Supporting Information for "Observed regional impacts of marine heatwaves on sea-air CO_2 exchange"

Catherine Li^{1,2}, Friedrich A. Burger^{1,2}, Christoph C. Raible^{1,2}and Thomas L.

 $\mathrm{Fr\"olicher}^{1,2}$

¹Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland.

²Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.

Contents of this file

Tables S1 to S3 $\,$

Figure S1 to S7 $\,$

Corresponding author: Thomas L. Frölicher, Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland. (thomas.froelicher@unibe.ch)

$p\mathbf{CO}_2$ mapping	Area coverage	Surface-ocean	Reference	
product	(% global ocean)	$p\mathbf{CO}_2$ data		
CMEMS FENN	89%	SOCAT v5	Denvil-Sommer et al. (2019)	
OWEENS-P. P. MIN			Chau et al. (2022)	
CSIR-ML6	93%	SOCAT v5	Gregor et al. (2019)	
JENA-MLS	100%	SOCAT v1.5	Rödenbeck et al. (2013)	
JMA-MLR	85%	SOCAT v5	Iida et al. (2020)	
MPI-SOMFFN	89%	SOCAT v5	? (?)	
			? (?)	
NIES-FNN	91%	SOCAT v2	Zeng et al. (2014)	

Table S1: Summary of the six observation-based pCO_2 products used in SeaFlux.

Table S2: Summary of the five observation-based wind products used in combination with the observation-based pCO_2 products in SeaFlux. Mean wind speed is given for the ice-free ocean for the period 1990 to 2019.

Wind product name	Temporal Resolution (hr)	Spatial Resolution (°)	Date range	$egin{array}{c} { m Mean} \\ { m speed} \\ { m (m \ s^{-1})} \end{array}$	${f Scaling} \ (a)$	Reference
Cross-Calibrated Multi-Platform v2	6	0.25	1988-present	7.7	0.257	Atlas et al. (2011)
ECMWF Reanalysis 5th Generation	1	0.25	1979-present	7.5	0.271	Hersbach et al. (2020)
Japanese 55-year Reanalysis	3	0.50	1958-present	7.6	0.260	Kobayashi et al. (2015)
NCEP-NCAR reanalysis 1	6	2.50	1948-present	7.2	0.287	Kalnay et al. (1996)
NCEP-NCAR reanalysis 2	6	2.50	1979-present	8.3	0.218	Kanamitsu et al. (2002)

Region	Longitude range	Latitude range
Subpolar Northern Pacific	$140^{\circ}{\rm E}$ - $130^{\circ}{\rm W}$	65°N - 40°N
Subpolar Northern Atlantic	70°W - 10°E	65°N - 40°N
Low-to-mid Latitude Northern Hemisphere	Full	10° N - 40° N
Equatorial Indian	$40^{\circ}\mathrm{E}$ - $125^{\circ}\mathrm{E}$	$10^{\circ}\mathrm{S}$ - $10^{\circ}\mathrm{N}$
Equatorial Pacific	$125^{\circ}\mathrm{E}$ - $80^{\circ}\mathrm{W}$	$10^{\circ}\mathrm{S}$ - $10^{\circ}\mathrm{N}$
Equatorial Atlantic	$77^{\circ}\mathrm{W}$ - $10^{\circ}\mathrm{E}$	$10^{\circ}\mathrm{S}$ - $10^{\circ}\mathrm{N}$
Low-to-mid Latitude Southern Hemisphere	Full	$10^{\circ}\mathrm{S}$ - $45^{\circ}\mathrm{S}$
Southern Ocean	Full	$65^{\circ}\mathrm{S}$ - $45^{\circ}\mathrm{S}$

Table S3: Definition of regional latitude–longitude boxes.

Figure S1: Climatological mean sea-air CO_2 flux, mean sea-air CO_2 flux during MHWs and mean sea-air CO_2 flux anomalies during MHWs for the years 1990-2019, when MHWs are calculated using the period (a) 1982-2021 and b) 1990-2019. Panel a is similar to Figure 1b of the main text.

Figure S2: Observation-based sea-air CO_2 flux anomalies during MHWs averaged over the 1990-2019 period and across all observation-based CO_2 flux products. MHWs are defined using the (a) NOAA OISST and the (b) ESA CCI SST product, respectively. Data is only shown for regions where all six observation-based pCO_2 products have data. Hatching indicates regions, where the anomalies are not statistically different (5% level using a two-sampled t-test).

- Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, M., Jusem, J. C., Smit, D. K., & Gombos, D. (2011). Cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. *Journal of Climate*, 157–174. doi: https://doi.org/10.1029/2019JC015367
- Chau, T. T. T., Gehlen, M., & Chevallier, F. (2022). A seamless ensemble-based reconstruction of surface ocean pCO₂ and air-sea CO₂ fluxes over the global coastal and open oceans. *Biogeosciences*, 19, 1087–1109. doi: https://doi.org/10.5194/bg-19-1087-2022
- Denvil-Sommer, A., Gehlen, M., Vrac, M., & Mejia, C. (2019). LSCE-FFNN-v1: A twostep neural network model for the reconstruction of surface ocean pCO₂ over the global ocean. *Geoscientific Model Development*, 12(5), 2091-2105. doi: https://doi.org/10.5194/ gmd-12-2091-2019
- Gregor, L., & Gruber, N. (2021). Oceansoda-ethz: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. *Earth System Science Data*, 13(2), 777–808. doi: 10.5194/essd-13-777-2021
- Gregor, L., Lebehot, A. D., Kok, S., & Scheel Monteiro, P. M. (2019). A comparative assessment of the uncertainties of global surface ocean CO₂ estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) have we hit the wall? *Geoscientific Model Development*, 12, 5113–5136. doi: https://doi.org/10.5194/gmd-12-5113-2019
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., ... Thépaut, J.-N. (2020). The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society*, 146, 1999–2049. doi: https://doi.org/10.1002/qj.3803

- Iida, Y., Takatani, Y., Kojima, A., & Ishii, M. (2020). Global trends of ocean CO₂ sink and ocean acidifcation: an observation-based reconstruction of surface ocean inorganic carbon variables. *Journal of Oceanography*, 77, 323–358. doi: https://doi.org/10.1007/s10872-020 -00571-5
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., ... Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–472. doi: https://doi.org/10.1175/1520-0477(1996)077(0437: TNYRP)2.0.CO;2
- Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., & Potter,
 G. L. (2002). NCEP–DOE AMIP-II reanalysis. Bulletin of the American Meteorological Society, 83, 1631–1644. doi: https://doi.org/10.1175/BAMS-83-11-1631
- Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., ... Takahasi, K. (2015).
 The JRA-55 reanalysis: General specifications and basic characteristics. *Journal of the Meteorological Society of Japan*, 93, 5–48. doi: https://doi.org/10.2151/jmsj.2015-001
- Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S., & Frölicher, T. L. (2021). Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. *Biogeosciences*, 18(6), 2119–2137. doi: https://doi.org/10.5194/bg-18-2119-2021
- Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., & Heimann, M. (2013). Global surface-ocean pCO₂ and sea–air CO₂ flux variability from an observationdriven ocean mixed-layer scheme. *Ocean Science*, 9, 193–216. doi: https://doi.org/10.5194/ os-9-193-2013
- Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., & Nakaoka, S.-i. (2014). A global surface

ocean fCO₂ climatology based on a feed-forward neural network. *Journal of Atmospheric and Oceanic Technology*, 31(8), 1838-1849. doi: https://doi.org/10.1175/JTECH-D-13-00137.1

Zscheischler, J., & Seneviratne, S. I. (2017). Dependence of drivers affects risks associated with compound events. *Science Advances*, 3(6), e1700263. doi: 10.1126/sciadv.1700263

Figure S3: a) Observation-based sea-air CO₂ flux anomalies during MHWs and b) climatological sea-air CO₂ flux averaged over the 1990-2019 period and across all observation-based products. Data is only shown for regions where all six observation-based pCO₂ products have data. c) Map indicating where the sea-air CO₂ flux is weakened (blue) or strengthened (orange) during MHWs over the 1990-2019 period and across all observation-based products. Hatching in (a) and (c) indicate regions, where the anomalies are not statistically different (5% level using a two-sampled t-test).

Figure S4: Global maps of the Taylor decomposition of the sea-air CO_2 flux anomalies during MHWs over the 1990-2019 period averaged across all observation-based products. The left hand column shows the sea-air CO_2 flux anomalies during MHWs (top), the sum of the flux decomposition contributions (middle), and the difference between the two (bottom). The right hand column shows the contributions of each flux component (k_w , solubility, $pCO_{2,o}$ and $pCO_{2,a}$) to the sea-air CO_2 flux anomaly during MHWs.

Figure S5: Global map of the Tayler decomposition of the $pCO_{2,o}$ anomalies during MHWs averaged over the 1990-2019 period and across all observation-based products. The left hand column shows the $pCO_{2,o}$ anomalies during MHWs (top), the sum of the $pCO_{2,o}$ decomposition terms (middle), and the difference between the two (bottom). The right hand column shows the contributions of each $pCO_{2,o}$ component (alkalinity, dissolved inorganic carbon, salinity, and temperature) to the $pCO_{2,o}$ anomalies during MHWs.

Figure S6: Same as Figure 3 in the main text, but using the OceanSODA-ETHZ Alkalinity data from Gregor and Gruber (2021) instead of the alkalinity data based on LIARv2.

Figure S7: Observation-based product ensemble-mean likelihood multiplication factor (LMF) for (a) compound MHWs and low sea-air CO_2 flux events and (b) for MHWs and high sea-air CO_2 flux events. The LMF is a metric commonly used in compound event studies to describe how many times more or less likely compound events are compared to their expected frequency under the assumption of independence (Zscheischler & Seneviratne, 2017; Le Grix et al., 2021). Warm colors (LMF > 1) indicate that MHWs and low/high sea-air CO_2 flux events co-occur more frequently than by chance, while cold colors (LMF < 1) indicate suppressed co-occurrence. Ocean regions where LMF is not significantly different from 1 (i.e., where the product ensemble-mean LMF is not significantly different from 1 based on a one-sample t-test) are hatched.