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Abstract. The global gridded dataset of partial pressure of CO2 (pCO2) in the surface ocean and the 

associated air-sea CO2 flux are crucial for studying climate change and global carbon cycle. However, 

the complex nonlinear dynamics of atmospheric and marine systems, along with limited observational 

data bring significant challenges to the inversion of these data. To address these challenges, a two-stage 

10 machine learning algorithm was developed. This algorithm incorporates a replacement method for 

missing ocean data by introducing ocean model simulations to fill these gaps and a machine learning 

model of dimensionality reduction-clustering-regression to manage system nonlinearity. By integrating 

in-situ observations, satellite observations and reanalysis datasets, this study reconstructs the global sea 

surface pCO2 data at monthly 1°×1°grid from 1993 to 2020, and then derives the corresponding air-

15 sea CO2 flux through the bulk flux formulation. The results demonstrate that the new inversion method 

can effectively capture the complex relationship between pCO2 observations and other oceanic 

characteristics data in the surface ocean, allowing for extrapolation to global ocean regions. Compared 

to other data-based spatio-temporal interpolation methods, the global gridded dataset obtained in this 

study shows leading performance in terms of root mean square error (RMSE) and the coefficient of 

20 determination (R² ). Specifically, the average RMSE of the new dataset is reduced by approximately 

42% and 45% in the Southern Ocean and Arctic Ocean regions comparing with the optimal results 

from other inversion datasets. Additionally, the new global pCO2 dataset successfully reconstructs the 

time series close to the observations in coastal and coral reef regions, indicating that the machine 

learning algorithm can effectively reproduce the time variation characteristics of complex and highly 

25 heterogeneous waters. This study successfully applied a multi-source data fusion approach, offering an 

alternative solution to address the issue of missing ocean observational data, and providing a new 

perspective for the inversion research of oceanic carbon flux.

Keywords. pCO2, Air-sea CO2 flux, Machine learning, Data fusion, Inversion

1 Introduction

30 The ocean plays a vital role in the global carbon cycle, with the air-sea CO2 flux being one of the 

primary focuses of marine carbon cycle research (DeVries, 2022a). As a significant carbon sink within 

the earth system, the ocean absorbs approximately 25% of anthropogenic CO2 emissions in the 

atmosphere annually (Friedlingstein et al., 2023; Intergovernmental Panel on Climate Change (IPCC), 

2022, Chap. 5). Currently, the oceans have stored about 30% of the CO2 emitted by human activities 

35 since the Industrial Revolution, playing a critical role in mitigating climate change (Khatiwala et al., 
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2013; Sabine et al., 2004). A comprehensive global dataset of sea surface partial pressure of CO2 

(pCO2) is essential for studying oceanic carbon sinks and climate change. However, both the ocean and 

atmosphere operate as a highly complex and nonlinear dynamical system, characterized by phenomena 

such as stochastic process, phase shifts and abrupt changes (Liu et al., 2024; Liu Qun-Qun et al., 2015; 

40 Mei et al., 2024). Together, these nonlinear features make pCO₂ inversion especially challenging, as it 

involves analysing complex, non-stationary, and nonlinear data(He et al., 2021). Additionally, 

conducting extensive observations across the vast oceans poses significant challenges and incurs high 

economic costs. Therefore, the available oceanic observation data are sparse and unevenly distributed 

in time and space. The scarcity of observations further complicates the reconstruction of  accurate 

45 global sea surface pCO2 field, and imposes substantial technical difficulties in reconstructing complete 

ocean carbon sink dataset.

Currently, there are two main approaches for reconstructing the spatio-temporal field of sea surface 

pCO2 and air-sea CO2 flux: data-based spatio-temporal inversion methods, and numerical model 

assimilation methods. Data-based inversion methods primarily use observational data of sea surface 

50 pCO2, combined with climate and reanalysis data products. By employing statistical models or machine 

learning techniques, the observational data is interpolated and extrapolated to generate comprehensive 

spatio-temporal fields of sea surface pCO2(Fay et al., 2014; Friedrich and Oschlies, 2009; Jones et al., 

2015; Landschützer et al., 2013; Ono et al., 2004). On this basis, these methods use the reconstructed 

sea surface pCO2 data and the bulk flux formulation to calculate the global sea-air CO2 flux 

55 (Wanninkhof, 2014). The empirical bulk flux formulation takes into account the concentration 

gradients of CO2 between the surface seawater and the adjacent atmosphere, as well as the intensity of 

turbulent exchange processes between the sea and air interface. Using the reconstructed sea surface 

pCO2 fields and satellite-retrieved sea surface temperature, wind speed, and other relevant data, the 

global sea-air CO2 flux is calculated (Land et al., 2015).

60 However, the accuracy of results from this data-based inversion method largely depends on the 

quantity of observational data (Hauck et al., 2020). In some oceanic regions, due to the lack of 

sufficient training data, there may be significant epistemic uncertainty in the reconstruction results 

(Siddique et al., 2022). Another major defect of this method is that the proxy variables used to establish 

reconstruction relationship with sea surface pCO2 observational data, especially those derived from 

65 satellite remote sensing, are often affected by missing data due to factors such as cloud cover and 

seasonal missing orbits, and so on. (IOCCG, 2000; Shutler et al., 2020, 2024). This problem is 

especially prominent in seasonally ice-covered areas such as the Southern Ocean and the Arctic Ocean, 

as well as in coastal regions. Therefore, most data-based inversion datasets have only realized the 

pseudo-global reconstruction of ocean carbon flux (Fay et al., 2021). This data gap further increases the 

70 uncertainty in estimating the global ocean carbon sink. To overcome this issue, the current inversion 

methods primarily adopt two approaches. One approach is to simply exclude regions with severe data 

gaps from the inversion range of the model. The other method is to use a temporary alternative method, 

which typically involve filling in the missing years or months of proxy variables with their 

corresponding monthly climatology calculated from existing data. In cases where the initial period of 

75 the inversion target time is missing data, due to the observational instruments were not yet established, 
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the temporary alternative method usually backfills the missing data with its monthly climatological 

data superimposed with its linear trend. As for the periodic data gaps on large regional scale, such as 

missing chlorophyll concentrations in high-latitude regions during winter, the temporary alternative 

method often imputes them the minimum value of existing observational data from other times for the 

80 missing grid points or fills them with random white noise with an amplitude close to the actual values 

(Brewin et al., 2021; Fay et al., 2021; Gregor et al., 2019). Although these temporary substitution 

methods enable the inversion model to cover as large a spatial range as possible, they may result in 

distorted information being input into the inversion model, thereby increasing the error of reconstructed 

pCO2. And if the spatial coverage of the inverted sea surface pCO₂ field is incomplete, the pCO₂ results 

85 need to be scaled proportionally when calculating the global sea-air carbon flux, which further 

increases the uncertainty of the carbon flux results (Friedlingstein et al., 2023; Hauck et al., 2020).

Numerical model assimilation methods refer to solving the ocean state by invoking numerical 

assimilation techniques into global ocean biogeochemical models (GOBMs)(Dowd et al., 2014). Based 

on initial conditions of a series of physical and biochemical parameters, combined with the constraints 

90 of meteorological data and satellite-derived data, GOBMs simulate the physical, chemical, and 

biological processes affecting sea surface CO2 concentrations and the corresponding spatio-temporal 

variations of carbon cycle components within the ocean, thus constraining the results of surface pCO2 

and air-sea carbon flux (Carroll et al., 2020; Séférian et al., 2020; Wanninkhof et al., 2013). Simulated 

state variables within the model include marine carbon cycle components such as pCO2, DIC 

95 (dissolved inorganic carbon), nutrients and their reservoirs at different depths in the ocean interior. The 

advantage of numerical model assimilation method is that it can be used in evaluating the change of 

marine carbonate system parameters and their roles in climate change or extreme climate events 

(Burger et al., 2020; Gruber et al., 2021; Hauri et al., 2013). The ensemble results of state-of-art models 

are often used to evaluate the trend of variables related to air-sea carbon cycle (Friedlingstein et al., 

100 2023). However, some studies have shown that the simulation errors of numerical model method are 

considerably higher than those of data-based inversion methods (Gruber et al., 2009; Hauck et al., 

2020; Verdy and Mazloff, 2017). Therefore, in order to accurately assess the response and feedback of 

global ocean carbon sinks to global climate change, it is necessary to combine the advantages of data 

interpolation-extrapolation methods and numerical model methods. By addressing their respective 

105 shortcomings, a comprehensive and reliable global sea-air CO2 flux dataset with complete temporal and 

spatial coverage can be established.

Previous studies have widely applied the concept of data fusion to high-quality datasets inversion and 

data prediction in fields of oceanography, meteorology and atmospheric chemistry (Geng et al., 2021; 

Salcedo-Sanz et al., 2020; Sauzède et al., 2020; Vafaei et al., 2022; Wang et al., 2023). Data fusion 

110 schemes can integrate datasets from various sources, including conventional observations, satellite 

remote sensing data, reanalysis data, and three-dimensional model outputs. By effectively utilizing the 

useful information provided by different sources, reconstructed results can meet the requirements of 

constructing highly accurate datasets with full spatial coverage and long temporal spans. Therefore, the 

concept of multi-source data fusion can also be applied to the reconstruction of sea surface pCO2 and 

115 sea-air CO2 flux. The existing data-based spatiotemporal interpolation and extrapolation methods have 
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not utilized the simulation results of GOBMs. However, GOBMs can simulate the spatiotemporal 

variations of physical and biogeochemical components within the ocean, which effectively compensate 

for the insufficiencies of ocean observational data. Therefore, by increasing data sources and 

integrating in-situ observational data, satellite remote sensing data and GOBMs model outputs, a more 

120 complete proxy variables dataset can be provided for the inversion model of air-sea carbon flux. This 

helps to establish datasets with comprehensive temporal and spatial coverage and better reconstruction 

results, thereby improving the data-based spatio-temporal interpolation and extrapolation methods in 

terms of data coverage and reconstruction accuracy.

In this context, this study attempts to introduce GOBMs simulation into the inversion of sea-air CO2 

125 fluxes, combining conventional in-situ observations, satellite remote sensing, and reanalysis data to 

construct a more complete proxy variables dataset. Based on machine learning methods, we explore 

new methods for reconstructing global sea surface pCO2 and sea-air CO2 fluxes. Furthermore, we 

systematically compare the data quality of this new approach with existing data products, evaluating 

the effectiveness of multi-source data fusion and machine learning methods in improving the 

130 performance of sea-air CO2 flux inversions. The remaining sections of this paper will detail the data, 

methods and models used (Section 2), present and evaluation the inversion results (Section 3), and 

discuss the inversion results (Section 4).

2 Data and Methods

This study employs a two-stage inversion model based on machine learning methods to reconstruct the 

135 sea surface pCO2 field used for air-sea CO2 flux calculation. Firstly, using data from historical 

simulations from multiple model and marine elements that characterize the ocean's physical and 

chemical state, a machine learning model is used to filling the non-random missing values in the proxy 

variables dataset. Then, a three-step machine learning model involving dimensionality reduction, 

clustering, and regression is used to establish the nonlinear relationship between filled marine proxy 

140 variables and the sea surface pCO2 observational data, and realize the reconstruction of a globally 

comprehensive sea surface pCO2 field.

2.1 Data

Table 1 summarizes all the input data used in this study, including in situ observational data, satellite-

based data, reanalysis data. The SeaFlux dataset (Gregor, 2023) is also used here to provide 

145 information for flux calculation and uniform comparison between our and other inversion datasets. The 

ocean surface CO2 observational dataset is SOCAT v2022 (Bakker et al., 2022).  SOCAT v2022 is a 

global ocean database that provides important data resources for studying the ocean carbon cycle. It 

collects approximately 33.7 million observations of the global oceans and coastal seas from 1957 to 

2021, quality-controlled by over 100 international marine carbon research groups, with an 

150 observational accuracy better than 5 μatm. Since the direct observational variable of SOCAT is sea 

surface fugacity of CO2, it can be converted to partial pressure of CO2 according to formula (1).

pCO2 = fCO2 × 𝑒𝑥𝑝 [ ― 𝑃𝑎𝑡𝑚(𝐵＋2𝛿)
𝑅𝑇

], (1)
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Because of the sparse spatial and temporal distribution of observational data in global sea surface pCO₂ 

datasets including SOCAT, it is necessary to learn the relationship between proxy elements and in-situ 

155 observations to fill these gaps. Studies have shown that the increasing trend in ocean carbon sinks is 

mainly driven by anthropogenic CO₂ forcing in the atmosphere and regulated by natural variability 

within the ocean (DeVries, 2022b; DeVries et al., 2023; Rohr et al., 2023; Wanninkhof et al., 2013). 

Therefore, the proxy elements selected for this study are categorized into three groups based on the 

physical state of the ocean, the biochemical state of the ocean, and the exchange processes between the 

160 atmosphere and the ocean. The proxy elements include: sea surface temperature (SST), sea surface 

salinity (SSS), mixed layer depth (MLD), sea level anomaly (SLA), and sea surface eddy kinetic 

energy (EKE) that reflect the physical state of the ocean; chlorophyll-a concentration (Chl-a) and 

dissolved inorganic nutrients that reflect the biochemical state of the ocean surface and interior; and 

atmospheric CO₂ mixing ratio (xCO2), 10m wind speed, and sea level pressure (SLP) that indicate the 

165 atmospheric state and air-sea exchange processes. SST, SSS, MLD, and Chl-a have been proven to 

have a close relationship with sea surface pCO₂ and are commonly used as feature variables in 

inversion products (Woolf et al., 2016; Yang et al., 2024). Sea surface eddy kinetic energy (EKE) 

refers to the energy of eddy movements in the ocean, which is mainly related to the eddy structures in 

water currents and plays a key role in the horizontal transport of heat and salinity. Also, studies have 

170 shown that incorporating EKE into the inversion of sea surface pCO₂ can improve the quality of 

inversion results (Gregor et al., 2019). And sea level anomaly (SLA) is used to represent the heat and 

mass transfer in the ocean. Additionally, dissolved inorganic nutrients (DIC) play a vital role in 

primary production and carbon uptake in marine ecosystem. Since nutrients are monthly climate data, 

they are extended to all months within the inversion range based on the mass conservation assumption 

175 and subjected to principal component analysis (PCA), using only the first two principal components as 

feature variables to reduce the model's complexity.
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Table 1 Summary of Datasets and Products Used for Machine Learning Model.

Features Description Dataset Datatype Resolution Time span Source

fCO2
Fugacity of CO2 in 
surface water

SOCAT version 
2022 In-situ observations Gridded to 1°, 

Monthly 1957 to 2021 https://socat.info/index.php/version-2022/

SST Sea surface 
temperature

NOAA Optimum 
Interpolation (OI) 
SST V2

Reanalysis Data 0.25°, Monthly 1981 to date https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.
html

SSS Sea surface salinity EN.4.2.2 Reanalysis Data 1°，Monthly 1900 to date https://www.metoffice.gov.uk/hadobs/en4/

MLD Mixing layer depth
Global Ocean 
Ensemble Physics 
Reanalysis

Reanalysis Data 0.25°, Monthly 1993 to 2020 https://data.marine.copernicus.eu/product/GLOBAL
_MULTIYEAR_PHY_ENS_001_031

SLA Sea surface anomaly CDS dataset Satellite-based data 0.25°, Monthly 1993 to date https://cds.climate.copernicus.eu/doi/10.24381/cds.4
c328c78

EKE Eddy kinetic energy Copernicus-
GlobCurrent Reanalysis Data 0.25°, Monthly 1993 to 2022 https://data.marine.copernicus.eu/product/MULTIO

BS_GLO_PHY_MYNRT_015_003

Ice Ice concentration
NOAA Optimum 
Interpolation (OI) 
SST V2

Reanalysis Data 0.25°, Monthly 1981 to date https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.
html

Chl-a Chl-a concentration Copernicus-
GlobColour Satellite-based data 4 km, Monthly 1997 to date https://data.marine.copernicus.eu/product/OCEANC

OLOUR_GLO_BGC_L4_MY_009_104

DIC phosphate, nitrate 
and silicate

World Ocean Altas 
2018 Reanalysis Data 1°，Monthly 

climatology
- https://www.ncei.noaa.gov/products/world-ocean-

atlas

xCO2
Atmospheric CO2 
mixing ratio

Jena CarboScope 
Atmospheric CO2 
Inversion

Inversion data 5°, 6 hourly 1993 to 2022 https://www.bgc-jena.mpg.de/CarboScope/

U10 10m windspeed ERA5 Reanalysis Data 0.25°, Monthly 1940 to date https://cds.climate.copernicus.eu/doi/10.24381/cds.f
17050d7

SLP Sea level pressure ERA5 Reanalysis Data 0.25°, Monthly 1940 to date https://cds.climate.copernicus.eu/doi/10.24381/cds.f
17050d7
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2.2 Methods

180 Figure 1 illustrates the data and workflow for reconstructing the sea surface partial pressure of carbon 

dioxide (pCO2). The inversion workflow includes obtaining data from multiple sources (Fig1.step1), 

performing data preprocessing including features engineering and gap-filling chlorophyll-a 

concentration field utilizing model historical simulation data (Fig1.step2) and the finally performing 

the three-step pCO2 field inversion algorithm involves dimensionality reduction, clustering, and 

185 regression (Fig1.step3,4,5).

Figure 1 Flowchart of Sea Surface Partial Pressure of CO2 Inversion

Data preprocessing mainly includes the following steps: first, using model historical simulations and 

other feature elements as machine learning inputs to fill in the missing areas in the Chl-a field; second, 

190 temporally extending the climatological data of dissolved inorganic nutrients and performing principal 

component analysis (PCA) to reduce dimensionality; third, applying a log10 transformation to the 

features of MLD, EKE, and Chl-a, which exhibit skewed distributions, and then standardizing all 

feature variables. During the data filling process, the historical simulations of sea surface chlorophyll 

concentration from 18 CMIP6 models were quantitatively evaluated to select 4 models with relatively 
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8

195 good simulation performance: EC-Earth3-CC, IPSL-CM6A-LR-INCA, KIOST-ESM, and MIROC-

ES2L (the evaluating result is later discussed in section 3.1). Then, using the model simulated 

chlorophyll concentration and the other variables of sea surface temperature, sea surface salinity, and 

mixed layer depth as mentioned in section 2.1, the relationship between these proxy variables and the 

satellite-derived GlobColour chlorophyll-a concentration was established using the XGBoost machine 

200 learning regression algorithm. Filled missing values of the GlobColour dataset mainly cover the 

Southern Ocean, Arctic Ocean, and some coastal areas. At the same time, in order to prevent the 

common issue of data leakage1 in machine learning, this study independently preprocessed the training 

dataset with log10 transformation and other feature scaling processing, then applied the same 

preprocessing parameters to transform the validation and test sets, ensuring the isolation of information 

205 between the training data and other data in the training process.

Within the framework of machine learning, we propose a revised three-step algorithm consist of 

dimensionality reduction, clustering, and regression. This algorithm is capable of learning the complex 

relationship between observed pCO2 and selected feature variables. Then ， by applying the trained 

pCO2 inversion model to a complete feature dataset, we can obtain a comprehensive and reconstructed 

210 global sea surface pCO2 dataset ， and can be used in subsequent calculations. The pCO2 inversion 

algorithm draws inspiration from the clustering-regression approach used in inversion products such as 

CSIR-ML6 and SOM-FFN and optimizes upon it (Gregor et al., 2019; Landschutzer et al., 2016). 

Clustering is a commonly used unsupervised machine learning technique in oceanic researches 

(Solidoro et al., 2007). This study firstly subjects all the data to dimensionality reduction before the 

215 traditional clustering-regression approach. This is because applying clustering algorithms to high-

dimensional data often encounters the so-called "curse of dimensionality," where the increase in data 

dimensions leads to sparse samples in high-dimensional space, severely impacting the performance of 

clustering algorithms. Moreover, traditional clustering algorithms such as K-means are not suitable for 

complex and non-linear Earth system data with non-Gaussian distribution (Sonnewald et al., 2020, 

220 2019). Therefore, this study employs the t-distributed stochastic neighbor embedding (t-SNE) method 

for nonlinear dimensionality reduction. This method measures the similarity between data points using 

Gaussian probability distributions in high-dimensional space and t-distributions in low-dimensional 

space. By minimizing the difference in similarities between the high-dimensional and low-dimensional 

spaces, it effectively preserves local features among data points when projecting high-dimensional data 

225 into two- or three-dimension map, aiding subsequent clustering (Maaten and Hinton, 2008). This 

dimensionality reduction algorithm has been used in the partitioning of marine ecoregions and has 

shown that combining clustering algorithms with t-SNE yields better clustering results than using 

clustering algorithms alone in Earth system applications (Azeem et al., 2023; Balamurali et al., 2019). 

Based on the t-SNE dimensionality reduction combined with the spectral clustering algorithm, using 

230 sea surface pCO2 data form SeaFlux, sea surface temperature form OISST V2, sea surface salinity form 

EN4.2.2 s, mixed layer depth from GOEPR, and chlorophyll concentration data supplemented by 

1 The unintentional leakage of data distribution characteristics and other information from the validation and test 

sets into the training set during the preprocessing stage, leading to reduced generalization performance of the 

model in machine learning.
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9

model data, the global ocean can be divided into multiple regions with similar thermodynamic and 

biological characteristics.

After clustering, XGBoost regression algorithm is used for building inversion relationship within each 

235 region. XGBoost model is an optimized tree model based on Gradient Boosting Tree (GBT) with 

several advantages, including high precision, strong noise resistance, and parallel processing 

capabilities (Chen and Guestrin, 2016). XGBoost model uses efficient learning strategies to handle 

sparse features, making it effectively address missing data in remote sensing datasets. Additionally, the 

XGBoost model’s high interpretability and training efficiency make it a powerful tool for feature 

240 learning and numerical regression. The regression model undergoes 10-fold cross-validation and 

Bayesian hyperparameter optimization (TPE) to optimize the regression model’s hyperparameters, 

completing the inversion of global monthly 1°×1°sea surface pCO2 field from 1993 to 2020.

2.3 Calculation of air-sea CO2 flux

The carbon dioxide flux between the sea and the atmosphere interface is commonly calculated using 

245 the bulk flux formulation. This method primarily relies on the difference in partial pressure of CO2 

between the atmospheric boundary layer and the surface layer of seawater, with the influence of other 

factors represented parametrically. Here, the calculation from sea surface pCO2 to air-sea CO2 flux is 

performed by the pySeaFlux library (Gregor and Humphreys, 2021). This library provides the 

necessary auxiliary data and standard parameters required for the calculation, as well as a standard 

250 procedure for filling in the missing values in pCO2 data products. As a result, differences in air-sea flux 

calculated by different inversion products are solely due to the differences in the sea surface pCO2 they 

infer, thus enabling standardized comparisons of air-sea flux between different products. The formula 

for calculating air-sea CO2 flux is as follows:

𝐹CO2 = 𝐾0 ⋅ 𝑘𝑤 ⋅ (1 ― 𝑖𝑐𝑒) ⋅ (𝑝CO𝑠𝑒𝑎
2 ―𝑝CO𝑎𝑡𝑚

2 ), (2)

255 In Equation (2), 𝐾0 represents the solubility of CO2 in seawater calculated using the Weiss (1980) 

formulation. The other variables used for this calculation are salinity from EN4.2.2, sea surface 

temperature from OISSTv2, and sea level pressure from ERA5. 𝐾𝑤 represents the gas transfer velocity, 

calculated using the Wanninkhof (1992) formulation:

𝑘𝑤 =  𝑎·𝑈10
2·𝑆𝑐660, (3)

260 Here, the gas transfer velocity parameter 𝑎 is scaled to a global value of 16.5 cm/hr; 𝑈10 is the 10-meter 

wind speed, with data from the ERA5 wind speed product; 𝑆𝑐660 is the Schmidt number, a 

dimensionless number used to describe the mass transfer properties of CO2 in seawater, calculated 

using sea surface temperature data from OISSTv2. 𝑖𝑐𝑒 represents the sea ice coverage. 𝑝CO𝑠𝑒𝑎
2  is the 

inversion result of partial pressure of CO2 in sea surface; 𝑝CO𝑎𝑡𝑚
2  is the partial pressure of carbon 

265 dioxide in the marine boundary layer at atmosphere, derived from the dry air mole fraction of CO2 

product provided by ESRL. In this study, the flux is defined as positive when CO2 is released from the 

ocean to the atmosphere and negative when the ocean uptakes CO2 from the atmosphere.
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10

Currently, there are two main methods to evaluate the uncertainty of gridded pCO2: the standard 

deviation method and the error decomposition method. The error decomposition method divides 

270 uncertainty and error into three parts: instrumental measurement error, spatial variability, and error due 

to insufficient spatio-temporal sampling (Wang et al., 2014). Theoretically, the error decomposition 

method is more scientific, but its application is limited. The main reason is that, in addition to the 

monitoring data that need to be assessed, it also requires data with high spatial resolution and high 

spatial coverage, such as model simulations or remotely sensed pCO2 data, to assess spatial variability. 

275 However, currently, model or remotely sensed pCO2 data are still in the research stage, and no mature 

products are available, making the error decomposition method difficult to apply in practice. Therefore, 

this paper uses the standard deviation method to evaluate the uncertainties of 𝑝CO𝑠𝑒𝑎
2  and 𝐹CO2. Given 

the high certainty of 𝐾𝑤, sea ice coverage, and the Schmidt number, the uncertainty of the carbon 

dioxide flux is determined by the uncertainties of 𝛥𝑝𝐶𝑂2 and 𝑈10. Through the derivation of error 

280 propagation, we obtain the standard deviation propagation formulation:

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = |𝐹𝐶𝑂2| ×  ( 2 × 𝛿𝑈10

𝑈10
)

2
+ ( 𝛿𝛥𝑝𝐶𝑂2

𝛥𝑝𝐶𝑂2
)

2
,

(4)

2.4 Metrics for evaluation

In this study, we selected bias, Root Mean Squared Error (RMSE), latitude-weighted RMSE, and the 

285 coefficient of determination (R²) as metrics to evaluate the accuracy of the inversion result. Bias is the 

mean of the errors between the model predictions and the target values (Eq.5). RMSE is the square root 

of the arithmetic mean of the squared residuals between the model predictions and the target values 

(Eq.6). Latitude-weighted RMSE is a widely used evaluation metric in geosciences and climate 

research. Compared to conventional RMSE, it replaces the weighting factor with the ratio of the cosine 

290 value of the grid point's latitude to the average latitude cosine value of all grid points, which better 

assesses the average estimation error when data distribution is wide (Eq.7). The coefficient of 

determination (R²) measures the goodness of fit of the model and is determined by the ratio of the 

regression sum of squares to the total sum of squares (Eq.8). In the formulas for each evaluation metric, 

𝑦𝑖 represents the true value of the target variable; 𝑦 represents the mean of the true values; and 𝑦𝑖 

295 represents the model predictions.

𝐵𝑖𝑎𝑠 =  ∑𝑛
𝑖=0

𝑦𝑖 ― 𝑦𝑖

𝑛
, (5)

𝑅𝑀𝑆𝐸(𝑦) =   1
𝑛

 ∑𝑛
𝑖=1 ( 𝑦𝑖 ―  𝑦𝑖)2, (6)

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒一𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑀𝑆𝐸(𝑦) =  1
𝑛

 ∑𝑛
𝑖=1 𝑤𝑖 ( 𝑦𝑖 ―  𝑦𝑖)2,  𝑤𝑖 =  

𝑐𝑜𝑠 𝑙𝑎𝑡(𝑖)
1
𝑛

 ∑𝑛
𝑖=1 𝑐𝑜𝑠 𝑙𝑎𝑡(𝑖), (7)

𝑅2 =  1 ―
∑𝑛

𝑖=1 ( 𝑦𝑖 ― 𝑦𝑖)2

∑𝑛
𝑖=1 ( 𝑦𝑖 ―  𝑦)2, (8)
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300 3 Model building and training

3.1 Evaluation and Selection of GOBM Products

First, as introduced in Section 2.2, data form GOBMs was selected to fill the gaps in chlorophyll data. 

Sea surface chlorophyll concentration is one of the primary factors controlling the variability of sea 

surface partial pressure of CO2 (pCO2), reflecting the total amount of phytoplankton. It is also one of 

305 the factors with the most missing observation data globally. Within the scope of this study, the 

GlobColour chlorophyll-a inversion product, which combines data from multiple ocean color remote 

sensing satellites, covered only about 66% of the global ocean grid points. The ocean is a complex 

system with interrelated variables. To achieve a comprehensive inversion of global sea surface carbon 

flux, a complete set of feature variable fields is required. The coupled model intercomparison project 

310 (CMIP), organized by the World Climate Research Programme (WCRP), provides valuable data and 

platforms for climate-related research (Eyring et al., 2016). In CMIP6, coupled ocean models' 

simulations of marine biogeochemical cycles offer crucial support for studying climate change and 

ocean acidification. Thus, using model-simulated sea surface chlorophyll concentrations to fill in the 

gaps in observational data is a practical solution. To select the best model data to fill these gaps, this 

315 study first evaluated the historical simulation data of sea surface chlorophyll concentration from 18 

CMIP6 models. All model and observation data were processed to match the temporal and spatial 

resolution of the inversion outputs, i.e., global monthly data at 1°×1° resolution.

Figure 2 presents the evaluation results of the sea surface chlorophyll concentration simulated by the 18 

CMIP6 models. As is shown in Figure 2a, the remote sensing inversion data for sea surface 

320 chlorophyll-a concentration show significant spatial heterogeneity. High chlorophyll concentration 

areas are concentrated in regions of high primary productivity, such as temperate seas and coastal 

upwelling areas, while low concentrations are found in the subtropical gyres (Fig.2a). Figures 2b-s 

show the distribution of differences between each model's simulation and satellite inversion data. Most 

models exhibit small estimation biases, except for MPI-ESM-1-2-HAM, MPI-ESM1-2-LR, and MPI-

325 ESM1-2-HR, which overestimate sea surface chlorophyll concentration (Figures 2n-p). Additionally, 

many models tend to underestimate chlorophyll concentration in coastal high-value areas in the remote 

sensing inversion data. 
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Figure 2 Evaluation of Modeled Sea Surface Chlorophyll Quality. (a) Average spatial field of GlobColour 
330 sea surface chlorophyll-a concentration product; (b) Average spatial field of the difference between 

ACCESS-ESM1-5 model sea surface chlorophyll concentration and GlobColour chlorophyll-a 
concentration product; (c) Same as (b) but for the CanESM5 model; (d) CESM2; (e) CESM2-FV2; (f) 
CESM2-WACCM; (g) CESM2-WACCM-FV2; (h) CMCC-ESM2; (i) EC-Earth3-CC; (j) GFDL-ESM4; (k) 
IPSL-CM6A-LR; (l) IPSL-CM6A-LR-INCA; (m) MIROC-ES2L; (n) MPI-ESM-1-2-HAM; (o) MPI-ESM1-

335 2-LR; (p) MPI-ESM1-2-HR; (q) NorESM2-LM; (r) NorESM2-MM; (s) KIOST-ESM
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Comparing model-estimated chlorophyll concentrations with satellite-derived chlorophyll-a 

concentrations remains a challenging task in ocean modeling. Therefore, this study uses three 

indicators for quantitative evaluation: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 

Mean Bias Error (MBE), and the interannual variability index Riav (Jönsson et al., 2023). Riav quantifies 

340 the model's performance in simulating chlorophyll concentration on an interannual scale, with values 

closer to 0 indicating better simulation results (Rödenbeck et al., 2015). Based on the RMSE, MAE, 

and MBE evaluation results of the model-simulated sea surface chlorophyll concentration, it is evident 

that 15 of the 18 models have small simulation errors, except for MPI-ESM-1-2-HAM, MPI-ESM1-2-

HR, and MPI-ESM1-2-LR (Table 2). Overall, the evaluation results show that EC-Earth3-CC, IPSL-

345 CM6A-LR-INCA, KIOST-ESM, and MIROC-ES2L have better overall simulation performance 

compared to the other 14 CMIP6 models. Therefore, in the subsequent experiments of this study, the 

simulation data from these four models were used to fill the gaps in chlorophyll observations. These 

data, combined with sea surface temperature, sea surface salinity, and mixed layer depth as feature 

variables, were used to construct the relationship between these variables and satellite-derived 

350 GlobColour chlorophyll concentrations using the XGBoost machine learning regression algorithm. 

This approach filled the GlobColour data gaps to generate a complete feature variable dataset.

Model RMSE MAE MBE RIAV

ACCESS-ESM1-5 0.64 0.28 0.01 0.9

CanESM5 0.74 0.24 -0.07 1.05

CESM2 0.72 0.25 0.03 1.32

CESM2-FV2 0.7 0.24 0.02 1.13

CESM2-WACCM 0.72 0.25 0.04 1.13

CESM2-WACCM-FV2 0.71 0.25 0.03 1.18

CMCC-ESM2 0.7 0.2 -0.09 0.82

EC-Earth3-CC 0.63 0.21 0 0.77

GFDL-ESM4 0.67 0.29 0.11 0.88

IPSL-CM6A-LR 0.68 0.23 0 0.63

IPSL-CM6A-LR-INCA 0.66 0.22 0 0.59

KIOST-ESM 0.62 0.19 -0.18 1.07

MIROC-ES2L 0.55 0.27 0.1 0.77

MPI-ESM-1-2-HAM 1.57 0.7 0.53 8.05

MPI-ESM1-2-HR 2.04 0.94 0.8 12.06

MPI-ESM1-2-LR 1.45 0.63 0.45 6.28

NorESM2-LM 0.7 0.36 0.14 0.89

NorESM2-MM 0.69 0.36 0.13 1.09

Table 2 Evaluation Results of Modeled Sea Surface Chlorophyll Concentration
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3.2 Training of pCO2 Inversion model

After constructing a complete feature variables dataset, this study applied a three-step algorithm of 

355 dimension reduction, clustering, and regression to learn the complex relationships between pCO2 

observation data and feature variables, thus training the pCO2 inversion model. In this stage, sensitivity 

experiments were conducted to test different cluster counts to determine the optimal parameter. Since 

clustering algorithms are unsupervised and lack post-hoc validation, traditional metrics such as 

silhouette coefficient and Davies-Bouldin index have limitations when applied to complex data. 

360 Therefore, multiple cluster numbers and different clustering algorithms were used for clustering and 

regression calculations. The final choice of the cluster number parameter was based on the inversion 

quality of the pCO2 field models obtained from different cluster numbers.

For each clustering configuration, a 10-fold cross-validation combined with a hyperparameter 

optimization algorithm was used to train the regression model's hyperparameters. In 10-fold cross-

365 validation, the dataset is randomly divided into ten parts, with nine parts used as the training set and 

one as the test set in rotation. Based on this, the Tree-structured Parzen Estimators (TPE) Bayesian 

hyperparameter optimization algorithm was used for 200 iterations, using the average error from cross-

validation as the loss function to find the global optimal solution of different hyperparameter 

combinations. During the experiments, the Root Mean Square Error (RMSE), Mean Absolute Error 

370 (MAE), and Bias were used to evaluate the uncertainty of the machine learning model's inversion 

(Figure 3). Lower values of these indicators indicate higher limit of the model's inversion capability. To 

more accurately assess model performance, the holdout method was further employed on training 

dataset with different clustering configurations and above-mentioned trained hyperparameters. 

Specifically, the original training dataset was randomly split into 90% training data and 10% validation 

375 data, repeated ten times. After each random sampling, the model with pre-trained hyperparameters was 

used to learn the training data and evaluated on the corresponding validation data. The average of these 

ten validation results was taken as the final validation result, while the standard deviation of these ten 

results was calculated to indicate the uncertainty of model performance. When the holdout method's 

error is similar to the optimal training result, it indicates low uncertainty in the model's generalization 

380 process.

Figure 3 shows the comparison of different clustering schemes and cluster numbers. It can be observed 

that during training, the t-SNE dimension reduction combined with the spectral clustering algorithm 

used in this study performed slightly better than the k-means++ clustering algorithm. Specifically, after 

same procedure of hyperparameters optimization, the RMSE and MAE of the five models with cluster 

385 numbers 13 to 21 were lower than those of the corresponding k-means++ results (Figures 3a and 3b). 

This indicates that dimension reduction before clustering benefits subsequent pCO2 field calculations. 

Compared to k-means++, the t-SNE combined with spectral clustering algorithm produced smoother 

cluster boundaries and fewer instances of intermixing at cluster borders. In addition, both clustering 

algorithms showed a positive bias in inversion results, suggesting a tendency to overestimate sea 

390 surface pCO2 (Figure 3c). Comparing the training errors and the average validation errors from holdout 

method revealed that the t-SNE non-linear dimension reduction combined with the spectral clustering 

algorithm had validation errors close to training errors, indicating good generalization performance. In 
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contrast, the inversion results based on k-means++ clustering were more sensitive to different cluster 

numbers, with larger variations in different sampling test (Figure 3a). These results suggest that the t-

395 SNE non-linear dimension reduction combined with spectral clustering improves the inversion 

capability of subsequent machine learning models, producing results with smaller errors and less 

dependence on the cluster number. Finally, comparing the configurations showed that using the t-SNE 

non-linear dimension reduction algorithm with 17 clusters yielded the smallest bias and lowest 

uncertainty among the ten holdout validations, indicating high robustness. Therefore, in the subsequent 

400 study, the machine learning model using t-SNE combined with spectral clustering and 17 clusters will 

be trained on the entire dataset, and this TSSCXG-17 inversion results will be used for evaluation and 

carbon flux calculation, ultimately producing the global monthly 1°×1° sea surface pCO2 field 

inversion results from 1993 to 2020.

405 Figure 3 Heatmap Showing Average (a) RMSE, (b) MAE, and (c) Bias Under Different Clustering 
Configurations. Clustering configurations consist of two algorithms (t-SNE combined with spectral 
clustering and K-means++) and 13 to 21 clusters. Rows represent the number of clusters, and columns 
represent training error and the average error and uncertainty of 10 hold-out validations.

Overall, the sea surface pCO2 reconstructed in this study fits the SOCAT dataset used for training well 

410 and accurately reproduces the widely recognized spatial distribution pattern of pCO2 (Takahashi et al., 

2009). The spatial distribution of model estimation residuals is shown in Figure 4. The temporal-

averaged estimation residuals are generally small, and their spatial distribution somewhat reflects the 

spatial characteristics of different clusters. Additionally, in open ocean areas, the model's estimation 

error is relatively small, with larger errors concentrated in the equatorial regions, especially the eastern 

415 equatorial Pacific and equatorial Atlantic, and also in the Southern Ocean and Antarctic coastal areas 

(Figure 4a). The inversion-observation plot shows some overestimation of low values and 

underestimation of high values by the machine learning model (Figure 4b). Overall, the dimension 

reduction-clustering-regression approach and XGBoost machine learning regression algorithm 

effectively construct the non-linear relationship between feature variables and observations. The 

420 reconstructed pCO2 field shows minor differences from the learned SOCAT pCO2 observation field, 

with an overall RMSE of only 5.302 µatm and a correlation coefficient of 0.993, demonstrating the 

machine learning model's capability to learn the relationship between sea surface pCO2 and 

atmospheric and oceanic feature variables.
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425 Figure 4 Grid Bias (a) and Scatter Density Plot (b) of TSSCXG-17 pCO2 Inversion Values

4 Results and Evaluation

4.1 Evaluation with Independent Ocean Products

To evaluate the quality of the sea surface pCO2 inversion, it is necessary to objectively evaluate the 

inversion results with observation data independent of SOCAT data set. Therefore, the LDEO 

430 (Lamont-Doherty Earth Observatory, v2019 version) dataset was used to assess the spatio-temporal 

reconstruction of sea surface pCO2 in this study (Takahashi et al., 2017). The 2019 version of the 

LDEO dataset collected approximately 14.2 million global sea surface pCO2 observations, covering the 

period from 1957 to 2019 and including both open ocean and coastal areas. The LDEO dataset, which 

has undergone quality control, provides monthly 1°×1° gridded pCO2 observational data with an 

435 uncertainty of ±2.5 µatm. To validate the effectiveness of our proposed three-step reconstruction 

algorithm of dimension reduction-clustering-regression, we further compared the results with other 

data-based inversion datasets, which were all trained using SOCAT data. Additionally, to assess the 

impact of completing the chlorophyll feature variable field on inversion results, the global ocean was 

divided into seven regions: Southern Ocean, Arctic Ocean, North Pacific, South Pacific, North Atlantic, 

440 South Atlantic, and Indian Ocean. Since different pCO2 products cover different time spans, we 

selected the pCO2 inversion results from 1993 to 2019 for comparison.

Dataset Version Method
Time 

coverage
Reference

LSCE-

FFNN 
v2022 Deep learning 1985 to 2021 Denvil-Sommer et al., 2019

SOM-FFN v2022 Deep learning 1981 to 2021 Landschützer et al., 2016

CSIR-ML6 v2021 Machine learning 1982 to 2020 Gregor et al., 2019

NIES-NN v2020 Deep learning 1985 to 2019 Zeng et al., 2014

JMA-MLR v2020 Multiple linear regression 1990 to 2019 Iida et al., 2021

JENA-MLS v2023 Diagnostic model 1957 to 2022 Rödenbeck et al., 2013

Table 3 Datasets Used in Comparative Evaluation
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Figure 5 presents the relative simulation skill of each inversion dataset to the LDEO observational data, 

with Figures 5a-h showing the evaluation results for the global ocean and the seven sub-regions, 

445 respectively. From Figure 5, it can be seen that the scatter points of the six inversion datasets and 

TSSCXG-17 reconstruction are close to each other on the Taylor diagram, reflecting similar errors, 

correlation coefficients, and standard deviations for the LDEO dataset. On a global scale, all inversion 

datasets underestimated the standard deviation of the sea surface pCO2 , revealing a shortcoming in 

capturing the range of sea surface pCO2 variability (Figure 5a). Regionally, the TSSCXG-17 inversion 

450 results were closer to the LDEO observational data in most areas, especially in the Southern Ocean, 

Arctic Ocean, North Pacific, and South Pacific, where TSSCXG-17 achieved higher correlation 

coefficients and standard deviations that were very close to the observational data (Figures 5b-e). 

Notably, in the Southern Ocean and Arctic Ocean, where chlorophyll field gap-filling was crucial, the 

evaluation results of TSSCXG-17 dataset outperformed the average inversion result of the other models 

455 (Figures 5b, c). According to the LDEO dataset, all models performed worst in reconstructing pCO2 in 

the South Atlantic among the seven regions. This may be due to the lack of observational data, uneven 

sampling points, or different time spans of sampling observations in the SOCAT and LDEO datasets 

within this region.

460 Figure 5 Comparison of Sea Surface pCO2 Estimates from Different Inversion Datasets and pCO2 
Observational Data from the LDEOv2019 Dataset. (a) Global ocean evaluation results, (b)-(h) regional 
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evaluation results for the Southern Ocean, Arctic Ocean, North Pacific, South Pacific, North Atlantic, South 
Atlantic, and Indian Ocean, respectively. Due to temporal and spatial gaps in the other inversion datasets 
being compared, the standard deviation in the Taylor diagram is replaced by the ratio of the estimated 

465 standard deviation to the measured standard deviation. The legend in the upper right corner of the small 
figure shows the names of the inversion datasets and the total number of grid points used for evaluation in 
each region.

The comparative assessment of RMSE and R² indicators show that the sea surface pCO2 inversion 

results based on TSSCXG-17 outperform other datasets (Table 4). Globally, the RMSE of our inversion 

470 was 24.45 µatm, ranking second among the seven datasets compared and close to the uncertainty 

reflected by the training error; the R² score was 0.73, better than the other six inversion datasets. The 

TSSCXG inversion results in the Southern Ocean had an RMSE of 16.80 µatm and an R² of 0.92, while 

in the Arctic Ocean, the RMSE was 16.17 µatm and the R² was 0.91, both significantly outperforming 

other SOCAT-based inversion models.

Dataset area RMSE R2 area RMSE R2 area RMSE R2

TSSCXG-17 24.45 0.73 16.80 0.92 16.17 0.91 

LSCE-FFNN 26.72 0.62 29.03 0.58 38.58 0.59 

SOM-FFN 31.41 0.55 34.42 0.64 31.40 0.67 

CSIR-ML6 29.03 0.59 31.04 0.66 33.09 0.65 

NIES-NN 31.57 0.48 40.73 0.40 48.18 0.35 

JMA-MLR 23.18 0.62 31.29 0.48 29.76 0.37 

JENA-MLS

Global

28.82 0.63

Southern 

Ocean

32.68 0.69 

Arctic 

Ocean

29.37 0.71 

475 Table 4 Comparison of pCO2 Observational Data from the LDEOv2019 Dataset and Sea Surface pCO2 
Estimates from Different Inversion Datasets. The table shows global average results and average evaluation 
results for the Southern Ocean and Arctic Ocean.

4.2 Evaluation with Time-Series and Autonomous Platform Data

In addition to the LDEO dataset, this study also used data from time series stations to validate the sea 

480 surface pCO2 inversion results. Time series stations can directly monitor sea surface partial pressure of 

CO2 and other carbonate system parameters. Some stations provide long-term time series observations, 

which can be used to evaluate the model’s ability of reconstructing the temporal trends and variability 

of sea surface pCO2 (Bushinsky et al., 2019; Chai et al., 2020). This study selected sea surface CO2 

partial pressure time series data from 35 observation stations across the world, each with long-term 

485 observations ranging from several months to several years. In calculation, we excluded observations 

marked as doubtful, abnormal, or faulty, retaining only those marked as good, and resampled the raw 

data to monthly time series for inversion result evaluation. These moored stations are distributed in the 

Pacific (27), Atlantic (6), Indian Ocean (1), and Southern Ocean (1). Based on the environment of their 

location, these stations were categorized into open ocean (18), coastal ocean (10), and coral reef ocean 

490 (7). For robust evaluation, we compared the inversion results at the nearest grid point for coastal and 

coral reef stations, and the average of the four nearest grid points for open ocean stations. Note that 

some station data were included in the SOCAT dataset and were used for model training, so evaluation 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5002302

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



19

errors may be lower for these data. Nonetheless, since all machine learning and deep learning models 

compared used SOCAT data for pCO2, comparing these time series still reflects the relative strengths 

495 of different inversion datasets.

Table 5 shows the evaluation results of different inversion datasets against observational data in three 

types of marine regions. Regarding data coverage, most datasets provided inversion results for grid 

points at open ocean and coral reef stations, with most data missing occurring in coastal regions. The 

missing of estimates in coastal environments reflects the coverage limitation of previous data-based 

500 machine learning inversion datasets. After gap-filling the feature variables, TSSCXG provided 

inversion results for all 35 observation stations, meeting one of this study’s goals: achieving global 

ocean coverage for sea surface pCO2 and air-sea carbon flux inversion. In terms of accuracy, all 

datasets showed lower errors in open ocean regions and higher errors in coral reef and coastal regions 

(Table 5). Time series analysis revealed RMSE values of approximately 11-25 µatm in the open ocean, 

505 around 20-30 µatm in coral reef regions, and between 35-80 µatm in coastal areas. This discrepancy is 

likely due to the high spatio-temporal variability of the carbonate system in coral reef and coastal 

regions, where comprehensive observations of the carbonate system are still lacking. Consequently, the 

limited observational data and generalization capability of machine learning models currently hinder 

high-precision reconstruction. Among the inversion datasets, TSSCXG had the lowest RMSE and 

510 highest correlation and determination coefficients in open ocean regions, indicating superior inversion 

quality compared to other products. Considering inversion results with data reconstructed in coral reef 

and coastal regions, TSSCXG-17 performed best among all 7 data products in coastal regions and 

second best in coral reef regions, showing lower quality than JENA-MLS.

Open Ocean (18) Coral Reef (17) Coastal (10)
Dataset

RMSE Corr R2 missing RMSE Corr R2 missing RMSE Corr R2 missing

CMEMS-

FFNN
14.74 0.78 0.4 1 29.11 0.72 -0.52 0 63.09 0.61 0.07 4

CSIR-ML6 14.96 0.79 0.43 0 29.87 0.74 -0.84 0 66.81 0.59 0.01 1

JENA-MLS 11.76 0.86 0.59 0 24.90 0.81 -0.67 0 38.30 0.83 0.56 0

JMA-MLR 18.17 0.72 0.11 0 32.73 0.69 -1.01 0 89.74 0.20 -0.56 5

MPI-

SOMFFN
15.37 0.76 0.37 0 30.89 0.62 -0.95 0 65.76 0.07 -0.36 6

NIES-FNN 23.54 0.61 -0.68 0 30.99 0.64 -1.13 0 75.70 0.48 -0.19 1

TSSCXG-17 11.41 0.87 0.69 0 24.28 0.80 -0.05 0 52.24 0.79 0.33 0

Table 5 Comparison of Sea Surface pCO2 Time Series Data from Observational Stations and Sea Surface 
515 pCO2 Estimates at Corresponding Grid Point from Different Inversion Datasets. The data in the table are 

the average evaluation results for all non-null grid points. If the inversion dataset has no inversion results at 
the grid point of the observation station, it is recorded as missing.

Further analysis of the temporal characteristics of time series stations data and the reconstruction 

capability of the TSSCXG-17 machine learning inversion model evaluated model performance at 

520 various observation stations. In the three types of regions, stations with long and continuous 

observation periods were selected, and their sea surface pCO2 observations were compared with 

TSSCXG-17 model reconstructions (Figure 6). Both observed and reconstructed sea surface pCO2 
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showed an upward trend over the years and seasonal variations with lower values in winter and higher 

values in summer (Figure 6). Among the 18 open ocean stations, 16 had reconstruction errors below 10% 

525 of the global average sea surface pCO2, with 14 stations having errors below 5%. The largest open 

ocean inversion error was at the TAO165E station (0°, 165°E, equatorial western Pacific). Time series 

analysis indicated a strong consistency between the reconstructed results and observed trends, though 

there were some deviations in fitting winter low anomalies and summer highs (Figure 6).

530 Figure 6 Examples of Sea Surface pCO2 Observational Data and Inversion Data at Corresponding Grid 
Points for Open Ocean Observational Stations. The observation stations are (a) BOBOA (15°N, 90°E); (b) 
CCE1 (33.48°N, 122.51°W); (c) Iceland (68.0°N, 12.6°W); (d) KEO (32.28°N, 144.84°E); (e) Papa (50.13°N, 
144.84°W); (f) Stratus (19.70°S, 85.60°W); (g) TAO110W (0°, 110°W); (h) TAO140W (0°, 140°W); (i) 
TAO170W (0°, 170°W); (j) WHOT (22.67°N, 157.98°W). The monthly observational data are shown as blue 

535 scatter points, the inversion results from this study are shown as black solid lines, and other inversion 
datasets are detailed in the legend.
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Additionally, coastal regions are intersection points for terrestrial, atmospheric, and marine carbon 

cycles, with highly active biogeochemical cycles. The seasonal variability of sea surface CO2 partial 

pressure and air-sea carbon flux in coastal regions far exceeds that in open oceans, with greater 

540 differences among different coastal stations. In coastal regions, TSSCXG-17 dataset can reconstruct 

direction of seasonal variation of coastal areas. However, due to coarse spatial resolution, all machine 

learning-based inversion datasets tend to underestimate the seasonal variability of sea surface CO2 in 

coastal areas. Time series evaluations showed that ten coastal stations showed in Figure 7 had inversion 

results with an average correlation coefficient of 0.795. But the machine learning-based inversion 

545 datasets exhibit larger errors. Among similar datasets, the TSSCXG-17 dataset has the smallest error, 

though it is still higher than the Jena-MLS dataset, which is based on diagnostic inversion models. 

Among all stations used for validation, Coastal LA, Coastal MS, and First Landing OA stations had 

poor inversion results, with wrongly reproduced seasonal variation, evident low and high value 

overestimation, and abnormal high values. indicate that the lack of training data and insufficiently fine 

550 inversion resolution still hinders the model’s accuracy in reconstructing coastal areas.
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Figure 7 As in Figure 6, observational data for coastal observational stations. The observation stations are 
(a) Cape Elizabeth (47.35°N, 124.73°W); (b)CB-06(); (c)CCE2(); (d) GAKOA (59.91°N, 149.35°W); (e) 
GOM (43.02°N, 70.54°W); (f) Kodiak (57.70°N, -152.31°W); (g) La Push (47.97°N, 124.95°W); (h)M2(); 

555 (i)NH-10(); (j) SE ALASKA OA (56.26°N, 134.67°W).

Moreover, sea surface pCO2 in coral reef regions is primarily controlled by their ecosystems and 

calcium carbonate production. Studies have found that the diurnal variability of sea surface pCO2 in 

coral reefs can be up to 10 times that of open oceans. Time series analysis showed a significant 

interdecadal increase in coral reef sea surface pCO2, with smaller seasonal variations (Figure 8). 

560 Comparisons of observed and reconstructed results indicated good reconstruction at some stations like 

BOBOA, Chuuk_K1, and Crescent Reef, but some stations showed small regression model errors with 

low determination coefficients, reflecting insufficient model fitting for coral reef regions. The machine 
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learning model, trained mainly on open ocean samples, reconstructed the carbon dioxide partial 

pressure for coral reef regions, leading to decreased model performance in some areas.

565
Figure 8 As in Figure 6, observational data for coral reef observational stations. The observation stations 
are (a) Ala Wai (21.28°N, 157.85°W); (b)Crescent Reef (32.40°N, 64.79°W); (c) Chuuk (7.46°N, 151.90°E); 
(d) Hog Reef (); (e) Kaneohe (21.48°N, 157.78°W); (f)Kilo Nalu(); (g) La Parguera ().

4.3 Feature Importance in Inversion Models

570 Although machine learning models cannot accurately establish dynamic equations between feature 

variables and target observations, we can understand the utilization of input features in the trained 

regression model using the characteristics of the XGBoost model by each feature’s importance. Figure 

9 shows the relative importance of each feature variable in the XGBoost regression models trained for 

the 17 clusters configuration. In tree-based models like XGBoost, feature importance can be measured 

575 by "information gain," which represents the average gain brought by a feature across all tree splits. This 

is the average contribution of each feature in every tree, indicating the average impact of the feature on 

the optimization of the objective function during the node splitting process. In the application of 

machine learning models, feature importance is a key metric, where higher feature importance indicates 

a greater contribution of that feature to generating predictions. The heatmap in Figure 10 displays the 
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580 relative importance of features within the 17 clusters. By definition, the sum of the relative importance 

of all features within the training model for each cluster is 1. The bar chart on the right side of Figure 

10 represents the sum of the relative importance of the 12 feature variables across all clusters, 

reflecting the contribution of different feature variables to the reconstruction results of the global sea 

surface CO2 partial pressure field.

585 Globally, the relative importance of input features varies across regions. Key variables such as mole 

fraction of CO2 in dry air(xCO2), mixed layer depth (MLD), sea surface temperature (SST), chlorophyl-

a concentration (Chla), and sea surface salinity (SSS) are the dominant features in terms of information 

gain, while other feature variables have relatively smaller influence. Specifically, the influence of sea 

ice and eddy kinetic energy (EKE) is minimal and are significant only in specific regions. Although 

590 there is significant spatiotemporal variability in sea surface CO2 partial pressure, it exhibits a long-term 

upward trend driven by the increase in atmospheric CO2 concentration globally. Therefore, despite the 

primary influencing factors varying across different regions, xCO2 is the feature with the highest 

relative importance in the regression model, reflecting that external forcing from natural and 

anthropogenic CO2 emissions is the main factor influencing the evolution of sea surface CO2 partial 

595 pressure. Next in importance are mixed layer depth and sea temperature. Mixed layer depth, 

representing ocean circulation and vertical mixing, provides the critical information in areas like the 

eastern equatorial Pacific (cluster 15), low-latitude Southern Pacific and Indian Oceans (cluster 5), and 

the mid-to-high latitude Atlantic Ocean (clusters 9, 12, 13). SST contributes over 30% of the 

information gain in the South Pacific Subtropical Gyre (cluster 14) and about 17% in the eastern 

600 equatorial Pacific (cluster 15). The equatorial Pacific releases a large amount of CO2 to the atmosphere 

annually, significantly influenced by the interannual variability of the El Niño-Southern Oscillation 

(ENSO) phenomenon, contributing to much of the global ocean carbon sink's interannual variability 

(Chatterjee et al., 2017; Liu and Xie, 2017; Rödenbeck et al., 2022). Chlorophyll concentration is the 

most important feature variable in the Southern Ocean region (cluster 1), consistent with previous 

605 research results (Yang et al., 2024). This indicates that after feature imputation, the imputed 

chlorophyll concentration in this region contains information from other variables such as SST, salinity, 

and MLD. This explains the strong performance of the TSSCXG-17 machine learning model in the 

Southern Ocean. In summary, the ocean carbon cycle is influenced by atmospheric external forcing, 

ocean thermodynamics, ocean circulation, and biochemical processes, which together shape the 

610 complex evolution of global sea surface CO2 partial pressure.
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Figure 9 Ocean Clustering Results Using t-SNE Nonlinear Dimensionality Reduction and Spectral 
Clustering Algorithm with 17 Total Clusters

615 Figure 10 Feature Importance Obtained from the Trained Model. The relative importance of feature 
variables in the 17 clusters (left, heatmap) and the total relative importance of the 12 feature variables 
across all clusters (right, bar chart) are shown.

4.4 Results of Global Air-sea CO2 Flux Inversion

Based on the formula described in Section 2.3, this study calculated the global air-sea carbon flux at a 

620 monthly 1°×1° spatial resolution from 1993 to 2020. Figure 11 shows the climatological mean spatial 

distribution, the uncertainty of the reconstruction results, the interannual trend, and the amplitude of 

seasonal variation of the air-sea CO2 flux inversion within the reconstruction period. In Figure 11a, 

negative values indicate that the direction of the CO2 flux is from the atmosphere to the ocean, and 

positive values indicate the opposite. As shown in Figure 11, there is a strong CO2 outgassing from the 

625 ocean to the atmosphere in the equatorial Pacific Ocean during the period from 1993 to 2020, while the 

mid-latitude regions of both the Northern and Southern Hemispheres show strong ocean uptake, 

consistent with previous studies (Gruber et al., 2009; Takahashi et al., 2009). Additionally, the time 

series for most grid points in the global ocean show a significant increasing trend of ocean carbon 
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uptake from 1993 to 2020 (Figure 11c). The centers of the enhanced carbon sink are concentrated in the 

630 mid-to-high latitude regions of both hemispheres. The Southern Ocean, acting as a weak carbon source, 

shows a decreasing trend in carbon flux to the atmosphere year by year (Figure 11c). The regions with 

higher uncertainty in carbon flux are concentrated in the high latitudes of the Northern Hemisphere 

(Figure 11b). The spatial distribution characteristics of uncertainty are similar to those in other studies, 

but the values are smaller, indicating that using only the standard deviation of the data does not fully 

635 reflect the total uncertainty in the interpolation and extrapolation process based on limited 

observational data (Rodgers et al., 2023).

Figure 11.  Reconstruction results of global air-sea carbon flux from 1993 to 2020, including: (a) Average 
spatial distribution of global air-sea CO2 flux; (b) Average spatial distribution of the uncertainty in air-sea 

640 carbon flux; (c) Trend in global air-sea carbon flux from 1993 to 2020, with dotted regions indicating 
significant linear trends (p<0.05); (d) Average seasonal variation intensity of global air-sea carbon flux.

By area-weighted summation of the monthly air-sea CO2 flux gridded data, the time series of global 

integrated air-sea CO2 flux can be obtained. Using the STL algorithm (Seasonal-Trend decomposition 

using LOESS), the TSSCXG-17 reconstructed global integrated CO2 flux is decomposed into nonlinear 

645 interannual trends and seasonal variation components (Cleveland et al., 1990). The global carbon flux 

time series, interannual trends, and seasonal variability are shown in Figure 11. The TSSCXG 

reconstruction results indicate that, on average, the ocean carbon sink absorbed about -2.45 PgC·yr-1 

from the atmosphere and terrestrial systems between 1993 and 2020 (Figure 12a). There are two 

distinct periods in the interannual variation trend of global carbon flux (Figure 12b). From the 1990s to 

650 the early 2000s, the total global ocean carbon sink showed a weakening trend, termed the stagnation of 

the ocean carbon sink. During this time, the global ocean carbon sink weakened at a rate of 0.048 PgC 

per year. However, from the early 2000s to the present, the global ocean carbon sink capacity 

rebounded rapidly, increasing annually at a rate of -0.105 PgC. This phenomenon of decreased ocean 

carbon absorption rates in the 1990s and increased rates from 2000 to 2020 has been reported in 
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655 various studies on both global and regional scales (DeVries, 2022b; Dong et al., 2022; Gruber et al., 

2023; Le Quéré et al., 2007; McKinley et al., 2020; Pérez et al., 2013; Ritter et al., 2017). Studies have 

pointed out that external factors, such as volcanic eruptions, caused a decrease in sea surface 

temperature and changes in ocean circulation, leading to the stagnation of the ocean carbon sink; 

subsequently, the substantial amount of CO2 emissions from human activities became the primary 

660 reason for the rapid rebound of the carbon sink with negative decadal variations (McKinley et al., 

2020).

Figure 12. Global integrated air-sea CO2 flux (a) and its interannual trend (b), seasonal variability (c), and 
residuals (d) decomposed by the STL method.

665 After removing the interannual variation trend, the global air-sea carbon flux exhibits a semi-bimodal 

seasonal cycle (Figure 12c). The average seasonal variation shows that the total ocean carbon sink 

reaches its peak in winter and then gradually decreases until the late spring. After a short-term increase 

in summer (April to May), the ocean's uptake of atmospheric CO2 gradually decreases, reaching the 
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lowest point of the total carbon sink in August, and then gradually recovers. This semi-bimodal 

670 seasonal variation pattern is mainly caused by the seasonal periodic cycle of difference in partial 

pressures of CO2 in the sea surface and atmosphere. Near-surface atmospheric CO2 content shows a 

seasonal oscillation, with higher levels in summer and lower levels in autumn. This is due to the 

Northern Hemisphere's extensive land area and biomass, which control the global seasonal fluctuation 

of atmospheric CO2. Meanwhile, the sea surface partial pressure of CO2 is influenced by both the 

675 Northern and Southern Hemispheres with different phase in thermal properties, showing a semi-

bimodal trend. Therefore, the global air-sea carbon flux exhibits a semi-bimodal seasonal oscillation. 

Since the 2000s, the amplitude of the seasonal cycle has shown an increasing trend on a decadal scale 

(Landschützer et al., 2018). Comparing the TSSCXG-17 pCO2 reconstruction results with other data-

based reconstruction products reveals that the seasonal variation intensity of pCO2 reconstructed by 

680 TSSCXG is slightly smaller than that of other inversion products, and is closer to the results of the 

seaflux ensemble result (Figure 13). For the equatorial regions and mid-to-high latitude regions of both 

hemispheres, the average seasonal variation of TSSCXG reconstruction results falls within the 

distribution range of the other six inversion products. The differences in seasonal variation amplitude 

are mainly reflected in the extra-equatorial mid-to-low latitude regions of both hemispheres (10°~40°, 

685 Northern and Southern Hemispheres), where the TSSCXG reconstruction results are smaller (Figure 

13c, e).

Figure 13. (a) Difference between the climatological average pCO2 in Northern Hemisphere winter and 
Northern Hemisphere summer for each 1°×1° grid from 1993 to 2020. (b) 10°S-10°N; (c) 10-40°N; (d) 40-
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690 65°N; (e) 10-40°S; (f) 40-65°S, each subplot shows the average seasonal cycle of pCO2 within its respective 
latitude range from 1993 to 2020.

5 Discussion

This study introduces a novel two-stage air-sea carbon flux inversion method based on multi-source 

data fusion. In the first stage, we supplemented in-situ observational data, satellite remote sensing data, 

695 and reanalysis data with ocean model simulation data to create a comprehensive feature dataset using a 

machine learning model. This approach addressed gaps in ocean observational data. In the second stage, 

we developed the TSSCXG inversion algorithm, which combines t-SNE dimensionality reduction, 

spectral clustering, and XGBoost regression, to derive a global 1°×1° sea surface pCO2 inversion 

dataset and corresponding air-sea carbon flux dataset from 1993 to 2020. This two-stage TSSCXG 

700 scheme overcomes major limitations of current spatiotemporal interpolation methods, such as 

incomplete temporal and spatial coverage and high inversion errors in polar and coastal regions.

Evaluation with independent flight measurement datasets and station time series observations indicates 

that our inversion model accurately reproduces observed spatial and temporal variations. The global 

inversion results are more precise than other data inversion products using similar or more complex 

705 algorithms. Compared to other pCO2 reconstruction datasets, our results show a lower global grid 

average root mean square error (RMSE) and higher coefficient of determination (R2). Specifically, the 

TSSCXG reconstruction reduces the average grid RMSE by about 12 µatm in the Southern Ocean 

compared to the LSCE-FFNN dataset and by about 13.1 µatm in the Arctic Ocean compared to the 

JENA-MLS dataset. Consequently, the estimated global air-sea carbon flux from 1993 to 2020 using 

710 the TSSCXG method is -2.45 PgC·yr-1. Our results are consistent with previous studies, showing 

significant CO2 emissions from the equatorial Pacific and strong absorption in the mid-latitude regions 

of both hemispheres (Gruber et al., 2009; Takahashi et al., 2009). The increasing trend in oceanic 

carbon uptake from 1993 to 2020, particularly in the mid to high latitude regions, corroborates findings 

from earlier research (DeVries, 2022b; Dong et al., 2022; Gruber et al., 2023). These trends support the 

715 hypothesis that external factors, such as volcanic eruptions and human activities, significantly influence 

global carbon cycles, leading to fluctuations in oceanic carbon uptake rates (McKinley et al., 2020). 

Despite these advancements, several limitations remain. The use of model simulation data as a 

substitute for observational data introduces uncertainties that are difficult to fully quantify. 

Additionally, while robust, the TSSCXG algorithm may still suffer from biases inherent in the input 

720 datasets and modeling assumptions. Future research should focus on refining the algorithm, 

incorporating more diverse data sources, and extending the temporal coverage of datasets. Integrating 

advanced machine learning techniques and hybrid models could also enhance the accuracy and 

reliability of inversion results.

This study presents a novel approach to address the challenges associated with missing ocean 

725 observational data and offers a new perspective for future research on air-sea carbon flux inversion. By 

leveraging multi-source data fusion and advanced machine learning algorithms, we can better 

understand and predict the dynamics of the oceanic carbon cycle, contributing to more accurate 

assessments of global carbon budgets and informing climate policy decisions.
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