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Abstract Monthly global sea‐air CO2 flux maps are created on a 1° by 1° grid from surface water fugacity
of CO2 (fCO2w) observations using an extremely randomized trees (ET) machine learning technique (AOML‐
ET) over the period 1998–2020. Global patterns and magnitudes of fCO2w from AOML‐ET are consistent with
other machine learning methods and with the updated climatology of Takahashi et al. (2009, https://doi.org/10.
1016/j.dsr2.2008.12.009). However, the magnitude and trends of sea‐air CO2 fluxes are sensitive to the
treatment of atmospheric forcing. In the default configuration of AOML‐ET, the average global sea‐air CO2 flux
is − 1.70 PgC yr− 1 with a negative trend of − 0.89 ± 0.19 PgC yr− 1 decade− 1. The large negative trend is driven
by a small uptake at the beginning of the record. This leads to increasing sea‐air fCO2 gradients over time,
particularly at high latitudes. However, changing the target variable in AOML‐ET from fCO2w to sea‐air CO2
fugacity difference, ∆fCO2, results in a lower negative trend of − 0.51 PgC yr

− 1 decade− 1, though the average
flux remains similar at − 1.65 PgC yr− 1. This trend is close to the consensus trend of ocean uptake frommachine
learning and models in the Global Carbon Budget of − 0.46± 0.11 PgC yr− 1 decade− 1 switching to a gas transfer
parameterization with weaker wind speed dependence reduces uptake by 60% but does not affect the trend.
Substituting a spatially resolved marine air CO2 mole fraction product for the zonally invariant marine boundary
layer CO2 product yields greater influx by up to 20% in the industrialized continental outflow regions.

Plain Language Summary Machine learning approaches are increasingly applied to create global
monthly surface ocean fugacity of carbon dioxide (fCO2w) fields and are used in global carbon budget
assessments. Here we use an extremely randomized tree machine learning approach (AOML‐ET) to map fCO2w
and calculate monthly global sea‐air CO2 fluxes from 1998 to 2020. The patterns and magnitude of monthly
mapped fCO2w fields on a 1° by 1° grid are very similar to other machine learning methods and also to the
canonical climatology of Takahashi et al. (2009, https://doi.org/10.1016/j.dsr2.2008.12.009). However, the
global CO2 uptake trend using AOML‐ET in its default configuration is much larger, at − 0.89 ± 0.19 PgC
yr− 1 decade− 1, compared to − 0.46 ± 0.11 PgC yr− 1 decade− 1 for the consensus value of the Global Carbon
Budget from 1998 to 2020. We investigate the sensitivity to changing predictors and target variables, which
shows that substituting predictors has little effect. However, by changing the target in the machine learning step
of AOML‐ET from fCO2w to sea‐air CO2 fugacity difference, ∆fCO2, the trend changes to − 0.51 PgC
yr− 1 decade− 1. Changing the atmospheric forcing using different marine CO2 boundary layer products or gas
exchange parameterizations has a large impact on sea‐air CO2 fluxes. A parameterization that meets the same
global constraint as other functionalities but with a lower dependency on wind speed decreases ocean CO2
uptake by up to 60% but does not impact the trend in uptake over the time period.

1. Introduction
Sea‐air CO2 fluxes are the primary conduit for the transfer and subsequent storage of anthropogenic CO2 in the
ocean. This leads to increased surface water CO2 concentrations, which contribute to surface ocean acidification
(Doney et al., 2020; Iida et al., 2021). Quantifying the fluxes is critical for the Global Stocktake, which reviews
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progress toward the Paris Agreement goals every 5 years (Magnan et al., 2016). The fluxes can also be used to
determine how the oceanic sink changes on seasonal to decadal timescales. Several assessments of the global
ocean CO2 sink are available. Annual updates on anthropogenic CO2 uptake by the oceans are provided in the
Global Carbon Budget (GCB) (Friedlingstein et al., 2023), while pentadal updates of both anthropogenic and net
CO₂ uptake are available through the Regional Carbon Cycle Assessment and Processes (RECCAP). Both these
assessments use a variety of approaches to determine the ocean carbon sink. The RECCAP2 analysis yields a sea‐
air CO2 flux of − 1.6 ± 0.2 PgC yr

− 1 based on an ensemble of 11 observation‐based machine learning (ML) and
regression approaches for sea surface pCO2 from 1985 to 2018 (de Vries et al., 2023). The GCB‐2023 consensus
value based on models and observations produces a value of − 1.85 ± 0.32 PgC yr− 1 and a trend of − 0.46 ± 0.11
PgC yr− 1 decade− 1 from 1998 to 2020, calculated from data in https://globalcarbonbudgetdata.org/latest‐data.
html [Global_Carbon_Budget_2022v1.0.xlsx]. The annual global ocean CO2 uptake with time is shown in
Figure 1 for eight of the approaches. There is overall concordance in global magnitude and variability across the
different approaches, but they show a range of decadal trends and notable regional differences. The observation‐
based estimates used the same database of monthly gridded surface water fugacity (fCO2w) values from SOCAT
(Bakker et al., 2016), along with similar atmospheric forcing for CO2 values in air and gas transfer velocities. This
creates a skewed perspective of agreement between the different estimates of sea‐air CO2 fluxes, as only dif-
ferences in the mapping of fCO2w fields using machine learning or interpolation methods are considered.

Early synthesis efforts to determine global and regional CO2 flux patterns focused on creating a fixed monthly
climatology through extrapolation of surface partial pressure of CO2 (pCO2w) data (Fay et al., 2024; Takahashi
et al., 1997, 2009). The climatology used much of the available pCO2 data at the time, normalized to a specific
year, and presented per month on a 4° by 5° grid. Interannual variability was estimated using this product by
determining correlations between SST and pCO2w at the grid scale (Lee et al., 1998; Park et al., 2010). Here, we
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Figure 1. Global annual net sea‐air CO2 fluxes from 1998 to 2020 determined by a variety of ML and regression approaches.
Data, other than AOML‐ET and Tak‐2010 (x1.15), where x1.15 indicates it is multiplied by 1.15 to normalize for area, are
estimates of anthropogenic CO2 uptake from https://globalcarbonbudgetdata.org/latest‐data.html
[Global_Carbon_Budget_2022v1.0.xlsx]. For these results, 0.65 PgC is added onto the anthropogenic CO2 fluxes from the
GCP to obtain the net sea‐air CO2 flux. For references to the methods, see the caption of Table 1.
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use the appropriate parameter for thermodynamic forcing of fCO2 rather than pCO2, as fCO2 accounts for the non‐
ideality of CO2 gas. In the discussion of the updated Takahashi climatology, Tak‐2010, we retain the use of
pCO2w. Numerically, fCO2 = 0.997 pCO2 at ambient pressure from 4°C to 25°C. Thus, the sea‐air fCO2 dif-
ference,∆fCO2, is essentially numerically the same as∆pCO2, such that the results expressed either as∆fCO2 or
∆pCO2 can be directly compared. However, determining the sea‐air CO2 flux using fCO2w and pCO2a or with
pCO2w and fCO2a will lead to biases in the global sea‐air fCO2 fluxes of − 0.2 PgC yr− 1 or 0.2 PgC yr− 1,
respectively.

In the Takahashi pCO2 climatology, empty cells were filled through interpolation to their neighbors, aided by a
modeled surface ocean advection scheme (Bryan & Lewis, 1979). This climatology is extensively used as input or
for verification in the different sea‐air CO2 flux products and models. It is chosen here for comparison because it
differs from machine learning (ML) and regression schemes in that the pCO2w observations are interpolated in
time and space. This contrasts with the ML and linear regression approaches that use predictor variables to map
the surface water fugacity of CO2, fCO2w, fields (Rödenbeck et al., 2015). The ML approaches take advantage of
the increased number of fCO2w observations, along with robust fields of predictor variables, to develop time‐
resolved methods. The fCO2w maps are created based on a set of predictors, nominally at monthly 1° by 1°
resolution (Gregor et al., 2019; Rödenbeck et al., 2015). These scales are in the order of the autocorrelation scales
of fCO2w (Li et al., 2005).

The creation of time‐resolved sea‐air CO2 flux densities has focused on approaches to map fCO2w along with
subsequent comparisons and syntheses of the methods (Fay et al., 2021; Gregor et al., 2019; Landschützer
et al., 2013; Stamell et al., 2020; Telszewski et al., 2009; Zeng et al., 2014). The RECCAP2 analyses include the
output of eleven such approaches with consistent protocols for nomenclature and analysis. The recommended
time range for the RECCAP2 surface water analysis spans years from 1985 to 2018. The extremely randomized
trees (ET) method described here (AOML‐ETv2020) that is used in RECCAP2 covers the period from January
1998 through December 2018. An updated version, AOML‐ET‐v2023, adds 4 years to the time series, but the
results are similar to the AOML‐ETv2020 except from 2018 onward. The later start date than the RECCAP2
default of 1985 is chosen because of both the sparsity of fCO2w data and the lower quality and coverage of
predictor variables until the late 90s. Most notably, remotely sensed chlorophyll estimates did not become
available from a common source till the end of 1997. The inconsistent predictor variables and lower resolution
prior to 1998 likely contribute to the reduced variability in fCO2w seen during this period for the RECCAP
observation‐based approaches.

Comparisons of mapped fCO2w determined by ML approaches and the resulting sea‐air CO2 fluxes use standard
indicators such as root mean square error (RMSE), bias, and the ability of the methods to reproduce seasonal and
interannual variability and trends at global and basin scales (Rödenbeck et al., 2015). Gloege et al. (2021) showed
by using large ensemble model reconstructions of fCO2w and predictors that ML approaches, when supplied with
sufficient data, can skillfully reproduce fCO2w fields. Regions with fewer fCO2w observations, such as the
Southern Ocean, showed larger errors (Hauck et al., 2023). ML approaches can be enhanced to a modest degree
by preprocessing data, such as temperature normalization, which also facilitates deriving the physical‐chemical
connections between fCO2w and drivers in ML approaches (Bennington et al., 2022). However, these modifi-
cations, choices, and adaptations of predictor variables do not have a significant influence, and statistical in-
dicators are very similar between approaches. This suggests that little improvement in mapping fCO2w fields is
gained in the different ML approaches (Gregor et al., 2019) but that improvements in fCO2w mapping and
regional fluxes can be achieved bymore observations and finer resolution (Gregor et al., 2024, accepted; Roobaert
et al., 2023). Differences in flux products using other parameters in the bulk flux equation, such as the gas transfer
parameterization as well as the sensitivity of the mapped fCO2w products to different predictor and target vari-
ables, have been explored to a lesser extent.

This paper focuses on the impact of temporal atmospheric forcing parameters on sea‐air CO2 fluxes, specifically
the factors influencing the magnitudes and trends in fCO2w and sea‐air CO2 fluxes. The paper is structured as
follows: In the methods section, we outline the approach for determining sea‐air CO₂ fluxes using the bulk flux
formulation. The AOML‐ET method is described and expanded in Supporting Information S1 to show it com-
pares well with other approaches, so that the results of applying different atmospheric forcing fields are generally
applicable. The comparisons and results are described in terms of the seasonal and regional patterns, using
January and July 2010 as representative examples. The seasonal and spatial patterns are compared with an
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updated climatology based on the methods of Takahashi et al. (2009), Tak‐2010, as submitted to RECCAP2 (de
Vries et al., 2023). The effects of changing atmospheric forcing are quantified in three different ways. The mole
fraction of CO2, XCO2a, is used as a predictor instead of time; the fCO2w is replaced by ∆fCO2 as a target; and a
zonally resolved 2‐dimensional XCO2a marine boundary layer (MBL) product (time, latitude) is replaced by a 3‐
dimensional XCO2a field (time, latitude, and longitude) derived from an atmospheric CO2 transport model,
Carbon Tracker (Jacobson et al., 2020). Furthermore, the impact of applying three different gas transfer‐wind
speed formulations is assessed to illustrate the effect of the kinetic forcing of fluxes that are not considered in
the analyses when comparing the correspondence of different sea‐air CO2 flux products. The results largely
follow expectations with the exception that replacing fCO2w with ∆fCO2 as the target causes the decadal ocean
CO2 uptake trend to decrease by 45%. This trend agrees with the consensus value of the trend in ocean CO2 uptake
provided by the Global Carbon Budget.

2. Methodology
2.1. Determination of Sea‐Air CO2 Flux Densities

Sea‐air CO2 flux densities are commonly expressed in terms of a bulk flux formulation that requires knowledge of
fCO2w along with CO2 air concentrations and the rate of CO2 transfer across the sea‐air interface:

Fsa = k K0 ( fCO2w − fCO2a) = k K0∆fCO2 (1)

where Fsa is the flux density with positive values depicting effluxes. k is the gas transfer velocity, and K0 is the
solubility of CO2 in seawater. The overbar depicts the temporally integrated quantity.

In practice, when calculating flux densities, the monthly ∆fCO2 fields at 1° by 1° grid are multiplied by the
product of gas transfer velocity and solubility, thereby expressing Fsa as:

Fsa = k K0 ∆fCO2 (2)

The Taylor expansion from the average of the product (Equation 1) to averages of the individual terms has cross‐
correlation terms of k’ and ∆fCO2’, but these terms have been shown to have a small influence on the overall
results for determination of monthly flux densities on scales of 1° (Wanninkhof et al., 2011) and are not included
here. The ∆fCO2 is determined from fCO2w at 1–6 m below the interface (fCO2w) and air (fCO2a) at monthly
scales and 1° by 1° resolution. fCO2a is derived from a zonally averaged time series of mole fraction XCO2a of the
MBL, abbreviated as MBL‐RS (Dlugokencky et al., 2021).

k is commonly parameterized as the square of wind speed (Wanninkhof et al., 2009):

k = 0.251<u2> (Sc/660)− 1/2 or k660 = 0.251<u2> (3)

where <u2> is the second moment of the wind at 10‐m height and is calculated here from 6‐hourly winds at ¼ ˚
resolution (Hersbach et al., 2020). Sc is the Schmidt number determined from temperature and salinity (Wan-
ninkhof, 2014), and 660 is the Schmidt number of CO2 at 20°C where k660 = k (Sc/660)

1/2. The coefficient 0.251
is obtained by scaling the gas transfer‐wind speed relationship to the global average of the second moment of the
wind as derived from the European reanalysis product (ERA5) and the inventory of bomb 14C in the ocean
(Sweeney et al., 2007). In Equation 3, k has units of cm hr− 1 and <u2> is expressed as m2 s− 2.

The flux densities Fsa (mol m
− 2 yr− 1) are aggregated into regional or global fluxes, with the flux expressed as

peta‐gram carbon per year, PgC yr− 1, where a Pg equals 1015 g. In the terrestrial and atmospheric carbon cycle
studies, bulk fluxes are often expressed as Pg of CO2 yr

− 1, where 1 PgCO2 equals 0.27 PgC. In the RECCAP2
protocol and several other global studies, the sea‐air CO2 fluxes are positive if the net flux is into the ocean (influx
or uptake), while for oceanographic applications and in this manuscript, the flux into the ocean is presented as a
negative value. A summary of the sources of variables used and the differences in conventions between REC-
CAP2 and this work are provided in Table S1 in Supporting Information S1.
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2.2. AOML‐ET fCO2w Gap Filling Methodology

The AOML‐ET is one of eleven ML and regression approaches that use the same community‐assembled SOCAT
database (Bakker et al., 2016) to map fCO2w in RECCAP2. The extremely randomized trees, ET, methodology is
an adaptation of the Random Forest approach that has been applied in regional ocean carbon flux mapping. It has
shown similar skill to other approaches used to create fCO2w fields (Chen et al., 2019; Gregor et al., 2017; Sharp
et al., 2022; Wu et al., 2024). The ETML algorithm is detailed in Geurts et al. (2006), and specifics of the AOML‐
ET adaptation are provided in Supporting Information S1. In short, it is based on a decision tree approach, and its
training uses a tree‐based ensemble where nodes are split at random cut points using all observations to build the
model. The hyperparameters in the model are optimized with regard to branches and cut points to balance
minimizing differences between test data and results and avoiding overfitting. The ET method is computationally
efficient and lends itself to exploration of the impact of different variables. Potential drawbacks of the ET method
include that it can be more prone to bias in data‐sparse regions and at the start and end of the time series, or tail
effects, compared to other ML methods. More specifically, with the ET approach, observations in regions with
few data are viewed as outliers such that adjacent data further removed in time and space receive greater weight
(Gregor et al., 2019). It also has greater sensitivity to overfitting compared to other ML approaches (Gregor
et al., 2019; Stamell et al., 2020).

The data set used for training AOML‐ETv2020 and other ML approaches in RECCAP2 is the SOCATv2020
product, which includes over 33 million unique fCO2w observations collected from 1957 through 2019 (www.
socat.info). However, for AOML‐ET and all other ML analyses, the gridded SOCAT data product is used, which
consists of data collated into monthly 1° by 1° cells, reducing the total to approximately 277 thousand fCO2w data
points. The AOML‐ET was extended after the RECCAP2 analysis with fCO2w observations through 2022. This
product is referred to as AOML‐ETv2023. This analysis used the gridded SOCATv2023 data comprised of 317
thousand cells. Remote areas of the oceans and winter seasons in the mid‐ and high‐latitude oceans have few
fCO2w observations and are thus reliant on gap filling with predictors. Predictor variables for the default
configuration AOML‐ET are monthly 1° by 1° gridded products of sea surface temperature (SST), sea surface
salinity (SSS), chlorophyll‐a (Chl‐a), and mixed layer depths (MLD), with their sources provided in Table S1 in
Supporting Information S1. These variables are known to directly influence fCO2w through biogeochemical and
physical interactions that control fCO2w. Location (latitude, longitude) and time (month since October 1997) are
included in the AOML‐ET method to facilitate the depiction of regional variations and trends. Training and
mapping in some ML and regression approaches are facilitated by delineation of regions into specific biogeo-
graphical provinces or biomes (e.g., Fay & McKinley, 2014) and/or removing the direct temperature impact on
fCO2w (Bennington et al., 2022) but are not applied to AOML‐ET.

At monthly 1° by 1° grid spacing, there are 11.3 M possible grid nodes from October 1997 through December
2020, and about 2% of the monthly 1° by 1° cells have fCO2w observations (Stamell et al., 2020). Even for the best
sampled months, only a small fraction have fCO2w observations in the gridded SOCATv2020 product. The
highest coverage is for August 2011 and encompasses 4.3% of all cells. For AOML‐ET, 70% of the data are placed
into a training data set, and 30% are reserved for the testing data set to determine bias, variability, and uncertainty
of the mapped products. Testing data include all the fCO2w observations from years 2000, 2005, 2010, and 2015.
For AOML‐ETv2023, an additional year, 2018, is withheld from training for testing. Omitting data from whole
years is preferable to randomly withholding data points for testing since this could lead to favoring test data in
well‐sampled areas and seasons, causing uncertainty to not be appropriately represented. To determine the ef-
ficacy of the approaches and to assess overfitting, runs were performed where the entire data set was used for
training without withholding test data, which negates the ability to assess the performance. As shown in Sup-
porting Information S1, only small differences were observed, suggesting that on the global scale, the default
AOML‐ET approach has an appropriate set of predictors and hyperparameters.

2.3. The Takahashi 2010 Climatology

To investigate seasonal and regional differences in sea‐air CO2 fluxes between approaches, a comparison is made
between the AOML‐ET output for 2010 and the updated monthly Takahashi climatology centered on 2010 (Tak‐
2010) created on a native resolution of a 4° by 5° grid and subsequently sub‐gridded to 1° resolution as submitted
to RECCAP2 (Müller, 2023). This monthly climatology is the authoritative benchmark for air‐sea CO2 fluxes and
is used as a predictor in some ML techniques (Landschützer et al., 2016). The creation of Tak‐2010 follows the
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same procedures as the previous climatology centered on the year 2000 (Takahashi et al., 2009). Tak‐2010 uses
the SOCATv2020 data set to determine pCO2w like in the AOML‐ETv2020 analysis, except that the pCO2w is
mapped on a monthly 4° by 5° grid. In Tak‐2010, the pCO2w values are adjusted to 2010 by assuming that pCO2w
increases at a discretized rate tied to XCO2a increase. Therefore, for pCO2w data between 1957 and 1979,
1 μatm yr− 1 was added to each pCO2w observation; for 1980 through 2000, 1.5 μatm yr− 1 was added; from 2001
through 2009, 2 μatm yr− 1 was added; and between 2011 and 2018, 2 μatm yr− 1 was subtracted to normalize the
pCO2w to the virtual year of 2010. The climatological XCO2a, P, and SST values for 2010 were used in the
creation of flux maps. The Tak‐2010 climatology was recently updated by Fay et al. (2024) using a slightly
different approach for accounting for the atmospheric forcing and associated fCO2w increases through time by
assuming that the surface ocean tracks the global atmospheric XCO2a increase exactly on annual scales. As the
assumptions on XCO2 increase are similar and only used to normalize the pCO2w observations to a common year,
the results show the same monthly spatial patterns. The Fay et al. (2024) analysis yields a global flux of
− 1.79 ± 0.70 PgC in close agreement with Tak‐2010 results presented here of − 1.86 ± 0.52 PgC for 2010.

2.4. Sensitivity of Sea‐Air CO2 Fluxes to Different Atmospheric Forcing Input Variables

Several adaptations to the AOML‐ET default configuration are implemented to assess sensitivity to procedures
and predictor variables with a focus on atmospheric forcing. The default configuration of AOML‐ET uses
location, time, SST, SSS, MLD, and Chl‐a as predictors and fCO2w as the target in the training step. The changes
include using XCO2a instead of month as a predictor and using ∆fCO2 as target instead of fCO2w. In Supporting
Information S1, the results are shown of adding and deleting select predictor variables for training of AOML‐ET
with Chl‐a and MLD being omitted and adding <u2> as a predictor. As detailed below, most of the adaptations
did not yield significant differences on global scales, with the notable exception of substituting the target fCO2w
for ∆fCO2.

All ML methods, including AOML‐ET, are used to map fCO2w fields, while the sea‐air CO2 flux is a function of
the thermodynamic forcing, ∆fCO2 (Equation 2). To assess if mapping fCO2w and then subtracting fCO2a to
determine ∆fCO2 versus predicting and mapping ∆fCO2 directly has an influence on fluxes, AOML‐ET was
trained with ∆fCO2 as the target variable. The ∆fCO2 for the training step was calculated from the monthly 1° by
1° gridded fCO2w fields and subtracted from fCO2a determined from the MBL‐RS XCO2 product (Equation 4).

In addition to investigating factors that impact the mapping of the monthly fCO2w fields with AOML‐ET,
different k and XCO2a products are used to determine their influence on flux densities (Equation 2). The effect of
using a 3‐dimensional XCO2a product is quantified to show how regional differences in XCO2a will impact fluxes
(Wanninkhof et al., 2019). In most analyses to date and in the RECCAP2 protocol, XCO2a values from the MBL‐
RS are used, with XCO2a samples taken weekly at 60 sites around the globe forming the basis of this product
(https://gml.noaa.gov/ccgg/about/global_means.html, Dlugokencky et al., 2021). In this zonally invariant MBL‐
RS product, the XCO2a is expressed with time and latitude. To match the fCO2w resolution, this XCO2a data is re‐
gridded on a monthly 1° by 1° grid and used to calculate fCO2a through

fCO2a = Gf(T,S) (P − pH2O) XCO2a (4)

where P is the barometric pressure at sea level, Gf(T,S) is the fugacity correction (=0.996 from 0°C to 25°C), and
pH2O is the saturation water vapor pressure calculated from P and SST (Pierrot et al., 2009) on the monthly 1° by
1° grid.

The default MBL‐RS product is compared with a XCO2a distribution over the ocean surface derived from an
assimilation scheme, CarbonTracker CT2019B (Jacobson et al., 2020). CT2019B provides a spatially and
temporally varying representation of XCO2a throughout the troposphere created by assimilating a wide variety of
atmospheric CO2 data in a 3‐D atmospheric chemistry‐transport model, TM5 (Krol et al., 2005). This CT‐PBL
product provides XCO2a globally at 3‐hourly intervals and at 3° longitude by 2° latitude spanning 2000–2020.
The PBL height in TM5 is estimated from the ERA5 meteorology and a bulk Richardson number formulation
(Jacobson and Munro, pers. com.), where the XCO2a for the layers within the PBL is averaged. Subsequently, the
3° longitude by 2° latitude bins are re‐gridded to a 1° by 1° grid and averaged monthly to determine the fCO2a
(Equation 4) and the flux density (Equation 2). The CT‐PBL product covers the time span from 2000 to 2020, and
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we use AOML_ETv2023 in the analysis to avoid tail effects of AOML_ETv2020 after 2018 (see Supporting
Information S1).

Three different gas exchange parameterizations that differ in their assumptions of kinetic forcing are used to
determine the effect on the global sea‐air CO2 fluxes. The default is a quadratic dependence with zero intercept
(Equation 3). The second expression is a hybrid parameterization with a cubic dependency with wind and a non‐
zero intercept:

k660 = 3 + 0.1<u10> + 0.083<u102> + 0.011<u103> (5)

The coefficient for the second moment of the wind has been adjusted in Equation 5 from 0.064 in the original
equation of Wanninkhof et al. (2009) to 0.083 to account for the different wind fields used between the original
work and here.

The third choice is that presented in Krakauer et al. (2006), using the isotopic constraints 13C and 14C and an ocean
circulation model that yields a low exponent for wind speed. Tuning this to a global average gas transfer rate
based on bomb‐14C following Sweeney et al. (2007) yields an equation of

k660 = 5 + 4< u0.61> (6)

The parameterizations are shown versus wind speed in Figure 2. Equation 6 has a significantly different behavior
with wind, although it is constrained in a similar fashion as the quadratic and hybrid parameterizations.

The effect of different wind speed products on global sea‐air CO2 fluxes has been detailed in Roobaert
et al. (2018). At a global scale, the differences in wind speed can be mitigated through normalization of the wind

Figure 2. The canonical dependence of gas transfer with the square of the windspeed, k660= 0.251<u2> (solid line); a hybrid
dependence, k660 = 3 + 0.1 <u> + 0.083 <u2> + 0.011 <u3> (dashed line); and a relationship meeting global isotopic
constraints, k660 = 5 + 4 <u0.61> (long dashed line). Inset, global windspeed distribution (dashed line, left axis) and
cumulative distribution (solid line, right axis) at 0.2 m s− 1 intervals.
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products and gas transfer‐wind speed dependencies. The normalization is done by adjusting the coefficients in the
relationships to a global average wind speed and gas transfer velocity value (Fay et al., 2021) that are constrained
by global bomb‐14C inventories. The rationale behind quadratic and hybrid relationships (Equations 3 and 5) is
based on the controls of gas transfer at the interface as described in Wanninkhof et al. (2009). The isotopic
constraint does not include inferences of processes controlling gas transfer but relies on cost functions of 13C and
14C measurements in the ocean in conjunction with an ocean transport model. While the range of solutions
provided in Krakauer et al. (2006) is broad, they all have a low exponent for wind speed, resulting in a weak
dependency of gas transfer with wind.

3. Results and Discussion
Much of the work quantifying variability and trends in sea‐air CO2 fluxes has focused on mapping surface water
fugacity (fCO2w), as fCO2w is a primary driver of fluxes. The AOML‐ET method is used here to examine how
different atmospheric forcing parameters impact both fCO2w and sea‐air CO2 fluxes. These results demonstrate
that factors other than fCO2w, particularly on regional scales, can have a significant influence on the fluxes.

Comparisons of various ML approaches reveal that the global trends in sea‐air CO2 fluxes for many methods are
correlated with initial conditions, suggesting that these conditions contribute to differences in trends. On a global
scale, the salient features of the mapped fCO2w fields fromMLmethods using the common SOCAT observational
data set are very similar. Therefore, the method of gap filling does not significantly influence global fCO2w spatial
patterns. This aligns with the findings of Gregor et al. (2019), who showed that uncertainties in global fluxes due
to different gap‐filling approaches were similar. However, regional differences, especially near the coast (see, for
example, Figure S1 in Wu et al., 2024), as well as the magnitude and trends of sea‐air CO2 fluxes, are more
sensitive to the methodology.

Assessing the fidelity of ML approaches beyond comparisons and statistical analysis is challenging, as these
methods function as “black boxes.” To address this, we assess the sensitivity of the global sea‐air CO2 flux to
different predictor and target variables. This is done through feature importance analysis, changing targets, and
withholding predictors using the AOML‐ET method.

3.1. Global and Regional Patterns of Trends in Fluxes Using the AOML‐ET Method

The interannual variability and trends in global sea‐air CO2 fluxes from 1998 to 2020, as determined by the
AOML‐ETv2020 method, show good correspondence with other products used in the RECCAP2 and GCB_2022
analyses. All methods show a minimum in CO2 uptake around 2000 followed by an increasing negative trend.
There is convergence in the magnitude of uptake for the different approaches during the middle part of the record,
with particularly good agreement from 2009 to 2014. This period coincides with the highest observational data
density and fewer issues related to tail effects, which can cause divergence at the beginning and end of the time
series.

The magnitude of the flux at the beginning of the time series influences the trend, with a lower flux resulting in a
stronger negative trend (Figure 3). AOML‐ETv2020 shows a more negative global trend of − 0.89 PgC
yr− 1 decade− 1 compared to other methods, which show an average trend of − 0.7 PgC yr− 1 decade− 1, ranging
from − 0.5 PgC yr− 1 decade− 1 to − 0.8 PgC yr− 1 decade− 1 over the 1998–2020 period (Figure 1, Table 1). The
larger negative trend for AOML‐ETv2020 is attributed to the low CO2 uptake at the beginning of the time series
and the strong feedback of increasing CO2 fluxes due to rising ∆fCO2. A smaller initial uptake and increasing
XCO2a values over time create a larger disequilibrium, which subsequently increases uptake later in the period.
This feedback is reflected in the strong correlation between global sea‐air CO2 flux and the global average∆fCO2
(Figure 4).

For the first part of the time series (1998–2009), AOML‐ETv2020 shows a trend of − 1.22 PgC yr− 1 decade− 1,
while from 2010 to 2020, the trend slows to − 0.64 PgC yr− 1 decade− 1. The lower uptake in AOML‐ETv2020
compared to other methods at the start of the record (1998–2001) may be due to anomalous oceanic condi-
tions associated with the 1998 El Niño and the subsequent hiatus in global warming (1998–2012) (Liu &
Xie, 2018). These conditions likely affected external forcing (McKinley et al., 2020), having a larger effect on
AOML‐ET's training than on other models. This is particularly due to the fact that AOML‐ET's predictor data
starts in 1998, whereas other methods begin in 1985.

Global Biogeochemical Cycles 10.1029/2024GB008315

WANNINKHOF ET AL. 8 of 26

 19449224, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

B
008315 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [07/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The seasonal and regional patterns determined by AOML_ET are consistent with the Tak‐2010 climatology for
2010. Representative flux density maps for AOML‐ET for January and July 2010 illustrate spatial and seasonal
patterns in flux densities (Figure 5). There is outgassing in tropical oceans and upwelling regions, while sub-
tropical and subpolar areas exhibit CO2 uptake. Subtropical regions transition from strong sinks in winter to
sources in summer, primarily driven by changes in sea surface temperature (SST). In the Bering Sea, a strong
winter source contrasts with other Northern high‐latitude regions, which are weak wintertime sinks. This region
also shows a different trend in flux and an anomalously low increase in fCO2w over time (Takahashi et al., 2009),
which is attributed to deepening of the mixed layer in winter that entrains high‐CO2 waters. Overall, winter shows
greater CO2 uptake than summer in the respective hemispheres, driven by cooling in the subtropical gyres and
associated temperature‐driven CO2 uptake. Globally, the greatest CO2 uptake occurs between December and
March.

Figure 6 presents a Taylor diagram summarizing key statistics for AOML‐ET. The diagram quantifies the cor-
respondence between the output of AOML‐ET and the test data, which are comprised of the observations in 2000,
2005, 2010, and 2015, in terms of correlation coefficient, root mean square error (RMSE), and standard deviation.
For AOML‐ETv2020, the correlation coefficient (r2) is 0.83, with an RMSE of 17 μatm, aligning with other ML
and regression estimates (Gregor et al., 2019; Rödenbeck et al., 2015). The standard deviation, which represents
variability, is 34 μatm, compared to 43 μatm for the test data. This suggests that, like other ML methods, AOML‐
ET does not capture the full range of variability, in part due to the relatively coarse grid and monthly time scale
used (Gregor et al., 2019). For example, Gregor et al. (2024) increased the resolution to an 8‐day, ¼˚ scale in their
ML analysis and observed a 15% increase in variability, indicating that variability is sensitive to temporal and
spatial scales. However, scaling to finer resolutions is often limited by the lack of predictor variables at com-
parable resolutions.

Figure 3. Relationship between global ocean CO2 uptake in 1998 and the trend from 1998 to 2020 for different ML methods.
The linear relationship plotted (Trend [PgC yr− 2] = 0.11–0.03 Flux 1998, r2 = 0.84) does not include the ML approaches of
the AOML‐ET_∆fCO2 target, NIESS‐NN, and UoEx. For references to the methods, see the caption in Table 1.

Global Biogeochemical Cycles 10.1029/2024GB008315

WANNINKHOF ET AL. 9 of 26

 19449224, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

B
008315 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [07/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Regional trends in the AOML‐ET fluxes from 1998 to 2020 reveal significant variability. These regional
anomalies in trends are shown relative to the global mean trend of − 0.173 mol m− 2 yr− 1 decade− 1 in Figure 7.
Most areas with large trend anomalies (Figure 7a) have P‐values less than 0.01, indicating high statistical sig-
nificance (Figure 7b). Regions with increasing CO2 uptake or less outgassing are those with negative anomalies in
trends. This is primarily due to rising atmospheric CO2 levels and oceanic fCO2w not keeping pace with this rise.
Negative anomalies in trends are most prominent in high‐latitude, seasonally stratified regions, which serve as
conduits to the deep ocean. In contrast, neutral and positive regional trends—indicating decreased uptake or
increased outgassing over time—are seen in mid‐ and low‐latitude regions. These trends can be attributed to rising
SSTs and possible decreases in biological productivity (Landschützer et al., 2018). Changing circulation patterns
contribute to smaller negative trends, as observed, for example, in the Western Equatorial Pacific (Ishii
et al., 2020).

Broadly, the regional trends align with observation‐based analyses of fCO2w trends by Fay and McKinley (2013).
Their analysis suggests that regions with greater increases in fCO2w relative to atmospheric increases correspond
to areas with rising SSTs. They also show that regions with deep (winter) mixed layers experience smaller in-
creases in fCO2w, which corresponds to areas showing increasing negative flux trends in our analysis. In sum-
mary, the trends shown in AOML‐ETv2020 fluxes indicate a large‐scale shift in ocean uptake patterns, with high‐
latitude regions becoming stronger sinks and subtropical sinks decreasing in magnitude or becoming sources over
the past two decades.

3.2. AOML‐ET Global and Regional Fluxes Compared to the Takahashi Climatology for 2010

The AOML‐ETv2020 fluxes in 2010, compared to the Tak‐2010 climatological fluxes centered on 2010, show
similar magnitudes and patterns once normalized for surface area. Specifically, the global fluxes in Tak‐2010 are

Table 1
Summary of Magnitude Variability and Trends of Global Sea‐Air CO2 Fluxes From Different Machine Learning Approaches

Average 1998–2020b Trendc

r2,d
StErrore Flux 1998f Flux 2020g

Studya PgC yr− 1 PgC yr− 1 decade− 1 PgC yr− 1 PgC yr− 1 PgCyr− 1

AOML‐ET −1.70 − 0.89 0.92 0.19 − 0.72 − 2.54

AOML‐ET‐Chl‐a − 1.82 − 0.87 0.86 0.24 − 0.71 − 2.33

AOML‐ET‐MLD − 1.72 − 0.87 0.88 0.23 − 0.80 − 2.28

AOML‐ET+<U2> − 1.72 − 0.94 0.93 0.17 − 0.71 − 2.72

AOML‐ET_∆fCO2 − 1.65 − 0.51 0.91 0.11 − 1.28 − 1.99

MPI‐SOMFFN −1.91 − 0.79 0.93 0.15 − 1.17 − 2.56

Jena‐MLS −1.99 − 0.51 0.63 0.26 − 1.83 − 2.60

CMEMS −1.94 − 0.63 0.92 0.13 − 1.54 − 2.88

GRaCER −2.12 − 0.57 0.95 0.09 − 1.74 − 2.66

JMA‐MLR −2.36 − 0.50 0.77 0.19 − 2.18 − 3.25

NIES_NN −2.01 − 0.98 0.93 0.18 − 1.24 − 3.42

CSIR −2.08 − 0.79 0.96 0.11 − 1.53 − 3.02

UoEx −2.43 − 0.83 0.92 0.17 − 1.90 − 2.89

Averageh − 2.06 − 0.7 0.88 0.16 − 1.53 − 2.87

Min.h − 1.70 − 0.5 0.63 0.09 − 0.70 − 2.54

Max.h − 2.43 − 0.98 0.96 0.26 − 2.18 − 3.42
aAll data, except AOML‐ET, are from https://globalcarbonbudget.org/carbonbudget/. AOML_ ETv2020 (this work);
MPI‐SOMFFN (Landschützer et al., 2016); Jena‐MLS (Rödenbeck et al., 2022); CMEMS (Chau et al., 2022): GRaCER
(Gregor & Gruber, 2021); NIES_NN (Zeng et al., 2014); JMA‐MLR (Iida et al., 2021); CSIR (Gregor et al., 2019); UoEx
(Watson et al., 2020). bTwenty‐three‐year average (1998–2020) of the annual global values for each approach in PgC yr− 1.
cTrend based on a linear regression of the twenty‐three years of annual global sea‐air CO2 fluxes in PgC yr− 1 decade− 1.
dCoefficient of determination. eStandard error from the linear trend. fGlobal sea‐air CO2 flux in 1998 for each of the methods.
gGlobal sea‐air CO2 flux in 2020 for each of the methods.

hAverage, minimum, and maximum of the methods (listed in bold)
excluding the permutations of AOML‐ET (in italics).
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scaled by 1.15 to account for the smaller ocean area covered. The global average sea‐air CO2 fluxes and monthly
variability, expressed as the standard deviation of the monthly values in 2010, are − 2.03 ± 0.46 PgC yr− 1 and
− 1.86 ± 0.52 PgC yr− 1 for the AOML‐ETv2020 and Tak‐2010, respectively.

The monthly fluxes of the two products are compared in Figure 8 for the zones delineated in Takahashi
et al. (2009). Both products show the greatest uptake of 0.2 PgC month− 1 from November through March and the
smallest uptake of about 0.1 PgC month− 1 in August (Figures 8a and 8b). Overall, the differences in global
monthly uptake between products are small (less than 0.05 PgCmonth− 1), with the largest differences in February
and March. The tropical regions (14˚S–14˚N) exhibit persistent outgassing throughout the year in both products,
though Tak‐2010 shows greater outgassing during the boreal spring and summer compared to AOML‐ETv2020.
This is partly attributed to Tak‐2010 not capturing interannual variability, such as El Niño events. Thus, AOML‐
ET reflects lower outgassing in the 14˚N to 14˚S band during the boreal spring of 2010 when El Niño conditions
prevailed, but this is not reflected in Tak‐2010, which excludes data from the Equatorial Pacific during El Niño
years. In contrast, during the latter part of 2010, which was dominated by La Niña conditions, fluxes in the tropics
are very similar between products (Figures 8a and 8b).

For other regions, both products show that the 50˚N to 14˚N and 50˚S to 14˚S latitude bands are generally sinks,
with greater uptake in winter for both products in their respective hemispheres. The 50˚N to 14˚N latitude band in
Tak‐2010, however, shows small effluxes, whereas AOML‐ET shows a small sink from July through September.

Figure 4. Global sea‐air CO2 flux for the default AOML‐ETv2020 approach versus global average ∆fCO2 with years listed
(black circles) and for the AOML‐ETv2020 using ∆fCO2 as a target (blue triangles). The regression between net flux and
∆fCO2 is 0.214 PgC yr

− 1 μatm− 1 (r2 = 0.99) for AOML‐ETv2020 and 0.254 PgC yr− 1 μatm− 1 (r2 = 0.98) for the AOML‐
ETv2020_∆fCO2 target.
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The high latitudes (>50˚N/S) are persistent sinks with large negative fluxes in summer, which align with
increased biological productivity that draws down the fCO2w (Takahashi et al., 2009). In the seasonal ice zone
(>62˚S), wintertime uptake is negligible due to ice cover inhibiting gas exchange.

The monthly zonal differences in fluxes between AOML‐ET in 2010 and Tak‐2010 (Figure 8c) are attributed to
the gap‐filling method applied to the fCO2w values, as the gas transfer velocities and fCO2a used for both products
are the same. Despite some regional differences, the global fluxes are within ±0.08 PgC month− 1. These dif-
ferences are temporally and zonally compensating, with adjacent regions showing both positive and negative
differences, which partially offset each other. For instance, in the 14˚N–50˚N zonal band, which is an uptake

Figure 5. Flux density maps for January (a) and July (b) 2010 using AOML‐ET provide a visual depiction of spatial variation
in flux for 2010. The color bar has units of units mol m− 2 yr− 1.
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region for much of the year, AOML‐ET shows less uptake compared to Tak‐2010. From July through September,
the region outgasses both products, but with greater outgassing in Tak‐2010. Spatial compensation is also evident,
with differences between 15˚S and 50˚S largely counteracted by opposing changes in the northern regions
(Figure 8c).

The subpolar divergence zone and marginal ice zones in the Southern Hemisphere, represented by the bands from
50˚S–62˚S and >62˚S, are under‐sampled regions with differing results in the analyses. This region is thought to
represent a CO2 source based on fCO2w calculations from pH sensors on profiling floats and estimated alkalinity
(Bushinsky et al., 2019; Gray et al., 2018). Data from these regions, particularly in winter, are sparse in the
SOCAT database, so the flux values in these areas are largely dependent on gap‐filling methods. Both Tak‐2010
and AOML‐ET in 2010 show strong uptake in the summer months (November‐March) and less uptake in winter.
However, the subpolar divergence zone in Tak‐2010 shows outgassing, while AOML‐ET indicates a weak sink in
winter. This difference may arise because Takahashi et al. (2009) show a strong correlation between fCO2w and
the day of year in waters colder than − 1.75°C, with wintertime fCO2w values higher than fCO2a. This suggests
that the training data for AOML‐ET in this region may be insufficient, and the climatological interpolation in Tak‐
2010 provides a better representation. Overall, despite differences in data utilization and gap‐filling approaches,

Figure 6. Taylor diagram of the fCO2w values determined by AOML‐ET values compared with the test data for the
permutations listed in Figure 9 and Figure S1 in Supporting Information S1. The test data is shown as a black star. The red
circle is AOML_ETv2020 in default configuration; the blue square is AOML_ET without MLD as a predictor; the green
diamond is the AOML_ET without Chl‐a as a predictor; the yellow plus symbol shows the addition of <u2>; and the green
cross is the output replacing fCO2w by∆fCO2 as target. The Pearson correlation coefficient is shown on the arc, the standard
deviation indicating variability is provided on the axes, and the semi‐circles show the RMSE.
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Figure 7. (a) Map of regional trends in sea‐air CO2 flux densities from 1998 to 2020 in mol m− 2 yr− 1 decade− 1 for AOML‐ET in default configuration with the average
global 23‐year trend of − 0.173 mol m− 2 decade− 1 removed. (b) P‐values for the trends. The large positive and negative trends in (a) have P‐values of less than 0.01 that
are statistically significant. (c) Map of trends using∆fCO2 rather than the default fCO2w as the target with the average global 23‐year trend of − 0.105 mol m

− 2 decade− 1

removed.
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Figure 8. Regional monthly zonal sea‐air CO2 fluxes based on the (a) AOML‐ET; (b) Tak‐2010, scaled to the same surface
area (x1.15); and (c) the difference. The different zones following Takahashi et al. (2009) are listed in the legend. The lines
with blue circles represent the global monthly fluxes for 2010. Fluxes are expressed in PgC month− 1.
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the two methods yield similar global and regional results, consistent with previous findings that different gap‐
filling methods do not significantly affect flux patterns (Gregor et al., 2019).

3.3. Sensitivity of Fluxes to ∆fCO2

Using ∆fCO2 as a target variable shows a large decrease in CO2 uptake compared to the default configuration
using fCO2w as a target. When using ∆fCO2 as a target, the ∆fCO2, which is the thermodynamic forcing variable
in the bulk flux formulation (Equation 2), is mapped rather than the fCO2w. This small procedural difference
results in substantial changes in the magnitude and trends of the fluxes. The global sea‐air CO2 fluxes are − 1.3
PgC yr− 1 in 1998 and − 2.0 PgC yr− 1 in 2020 when using ∆fCO2 as a target. In contrast, the default AOML‐
ETv2020 fluxes are − 0.7 PgC yr− 1 for 1998 and − 2.5 PgC yr− 1 for 2020 (Figure 9). Correspondingly, the
trend for the∆fCO2 target run is − 0.51 PgC yr

− 1 decade− 1, compared to − 0.89 PgC yr− 1 decade− 1 for the default
AOML‐ETv2020 from 1998 to 2020 (Table 1). Having ∆fCO2 instead of fCO2w as the target variable shows
slightly better overall agreement with test data. The Taylor diagram (Figure 6) shows an RMSE of 18 μatm, a
standard deviation of 37 μatm, and an r2 of 0.88.

The decadal trend using ∆fCO2 as the target variable aligns with the consensus value used in the Global Carbon
Budget, GCB‐2023 (Friedlingstein et al., 2023) based on an ensemble average of observation‐based and global
ocean biogeochemical model results. The annual ocean CO2 uptake values of GCB‐2023 are shown in Figures 1
and 9. The higher uptake at the beginning of the record and lower uptake at the end compared to many of the
observation‐based estimates that map fCO2w is apparent. AOML‐ET with ∆fCO2 as a target shows good cor-
respondence with the sea‐air CO2 flux trend of the GCB‐2023 values but with an average of 0.2 PgC yr

− 1 less
uptake. In RECCAP2, the oceanic anthropogenic carbon uptake is estimated from the output of an ocean

Figure 9. Global net sea‐air CO2 fluxes from 1998 to 2020 using fCO2w and ∆fCO2 as target variables for the AOML‐ET
method. Solid black line: default AOML‐ETv2020; solid blue line: AOML‐ETv2023; dashed black line: AOML‐ETv2020
with∆fCO2 as target; dashed blue line: AOML‐ETv2023 with∆fCO2 as target; solid red line: AOML‐ETv2023 with XCO2a
as predictor; and dashed orange line: AOML‐ETv2023 with XCO2a as predictor and∆fCO2 as the target; green line: AOML‐
ETv2020 with k based on the isotopic constraint (Equation 6). The statistical analysis of the linear regressions to the different
runs is given in Table S2 in Supporting Information S1.
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circulation inverse model (OCIM) with a decadal trend of − 0.41 ± 0.03 PgC yr− 1 decade− 1 for 2001–2018 (de
Vries et al., 2023). The larger negative trend of the observation‐based products is attributed to a climate trend. As
noted in de Vries et al. (2023), “This putative climate‐forced strengthening of the ocean carbon sink since 2001 in
the pCO2 products is not apparent in the GOBMs, and thus the robustness of and the reasons for this trend remain
unclear.” The results with AOML‐ET using fCO2 as the target variable suggest that this may be an artifact of the
methodology.

The large differences in global sea‐air CO2 fluxes and the lower trend when using∆fCO2 as a target, as opposed to
fCO2w, are due to subtle regional and seasonal differences between ∆fCO2 and ∆fCO2 calculated from separate
fCO2w and fCO2a fields. The spatial patterns of fCO2w and ∆fCO2 differ due to seasonal variations in fCO2a
(Figure 10). fCO2a is determined from XCO2a, which shows higher values in winter and lower values in summer,
with an amplitude of 8 ppm in the Northern Hemisphere. However, SST and pressure (P) also affect fCO2a. High
temperatures and associated high water vapor content lead to lower fCO2a values in tropical regions, whereas
lower barometric pressures in Equatorial and Southern high‐latitude regions depress fCO2a (Figures 10a and 10b).
These differences in fCO2a influence the training of the model when ∆fCO2 is used as a target. The resulting
impact on regional trends is mapped in Figure 7c. In high‐latitude regions, where there is a negative trend
compared to the mean sea‐air CO2 flux trend, the use of ∆fCO2 as a target results in a smaller influx (Figures 7a–
7c). In tropical and subtropical regions, the trends are positive, but the positive trend is less pronounced, leading to
a smaller influx over time when ∆fCO2 is the target.

The global average fCO2w difference between using fCO2w and ∆fCO2 as targets shows lower fCO2w at the start
of the record and higher at the end (Figure 11). This pattern is consistent with the different trends in flux. The
seasonal progression of fluxes using the two different targets is similar and only differs in magnitude. The

Figure 10. (a) fCO2a for January 2010; (b) fCO2a for July 2010; (c) Difference in ∆fCO2 between using ∆fCO2 and fCO2w as a target for January 2010 for AOML‐
ETv2020; (d) Same as (c) but for July 2010. Areas in blue show a greater positive or smaller negative ∆fCO2 in the default configuration and thus greater effluxes or
smaller influxes.
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minimum in differences is in August‐September, which is the period of the smallest global∆fCO2 disequilibrium,
and a maximum difference is in May‐June (inset, Figure 11). This leads to greater seasonal amplitude in sea‐air
CO2 fluxes for ∆fCO2 as the target. The monthly fluxes for 2010 are shown in Figure 12, with a minimum in
fluxes (greatest uptake) in the boreal winter months (Jan‐March) and a maximum in summer (August).

Comparison of feature importance of the predictor variables (Figure 13) between using fCO2w and ∆fCO2 as
targets shows a similar dependency on predictors except for time (JDN), which has greater importance for fCO2w
with a score of 0.13 versus 0.05 for∆fCO2. Other scores are similar with location, expressed as the sum of latitude
(LAT) and vector longitudes, sine (SLON) and cosine (CLON), being the strongest predictor with a cumulative
score of 0.33 for the fCO2w scenario and 0.37 for ∆fCO2. This is followed by SST with a score of 0.21 for fCO2w
and 0.25 for ∆fCO2. The strong dependence of fCO2w and ∆fCO2 with SST is similar to most other gap‐filling
techniques (Bennington et al., 2022) due to the strong physical and chemical dependency of fCO2w with tem-
perature of ∂fCO2w ∂T

− 1= 0.042 (Wanninkhof et al., 2022). Time, expressed as month since October 1997, is the
main predictor of trends as atmospheric CO2 levels increase with time. While some gap‐filling approaches,
notably MLR interpolations, have shown weak correlation with Chl‐a, Chl‐a is significant in the construction of
the AOML‐ET with a score of 0.1. The other predictor variables, MLD and SSS, have similar scores of ≈0.1.

3.4. Sensitivity of Sea‐Air CO2 fluxes to Atmospheric Forcing by XCO2a

The impact of atmospheric forcing by XCO2a is examined by replacing time (JDN expressed as month since
October 1997) with annual averaged XCO2a values, as is done in Landschützer et al. (2016). JDN increases
monotonically, while XCO2a varies year to year, with growth rates increasing from about 1.5 ppm yr − 1 to
2.5 ppm yr− 1 over the period from 1998 to 2022 (https://gml.noaa.gov/ccgg/trends/gl_gr.html, accessed 5/9/
2024). Using XCO2a as a predictor results in little difference in global fluxes up to 2019, after which the run with

Figure 11. Difference in global average fCO2w between using ∆fCO2 and fCO2w as targets versus time in μatm. The inset
shows the monthly average difference obtained by subtracting the 20‐year trend.
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XCO2a shows about 0.4 PgC yr
− 1 greater uptake, attributed to rapidly increasing XCO2a and possibly tail effects

toward the end of the record (Figure S6 in Supporting Information S1).

In the default configuration of AOML‐ET, a zonally homogeneous XCO2a product, MBL‐RS, is applied since the
lower troposphere mixes zonally on the order of a month. However, small deviations in XCO2a can have a large
impact on sea‐air CO2 fluxes. For example, a 1 ppm offset in XCO2a causes a bias in ∆fCO2 of about 1 μatm and
changes the global sea‐air CO2 flux by ≈ 0.2 PgC yr− 1. Of note is that the zonal homogeneity in XCO2a of the
MBL‐RS product is not reflected in fCO2a due to regional differences in barometric pressure (P) and saturation
water vapor pressure (pH2O) (Equation 4). These can cause zonal differences of up to ≈16 μatm in fCO2a even
with constant XCO2a (Figures 10a and 10b). However, P and pH2O both affect the fCO2w and fCO2a in a similar
fashion, such that small errors in P and pH2O will not have a large impact on ∆fCO2 if the same P and SST
products are used to calculate both fCO2w and fCO2a.

Deviations from near‐constant zonal XCO2a levels in the MBL occur when air flows off continents that generally
contain higher CO2 due to fossil fuel burning and net ecosystem respiration on land during the fall and winter
months. This leads to higher XCO2a over many coastal seas and larger influxes/lower effluxes, particularly along
the heavily industrialized eastern continental boundaries in the Northern Hemisphere due to the prevailing
westerly winds at those latitudes (Wanninkhof et al., 2019). However, during spring and summer, carbon uptake
on land due to terrestrial photosynthesis can lead to negative zonal anomalies in XCO2a downwind from land in
coastal regions, which leads to decreased ocean CO2 uptake, but these anomalies are significantly smaller.
Northcott et al. (2019) suggested from bold extrapolation of nearshore observations that the higher PBL XCO2
could enhance global ocean CO2 uptake by 1%.

Quantitatively, the impact of higher XCO2a in coastal regions is assessed by comparing the spatially resolved CT‐
PBL product with the zonally averaged MBL‐RS product. The difference in global fluxes between the CT‐PBL
product and the MBL‐RS product is small, as the XCO2a of both products is constrained by the same MBL
observations. The average difference in global monthly ocean sink between the CT‐PBL and the MBL‐RS XCO2a

Figure 12. Monthly fluxes using fCO2w as the target variable in AOML‐ET for 2010 (solid line) and using ∆fCO2 as the
target variable in AOML‐ET for 2010 (dashed line).
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is − 0.02 ± 0.05 PgC yr− 1 from 2000 to 2020, with the CT‐PBL product showing slightly greater fluxes (≈1%)
into the ocean on average, in accordance with the estimate of Northcott et al. (2019). No appreciable year‐to‐year
differences are observed. However, regional differences in sea‐air CO2 fluxes can be large, especially in the
winter months. The largest increases in influxes using the CT‐PBL product are off the East Coasts of North
America and Asia. Figure 14 shows the differences in the 30–35˚N latitude band for 2010 between fluxes derived
from the MBL‐RS and CT‐PBL. The entire latitude band shows the characteristic seasonal pattern for the sub-
tropical oceans, with a strong sink in winter and a weak source in summer. The annual average flux density for
2010 was − 0.61 mol m− 2 yr− 1 for the MBL‐RS product and − 0.66 mol m− 2 yr− 1 for the CT‐PBL product. The
Mid‐Atlantic Bight (MAB) off the coast of the USA (30˚N–35˚N, 75˚W–70˚W) and the Yellow Sea (30˚N–35˚N,
120˚W–125˚W) show wintertime enhancement of uptake by 6% and 21%, respectively. Differences in fluxes
between the two MBL products in spring and summer are smaller, with the MAB showing a slightly decreased
influx during May for the CT‐PBL product attributed to XCO2a drawdown on land due to the springtime increase
in terrestrial biological productivity.

The results agree with a similar exercise performed by Palter et al. (2023), who used a zonal mean of CT‐PBL
XCO2a rather than the MBL‐RS XCO2a product. They also used the SOM‐FFN ML approach of Jersild and
Landschützer (2024) to recreate the pCO2w fields. This suggests that using different MBL XCO2a products will
likely lead to quantitatively similar estimates for sea‐air CO2 fluxes derived for all ML and interpolation
approaches.

3.5. Sensitivity to the Gas Transfer Velocity

Different gas transfer velocity formulations and wind speed products can significantly affect global flux esti-
mates, with recent studies suggesting that gas transfer is a primary source of uncertainty in the sea‐air CO2 flux
estimates (Ford et al., 2024; Jersild & Landschützer, 2024; Woolf et al., 2019). Several aspects of the effect of gas

Figure 13. Importance of the different predictor variables using AOML‐ET with fCO2w (stippled bars) and ∆fCO2 (black
bars) as target variables. Location (latitude (Lat) and longitude (SLON and CLON)) has the greatest importance, followed by
SST. Month since Oct 1997 (JDN) has a smaller significance when using ∆fCO2 as a target. Mixed layer depth (MLD), sea
surface salinity (SSS), and Chl‐a (CHLOR) have similar importance.
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transfer on fluxes, such as the impact of time averaging and different wind fields, have been investigated (Gregor
et al., 2019; Roobaert et al., 2018; Wanninkhof et al., 2002). However, conical quadratic wind speed relationships
are commonly used to parameterize gas transfer in most observation‐based flux estimates, including those in
RECCAP2 (de Vries et al., 2023) and the GCB (Friedlingstein et al., 2023). The functional form of the pa-
rameterizations is of increasing importance with improved high‐resolution wind speeds and ∆fCO2‐mapped
products that better capture extremes and variability, such that the variability of <u2> and ∆fCO2 are better
represented. The three gas exchange wind parameterizations compared here are constrained with the global ocean
bomb 14C inventories. In the case of the parameterization inferred from Krakauer et al. (2006), it uses 13C
constraints as well. This relationship is referred to as the isotopic constraint.

The default parameterization is depicted in Equation 3; the polynomial expression referred to as a hybrid de-
pendency is shown in Equation 5; and the weak wind speed dependence of the isotopic constraint is provided in
Equation 6. They are displayed graphically in Figure 2. Most laboratory and field studies (Butterworth &
Miller, 2016; Ho et al., 2011; Yang et al., 2022) suggest that the results can be well represented by quadratic or
polynomial wind speed dependencies. However, uncertainties remain about the magnitude of fluxes at low and
high wind speeds and the mechanisms driving these fluxes. Thus, the isotopic constraint can be considered an
endmember scenario, where direct wind effects play a lesser role and other factors affecting surface turbulence
and gas transfer become more prominent.

The quadratic and hybrid dependencies show negligible differences in annual global sea‐air CO2 flux of
0.003 ± 0.011 PgC yr− 1 from 1998 to 2020. While the global results are similar, regional flux patterns differ

Figure 14. Monthly averaged sea‐air CO2 flux densities in the 30˚–35˚N latitude band using different XCO2a products and the
AOML‐ETv2020 for fCO2w values. The MBL XCO2a product (solid line; solid circles) and PBL XCO2a product (dashed
lines; open circles) are shown versus month for 2010. The thin blue lines are the monthly zonally averaged flux densities for
30˚–35˚N; the green lines are monthly flux densities over the Yellow Sea (30˚–35˚N); the red lines are the monthly flux
densities over the Mid‐Atlantic Bight (30˚–35˚N). The horizontal solid and dashed blue lines represent the annual average
fluxes using the MBL and PBL products, respectively, in the 30˚–35˚N latitude band.

Global Biogeochemical Cycles 10.1029/2024GB008315

WANNINKHOF ET AL. 21 of 26

 19449224, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

B
008315 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [07/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



significantly. Figures 15a and 15b show maps of flux differences between the quadratic and hybrid relationships
for January and July 2010, respectively. The relationships of k versus <u> cross at 5.9 m s− 1 and 13 m s− 1, with
the hybrid relationship showing slightly lower k between the two crossovers. Most of the windspeeds over the
global ocean are in this range (Figure 2, inset). At low and high winds, the hybrid parameterization yields higher k
values (Figure 2). As a result, the hybrid expression shows larger fluxes in regions with low winds that are
persistently less than 5 m s− 1. These include the tropical and sub‐tropical regions of the ocean during the summer
season for the respective hemispheres depicted by light blue shading in Figures 15a and 15b. A notable exception
is in the Eastern Equatorial Pacific south of the Equator, showing higher effluxes with the quadratic expression
because winds there average 6–7 m s− 1. Only a few extratropical regions show larger fluxes with the hybrid
expression, which are areas with persistent high winds of greater than 13 m s− 1. The southern area of the Bering
Sea in January 2010 showed higher fluxes with the hybrid parameterization, and since this region has positive
∆fCO2, it leads to higher effluxes (Figure 15a). During July, the winds are less on average 13 m s

− 1 in this region,
and correspondingly, a quadratic expression leads to higher effluxes (Figure 15b). The mid‐latitude regions with
prevailing winds between 5 and 13 m s− 1 will have lower k with a hybrid parameterization and correspondingly
show lower fluxes.

The crossover point between the quadratic and isotopic dependency occurs at 9 m s− 1 (Figure 2), with the
quadratic showing lower k below this wind speed and higher k above. The impact on the flux density distribution
is significant as 75% of global winds are below 9 m s− 1 (Figure 2, inset). Using k obtained from the isotopic
constraint yields an influx that is on average 0.61 ± 0.04 PgC yr− 1 less than the default quadratic (Figure 9).
However, the 23‐year global annual trends in the fluxes using AOML_ETv2020 are the same at 0.089 PgC
yr− 1 decade − 1 between the k parameterized as a quadratic with wind speed or with the isotopic constraint.

Figure 15. Maps of differences in sea‐air CO2 flux densities between the square wind speed and hybrid relationships for gas transfer for January (a) and July (b) 2010;
and between the square wind speed and Krakauer‐isotopic constraint for January (c) and July (d) 2010 using AOML‐ET. The flux densities for January and July 2010
using AOML‐ET and the default wind speed squared relationship are shown in Figure 5. Color bars have units of mol m− 2 yr− 1.

Global Biogeochemical Cycles 10.1029/2024GB008315

WANNINKHOF ET AL. 22 of 26

 19449224, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

B
008315 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [07/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



As shown in Wanninkhof et al. (2009), the global distribution of flux densities predominantly shows effluxes at
low wind speeds and influxes at higher winds. Thus, a dependence of k versus u10 that is stronger at low winds and
less at high winds, such as that of the isotopic constraint, results in smaller effluxes and influxes, both of which
contribute to a smaller global CO2 uptake. Figures 15c and 15d show differences between the isotopic and the
quadratic dependencies for January 2010 and July 2010, with the color scale range five times greater than
Figures 15a and 15b. Much smaller influxes are observed with the isotopic constraint in the North Pacific (30 ˚N–
45 ˚N) for January 2010, where mean winds are greater than 9 m s− 1 (Figure 15c). Further north there is a region
of outgassing (Figure 5a) with winds greater than 9 m s− 1 showing the depressed outgassing with the isotopic
constraint. South of 30 ˚S the region is a weak sink with the isotopic constraint yielding greater influxes. The
equatorial areas are regions of outgassing with winds less than 9 m s− 1, and the isotopic constraint shows greater
effluxes. For July 2010, the northern high‐latitude sink regions (>60 ˚N) in summertime show a greater influx of
over 2.5 mol m− 2 yr− 1 with the isotopic constraint compared to the quadratic through a combination of average
wind being less than 9 m s− 1 and large negative ∆fCO2. The strong positive anomaly in the difference in the
Amazon outflow region (equator, 50 ˚W) is due to large negative∆fCO2 and low winds causing more uptake with
the method involving the isotopic constraint.

4. Conclusions
The machine learning (ML) approach AOML‐ETv2020 shows an average global sea‐air CO2 flux of − 1.70 PgC
yr− 1 from 1998 to 2020. This value aligns with other ML approaches but exhibits a 30% greater long‐term trend of
− 0.89 PgC yr− 1 decade− 1, compared to the average trend of other ML and interpolation methods used in the
recent RECCAP‐2 reanalysis. This stronger trend is largely attributed to low fluxes at the beginning of the time
series caused, in part, by a training period that started in 1998. The spatial patterns and magnitude of regional
fluxes from AOML‐ETv2020 are similar to those in the updated Takahashi climatology for 2010. These results
confirm previous findings that suggest that the spatial gap filling approach for fCO2w does not significantly affect
global sea‐air CO2 flux estimates, provided there is sufficient observational coverage of both target and predictor
variables.

However, sea‐air CO2 fluxes are sensitive to atmospheric forcing, particularly through gas transfer, XCO2a, and
∆fCO2. Notably, when using ∆fCO2 as a target instead of fCO2w in AOML‐ET, the 23‐year average uptake
remains similar at − 1.65 PgC yr− 1 but with a much weaker negative trend of − 0.51 PgC yr− 1 decade− 1. This trend
agrees with the consensus estimate provided in the Global Carbon Budget and with the results of an ocean inverse
model. Better‐resolved marine boundary layer (MBL) XCO2a values reveal large regional differences in fluxes,
especially in continental outflow regions. Different parameterizations of gas transfer velocities with wind speed
lead to substantial regional differences in fluxes, although global effects remain small. An exception is re-
lationships with weak wind speed dependencies, which show significantly less global CO2 uptake despite being
constrained by the same global bomb 14C inventory.

The results show that atmospheric forcing has a determining factor on sea‐air CO2 fluxes. Improved forcing fields
should be implemented in future assessments of oceanic CO2 uptake. Temporally and spatially resolved XCO2a
products are recommended for atmospheric forcing to better capture sea‐air CO2 fluxes, particularly in the coastal
realm. Applyingmachine learning approaches to∆fCO2 rather than fCO2w as a target will avoid mismatches in air
and water values and possible bias in results. Investigating if all machine learning approaches show similar
sensitivity to choice of target should be investigated.

Data Availability Statement
The AOML‐ET results (1998–2018) and Takahashi 2010 climatology based on fCO2w data from 1985 to 2018
can be found as part of the RECCAP2 holdings at Müller, J.D. (2023): https://doi.org/10.5281/zenodo.7990823,
Zenodo. The SOCATv2020 gridded data is obtained from https://doi.org/10.25921/4xkx‐ss49 (Bakker
et al., 2020). SOCATv2023 is from https://doi.org/10.25921/r7xa‐bt92 (Bakker et al., 2023). The outputs of
AOML‐ETv2020 and v2023, and predictor variables used can be found under NCEI Accession 0298989: https://
www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0298989.html (Wanninkhof et al., 2024).
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