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Supplementary Texts 

Text S1 YOLOv5 version - data augmentation applied 

Version 1.12.0 (at least) of PyTorch and version 6.2 of YOLOv5 (at least) are required to guarantee 

reproducibility of previous tests. The training of YOLOv5 involves data augmentation techniques 

such as rotations (±45°), translations, scaling, mosaics, left-right image flipping, and HSV (Hue, 

Saturation, and Value) augmentation. 

 

Text S2 Execution speed on different processing units 

These networks were trained with an Nvidia Volta V100 GPU 32 GB. We used both a GPU and a 

more accessible and deployable work laptop for test inferences (11th Gen Intel(R) Core (TM) i7-

11850H processor). YOLOv5 can process 41.7 Images Per Second (IPS) with one GPU and 3.8 IPS 

with the CPU. These IPSs are given by the total time it takes our algorithm to process the image 

(from loading WCIs to saving the results) and are averaged over the processing of 1000 images. 

  

mailto:tymea.perret@ifremer.fr


2  

Supplementary Tables S1-S2 

Table S1: Hyperparameter values used for Haar-LBP and YOLOv5 training. The threshold is 
used to merge the bounding boxes from the Haar and Local Binary Pattern cascades in Haar LBP. 
The average position of the detection boxes was calculated (Zhao et al. 2020) to retain one 
detection box only. The hyperparameters for Haar Cascade (on the left) and LBP cascade (on the 
right) are provided. For the Haar-Local Binary Pattern, hyperparameters were optimized through 
a grid search in our datasets. Other Adaboost hyperparameters can be found in Freund et al 
(1995). In the case of YOLOv5, LR refers to the learning rate, with 0 and f representing the initial 
and final learning rates, respectively. Further details on these hyperparameters can be found in 
Jocher (2021). 
 

Dataset 
 
Hyperparameters 

GAZCOGNE1 GHASS2 Combined 
(GAZCOGNE1 
and GHASS2) 

for Haar-LBP  
Threshold 150 300 300 
Feature size 32 32 32 64 80 80 
Number of stages 50 50 30 40 50 20 
MiniHitRate 0.95 0.90 0.95 0.90 0.999 0.999 
Acceptance Ratio Break 0.00001 0.0001 0.00001 0.00001 0.00001 0.00001 
Max False Alarm Rate 0.5 0.5 0.5 0.5 0.5 0.5 

for YOLOv5  
Number of epochs Max 15 

(overfitting if more) 
Max 50 
(early stopping) 

Max 50 
(early stopping) 

Number of batches 16 16 16 
LR0 0.00683 0.00773 0.00712 
LRf 0.01094 0.01632 0.01095 
Momentum 0.94614 0.92401 0.92773 
Weight decay 0.00041 0.00051 0.00045 
Warmup epochs 2.27960 2.44700 2.06290 
Warmup momentum 0.68217 0.75565 0.77183 
Warmup bias LR 0.11924 0.13766 0.10261 
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Table S2: Details of partitioning performed on the datasets of GAZCOGNE1 (Kongsberg 
EM302) and GHASS2 (Reson 7150).  

 
Dataset 

 
 
 
Part 

Number of 
water 

column 
images 

Number of 
fluids 

manually 
pointed by 
operators 

Remarks 

GAZCOGNE1 
Part 1 

174 134 577 Shallow and medium acquisition modes. 
Fluid-related echoes in the northern transit, 
at the upper slope and at the continental shelf 
edge. Generally, few fish-related echoes with 
however abundance towards the end of 
transit. 

GAZCOGNE1 
Part 2 

77 337 581 Shallow acquisition mode. Fluid-related 
echoes at the edge of the continental shelf. 

GAZCOGNE1 
Part 3 

175 012 499 Shallow and medium acquisition modes. 
Fluid-related echoes at the edge of the 
continental shelf. 

GAZCOGNE1 
Part 4 

69 769 556 Shallow acquisition mode. Fluid-related 
echoes at the edge of the continental shelf. 

GAZCOGNE1 
Part 5 

349 370 544 Shallow acquisition mode. Fluid-related 
echoes and lots of biomass-related echoes. 

GHASS2 
Part 1 

142 568 469 Five different pulse lengths used. Presence of 
dolphins. Survey mainly at the upper slope 
and occasionally at the shelf edge. 

GHASS2 
Part 2 

83 089 472 Five different pulse lengths used. Presence of 
dolphins. Survey at the upper slope. 

GHASS2 
Part 3 

161 416 455 Eight different pulse lengths used. Presence 
of dolphins. Survey mainly at the slope 
domain. 

GHASS2 
Part 4 

24 486 463 Nine different pulse lengths used. Survey 
mainly at the slope and basin domains. 
Strong amplitude echoes on a hydrate ridge, 
and a moderate echo amplitude at a mud 
volcano. 

GHASS2 
Part 5 

220 056 456 Eight different pulse lengths used. Survey 
mainly at the slope and basin domains. 
Strong amplitude echoes on a hydrate ridge. 



4  

Supplementary Figures 

Figure S1 

 
(A) 
 
 
 
 
 
 
 
(B) 
 
 
 
 
 
(C) 
 
 
 

Figure S1 Example of box formations (inference) on a water column image with a fluid-related 

echo through three successive steps. (A) Anchor box propositions (one color for each x) at 

different scales and aspect ratios over the image grid cells, (B) YOLOv5 prediction of a 

confidence score with a probability that it contains an object and class probabilities for each 

anchor box. (C) Bounding box selection with the highest confidence score (0.9 in this case) for 

each detected object using Non-Maximum Suppression algorithm. 
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Figure S2 

(A) 

 
(B) 

 
(C) 
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(D) 

 
 

Figure S2  Examples of labels generated through inference performed by YOLOv5 in Reson 

Seabat 7150 multibeam echograms (GHASS2) initially detected by the model as fluids (on 

Experiments #1-3) and subsequently labelled as artefacts (Experiment #4).  (A) Data loss during 

Sonarscope preprocessing, (B) Multiple seafloor echoes recorded by the sidelobes of the Reson 

Seabat 7150 receiving antenna, (C) Echoes resembling those caused by the presence of fluids but 

due to the sidelobes of the receiving antenna and linked to the seafloor echo. These sidelobes are 

higher than in the initially planned directivity. The defective sensors were verified at Ifremer by 

measuring the impedance of the transducers (D) Increased intensity over a full beam (sounder 

artefact, temporary malfunctioning of a transducer). 

  



7  

Figure S3 

 
Figure S3  Example of a detection generated by YOLOv5 on Reson Seabat 7150 echograms, 

showing a fluid shape affected by bottom currents yet successfully detected. The model was 

trained using the basic GHASS2 training set, consisting exclusively of manually annotated fluid 

feet (Table 1), serving as the foundation for strategies #1–4.
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Supplementary Videos S1-S5 

To illustrate the performance of our model developed for fluid detection, we provide five videos 

of pings from two marine expeditions, GAZCOGNE1 and GHASS2. Results from the “basic 

training set” and the “enhanced training set” are displayed. The basic training set is composed 

solely of manually picked fluid feet (Table 1) and constitutes the starting point for strategies #1-

4. The “enhanced training sets” result from combining the best YOLOv5 performance for each 

strategy (#2-5) (Table 6) with regard to the number of added WCIs with fluid, the percentage of 

added WCIs without fluid, and the percentage of added WCIs with acoustic and environmental 

artefacts. These “enhanced training sets” correspond to strategy #6 (first two columns in Table 

7). Videos are available in MOV format at one frame per second for S1-3 and 0.6 frame per second 

for S4 and S5. 

Video S1. GAZCOGNE1 data (basic training set only) 

• Video S1 with 100 pings from GAZCOGNE1. This video displays polar echograms with 

many of the fluid-related echoes mainly located within the MSR (Minimum Slant Range). 

The basic training set model is already sensitive to fluids and confident in its detection 

score. 

Video S2. GAZCOGNE1 data 

• Video S2 with 60 pings from GAZCOGNE1. This video displays polar echograms with 

no fluid-related echoes. Beyond the MSR, the data become noisy. There are relatively few 

false positives detected with the basic training set and none with the enhanced training set. 
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Video S3. GHASS2 data (basic training set only) 

• Video S3 with 100 pings from GHASS2. This video contains polar echograms with fluid-

related echoes and some dolphin echolocation signals (Fig. 2E). The basic training set 

performs well on fluid detection without being impacted by echolocations. 

Videos S4-S5. GHASS2 data 

• Video S4 with 75 pings from GHASS2. This video displays polar echograms with fluid-

related echoes. Both models (with basic and enhanced training sets) correctly detect fluid-

related echoes that are located under the secondary lobes. The second model gives better 

detections with greater confidence on average. There are no errors on the acoustic artefacts 

in the nadir beams compared to the model trained with the initial configuration. 

• Video S5 with 80 pings from GHASS2. This video displays polar echograms with no 

fluid-related echoes but with many typical echolocation signals, strong acoustic artefacts 

in the nadir beams and erroneous sea-bottom detections. The second model shows a 

superior ability to correctly not detect acoustic artefacts compared to the model trained 

with the initial configuration training set. 
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