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Abstract
Mesoscale eddies are prevalent in the global oceans and are known to influence oceanic and
atmospheric conditions. This study aims to assess how the impact of mesoscale eddies on air–sea
CO2 fluxes varies throughout their lifecycle. We compared six machine learning models, including
light gradient boosting machine, support vector machine, and XGBoost models, to construct an
FCO2 evaluation model. Among these, the XGBoost model performed the best, with model
validation yielding the coefficient of determination (R2) value of 0.9046 and a root mean square
error of 1.4165 mmol m–2 d–1, successfully assessing the air–sea CO2 fluxes in the South Atlantic.
Analysing eddies with a lifespan exceeding 300 d during the period from 1995 to 2020, we
identified two distinct peaks in the influence of eddies on air–sea CO2 fluxes during their life cycle:
the first peak occurs approximately between the second and fifth deciles of the life cycle, during
which the eddies have a broader impact range but weaker influence; the second peak emerges
between the seventh and ninth deciles, exhibiting a narrower impact range but significantly
stronger influence. These findings provide crucial quantitative evidence for understanding the
marine carbon sequestration mechanism and reveal the complexity and dynamic nature of
mesoscale eddies’ impact on air–sea CO2 fluxes.

1. Introduction

As one of the most significant carbon reservoirs
on Earth, the ocean constantly engages in a CO2

exchange with the atmosphere through the air–sea
interface [1]. According to a 2019 assessment by the
Global Carbon Project, oceans absorb an average
of 2.5 ± 0.6 PgC − 1 annually, playing a pivotal
role in mitigating the effects of climate change [2].
With the rise of global carbon cycle research, schol-
ars have gradually deepened their understanding of
the exchange mechanisms between the atmosphere
and the ocean, quantifying the process throughwhich
atmospheric CO2 enters the ocean via both phys-
ical and biological pathways. The air–sea carbon
dioxide flux (FCO2) serves as a proxy for this CO2

exchange process, directly influencing variations in
atmospheric CO2 concentration and thereby exert-
ing significant impacts on global climate patterns
and ocean acidification. In recent years, an increasing

number of studies have suggested that mesoscale
eddies may significantly influence variations in FCO2

[3–6].
Mesoscale eddies, ubiquitous dynamic structures

within the ocean, exhibit spatial scales spanning from
tens to hundreds of kilometres and persist for dur-
ations ranging from weeks to years [7, 8]. They can
rapidly alter the ocean’s surface environment and reg-
ulate the air–sea exchange of CO2 by impacting the
partial pressure ofCO2 and the overlying atmospheric
conditions. Mesoscale eddies induce anomalies in sea
surface temperature (SST) and sea surface salinity
(SSS) [9], which directly affect the solubility of CO2

in seawater, thereby regulating the air–sea exchange
of CO2. The vertical transport driven by these eddies
significantly impacts the transport and distribution
of marine nutrients and dissolved organic carbon
[10], which can, in turn, affect the productivity
of surface phytoplankton [11, 12]. Surface chloro-
phyll (CHL) concentration, a direct indicator of the
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photosynthetic biomass in the upper ocean layer [13],
is closely linked to phytoplankton productivity and
is significantly influenced by mesoscale eddies [14].
Additionally, through interactions between the ocean
and the atmosphere, eddies can locally alter sea sur-
face wind speeds, thereby enhancing gas exchange
rates and influence FCO2 [15]. Considering these
factors, this study selects SST, SSS, wind speed, and
CHL as key parameters and employs machine learn-
ing models to build FCO2 assessment models.

Throughout the life cycle of an eddy, its energy
generally progresses through stages of formation,
growth, and decline [16]. Currently, there is scant
research on the differential influence of eddies on
FCO2 at different stages of their life cycle, and it is still
uncertain whether these variations align with changes
in eddy energy. Understanding the patterns of influ-
ence that eddies have on FCO2 throughout their life
cycle is crucial for air–sea carbon exchange and the
oceanic carbon cycle.

The aim of this study is to uncover the patterns of
influence that individual eddy has on FCO2 through-
out their life cycle. According to statistics, the aver-
age monthly displacement of long-lived cycle eddies
in the South Atlantic Ocean is approximately 106 km,
with eddy radius of about 68 km.Monthly data, which
are commonly employed in research, tend to spa-
tially broaden the impact of eddies andweaken poten-
tial characteristics simultaneously, thereby hindering
the investigation into the influence of different stages
of an eddy’s life cycle on FCO2. Based on this, our
study integrates SOCAT underway data, remote sens-
ing data, and introduces machine learning to build
an FCO2 estimation model, enabling the acquisition
of FCO2 data with high spatiotemporal resolution.
Through the analysis of typical eddy events, we aim
to reveal the patterns of influence that eddies have on
FCO2 at different developmental stages.

2. Materials andmethods

The region spanning from 20◦S to 60◦S latitude and
35◦W to 10◦E longitude has been selected for this
study. Located in the Southern Atlantic Ocean, this
region is a hotspot for global carbon sink research,
attracting the attention of numerous scholars who
have conducted studies on carbon sinks in this area
[3, 17, 18]. The area is primarily situated in deep-sea
environments, where the generation and dissipation
of eddies are not constrained by topographic features.

2.1. Remote sensing data
In this study, we utilised SST and SSS data
obtained from the Copernicus Marine Service
(CMEMS) GLOBAL_MULTIYEAR_PHY_001_030
product. CHL data were acquired from the CMEMS
global ocean colour product, specifically the

OCEANCOLOUR_GLO_BGC_L4_MY_009_104
dataset. These datasets have a temporal resolu-
tion of days and a spatial resolution of 0.083◦.
Additionally, wind speed data were derived from the
cross-calibrated Multi-platform (CCMP) product
of the remote sensing system, which provides daily
wind speed as well as monthly average wind speed at
10 meters above sea level, with a spatial resolution of
0.25◦× 0.25◦.

The eddy data used in this study came from
META3.1exp, a mesoscale eddy trajectory atlas
product of satellite altimetry AVISO. Based on the
absolute dynamic terrain data of the ocean, this
product employs the Py Eddy Tracker algorithm
and contour overlap to identify and track eddies.
It includes information on eddy position, time, velo-
city and effective radius, amplitude, and associated
profile and trajectories.

2.2. SOCAT observational data
Themeasured FCO2 data for this studywere provided
in the form of Carbon dioxide fugacity (fCO2) by
the Surface Ocean CO2 Atlas (SOCAT, version 2021),
which also included a series of concurrent observa-
tional data such as SST, equilibrium temperature, SSS,
and sea surface pressure; Supplementary variables
were derived from interpolated global datasets. The
SOCAT database [19] is the largest and most widely
used database for fCO2.

For this study, SOCAT observation data were
selected from cruises flagged A-D and World Ocean
Circulation Experiment cruises flagged 2, covering a
total of 430 733 observations within the study region
from 1995 to 2020.

2.3. Flux calculation
FCO2 (mmol m–2 d–1) can be calculated from

FCO2 = kK0 (pCO2sea − pCO2air) . (1)

Where k is the gas transfer velocity (cm h–1), K0 is
the solubility of CO2 gas in seawater (mol kg–1 atm–1).
By dividing the fCO2 provided by the SOCAT data-
base by 0.996, pCO2sea is obtained [20, 21]. Use the
following formula to calculate pCO2air[22]:

pCO2air = xCO2 ×
(
SLP− pH2O

air
)
. (2)

In equation (2), sea surface CO2 molar fraction
(xCO2) and sea level pressure are all derived from
SOCAT observation data, and the saturated vapour
pressure of water (pH2O

air) is calculated by the fol-
lowing formula [23]:

pH2O
air =

exp
(
34.494− 4924.99

t+237.1

)
(t+ 105)1.57

(t> 0◦C) (3)
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pH2O
air =

exp
(
43.494− 6545.8

t+278

)
(t+ 868)2

(t≤ 0◦C) . (4)

In the calculation of formulas (3) and (4), in order
to avoid the accuracy of data products affecting the
calculation of FCO2, the temperature data is selected
from the route record data. This paper uses the fol-
lowing formula to calculate k [24]:

k= 0.251U2
10

(
Sc

660

)−0.5

. (5)

The K0 is determined according to equation (6)
[25]:

InK0 = A1 +A2 (100/T)+A3In(T/100)

+ S
[
B1 +B2 (T/100)+B3(T/100)

2
]

(6)

A1 = −58.0931, A2 = 90.5069, A3 = 22.2940,
B1 = 0.027 766, B2 =− 0.025 888, B3 =0.005 0578. T
is SST and S is SSS. SST and SSS data were obtained
from SOCAT observation data. U10 is the monthly
average wind speed at 10 m above sea level, and Sc
is the Schmidt number of surface water at field tem-
perature. For FCO2, a positive value means that CO2

is released into the atmosphere, and a negative value
means that the ocean absorbs CO2.

2.4. Machine learning model selection
Machine learning models possess superior capabilit-
ies in capturing geological variable characteristics and
addressing nonlinear issues, enabling the extraction
of valuable information from vast datasets, thereby
enhancing the accuracy and efficiency of analysis.
Numerous scholars have introduced machine learn-
ing models into studies on FCO2, addressing issues
of data scarcity and insufficient accuracy to a cer-
tain extent [4, 22, 26, 27]. Different machine learning
models possess distinct algorithmic structures and
learning mechanisms, and comparing multiple mod-
els can help identify the optimal one for this study.
XGBoost is a gradient boosting algorithm that takes
into account more gradient enhancement informa-
tion from the training dataset, featuring high effi-
ciency and flexibility [28–31], along with a cap-
ability to resist overfitting. The XGBoost model
approximates the objective function by employ-
ing a second-order Taylor expansion of the loss
function. LightGBM is also a fast, well-distributed,
high-performance machine learning framework, but
it employs a ‘histogram’ algorithm to accelerate
training [32]. Furthermore, deep learning, through
its multi-layer structure, automatically learns fea-
tures suitable for handling complex data, while neural
network algorithms effectively process nonlinear rela-
tionships and fit complex functions. Both of these

approaches have been applied in multiple studies on
FCO2 reconstruction [33, 34].

Therefore, this study selects six machine learning
methods for comparative analysis: LightGBM, sup-
port vectormachines (SVM),XGBoost, backpropaga-
tion neural networks, deep learning, and convolu-
tional neural networks (CNN), for comparative ana-
lysis to select the optimal model.

2.5. Model evaluation
This study utilised SOCAT observation data from
1995 to 2020, encompassing over 430 000 data points
from the South Atlantic Ocean, to train a model
for estimating FCO2. The in-situmeasurements were
matched with remote sensing data based on temporal
and spatial information. To ensure randomness in the
data, the order was shuffled, as the original sequence
of cruise-based observations exhibited high spatial
clustering.

The data were divided into two sets: 85% for
model training and 15% for validation. Six differ-
ent machine learning approaches were employed to
establish the nonlinear relationship between FCO2

and factors such as SST, SSS, wind speed, and CHL
concentration. Based on the training results, the
optimal model was selected.

The model evaluation was based on three statist-
ical measures: the coefficient of determination (R2),
root mean square error (RMSE), and mean absolute
percentage error (MAPE) as follows:

R2 =

[
1

N

N∑
i=1

(
Xi −X

σX

)(
Yi −Y

σY

)]2

(7)

RMSE=

√∑N
i=1(Xi −Yi)

2

N
(8)

MAPE=

∑N
i=1

∣∣∣Yi−Xi
Yi

∣∣∣
N

× 100% (9)

where, Xi, Yi and N are respectively the predicted
value, measured value and sample number of the
model. X and Y are the mean values of the predicted
and measured values, respectively. σX and σY are the
standard deviations of Xi and Yi, respectively. The
model training results are as follows (see table 1).
Based on the training results, the XGBoost model has
the best effect. In this paper, the XGBoost model is
selected as the evaluation model for FCO2 construc-
tion.

Themodel inversion results were verified, and the
in-situ data and FCO2 values predicted by XGBoost
model were plotted as scatter density plots. R2, RMSE
and MAPE were selected as evaluation indexes. The
verification results are shown in figure 1.
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Table 1. Results of model training.

Case R2

RMSE
(mmol m–2

d–1) MAPE

XGBoost 0.8950 1.6048 171.7056
LightGBM 0.8134 2.1541 2877.0142
Deep learning 0.8116 2.1664 2243.4773
BP neural network 0.7581 2.4523 2568.9396
SVM 0.6279 3.0447 2505.9663
CNN 0.6740 2.8524 3.1963

Figure 1. Verifies the set density scatter plot. The number of
samples is 60 760, and the red line is the fitting line between
the verification set and the prediction set.

3. Result

3.1. Variations in the influence of oceanic eddies on
FCO2 throughout their life cycle
By tracking the entire life cycle of the eddy, we have
analysed the evolving patterns of its influence on
FCO2 from genesis to dissipation. Figure 2 illustrates
the FCO2 profile throughout the eddy’s life cycle, with
the eddy’s effective area outlined by red dots. This
eddy emerged in early January 2011 and dissipated
by the end of October. Sampling monthly through-
out its life cycle, we have observed the varying effects
it had on FCO2. In the initial and intermediate stages,
represented by figures 2(a), (e), and (f), there were
no noticeable differences between the eddy’s effect-
ive area and its surrounding regions. However, in
figures 2(b) and (c), a slight difference became appar-
ent, with the eddy region exhibiting lower air–sea flux
values compared to its surroundings. Figures 2(g) and
(h) showdistinct low-value points of FCO2 within the
effective regions of the eddies.

By comparing the FCO2 values between scenarios
with and without eddies present at the same location,
we can further confirm that eddies have an impact on
FCO2. Additionally, taking into account the seasonal
variations of FCO2 and the potential delayed impacts
that eddies could induce, we focused on a typical eddy
that spent its entire life cycle in 2011. We preserved

its location and retrieved FCO2 data for the corres-
ponding month in 2010 (see figure 3). Upon further
observation, we found that when no eddy is present,
no discernible pattern could be identified.

A random sample of 18 long-lived cycle eddies in
South Atlantic was selected, and measures were taken
to eliminate the confounding effects of seasonal vari-
ations on FCO2 data. The FCO2 data underwent a
rigorous processing protocol. First, we computed the
mean FCO2 values within a region extending to three
times the eddy’s radius, centred precisely on the eddy.
Next, we subtracted the mean FCO2 values within a
region defined by the eddy’s radius itself from this
value. A positive difference indicates that the FCO2

concentration in the eddy region is relatively low,
suggesting a stronger CO2 sink. Conversely, a negat-
ive difference indicates the opposite effect. The study
revealed that eddies had two peak impacts on FCO2

throughout their entire life cycle (see figure 4). The
first peak impact occurred between the second and
fifth deciles of the life cycle, while the second peakwas
observed between the seventh and ninth deciles.

The analysis of the eddy’s influence on FCO2 dur-
ing its peak periods, as shown in figures 5(a)–(d),
revealed distinct characteristics based on the eddy’s
radius. During the first peak period (figures 5(a) and
(b)), the eddy exhibited a large spatial extent, a rel-
atively uniform effect, and a moderate impact. The
effective influence boundary significantly exceeded
the eddy’s geometric radius, indicating a broader
influence range compared to the second peak period.
However, as the eddy progressed to the second
peak period in figure 5(d), its impact on the FCO2

became narrower in scope but significantly more
potent.

3.2. Calculation of CO2 sinks caused by eddy
To determine the CO2 sink within the eddy region,
we defined a circular area centred on the eddy’s
coordinates with a radius equal to the eddy’s radius
and calculated the CO2 sink for this area. The stud-
ied eddy emerged in early 2011 and disappeared in
late October 2011, with a life cycle exceeding 300 d.
FCO2 data were calculated for 20 periods, each 15 d
long, and comparable data for 2010 were processed
to obtain the mass of CO2 absorbed by the ocean in
kilograms.

The calculations exhibited a strong dependency
on the radius, causing the calculated results to fluctu-
ate significantly due to this influence (see figure 6). By
comparing the data from the same location at differ-
ent times, it was observed that the peak difference in
the amount of carbon absorbed in the region with an
eddy occurs in the secondpeak region. In contrast, the
first peak displayed a comparatively subdued effect.
It was estimated that when the typical eddy existed,
the eddy region absorbs about 66 061 tonnes over its
entire life cycle, which is approximately four times
more than during the non-eddy period.

4



Environ. Res. Lett. 20 (2025) 034033 X Liu et al

Figure 2. Full-cycle FCO2 diagram of a typical eddy. The region surrounded by the red dot is the effective region of the eddy. Take
figure (a) as an example, which is based on FCO2 inversion data and eddy data on 5 January 2011, and can reflect the FCO2 and
eddy conditions of the day.

Figure 3. FCO2 at the same position one year before a typical eddy. The area enclosed by red dots is the effective region of the
eddy. As an example, similar to figure (a), this figure is based on the FCO2 inversion data of 5 January 2010, and the eddy data of 5
January 2011, reflecting the FCO2 conditions prior to the eddy’s formation.

4. Discussion

From formation to dissipation, mesoscale eddies are
in a state of constant development and movement,
suggesting that their influence may exhibit corres-
ponding fluctuations. To reveal the patterns of how
eddies affect FCO2 throughout their lifecycle, this
paper has integrated field measurements with remote
sensing data and employed machine learning to con-
struct an FCO2 assessment model. By monitoring the

life paths of eddies, we assessed their influence on
FCO2 throughout their developmental stages.

Previous studies have generally categorized
changes in eddy energy into three periods: the form-
ation period, the peak period, and the dissipation
period [16, 35]. The results of this study indicate a
distinction between the variation in the impact of
eddies on FCO2 and the change in eddy energy, as
shown in figure 2. In the early stages of eddy forma-
tion, its influence on FCO2 continuously strengthens,

5
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Figure 4. Variation curve of eddy influence with life cycle.
The four long-lived cycle eddies are normalized, and the
X-axis represents each stage of the life of the eddies. The
Y-axis represents the difference between the eddy and the
mean FCO2 value of the surrounding environment,
i.e. eliminating the effect of changes in the background
field. The life cycle of the eddy is divided into five stages by
four dotted lines. The second and fourth stages are the first
and second peak stages of the eddy influence respectively.

Figure 5. Radius characteristics of eddy influence during
peak period. (a), (b) and (c) are in the first peak period,
and (d) are in the second peak period. The area surrounded
by red dots is the active area of the eddy, and the blue circle
represents the radius circle of the eddy.

reaching the first peak value. Subsequently, its impact
decays and then strengthens again, reaching a second
peak before decaying until the eddy dissipates. This
pattern is more evident in figure 4. The significant
impact of eddies on FCO2, characterized by two dis-
tinct peaks, is likely due to the multifaceted and com-
plex interactions between marine physical processes
and biological activities influenced by the eddies.

From the formation to the peak period of the
eddy, the energy gradually increases, leading to the
first peak value. At peak development, anticyclonic
eddies drive downward vertical transport, depleting
surface nutrients and diminishing biological activity.
Simultaneously, the elevation of SST reduces the sol-
ubility of CO2, and these combined effects lead to
a reduction in the eddy’s impact on FCO2. During
the maturity phase, as eddy wind speeds intensify,
they augment the turbulence at the air–sea interface

[36]. The modulation of the biological pump leads
to a renewed increase in the concentration of sur-
face nutrients, triggering the second peak in the
eddy’s influence on FCO2. Cyclone eddies transport
nutrients from the deep layers to the euphotic zone,
promoting phytoplankton growth and enhancing
the ocean’s biological pump function [37]. Negative
anomalies in SST and SSS increase CO2 solubility,
potentially leading to the first peak in the eddy’s influ-
ence on FCO2. The progression of cyclonic eddies
can cause an abnormal increase in sea surface DIC,
affecting sea surface carbon dioxide (pCO2) [38].
Concurrently, a decrease in wind speed at the centre
of cyclonic eddies is observed [36]. The combined
effect of these factors may reduce the eddy’s influence
on FCO2. Nutrients are continuously replenished to
the surface through upwelling, and enhancing bio-
logical activity leads to the emergence of the second
peak in FCO2 influence. As mesoscale eddies enter
their dissipation period, their energy wanes, and with
it, the influence they exert on FCO2 diminishes from
a secondary peak to eventual dissipation. Throughout
this decay, the eddy’s radius, depth, amplitude, and
kinetic energy undergo alterations, which in turn
modulate its capacity to affect FCO2.

Zhang et al [39] have revealed that mesoscale
eddies, which are generated by various instabilities,
form nuclearized coherent structures and approach
the minimum-energy state through geostrophic
adjustment. Structurally, eddies acquire energy under
various instabilities, enhancing or maintaining their
current state during their temporal evolution. This
energy dynamics was reflected in our findings where,
during the first peak period, the eddy’s intensi-
fied state manifests as a broader influence on the
sea surface, as indicated by the effective influence
boundary significantly exceeding its geometric radius
(figures 5(a) and (b)). As the eddy progresses, the
balance between energy dissipation and absorption
shifts, potentially leading to a contraction of its influ-
ence to maintain stability, which is evident in the
second peak period where the influence range nar-
rows and becomes more potent (figure 5(d)).

Considering the influence of eddies, as the eddy
transitions from its formation to its peak phase, the
broader influence range during the first peak leads to
a widespread increase in primary productivity, res-
ulting in a uniform distribution of the eddy’s impact
across its domain. However, as eddy currents con-
centrate the effects around its core, the distribution
of FCO2 values within the eddy’s radius becomes
uneven, especially under specific environmental con-
ditions or variations in nutrient availability. This bio-
logical activity in certain areas may exceed that in
others, leading to distinct dominant regions observed
during the second peak period.

6
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Figure 6. Calculation of typical eddy CO2 sinks. The X-axis represents the stages of the life cycle, which are divided into 20 phases.
The Y-axis is the C mass absorbed by the eddy region of each phase, in kg. The blue line is a typical eddy that arose in early
January 2011 and died out in late October 2011, and the C mass absorbed by the eddy region in each period. The pink line
represents the C mass absorbed by the same region in the same month the year before the eddy. The dashed grey line represents
the radius of the eddy in m.

Long-lived eddies, characterized by their exten-
ded duration and broad impact, have a more sig-
nificant effect on ocean FCO2 compared to short-
lived eddies. Therefore, this study specifically focuses
on long-lived eddies to explore their impact pat-
terns on FCO2, and it remains to be explored
whether the influence patterns of short-lived eddies
align with those of their longer-lived counterparts.
Furthermore, previous studies have confirmed the
spatial heterogeneity of eddies’ impact on FCO2. For
instance, Kim et al [6] found that the entire study area
in the northern Philippines acted as a CO2 source,
while Orselli et al [3] indicated that mesoscale eddies
enhance the CO2 sink effect in the South Atlantic
Ocean. The contrasting results from different oceanic
regions demonstrate this point. However, our study
solely focuses on the influence of long-lived eddy in
the South Atlantic Ocean on FCO2, and whether this
pattern generalises to other regions remains to be
verified.

This study estimated the CO2 sink in the same
region across different years, analysing the impact
of eddies by comparing period with and without
their presence. The calculations, which are inher-
ently linked to the eddy radius, show that the CO2

sink is consistently greater in the presence of an eddy
(figure 6). The peak difference occurs in the late eddy
period, specifically during the second peak interval
shown in figure 4, while the valley of this difference
appears in the middle of the eddy period, consistent
with previous results. It was calculated that the typ-
ical eddy absorbed 66 062 tonnes of carbon during
its lifetime. When compared to the cumulative FCO2

estimations by Ford et al [4], our results are consistent
after adjusting for eddy lifespan, thereby further val-
idating the findings of this study. In the presence of
the typical eddy, the influence region absorbed about

four times more carbon than during the non-eddy
period. According to statistics, within the study area
alone, from 1995 to 2020, there were 390 cyclonic
eddies and 522 anticyclonic eddies with a lifespan
exceeding 300 d, averaging approximately 36 long-
lived cycle eddies per year. As a common oceanic phe-
nomenon, the impact of eddies on FCO2 should not
be overlooked.

5. Conclusion

This study proposes a novel method to evaluate the
impact of long-lived cycle mesoscale eddies on FCO2

in the South Atlantic Ocean. Based on remote sens-
ing data, measured data and eddy data, an FCO2

evaluation model was constructed using XGBoost to
analyse the influence of eddies on FCO2 through-
out their life cycle. The results indicate that for long-
lived cycle eddies, their influence on FCO2 varies
with eddy age. Compared to the surrounding envir-
onment, there are two peak periods: one spanning
from the second to the fifth decile and another from
the seventh to the ninth decile of the eddy’s life cycle.
Estimations of CO2 sinks in the same location with
and without eddies reveal that regions with eddies
absorb more carbon. The typical eddy examined in
this study absorbed approximately 66 061.192 tonnes
of carbon in its effective area during its entire life
cycle, which is approximately four times more than
during non-eddy period. Therefore, long-lived cycle
eddies significantly enhance theCO2 sink in the South
Atlantic Ocean. The findings of this study are signific-
ant for the refined assessment of oceanic carbon sinks.
It is worth noting that this study focuses on long-lived
cycle eddies in the South Atlantic Ocean and does
not confirm whether the results apply to short-lived
eddies or eddies in other oceanic regions.
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