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Introduction  

The supporting information provides further detail on AOML_ET machine learning and its 
sensitivity to changing predictor variables. The text S1 details the extreme randomized 
trees approach and other machine learning methods. Text S2 describes the mapping 
step of AOML-ET and compares AOML-ETv2020 with that of AOML-ETv2023 to illustrate 
the tail effects. Text S3 shows the influence of predictor variables on AOML-ET. Text S4 
gives the references cited in Text S1 through S4. Figures S1 through S6 provide graphics 
as referenced in the text S1 through S3. Table S1 shows the predictor and target 
variables used in ET along with units and references. The table also shows the differences 
between the variables and nomenclature used in RECCAP2 and in this work. Table S2 
shows the average global flux values and trends for different permutations of AOML-ET 
and the consensus values provided in the Global Carbon Budget, GCB2023.  
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Text S1. 
The Extremely Randomized Trees (ET) and other machine learning methods for 
mapping fCO2w 

 

The Extremely Randomized Trees or Extra Trees (ET) Method is a machine 
learning (ML) ensemble approach that combines many independent trees trained over 
random and equally distributed subsets of the data (Geurts et al., 2006). Its learning 
stage consists of creating many independent decision trees from slightly different input 
data. All of the input data, or bagging ensemble, is randomly subsampled. All trees are 
evaluated independently and averaged to compute the forest estimate. The probability 
that a given input belongs to a given class is interpreted as the proportion of trees that 
classify that input as a member of that class. The ET differs from the more common 
Random Forest (RF) method in that the RF subsamples the input data with replacement, 
whereas the ET uses the whole original sample. The RF chooses the optimum split points 
in the decision process, while ET chooses it randomly (Aznar, 2020). The ET approach is 
computationally efficient and therefore significantly faster than RF and other ML 
methods, making it amenable to testing different permutations to create monthly fCO2w 
maps.  

 
Different ML mapping products have been compared for their ability to determine 

fCO2w fields, notably under the aegis of the Surface Ocean CO2 Mapping (SOCOM) 
intercomparison effort (Rödenbeck et al., 2015). The products have been used in several 
assessments, including the global ocean carbon assessment in RECCAP2 (deVries et al., 
2023). Detailed regional and global comparisons of different mapping products and 
ensemble approaches have been undertaken (e.g., Fay et al., 2021; Gregor et al., 2019; 
Rödenbeck et al., 2022; Chau et al., 2022). The analysis by Gregor et al. (2019) includes 
several different ML approaches and suggests that overall skill of the methods at the 
global scale is similar and that the skill for any given approach is mainly limited by fCO2w 
data availability in undersampled regions and seasons. Gregor et al. (2019) also show 
broad similarity in overall patterns of the fCO2w fields and the magnitude of interannual 
variability of fCO2w for the various ML approaches. In particular, the Northern 
Hemisphere oceans show agreement in fCO2w between methods, while areas with fewer 
fCO2w observations, such as the mid- and high-latitude Southern Hemisphere oceans, 
and regions with large interannual variability, such as the Equatorial Pacific, show greater 
differences between approaches. Aside from differences in the ML-derived fCO2w, 
inconsistencies in modeled surface areas, wind speed products, and the method of 
calculation of fluxes contribute to differences in sea-air CO2 fluxes. To account for these 
differences, area normalization and ensembles (or multi-product averages) are 
increasingly common in analyses and improve consistency (Fay et al., 2021; Roobaert et 
al., 2018). A summary of the annual global sea-air CO2 fluxes using different ML 
approaches used in the Global Carbon Budget (Friedlingstein et al., 2023) is shown in 
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Figure 1. It shows correspondence at the global scale in sea-air CO2 fluxes over time 
between the observation-based methods using ML and interpolation approaches.  

 
The fCO2w and corresponding sea-air CO2 flux maps created with the ET approach, 

referred to as AOML-ET, that are submitted to RECCAP2 cover the period from 1998 
through 2018 (Müller, 2023). It uses the gridded SOCAT v2020 data for training and 
validation. Gridded sea surface temperature (SST), sea surface salinity (SSS), mixed layer 
depth (MLD), chlorophyll-a, position, and time are the predictor variables. The default 
configuration of the AOML-ET sea-air CO2 flux product was produced to meet the 
RECCAP2 requirements and nomenclature. The output is pCO2w values and sea-air CO2 
fluxes on a monthly 1˚ by 1˚ grid. The details of the predictor and target variables, units, 
and nomenclature as prescribed by RECCAP2, and those used in this paper are provided 
in Table S1. When the AOML-ET parameters or nomenclature used in this manuscript are 
different than specified in RECCAP2, they are added in italics. 

 

Text S2. 
Extrapolation using AOML-ET and comparison of AOML-ETv2023 with AOML-
ETv2020  

While the ML approaches are commonly used for mapping of fCO2w and 
determination of flux densities, they can be used to extrapolate fCO2w data with time. 
That is, once the approach is trained, the results can be extrapolated if predictor 
variables are available for the appropriate period. For AOML-ETv2020 that has training 
data through 2019, the monthly fCO2w are extended through 2023 and corresponding 
annual sea-air CO2 fluxes are determined. These are compared with AOML-ET trained 
with the updated SOCAT database SOCATv2023, AOML-ETv2023 that has gridded data 
through 2022. The influence on training of AOML-ET to create the fCO2w fields can be 
gleaned from comparing the last years of the time series using AOML-ETv2020 and 
AOML-ETv2023, where the former extrapolates findings for 2019 through 2022 without 
training data in those years. As shown in Figure S1, extrapolating the results of AOML-
ETv2020 beyond 2020 shows a large increase in influx of -0.7 Pg C between 2020 and 
2022. This trend is not observed in AOML-ETv2023, which is trained with predictors 
through 2022, suggesting that training data over the entire time interval is critical. A 
summary of the statistics of the linear regressions of the annual sea-air CO2 fluxes shown 
in Figure 9 is provided in Table S2. 

 
The SOCATv2020 has 277,462 gridded fCO2w values, while the SOCATv2023 has 

316,963 values, with the tally per year shown in Figure S2, and the number of 
observations in each cell provided in Figure S3a. There are more observations in data-
sparse regions in SOCATv2023 compared to SOCATv2020 (Figure S3b), notably in the 
Davis Straight and Hudson Bay, the Southern Ocean, and Subtropical South Pacific and 
South Atlantic. The extra data of AOML-ETv2023 from 2000-2022 does not only affect 
the results at the end of the record. AOML-ETv2023 shows very similar global fluxes up 
to 2016 to AOML-ETv2020 but a strong divergence thereafter. This is attributed to 
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changes in predictor variables and because there is no training data for AOML-ETv2020 
beyond 2019. Thus, the ET method as applied is not suitable for extrapolation (Figure 
S1). Examples of the spatial differences in flux densities between extrapolated AOML-
ETv2020 values and AOML-ETv2023, for January and July 2020, are shown in the maps of 
Figure S4. For January 2020, significantly greater effluxes are observed in the Western 
Subpolar and Polar North Pacific for AOML-ETv2023 and less uptake in the Subpolar and 
Polar regions of the Western Atlantic. Less uptake is also evident in AOML-ETv2023 in 
the Southern Ocean Antarctic regions around and south of the tip of South America 
(Figure S4a). For July 2020, there is less influx with AOML-ETv2023 in the Northern 
Subpolar regions and around the tip of the coast of South America. A significantly 
greater efflux is in the subtropics of the South Pacific. Of note are the negative values in 
the difference along the coast of Somalia and the Arabian Peninsula in July, indicating 
that AOML-ETv2023 has greater outgassing during the monsoon season (Figure S4d), 
which is poorly represented in AOML-ETv2020. While the differences described for many 
regions can be attributed to new data (Fig S3a), the changes observed in the Arabian Sea 
and in the Western Subpolar and Polar North Pacific are the result of changed 
algorithms using the expanded training dataset, as there is no new data in SOCAT v2023 
in these regions (Figure S3b). 

Text S3. 
The influence of predictor variables on AOML-ET  

Different sources are used for predictor variables (Table S1) that sometimes change 
with time. Changes in satellite remote sensors and platforms can make obtaining 
consistent time series challenging, which can affect the trends in the predictors. For 
AOML-ET, widely available and commonly used gridded products of predictors are used 
(Table S1) that are adjusted to the monthly 1˚ by 1˚ grid. The ET method and other ML 
approaches preclude determining direct causal relationships with individual predictors, 
but qualitative insights can be gained from the global annual trends of predictors and 
corresponding global sea-air CO2 fluxes. Annual area-weighted values versus year are 
shown for SST and MLD (Figure S5a) and for SSS and Chl-a (Figure S5b). The SST, SSS, 
and MLD show a positive trend with time, while MLD decreases with time up to 2018. A 
large step change occurs in 2018 with decreases in SST, SSS, and, in particular, MLD, 
while Chl-a shows a significant increase. The increase in global MLD is likely spurious due 
to a change in the Hybrid Coordinate Ocean Model (HYCOM) model setup going from 
version GOFS3.0 to GOFS3.1 used to estimate the MLDs (https://www.hycom.org/faqs). 
This step change is not apparent in the global fluxes for AOML-ET. Interestingly, omitting 
either MLD or Chl-a has the same effect on the global sea-air CO2 fluxes derived from 
AOML-ETv2020, with a large decrease in ocean sink from 2018-2020 and an accelerated 
uptake thereafter.  

 
The impact of omitting and adding predictor variables is used as a means to 

determine the robustness of the predicted fCO2w values using AOML-ET. The MLD and 
Chl-a were selected for omission as their quality and resolution are of lower fidelity than 
the other predictors, particularly at the start of the record. MLD are model-derived, and 

https://www.hycom.org/faqs
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Chl-a is a satellite ocean color product interpolated for regions and times with cloud 
cover and darkness. The AOML-ET method is relatively insensitive to withholding Chl-a 
and MLD predictor variables. That is, withholding the predictors results in no appreciable 
differences in flux estimates on a global scale up to 2018, but differences show up in 
regional patterns. All runs show approximately the same magnitude, variability, and 
trends in global sea-air CO2 fluxes within their monthly variability of 0.3 PgC yr-1 (Figure 
S1). Omitting Chl-a increases the annual global uptake by about 0.2 PgC yr-1 up to 2018. 
Omitting MLD has a smaller global effect with differences < 0.1 PgC yr-1 for up to 2018. 
The second moment of the wind, <u2>, is added as a predictor as it can both directly and 
indirectly affect fCO2w. The direct effect on fCO2w is through the impact of the CO2 flux 
adding CO2 to the ocean. This has a small influence; for example, a flux density of 0.5 mol 
m-2 yr-1 and a 50 m mixed layer will yield a change in fCO2w of ≈ 0.06 µatm day-1. Indirect 
effects of <u2> of enhanced mixing, erosion of the mixed layer, and upwelling are bigger 
factors for fCO2w. However, adding wind <u2> as a predictor variable does not show any 
large differences in annual global uptake with the default AOML-ET up to 2018 (Figure 
S1). The omission of Chl-a and MLD degrades the skill of AOML-ET slightly and in similar 
amounts compared to the default configuration as summarized in a Taylor diagram 
(Figure 6). Figure 6 includes AOML-ET output created without MLD, without Chl-a, and 
adding <u2> as predictors. The RMSE of fCO2w for both permutations is 23 µatm; 
variability (as expressed as a standard deviation of all data over the 23-year timespan) is 
35 and the correlation coefficient, r2, is 0.83. The addition of <u2> shows similar skill as 
the default configuration with a RMSE of 21 µatm, a r2 of 0.88, and a standard deviation 
between 36 µatm compared to the standard deviation of the data withheld for testing of 
42 µatm.  

 
To investigate how the time-dependent predictor contributes to the trend, JDN 

expressed as month since October 1997 was substituted by annual global averaged 
XCO2a in AOML-ETv2023, and omitted. As described in the main text, using XCO2a as a 
predictor shows very little difference compared to using JDN in global fluxes up to 2019, 
after which the run with XCO2a shows ≈ 0.4 Pg C yr-1 greater uptake attributed to rapidly 
increasing XCO2a (Figure S6). Omitting time and XCO2a as predictors shows a near 
constant global flux of 1.6 ± 0.1 PgC yr-1 for 1998-2022, indicating that the atmospheric 
CO2 increases are the dominant driver of increasing sea-air CO2 fluxes over time. The 
slight decrease in uptake in the scenario without JDN and XCO2a as predictors indicates 
the expected decrease due to changing ocean conditions with surface warming and 
decreasing MLD.  
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Figure S1. Sea-air CO2 fluxes using AOML-ETv2020 and AOML-ETv2023. AOML-ETv2020 
(default) (black solid line); AOML-ETv2023 (solid blue line); AOML-ETv2023 using all 
available data for training without withholding data for testing “ALL” (dashed blue line); 
AOML-ETv2020 omitting Chl-a as predictor (green dashed line); omitting MLD as 
predictor (pink dashed line); including <u2> as predictor (red dashed line). 
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Figure S2. Number of monthly 1˚ by 1˚ cells in SOCATv2020 (solid line) and SOCATv2023 
(dashed line). Each annual update of SOCAT contains the data from the previous version 
and new additions.  
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Figure S3. (a) Locations of the grid cells in SOCATv2020 with number of observations in 
each cell color coded. (b) Locations of the new grid cells in SOCATv2023 compared to 
SOCATv2020 with number of observations in each cell color coded. 
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Figure S4. Flux densities of AOML-ETv2023 for January 2020 (a) and July 2020 (b), and 
difference in fluxes between AOML-ETv2020 and AOML-ETv2023 for January 2020 (c) 
and July 2020 (d). Note the difference in scales between a, b and c, d. Units are mol m-2 
yr-1.  
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Figure S5. Annual area-weighted global values of predictor variables used in AOML-ET. 
(a) SST (dashed line, left axis) and MLD (solid line, right axis); (b) SSS (dashed line, left 
axis) and Chl-a (solid line, right axis). 

 

 
 



 
 

13 
 

Figure S6. Sea-air CO2 fluxes using AOML-ETv2020 and AOML-ETv2023. AOML-ETv2020 
(default) with fCO2w as target (black solid line); AOML-ETv2023 with fCO2w as target (blue 
solid line); AOML-ETv2023 without time as predictor (dashed blue line); AOML-ETv2023 
XCO2a instead of time as predictor (red dashed line). 
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Creation of fCO2 maps 
Variables1    abbrev.  unit  Source/notes  
Training set 
Partial pressure of CO2  spCO2  µatm  monthly gridded data SOCATv20202 

Fugacity of CO2  fCO2w  µatm  SOCAT v20203 
Sea surface temperature SST  ˚C  gridded data SOCAT v2020 
Sea surface salinity  SSS    gridded data SOCAT v2020 
Mixed layer depth  MLD    HYCOM model4   
Julian day   JDN  mo  month since Oct. 1997 
Latitude   LAT  degree 
Longitude   SLON  degree  vector longitude (SIN) 
Longitude    CLON  degree  vector longitude (COS) 
 Chlorophyll-a   Chl-a  log (mg/l) oceancolor.gsfc.nasa.gov 
 
Dependent variable/ Target 
Partial pressure of CO2 spCO2  µatm  for surface water 
Fugacity of CO2  fCO2w  µatm  for surface water 
 
Predictor/Interpolation variable 
Sea surface temperature  STT  ˚C  NOAA OISST 
Sea surface salinity  SSS    HYCOM 
Mixed layer depth  MLD  m   HYCOM 
Chlorophyll-a   Chl-a  log (mg/l) oceancolor.gsfc.nasa.gov5 
Time    JDN  mo  month since Oct. 1997 
Latitude   Lat 
Longitude   SLON    vector longitude (SIN) 
Longitude    CLON    vector longitude (COS) 
 

Creation of flux maps 
Dependent variable  
Sea-air CO2 flux density Fsa  mol m-2 s-1 Fsa = k K0 (1-fice) (pCO2atm-spCO2) 
Sea-air CO2 flux density  Fsa  mol m-2 y-1 Fsa = k K0 (1-fice) (fCO2w-fCO2a) 
Sea-air piston velocity  Kw  m s-1  Wanninkhof (1992, 2014) 
Gas transfer velocity   k  cm hr-1  Wanninkhof (2014)  . 
Schmidt number  Sc    Wanninkhof (2014) 
Second moment wind  <u2>  m2s-2  ERA5 wind6 
Solubility   alpha  mol kg-1atm-1 Weiss and Price (1980) 
Solubility   K0  mol l-1atm-1 Weiss and Price (1980) 
Ice cover   fice  fraction NOAA OISST7 
Water partial pressure  spCO2

  µatm  SOCAT  
Fugacity of CO2 in water fCO2

  µatm  SOCATv2020  
Air partial pressure  pCO2atm

8
 µatm   zonal mo. average xCO2 MBL-RS 

Fugacity of CO2 in air  fCO2a
9
  µatm  zonal mo. average xCO2 MBL-RS  

Partial pressure difference ∆pCO2  µatm  pCO2atm- spCO2 
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Air-water fugacity difference ∆fCO2  µatm  fCO2w-fCO2a
 

Global Flux   fgco2_glob Pg C y-1 Efflux negative in RECCAP2 
Flux    F  Pg C y-1 Efflux positive 
 
1. Extra Trees (ET) regressors used to estimate the spCO2/fCO2w values are: time, location, 

sea surface temperature, sea surface salinity, mixed layer depth, and chlorophyll-a. 
2. SOCAT data are converted from fCO2 to pCO2 to meet the RECCAP2 submission 

criteria. These products are based on the monthly 1˚ by 1˚ gridded SOCATv2020 data 
holdings using datasets with QC flags of A through D and SOCAT data points flagged 
with WOCE flag values of 2 (= good). See, 
https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0210711/ 
SOCATv2020_Gridded_Dat/ SOCATv2020_tracks_gridded_monthly.nc. The submission 
to RECCAP2 is for the period from October 1997 through December 2018. 

3. The SOCATv2020 product is used in the analyses.  
4. Mixed layer depth is based on a criterium of 0.03 change in density and obtained from 

http://orca.science.oregonstate.edu/2160.by.4320.monthly.hdf.mld030.hycom.php.  
5. Chlorophyll-a values are from the NASA Ocean color monthly fields from SeaWiFS, 

and from AQUA/TERRA-MODIS. See, https://oceancolor.gsfc.nasa.gov/. 
6. From https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 where the 

6-hourly 1/4˚ winds are aggregated on a monthly 1˚ by 1˚ grid to produce the second 
and third moments of the wind, <u2>, and <u3>. 

7. From ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2/icec.mnmean.nc following the 
approach of Takahashi et al. (2009), where k is scaled by (1-f), where f is the fraction of 
sea-ice covering the monthly 1˚ by 1˚ grid.  

8. pCO2atm = (P-pH2O) XCO2a , where XCO2a is the interpolated MBL-RS product from 
NOAA/GML: https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html#ghg_product. 

9. fCO2a = Gf(T,S) (P -pH2O) XCO2a, where Gf(T,S) is the fugacity correction and pH2O is 
the water vapor correction as summarized in Pierrot et al. (2009). P is the barometric 
pressure. 

 
Table S1. Parameters used in AOML-ET  
 
  

https://oceancolor.gsfc.nasa.gov/
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Method  Slope 

PgC yr-1 
decade-1 

Std. 
error 
slopeb 

r2 Average 
1998-2020 
PgC yr-1 

St. dev. 
PgC yr-1 

AOML_ETv2020 -0.89 0.059 0.92 -1.66 0.63 
AOML_ETv2020_k_isotope -0.90 0.066 0.90 -1.05 0.64 
AOML_ETv2023 -0.72 0.075 0.82 -1.61 0.56 
AOML_ETv2020_∆fCO2 target -0.51 0.034 0.91 -1.65 0.35 
AOML_ET v2023_∆fCO2 target -0.45 0.030 0.92 -1.58 0.31 
GCB-2023a -0.46 0.034 0.89 -1.85 0.32 

 
 
a. From Global_Carbon_Budget_2023v1.1; https://globalcarbonbudgetdata.org/latest-

data.html 
b. Standard error of the slope; the uncertainties in the text listed the uncertainty of the 

linear regression  
 
Table S2. Linear regressions of the different ML approaches for 1998-2020 
 
 
 


