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Table S1: Summary of the six observation-based pCOy products used in SeaFlux.

pCO;,; mapping Area coverage

Surface-ocean

Reference

product (% global ocean) pCO, data

Denvil-Sommer et al. (2019)
CMEMS-FFNN 89% SOCAT vb Chau et al. (2022)
CSIR-ML6 93% SOCAT v5 Gregor et al. (2019)
JENA-MLS 100% SOCAT v1.5 Rédenbeck et al. (2013)
JMA-MLR 85% SOCAT v5 Tida ct al. (2020)

?(?
MPL-SOMFFN 89% SOCAT v5 8
NIES-FNN 91% SOCAT v2 Zeng et al. (2014)

Table S2: Summary of the five observation-based wind products used in combination with the
observation-based pCOy products in SeaFlux. Mean wind speed is given for the ice-free ocean
for the period 1990 to 2019.

. Temporal Spatial Mean .
Wlnia[;:'l(;duct Resolution Resolution Ez;i eed Sc(ail)ng Reference
| (hr) ) (m s)
Cross-Calibrated 6 0.25 1988-present 7.7 0.257  Atlas et al.
Multi-Platform v2
(2011)
ECMWF
Reanalysis Hth 1 0.25 1979-present 7.5 0.271  Hersbach
Generation et al.
(2020)
Japanese.55-year 3 0.50 1958-present 7.6 0.260 Kobayashi
Reanalysis
et al.
(2015)
igf;ggfl% 6 2.50 1948-present 7.2 0.287 Kalnay et
g al. (1996)
NCEP_NCAR 6 2.50 1979-present 8.3 0.218 Kanamitsu
reanalysis 2
et al.
(2002)
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Table S3: Definition of regional latitude—longitude boxes.

Region

Longitude range Latitude range

Subpolar Northern Pacific

140°E - 130°W

Subpolar Northern Atlantic 70°W - 10°E
Low-to-mid Latitude Northern Hemisphere Full

Equatorial Indian
Equatorial Pacific
Equatorial Atlantic

40°E - 125°E
125°E - 80°W
7°W - 10°E

Low-to-mid Latitude Southern Hemisphere Full

Southern Ocean

Full

65°N - 40°N
65°N - 40°N
10°N - 40°N
10°S - 10°N
10°S - 10°N
10°S - 10°N
10°S - 45°S
65°S - 45°S
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Figure S1: Climatological mean sea-air CO, flux, mean sea-air CO, flux during MHWs and mean
sea~air COy flux anomalies during MHWs for the years 1990-2019, when MHWs are calculated
using the period (a) 1982-2021 and b) 1990-2019. Panel a is similar to Figure 1b of the main

text.

a) Sea-air CO, flux anomalies during MHWSs (molC m?yr?): NOAA OISST

b) Sea-air CO, flux anomalies during MHWs (molC m2 yr™): ESA CCI SST

Figure S2: Observation-based sea-air CO, flux anomalies during MHWs averaged over the 1990-
2019 period and across all observation-based CO5 flux products. MHWs are defined using the (a)
NOAA OISST and the (b) ESA CCI SST product, respectively. Data is only shown for regions
where all six observation-based pCOs products have data. Hatching indicates regions, where the
anomalies are not statistically different (5% level using a two-sampled t-test).
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a) Sea-air CO, flux anomalies during MHWs (molC m2 yr') b)  Climatological mean air-sea CO, flux (molC m2yr) Q) CO, flux during MHWs

Figure S3: a) Observation-based sea-air CO, flux anomalies during MHWSs and b) climatological
sea~air COs flux averaged over the 1990-2019 period and across all observation-based products
Data is only shown for regions where all six observation-based pCOs products have data. ¢) Map
indicating where the sea-air CO, flux is weakened (blue) or strengthened (orange) during MHWSs
over the 1990-2019 period and across all observation-based products. Hatching in (a) and (c)
indicate regions, where the anomalies are not statistically different (5% level using a two-sampled
t-test).
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d) k,, contribution (molC m? yr")

a) Sea-air CO, flux anomalies during MHWSs (molC m yr™)

< R 0.4

0.3

0.2

0.1
0.0
-0.1
-0.2
-0.3

-0.4

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

0.4

0.3

0.2

0.1
0.0
-0.1
-0.2

-0.3

-0.4

Figure S4: Global maps of the Taylor decomposition of the sea-air CO, flux anomalies during
MHWs over the 1990-2019 period averaged across all observation-based products. The left hand
column shows the sea-air CO, flux anomalies during MHWSs (top), the sum of the flux decom-
position contributions (middle), and the difference between the two (bottom). The right hand
column shows the contributions of each flux component (k,, solubility, pCOy, and pCO,,) to
the sea-air CO4 flux anomaly during MHWs.
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d) pCO,** contribution (umol)

a) pCO, anomalies during MHWSs (umol

Figure S5: Global map of the Tayler decomposition of the pCOs, anomalies during MHWSs
averaged over the 1990-2019 period and across all observation-based products. The left hand
column shows the pCOs, anomalies during MHWSs (top), the sum of the pCO,, decomposition
terms (middle), and the difference between the two (bottom). The right hand column shows
the contributions of each pCO,, component (alkalinity, dissolved inorganic carbon, salinity, and
temperature) to the pCO,, anomalies during MHWs.
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a) Main driving factor of pCO, , anomalies during MHWs
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Figure S6: Same as Figure 3 in the main text, but using the OceanSODA-ETHZ Alkalinity data
from Gregor and Gruber (2021) instead of the alkalinity data based on LIARv2.
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a) Compound marine heatwave and low sea-air co, flux events b) Compound marine heatwave and high sea-air Co, flux events
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Figure S7: Observation-based product ensemble-mean likelihood multiplication factor (LMF)
for (a) compound MHWs and low sea-air CO, flux events and (b) for MHWs and high sea-air
COq flux events. The LMF is a metric commonly used in compound event studies to describe
how many times more or less likely compound events are compared to their expected frequency
under the assumption of independence (Zscheischler & Seneviratne, 2017; Le Grix et al., 2021).
Warm colors (LMF > 1) indicate that MHWSs and low /high sea-air CO, flux events co-occur more
frequently than by chance, while cold colors (LMF < 1) indicate suppressed co-occurrence. Ocean
regions where LMF is not significantly different from 1 (i.e., where the product ensemble-mean
LMF is not significantly different from 1 based on a one-sample t-test) are hatched.
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