (MEM; ensemble of 13); marine ecosystem model spatial scale 135 

(global or regional); and couple model intercomparison project generation (CMIP5 vs. CMIP6) in 136 

10 regions.  We evaluate the agreement in projections of global MEMs with regional MEMs at 137 

regional scales. 138 

  139 

Methods 140 

FishMIP model ensemble 141 

FishMIP provides a standardized approach to compare climate change projections 142 

among MEMs of varying structure, assumptions, and spatial scale (Tittensor et al. 2018; Eddy 143 

2019; Heneghan et al. 2021; Novaglio et al. 2024; Blanchard et al. 2024). MEMs differ in how 144 

they are structured – whether biomass or carbon based, structured by size, trophic level, 145 

species or functional group (Tittensor et al. 2018).  Global MEMs are based on general 146 

ecological theory and principles, are spatially resolved, and have become a major modelling 147 

focus within the last decade (Table 1).  Regional models generally represent more trophic 148 

interactions, are fit to local ecological survey and fisheries data, may or may not be spatially 149 

resolved, and have had a long history of development and refinement, originating 40 years ago 150 

(Polovina 1984).  Regional models generally include more feedback processes and the system 151 

specific ecological idiosyncrasies that add complexity and richness to regional ecosystems 152 

around the globe (Table 1).  153 

 154 

Global & regional MEMs 155 



 

 

We analyzed regional MEM projections for seven regions in CMIP5 and five regions in 156 

CMIP6, with 10 regions represented in total (two regions with both CMIP5 and CMIP6 157 

simulations; Figure 1). Regions were selected based on regional models that participated in 158 

FishMIP simulation protocols (Tittensor et al. 2018; fishmip.org).  Global ESMs and MEMs are 159 

often not well resolved in coastal regions compared to regional models and therefore even 160 

though the spatial domains used were identical, the ecosystems represented may differ (Figure 161 

1; Tables 1, 2). For this reason, not all regions included in this study have all global MEM 162 

simulations.  163 

 An important difference between global and regional model development is that regional 164 

models are often forced with one or more time series of: fishing mortality or effort by species or 165 

fishery, oceanographic flows that capture current patterns, net primary productivity (NPP), 166 

temperature, salinity, pH, nutrient and other inflow from coastal sources, and are fit to 167 

independent, historical observational data such as fisheries catch data and/or biomass survey 168 

data for individual species (Table 1).  These observational datasets are often not available at 169 

the global scale, which limits the calibration process for global MEMs.  As ESM hindcasts do not 170 

always match observations at regional scales, all regional MEMs employed bias correction 171 

using the delta method to maintain calibration (Schoeman et al. 2023; Table 2) or statistical or 172 

dynamical downscaling of ESM outputs (Oliveros-Ramos et al. in revision, Coll et al., 2024). 173 

This introduced variation in how global and regional models performed climate change 174 

simulations, affecting the magnitude of projected biomass. For this reason, we report relative 175 

changes in biomass.  176 

 177 

FishMIP simulation protocol 178 

FishMIP simulations followed a standardized protocol that used ESM output variables as 179 

MEM input variables and the same fisheries scenarios to simulate climate change (Frieler et al. 180 



 

 

2017; Tittensor et al. 2018; Frieler et al. 2024; Blanchard et al. 2024; Figure S1; Tables 1, 2). 181 

FishMIP simulations were designed to align with the Inter-Sectoral Impact Model 182 

Intercomparison Project (ISIMIP) 2b and 3b protocols corresponding to CMIP5 and CMIP6 183 

simulation rounds, respectively (Frieler et al. 2018; Frieler et al. 2024).  In both protocols, MEM 184 

simulations were run from 1950 – 2100 using climate and oceanographic conditions from two 185 

ESMs (GFDL-ESM2M for CMIP5 and GFDL−ESM4 for CMIP6, collectively referred to as GFDL; 186 

and IPSL-CM5A-LR for CMIP5 and IPSL−CM6A−LR for CMIP6, collectively referred to as 187 

IPSL), under four emissions scenarios (RCP2.6/SSP1-2.6, RCP4.5/SSP2-4.5, RCP6.0/SSP4-188 

6.0, RCP8.5/SSP5-8.5; Tittensor et al. 2018; Frieler et al. 2024; Blanchard et al. 2024).   189 

For this analysis, we used no-fishing simulations as most global models do not represent 190 

fishing and did not run fishing simulations. We focussed on the RCP8.5/SSP5-8.5 high 191 

emissions scenario as the impacts of emission scenario have been previously explored for 192 

CMIP5 and CMIP6 (Lotze et al. 2019; Tittensor et al. 2021).  While considering a broader set of 193 

scenarios would be ideal, it was not possible in this instance as only the RCP8.5/SSP5-8.5 had 194 

been run by all models. Extending to another scenario was unfortunately not feasible due to 195 

computational intensity and capacity as FishMIP and ISIMIP are largely volunteer contributions 196 

unlike CMIP. The high emissions scenario samples a large range of global warming, and as 197 

many impacts scale approximately with global warming, impacts under a low scenario may be 198 

similar to, just smaller than, a high scenario. For example, if 2.0 °C is reached earlier in RCP8.5 199 

than in RCP4.5, RCP8.5 might still give a fair estimate of the impacts of 2.0 °C, irrespective of 200 

when it is reached. However, the rates of change between these scenarios need to be 201 



 

 

considered, as they can lead to different ecosystem consequences.  FishMIP models simulated 202 

climate change scenarios by incorporating relevant outputs from ESMs as MEM forcing 203 

variables, such as temperature, primary productivity, phytoplankton biomass, zooplankton 204 

biomass, acidity, oxygen concentration, and water velocities (Tables 1, 2; Figures 2, 3).   205 

 206 

Model comparisons 207 

 We used regional model spatial domains to subset global model simulation output for 208 

corresponding grid cells, such that the geographical domains were identical 209 

(https://github.com/Fish-MIP/Regional_v_Global). Following previous FishMIP studies (Lotze et 210 

al. 2019; Tittensor et al. 2021), for each combination of CMIP, ESM, MEM, and region, we 211 

calculated the percent change in total consumer biomass (all consumers of trophic level > 1, 212 

vertebrates and invertebrates) for 2090-2099 relative to 1990-1999. To evaluate model 213 

agreement among global and regional scale models in each region, we calculated the 214 

proportion that the regional model time series projection fell within the range of the global model 215 

ensemble, the root mean squared error (RMSE), and Spearman correlation.  216 

 217 

Drivers of biomass change 218 

 To explore relationships between ESM environmental forcing variables and MEM total 219 

consumer biomass, for each region, model, and year combination, we calculated change in SST 220 

and NPP (relative to 1990-1999) to compare with the corresponding change in total consumer 221 

biomass (relative to 1990-1999). For each model, we calculated the amount of variation in delta 222 

total consumer biomass that was explained by delta NPP or delta SST.  223 

 224 

3. Results  225 

3.1 – Climate forcing variable projections  226 

3.1.1 – Sea surface temperature 227 



 

 

 For both CMIP5 and CMIP6 simulation rounds, SST was projected to increase in all 228 

regions (Figures 2, 3). For CMIP5, GFDL projections were warmer in three regions, while there 229 

was overlap in four regions (Figure 2). GFDL projections were higher in 2100 in three regions, 230 

while IPSL projections were higher in four regions (Figure 2; Table 3). Interannual variability was 231 

similar for GFDL and IPSL projections, with exceptions for greater variability in the GFDL 232 

projection for the Humboldt Current and IPSL projections for the Cook Strait and East Bass 233 

Strait (Figure 2). The magnitude of SST increase from 1950 – 2100 was greater in IPSL 234 

projections in all seven regions (Figure 2). For CMIP6, GFDL projections were warmer in three 235 

regions, an IPSL projection was warmer in one region, with overlap between a GFDL and IPSL 236 

projection in one region (Figure 3). GFDL projections were higher in 2100 in three regions, while 237 

IPSL projections were higher in two (Figure 3; Table 3). Interannual variability was similar for 238 

GFDL and IPSL projections except in the East Bass Strait, where the GFDL projection showed 239 

greater variability (Figure 3). The magnitude of SST increase from 1950 – 2100 was greater for 240 

a GFDL projection in one region, IPSL projections in two regions, and similar in two regions 241 

(Figure 3).  242 

 243 

3.1.2. – Net primary productivity 244 

 For both CMIP5 and CMIP6 projections, there was variability in direction of NPP change 245 

by 2100 (Figures 2, 3). For CMIP5, GFDL NPP projections were higher in six regions, with one 246 

region showing overlap (Figure 2). GFDL projections were higher in 2100 in all regions (Figure 247 

2; Table 3). There were similar amounts of interannual variability for GFDL and IPSL 248 

projections, except in the Baltic Sea and East Bass Strait, where IPSL projections were more 249 

variable (Figure 2). IPSL projections indicated greater NPP declines from 1950-2100 in four of 250 

seven regions, while in the other three regions there were no strong trends (Figure 2). For 251 

CMIP6, GFDL projections of NPP were greater than IPSL projections in all five regions (Figure 252 

3). There was similar interannual variability for GFDL and IPSL projections, except in the East 253 



 

 

Bass Strait where the GFDL projection showed greater variability (Figure 3). The magnitude of 254 

change in NPP was variable, with GFDL projected decreases and IPSL increases in Cook 255 

Strait, East Bass Strait, and Hawaii regions (Figure 3). Both GFDL and IPSL projections 256 

indicated increases in NPP for the Southern Benguela and Eastern Bering Sea, with greater 257 

increase in the IPSL projection for the Southern Benguela and greater increase in the GFDL 258 

projection for the Eastern Bering Sea (Figure 3).    259 

 260 

3.2 – Global & regional model ensemble projections 261 

On average, global models projected greater biomass declines than regional models. 262 

For CMIP5 simulations, the average biomass decline at the end of the century was 6% for 263 

regional models compared to 18% for global models (Figure 4, S2; Table 4). For CMIP6 264 

simulations, on average regional models projected a decline of 18% at the end of the century, 265 

while global models projected a decline of 27% (Figure 5, S3, Table 4). 266 

Global model ensemble projections often produced a decline in biomass at the end of 267 

the century. For CMIP5, only 14% of the global ensemble projections showed increases (n = 268 

2/14; biomass increases for GFDL simulations in East Bass Strait and Mediterranean Sea; 269 

Table 4; Figures 2, 4, 7). In contrast, regional models projected biomass increases at the end of 270 

the century in 50% of CMIP5 simulations (n = 7/14, for 7 regions and 2 ESMs; Table 4; Figures 271 

2, 4, 6). For CMIP6 simulations, global model ensemble projections always projected biomass 272 

declines at the end of the century (n=12), while regional models projected biomass increases in 273 

33% of simulations (n = 4/12; IPSL simulations for Cook Strait and East Bass Strait; GFDL and 274 

IPSL simulations for Southern Benguela EwE; Table 4; Figures 3, 5, 7). However, it should be 275 

noted that some global models in some regions projected the opposite direction of change as 276 

the global model ensemble (Figures 6, 7).   277 

For some regions, biomass projections from regional models showed different trends 278 

than projections from the global ensemble (Figures 4, 5). This was observed in both GFDL and 279 



 

 

IPSL simulations and in both CMIP5 and CMIP6 simulation rounds (Figures 4, 5). In the CMIP5 280 

simulation round, disagreement in direction of biomass change was observed in the Cook Strait 281 

and Southeast Australia for both GFDL and IPSL simulations (Figure 4) and the East Bass Strait 282 

for GFDL simulations (Figure 4; Table 4). In the CMIP6 simulation round, differences in 283 

projected direction of change were observed in the Cook Strait and the East Bass Strait for IPSL 284 

simulations and the Southern Benguela EwE model for both GFDL and IPSL simulations (Figure 285 

7; Table 4). In the Eastern Bering Sea and Hawaii, for both GFDL and IPSL simulations and in 286 

the East Bass Strait for GFDL simulations, biomass trends were very different in terms of 287 

magnitude of change and variability, with the regional models projecting greater biomass 288 

declines in the Eastern Bering Sea, while the opposite response was observed in Hawaii and 289 

East Bass Strait (Figure 5).  290 

 Regional model biomass change projections were within the range of the global model 291 

ensemble on average for 43% of the time series in CMIP5 and 36% of the time series in CMIP6 292 

(Figures 4, 5; Table S1). In the CMIP5 simulation round, less than half of the regional model 293 

time series was within the global model ensemble range for: Baltic Sea – IPSL, Cook Strait – 294 

GFDL and IPSL, East Bass Strait – IPSL, Humboldt Current – GFDL and IPSL, Mediterranean 295 

Sea – GFDL, North Sea – GFDL, and SE Australia – both GFDL and IPSL (Figures 4, 6; Table 296 

S1). In the CMIP6 simulation round, regions where the regional model was within the range of 297 

the global ensemble for less than half of the time series were: Cook Strait – IPSL, East Bass 298 

Strait – GFDL and IPSL; East Bering Sea – GFDL and IPSL; Hawaii – GFDL and IPSL; and 299 

Southern Benguela Atlantis for GFDL and IPSL and Southern Benguela EwE for GFDL  300 

(Figures 5, 7; Table S1). On average, for CMIP5, this was 42.7% for GFDL and 44.1% for IPSL 301 

for an overall average of 43.4% (Table S1). For CMIP6, this was 38% for GFDL, 34% for IPSL 302 

for an overall average of 36% (Table S1).  303 

 304 

3.3 – CMIP simulation round variability 305 



 

 

 For both global and regional models, greater average projected biomass changes at the 306 

end of the 21st century relative to 1990-1999 were observed in CMIP6 than in CMIP5 (23% vs. 307 

12%, respectively; Figures 4, 5; Table 4). While the regions represented by both regional and 308 

global models differed in CMIP5 and CMIP6 simulation rounds, the two regions that participated 309 

in both rounds – Cook Strait and East Bass Strait – both showed greater average biomass 310 

declines in CMIP6 (Cook Strait: CMIP5 10% increase vs. CMIP6 28% decrease; East Bass 311 

Strait: CMIP5 3% decrease vs. CMIP6 12% decrease; Figures 4, 5; Table 4).  312 

 313 

3.4 – ESM variability 314 

 On average, IPSL simulations produced greater biomass declines than GFDL 315 

simulations (Figures 4-7, S4, S5; Table 4). In the CMIP5 simulation round, regional model GFDL 316 

runs produced an average biomass increase of 10%, compared to a 22% decline for IPSL 317 

simulations (Figures 4, 6, S4; Table 4). For global models in the CMIP5 simulation round, GFDL 318 

runs produced an average biomass decline of 5% while IPSL runs produced an average 319 

biomass decline of 31% (Table 4). For the CMIP6 simulation round, GFDL simulations produced 320 

greater biomass declines than IPSL, although IPSL showed larger variability over time (Figures 321 

5, 7, S5; Table 4). For regional models, GFDL simulations produced an average biomass 322 

decline of 26%, with 11% for IPSL (Table 4). For global models, GFDL simulations produced an 323 

average biomass decline of 28% while IPSL simulations produced an average decline of 26% 324 

(Table 4).  325 

Agreement between global and regional models was similar for GFDL and IPSL runs in 326 

the CMIP5 simulation round (average RMSE of 14.9 vs. 15.0, respectively; Table S2). For the 327 

CMIP6 simulation round, global and regional model agreement was better for GFDL simulations 328 

than IPSL (average RMSE of 18.3 vs. 24.5, respectively; Table S2).  329 

 330 

3.5 – Temperature and net primary productivity relationships with total consumer biomass 331 



 

 

 All MEMs showed a negative relationship between change in SST and change in total 332 

consumer biomass, however the slopes of the linear regressions differed among models (Figure 333 

8; Table S3). The greatest slopes were observed for mizer and Macroecological (-11.7 and -334 

11.5, respectively) and the smallest slope was observed for Ecopath with Ecosim (EwE; -3.2). 335 

The amount of variation in delta total consumer biomass that was explained by delta SST was 336 

greatest for DBPM (R2 = 0.66), while the smallest was observed for EwE (R2 = 0.03). Most 337 

MEMs had a positive relationship between change in NPP and total consumer biomass, except 338 

for Atlantis and mizer, both of which are regional models (Figure 9, Table S3). The model that 339 

had the greatest positive slope was EwE (2.3E+08), while the greatest negative slope was 340 

observed for mizer (-4.3E+08; Figure 9, Table S3). The highest amount of variation in delta total 341 

consumer biomass that was explained by delta NPP was observed for EwE (R2 = 0.41), while 342 

the lowest value was observed for OSMOSE (R2 = 0.04; Figure 9).   343 

 344 

Discussion 345 

Our results indicate that climate change projections by global and regional marine 346 

ecosystem models covering the same location often differ in magnitude and sometimes 347 

direction of biomass change.  On average, global models projected greater biomass declines 348 

than regional models, CMIP6 simulations projected greater biomass declines than CMIP5 349 

simulations, and IPSL simulations projected greater biomass declines than GFDL simulations. 350 

Overall, regional model projections were within the range of global model ensembles for less 351 

than half of the time series.    352 

Mismatches between global and regional models can be attributed to several factors.  353 

The first is how ecology and the multifaceted effects of climate drivers interact and are 354 

represented in each MEM. Global MEMs have been mostly developed for climate impact 355 

studies and tend to include more climate forcing variables compared with the regional models 356 

considered in this study (Table 1).  For example, the divergent trends for Cook Strait and East 357 



 

 

Bass Strait compared to global MEMs may reflect the fact that these two models were forced 358 

with primary production changes only, and do not include temperature effects on bioenergetics 359 

(Table 2). The latter can lead to more marked declines in biomass (Carozza, 2019, Heneghan et 360 

al. 2021) and we observed variable relationships between delta total consumer biomass and 361 

delta SST and NPP (Figures 8,9). On the other hand, including more regional species-specific 362 

detail in temperature responses (as in the Hawaii therMizer model), can dampen or lead to 363 

antagonistic effects as they propagate from individual physiological to community levels.  An 364 

analysis of global FishMIP MEMs showed that incorporating temperature effects led to biomass 365 

changes of –35% to 3% while simulating climate change through low trophic level effects 366 

(primary production; phytoplankton and/or zooplankton biomass or production) produced 367 

biomass changes of –17% to 15% (Heneghan et al. 2021).   368 

The ecological complexity of global and regional MEMs also differs, as regional models 369 

often include more food web interactions and functional diversity than global models (Tables 1, 370 

2).  Using the same underlying regional size-based modelling framework and only temperature 371 

altered, fish community responses were not generalizable among regions and were dependent 372 

on the species or functional group position in the food web and food web structure (Reum et al. 373 

2024).  Compared to general trait-based food web model configurations, more detailed regional 374 

food web structures led to damped effects of warming (Reum et al. 2024).  This could explain 375 

why global FishMIP MEMs overestimated the observed impacts in an analysis that used the 376 

2003 European heat wave as a case study and compared global FishMIP MEM hindcasts of 377 

ocean biomass to observations (Schewe et al. 2019).  In a comparison of global and regional 378 

MEMs in SE Australia, it was not the climate drivers but the representation of the ecology that 379 

proved critical in explaining variation in model projections (Pethybridge et al. 2020; Fulton 380 

2021). The regional Atlantis modelling framework, as applied in SE Australia, includes all the 381 

same climate drivers as the global models but produced divergent results with global MEMs. 382 

Differences between the Atlantis projections and those from global MEMs had many causes –383 



 

 

from variable representation of species or spatial sub-domains of the model (Pethybridge et al. 384 

2020; Fulton 2021). However, one common dynamic leading to divergence between this 385 

regional MEM and the overlapping global MEMs was due to ecologically mediated interactions. 386 

The trophic resolution of Atlantis included more detail and more feedback pathways than in the 387 

global MEMs. This meant that situations arose where decreased predation or competition acting 388 

on a structurally important species for the food web outweighed direct climate effects on that 389 

species (Pethybridge et al. 2020; Fulton 2021). In other instances, movement and 390 

ontogenetically mediated processes and connectivity were important (Pethybridge et al. 2020; 391 

Fulton 2021).  392 

It has also been noted that among three commonly used regional MEM platforms - 393 

Atlantis, EwE, and OSMOSE – there is system specificity in the degree of convergence and 394 

divergence in projections (Smith et al. 2011). For example, running the same maximum 395 

sustainable yield (MSY) fisheries simulations in each of these modelling frameworks in four 396 

regional ecosystems (Benguela, Humboldt, and California Current systems and Southeast 397 

Australia) showed clear variability in projected ecosystem responses (Smith et al. 2011).  398 

However, in other instances various combinations of Atlantis, OSMOSE and Ecopath with 399 

Ecosim models have projected similar general patterns of change to fishing (Travers et al., 400 

2010; Forrest et al. 2015; Smith et al. 2015; Ortega-Cisneros et al. 2018), where aggregated 401 

properties showed more consistency across models than species level variables (Ortega et al. 402 

2018). The specific degree of model responsiveness to perturbation is also typically system 403 

specific, though in general terms the Atlantis modelling framework is less sensitive to ecosystem 404 

perturbations, especially environmentally driven events, than Ecopath with Ecosim and 405 

OSMOSE (Fulton and Smith 2004; Smith et al. 2011). Model sensitivity is an important 406 

consideration when using models to guide policy advice, such as that provided by the IPCC at 407 

the global scale, but also for interpreting models and providing strategic fisheries management 408 



 

 

guidance as provided by the FAO at national, regional, and local scales (Blanchard and 409 

Novaglio 2024).    410 

An additional factor contributing to global and regional model mismatches is the coarse 411 

resolution of coastal regions in global ESMs and MEMs.  Global models often poorly represent 412 

waters <50 m depth, and at the 1 ° grid size scale (~100 km by 100 km at the equator) fail to 413 

capture fine-scale coastal and shelf processes such as eddies and upwelling – important for 414 

nutrient supply, and production of phytoplankton, zooplankton, higher trophic levels, and 415 

fisheries (Laurent et al. 2021; Pozo-Buil et al. 2021).  Two approaches to increase resolution 416 

are: statistical downscaling to a higher resolution grid – which will be influenced by the ESM that 417 

it was downscaled from (Lange 2019; Oliveros-Ramos et al. in revision); or by dynamical 418 

downscaling with a regional biogeochemical model or a regional ocean modelling system 419 

(ROMS; Laurent et al. 2021; Pozo-Buil et al. 2021).  Regional MEMs have faced challenges 420 

incorporating highly resolved spatial data as drivers of change. Some regional MEMs have been 421 

developed without explicit spatial resolution; instead using implicit representation to structure 422 

food webs by depth or other influencing process. There is also a tradeoff between downscaled 423 

models having higher spatial resolution but poorer estimates of uncertainty because their 424 

boundary conditions are often driven by only one ESM, and commonly few emission scenarios 425 

are included (Pozo-Buil et al. 2021). Regional models can also be limited by an inaccurate 426 

representation of boundary conditions, such as the import and export of water and biomass to 427 

the model domain (across both land/riverine and oceanic boundaries).  428 

Comparisons of CMIP5 ESM projections to regional observations of environmental 429 

variables have concluded that coarsely resolved ESMs failed to accurately capture complex 430 

patterns of circulation and elemental fluxes on the shelves along ocean margins of the 431 

northwest Atlantic shelf (Laurent et al. 2021).  ESMs underestimated observed chlorophyll and 432 

nitrate, while a regional ocean modelling system (ROMS) biogeochemical model with higher 433 

spatial resolution reproduced observed trends better (Laurent et al. 2021).  Similar mismatches 434 



 

 

between model projections and observed values were observed in regions we investigated, 435 

such as for the Humboldt Current, where ESM projections of NPP were half the magnitude 436 

compared to observed values – which was bias-corrected through statistical downscaling 437 

(Lange et al. 2019; Oliveros-Ramos et al. 2024).  Global and regional model mismatches have 438 

also been observed in comparisons of hydrological models, where global models not calibrated 439 

to regional observations failed to reproduce regional trends, with the recommendation that 440 

regional models were more appropriate for regional water management (Gosling et al. 2016; 441 

Hattermann et al. 2017).   442 

Model calibration is a key source of variation among global and regional models. Fitting 443 

models to time series of fisheries and biomass surveys has been a focus of many regional 444 

models since their inception (Bentley et al., 2024) but is only just beginning for global models.  445 

Regional models often use fisheries catch and fisheries independent survey data in the region 446 

(Maureaud et al. 2021; Maureaud et al. 2024). Global models are often limited by observational 447 

data for calibration, as only exclusive economic zone (EEZ) or large marine ecosystem (LME) 448 

scale catch data are available.  Data at these scales have many uncertainties, including how 449 

fishing effort is spatially allocated and representativeness of total system removals (Watson 450 

2017; Rousseau et al. 2019; Rousseau et al. 2024).   451 

As ESM accuracy improves and computing power increases, the spatial resolution of 452 

ESMs will increase and processes within coastal and shelf regions will be better resolved and 453 

more consistent with regional oceanographic models. ESM runs undertaken at a 0.25 ° grid 454 

scale do a better job of representing coastal and shelf features, such as fine scale eddies, 455 

currents, and upwelling. Such changes in resolution can vastly improve the representation of 456 

ecologically relevant features, such as production hotspots, both in global but also regional 457 

modelling initiatives (Matear et al. 2013).  As global scale ESMs and MEMs at both global and 458 

regional scales continue to evolve, a central goal of FishMIP is to understand sources of 459 

variation to build confidence in projections of climate change impacts on marine ecosystems at 460 



 

 

regional scales and to provide guidance about which scales different models can be applied for 461 

adaptation and mitigation planning.  We note that the test undertaken here, comparing 462 

projections at the end of the 21st century looks at the end point not the transition pathways, and 463 

that we may be missing divergence that has real meaning at temporal scales meaningful for 464 

decision makers.  465 

A key source of uncertainty that has not yet been explored with global and regional 466 

MEMs within FishMIP is socioeconomics. Market, management, and policy responses could be 467 

more important than climate change for the future of fish populations (Cheung et al. 2021, 468 

2024).  To date, FishMIP has focussed on the climate change impact and treated the 469 

socioeconomic impact simply by holding fishing levels constant at 2005 or 2015 levels or with a 470 

no-fishing scenario.  The SSPs were not specifically developed for marine systems and are not 471 

directly applicable to socioeconomic factors for ocean systems.  To address this important 472 

consideration, FishMIP has established a Scenarios Working Group to develop ocean system 473 

pathways (OSPs) of future fishing effort and ocean usage, based on the SSP scenarios, with 474 

the intention that they be used in combination with RCP emissions scenarios in future FishMIP 475 

simulation rounds (Maury et al. in revision).   476 

The value of model ensembles lies in building confidence in model projections through 477 

the exploration of multiple models.  When the exact processes and structures to represent 478 

observations are unknown, comparison of varying model formulations provides a hypothesis 479 

testing approach. If models agree in projections, there is greater confidence that key processes 480 

and structures have been represented. Conversely, large variation in model projections points to 481 

missing knowledge. The global and regional models explored here employ different approaches 482 

to represent marine ecosystems due to imperfect knowledge. Our study highlights areas for 483 

future exploration but cautions that there is high uncertainty about how ecology and eco-484 

evolutionary processes will unfold in rapidly changing marine environments. Of high importance 485 

are additional physical processes that function at scales not represented by the resolution of the 486 



 

 

ESMs but are implicit in regional models that have been bias corrected. Our comparison of 487 

global and regional MEMs highlights that there are key uncertainties for climate change 488 

projections of biomass change at regional scales. While management and conservation 489 

organizations require this information for adaptation and mitigation planning, it should be 490 

recognized that projections at these scales remain uncertain in many regions. FishMIP has 491 

plans to continue to address these uncertainties at regional scales to build confidence in 492 

projections of climate change impacts on marine ecosystems worldwide (Ortega-Cisneros et al. 493 

In revision; Murphy et al. In revision). 494 

 495 
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 989 
 Model Spatial 

scale 
Class CMI

P5 
CMI
P6 

Key forcing 
variables used 

Taxonomic 
scope 

Reference 

APECOSM  
(Apex 
Predators 
ECOSystem 
Model) 

Global Composite 
(size- and 
trait-based; 
functional 
group 
structure)  
 

X X Carbon 
concentrations 
(small 
phytoplankton, 
large 
phytoplankton, 
small 
zooplankton, 
large 
zooplankton), 
particulate 
organic matter 
(small and 
large), zonal 
and meridional 
currents, 
turbulent  
mixing, 
temperature, 
water density, 
dissolved 
oxygen 

Sized-
based 
communitie
s 
(epipelagic, 
migratory, 
mesopelagi
c, bathy-
pelagic) 
and focus 
species 

Maury 
(2010) 



 

 

concentration, 
light 
irradiance. All 
fields 3D and 
monthly  
 

Atlantis Regional Composite 
(hybrid)  

X X NPP, SST, pH 
currents, 
dissolved 
oxygen 
concentration, 
salinity 

All trophic 
levels and 
taxonomic 
groups can 
be 
represente
d using a 
mix of 
biomass 
pools and 
age 
structured 
populations 

Fulton et 
al. 2011 

 BOATS 
(Bioeconomi
c Marine 
Trophic 
Size-
spectrum)  
 

Global  Size-based X X Mean 
temperature 
0–75 m, NPP  
 

All 
commercial
ly fished 
species, 
both finfish 
and 
invertebrate
s  

Carozza 
et al. 2016 

 DBEM  
(Dynamic 
Bioclimate 
Envelope 
Model)  
 

Global Species 
distribution 
model 

X X Surface and 
bottom O2, 
pH, salinity 
and 
temperature. 
Ice cover, 
current 
velocity, NPP, 
NPP pico and 
NPP diat. All 
variables on a 
yearly basis 

956 
species of 
exploited 
fishes and 
invertebrate
s  
 

Cheung et 
al. 2011 

 DBPM  
(Dynamic 
Benthic 
Pelagic 
Model)  
 

Global  Composite 
(size- and 
trait-based)  
 

X X Surface and 
bottom 
temperature, 
phytoplankton 
carbon groups  

All benthic 
and pelagic 
marine 
animals 
weighing 
between 1 
mg and 1 
tonne  

Blanchard 
et al. 2012 

         
 EcoOcean Global Composite 

(trophodyna
mic and 
species 
distribution 
model)  

X X SST, seafloor 
temperature, 
column 
average 
temperature, 
phytoplankton 
carbon groups  

Includes 51 
functional 
groups 
representin
g the whole 
spectrum of 
marine 
organisms 

Christense
n et al. 
2015; Coll 
et al., 
2020 



 

 

from 
bacteria  
to whales, 
and 
integrates 
explicit 
information 
for 3 400 
species  
of 
vertebrates, 
invertebrate
s and 
primary 
producers  

 Ecopath 
with Ecosim 

Regional Trophodyna
mic (if 
Ecospace 
included also 
composite 
with species 
distribution 
model 
included) 

X X NPP, bottom 
O2, SST 

All trophic 
levels and 
taxonomic 
groups can 
be 
represente
d, including 
age 
structured 
groups 

Christense
n and 
Walters 
2004; 
Christense
n et al., 
2014 

 EcoTroph Global Trophic-level 
based 

 X NPP, SST, 
integrated 
mesozooplankt
on carbon  

Implicitly all 
groups, 
including 
pelagic and 
demersal 
fishes and 
invertebrate
s  

Gascue, 
2005; du 
Pontavice 
et al., 
2021 

 FEISTY Global Composite  X Seafloor 
temperature, 
seafloor 
detritus flux, 
mean 
temperature 
0–100 m, 
integrated 
mesozooplankt
on carbon 0–
100 m  

Small 
pelagic fish, 
large 
pelagic fish, 
demersal 
fish, 
benthic 
invertebrate
s  

Petrik et 
al. 2019 

 Macroecolo
gical 

Global Size-based X X NPP, SST  
 

Implicitly all 
marine 
organisms 
from 1 
gram to 1 
tonne  

Jennings 
and 
Collingridg
e (2015) 

 mizer Regional Size-based  X Vertically 
integrated, 
size-
fractionated 
phytoplankton 
and 

Single 
plankton 
community, 
species-
specific fish 

Scott et al. 
2014 



 

 

zooplankton 
carbon, ocean 
temperature 

 OSMOSE Regional Composite 
(size- and 
trait-based)  

X  SST, SSS, 
NPP, 
phytoplankton 
and 
zooplankton 
concentration 

Fish and 
invert 
species 
and 
functional 
groups 

Shin and 
Cury 
2004, 
Travers et 
al. 2009 

 ZooMSS Global Composite 
(size- and 
trait-based; 
functional 
group 
structure)  

X X Chlorophyll-a, 
SST  

Flagellates, 
cilliates, 
omnivorous 
copepods, 
carnivorous 
copepods, 
larvaceans, 
salps, 
chaetognat
hs, 
euphausiid
s, jellyfish, 
fish  

Heneghan 
et al. 2020 
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 991 
 992 
 993 
 994 
Table 2.  Regions and regional marine ecosystem models (MEMs) investigated in this study with 995 
key characteristics. Forcing variables are: intpp – net primary organic carbon production by all 996 
types of phytoplankton; thethao – sea water potential temperature; phydiat – concentration of 997 
diatoms expressed as carbon in sea water; phydiaz – concentration of diazotrophs expressed 998 
as carbon in sea water; phypico-vint – mole concentration of picophytoplankton expressed as 999 
carbon in sea water; zmeso-vint – concentration of mesozooplankton expressed as carbon in 1000 
sea water; zmicro-vint – concentration of microzooplankton expressed as carbon in sea water, 1001 
tos – sea surface temperature. 1002 
 1003 

Region Model Domain 
Area 
(km2) 

Spatial 
resolution 

Forcing 
variables for 

regional models 

Bias 
correction 
method 
applied 

Reference 

Baltic Sea Ecopath 
with 
Ecosim 

240 000 No intpp, tos, 
bottom O2 

Delta Niiranen et 
al. 2013 

Cook Strait, 
New Zealand 

Ecopath 
with 
Ecosim 

54 No intpp Delta  Eddy et al. 
2014 

East Bass 
Strait, Australia 

Ecopath 
with 
Ecosim 

30 623 No intpp Delta Bulman et 
al. 2006 

Eastern Bering 
Sea 

mizer 493 506 No phydiat-vint; 
phydiaz-vint; 
phypico-vint; 
zmeso-vint; 
zmicro-vint; tos 

Delta Reum et 
al. 2020 



 

 

Central North 
Pacific 

therMizer 19 694 
991 

No phydiat-vint; 
phydiaz-vint; 
phypico-vint; 
zmeso-vint; 
zmicro-vint; tos 

Delta Woodwort
h-Jefcoats 
et al. 2019 

Humboldt 
Current 

OSMOSE 4 949 170 Yes intpp, phydiat, 
zmeso-vint, 
zmicro-vint, tos 

Statistical 
downscalin
g 

Oliveros-
Ramos et 
al. 2017 

Mediterranean 
Sea 

Ecopath 
with 
Ecosim 

2 500 000 Yes intpp; thethao  Piroddi et 
al. 2017 

North Sea Ecopath 
with 
Ecosim 

570 000 No intpp Delta Mackinson 
and 
Daskalov 
2007 

SE Australia Atlantis 3 000 000 Yes thetao, O2, intpp  Fulton et 
al. 2014 

Southern 
Benguela  

Atlantis; 
Ecopath 
with 
Ecosim 

220 000 Yes; no intpp; thetao Delta Ortega 
Cisneros 
et al. 2017 
Shannon 
et al. 2020 

 1004 
 1005 
 1006 
Table 3. Summary of results. Mean percent sea surface temperature (SST) and net primary 1007 
productivity (NPP) change from 2090-2099 relative to 1990-1999 for GFDL and IPSL Earth 1008 
system models in CMIP5 and CMIP6.  1009 
 1010 
Region CMIP5 CMIP6 
 SST NPP SST NPP 
 GFDL IPSL GFDL IPSL GFDL IPSL GFDL IPSL 
Baltic Sea 53.7 100.3 -6.7 -17.1     
Cook Strait, 
New Zealand 14.8 41.9 8.5 5.1 26.9 26.3 -9.5 9.0 
East Bass 
Strait, Australia 14.4 39.6 17.8 -25.2 18.1 43.4 -8.7 23.2 
East Bering 
Sea     135.1 164.4 18.8 23.9 
Hawaii     11.9 19.4 -16.9 11.0 
Humboldt 
Current 9.0 15.5 4.4 -1.2     
Mediterranean 
Sea 13.8 26.0 23.8 -19.1     
North Sea 24.4 64.1 -6.4 -52.9     
SE Australia 12.8 24.2 3.5 -2.0     
Southern 
Benguela     11.3 12.6 3.5 18.9 
Average 20.4 44.5 6.4 -16.1 40.7 53.2 -2.5 17.2 
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 1013 
 1014 
 1015 



 

 

 1016 
 1017 
 1018 
 1019 
 1020 
 1021 
 1022 
 1023 
 1024 
 1025 
 1026 
 1027 
 1028 
 1029 
 1030 
 1031 
 1032 
 1033 
 1034 
 1035 
 1036 
 1037 
Table 4. Summary of results. Mean percent total consumer biomass change from 2090-2099 1038 
relative to 1990-1999 for regional and global models forced by GFDL and IPSL Earth system 1039 
models in CMIP5 and CMIP6. Note that SE Australia regional Atlantis model only ran 1040 
simulations until 2050 and results for SE Australia are shown for 2040-2049 relative to 1990-1041 
1999.  1042 
Region CMIP5 CMIP6 
 GFDL IPSL GFDL IPSL 
 regional global regional global regional global regional global 
Baltic Sea -38.9 -22.3 -63.0 -40.3     
Cook Strait, 
New Zealand 44.4 -5.0 12.3 -13.3 -60.0 -49.6 23.5 -25.9 
East Bass 
Strait, Australia 2.3 15.3 -8.0 -19.8 -2.9 -31.8 15.0 -27.7 
East Bering 
Sea     -68.3 -9.4 -74.0 -35.3 
Hawaii     -2.3 -36.7 -2.8 -28.7 
Humboldt 
Current 0.8 -4.7 -4.2 -25.5     
Mediterranean 
Sea 51.3 12.1 -21.4 -38.8     
North Sea -7.7 -23.5 -78.0 -63.8     
SE Australia 18.3 -4.1 6.4 -13.2     
Southern 
Benguela 
Atlantis     -21.0 -12.3 -49.1 -12.4 
Southern 
Benguela EwE     1.1 -12.3 19.7 -12.4 
Average 10.1 -4.6 -22.3 -30.7 -25.6 -28.0 -11.3 -26.0 
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Figures 1052 

 1053 
 1054 
 1055 

Figure 1. Location of FishMIP regional model domains that completed CMIP5, CMIP6, and both 1056 
CMIP5 & CMIP6 simulations. From left to right, regions are: Central North Pacific, Eastern 1057 
Bering Sea, Humboldt Current, North Sea, Mediterranean Sea, Baltic Sea, Southern Benguela, 1058 
South East Australia, East Bass Strait, and Cook Strait.  1059 
 1060 

 1061 

 1062 

 1063 
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 1065 

 1066 



 

 

 1067 

 1068 

Figure 2. CMIP5 Earth system model SST and NPP forcing variables for GFDL (red) and IPSL 1069 
(blue) by region for the RCP 8.5 scenario.   1070 

 1071 

 1072 
 1073 
 1074 
 1075 
 1076 

GFDL

IPSL

1950 1975 2000 2025 2050 2075 2100

5
7
9

11
13

10

12

14

16

12.5

15.0

17.5

23
24
25
26
27
28
29

18

20

22

7

9

11

14

16

18

20

Year

SS
T 

(ºC
)

Baltic Sea
C

ook Strait
E Bass Strait

H
um

boldt
M

editerranean
N

orth Sea
SE Australia

1950 1975 2000 2025 2050 2075 2100

7.50e−08
1.00e−07
1.25e−07
1.50e−07
1.75e−07

5e−07
6e−07
7e−07
8e−07
9e−07
1e−06

6e−07

8e−07

1e−06

5.0e−07

7.0e−07

9.0e−07

1.1e−06

1.3e−06

2e−07

4e−07

6e−07

2e−07

4e−07

6e−07

5e−07

6e−07

7e−07

8e−07

Year

N
PP

 (m
ol

 m
2  s

−1
 )



 

 

 1077 
 1078 

Figure 3. CMIP6 Earth system model SST and NPP forcing variables for GFDL (red) and IPSL 1079 
(blue) by region for the SSP5-8.5 scenario.   1080 
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 1089 
Figure 4. CMIP5 simulations for global (red) and regional (blue) models showing percent 1090 
change in total consumer biomass relative to 1990-1999 for GFDL and IPSL under no-fishing 1091 
scenarios and RCP 8.5. Shaded areas indicate standard deviation for the global model 1092 
ensemble. There is one regional model for each domain. Note that the regional model in SE 1093 
Australia only ran simulations until 2050. 1094 
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1095 
Figure 5. CMIP6 simulations for global and regional models showing percent change in total 1096 
consumer biomass relative to 1990-1999 for GFDL and IPSL under no-fishing scenarios and 1097 
SSP5-8.5. Shaded areas indicate standard deviation for the global model ensemble. The 1098 
Southern Benguela region has two regional models; the mean of the two models is shown. 1099 
Other regions have one regional model. 1100 
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 1101 
Figure 6. CMIP5 simulations for global and regional models showing percent change in total 1102 
consumer biomass relative to 1990-1999 for GFDL and IPSL under no-fishing scenarios and 1103 
RCP8.5. Note that the regional model in SE Australia only ran simulations until 2050. 1104 



 

 

 1105 
Figure 7. CMIP6 simulations for global and regional models showing percent change in total 1106 
consumer biomass relative to 1990-1999 for GFDL and IPSL under no-fishing scenarios and 1107 
RCP8.5. 1108 
 1109 



 

 

 1110 

 1111 

Figure 8. Relationship between change in total consumer biomass (delta tcb) and change in sea 1112 
surface temperature (delta SST) by model.  1113 
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 1122 

Figure 9. Relationship between change in total consumer biomass (delta tcb) and change in net 1123 
primary productivity (delta NPP) by model.  1124 
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