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Abstract An essential step toward meeting agreed climate targets and policies is the ability to understand
and predict near‐term changes in global carbon cycle, and importantly, ocean carbon uptake. Initialized climate
model simulations have proven skillful for near‐term predictability of the key physical climate variables, for
example, temperature, precipitation, etc. By comparison, predictions of biogeochemical fields like ocean carbon
flux, are still emerging. Initial studies indicate skillful predictions are possible for lead‐times up to 6 years at
global scale for some CMIP6 models. However, unlike core physical variables, biogeochemical variables are
not directly initialized in existing decadal prediction systems, and extensive empirical parametrization of ocean‐
biogeochemistry in Earth SystemModels introduces a significant source of uncertainty. Here we propose a new
approach for improving the skill of decadal ocean carbon flux predictions using observationally‐constrained
statistical models, as alternatives to the ocean‐biogeochemistry models. We use observations to train multi‐
linear and neural‐network models to predict the ocean carbon flux. To account for observational uncertainties,
we train using six different observational estimates of the flux. We then apply these trained statistical models
using input predictors from the Canadian Earth System Model (CanESM5) decadal prediction system to
produce new decadal predictions. Our hybrid GCM‐statistical approach significantly improves prediction skill,
relative to the raw CanESM5 hindcast predictions over 1990–2019. Our hybrid‐model skill is also larger than
that obtained by any available CMIP6 model. Using bias‐corrected CanESM5 predictors, we make forecasts for
ocean carbon flux over 2020–2029. Both statistical models predict increases in the ocean carbon flux larger than
the changes predicted from CanESM5 forecasts. Our work highlights the ability to improve decadal ocean
carbon flux predictions by using observationally‐trained statistical models together with robust input predictors
from GCM‐based decadal predictions.

Plain Language Summary Using initialized Earth system model simulations for near term
predictions of ocean biogeochemichal variables is an emerging field of research. In particular, near term
predictability of ocean carbon flux is central to efforts for planing and limiting climate change. Unlike physical
variables whose predictability have been established, these simulations are only indirectly initialized and rely on
heavily parameterized ocean biogeochemistry models. Here, we propose a new approach to acquire decadal
predictions of air‐sea carbon flux as alternatives to those based on ocean biogeochemistry models. Our
methodology combines the explanatory power of statistical models that have widely been used for gap filling
purposes for informing full coverage ocean carbon flux data products, and well established predictability skill of
key physical predictors. We provide hybrid GCM‐statistical ocean carbon flux hindcasts using predictors from
CanESM5 and doing so, show that we can beat all CMIP6 decadal prediction system hindcast skills. We use our
models to provide near future hybrid model forecast for ocean carbon flux. Our results shows the potential for
improving predictability skill of ocean carbon sink by combining GCMs and observationally trained statistical
models.

1. Introduction
The ocean accounts for sequestering nearly 25% percent of human CO2 emissions annually (Friedlingstein
et al., 2020, 2022; Hauck et al., 2020), playing a key role in mitigating climate change. Future changes in the
ocean carbon flux are of direct relevance to climate change science (Friedlingstein et al., 2022) and policy making
related to climate and emissions targets. Ocean carbon uptake has increased substantially over the past several
decades in response to human induced increases in atmospheric CO2 concentrations (Gooya et al., 2023;
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Lovenduski et al., 2016; McKinley et al., 2016; Rodgers et al., 2020; L. Wang et al., 2016). However, there is also
substantial internal variability in the magnitude of the flux on seasonal to decadal time scales both regionally and
globally (Gruber et al., 2019; Landschützer et al., 2016; McKinley et al., 2017, 2020). Decadal scale variability of
ocean carbon flux is believed to be mainly driven by variability in external forcing (McKinley et al., 2020), but
also changes in circulation (DeVries et al., 2019; Keppler & Landschützer, 2019). Specifically, the deviations of
atmospheric growth of CO2 from the long term trend in the 90s left a smooth weakening (multi)decadal footprint
on ocean carbon flux. Higher frequency inter‐annual variability is largely attributable to modes of climate
variability such as ENSO on global scale and other modes of high latitude variability on regional scales
(McKinley et al., 2017). Predicting future variations in the ocean carbon sink on inter‐annual to (multi)decadal
time scales in the face of these multiple drivers is therefore challenging.

Decadal predictions, such as those made under the Decadal Climate Prediction Project (DCCP) are produced by
Global Climate Models (GCMs) that are initialized with observations and also driven by external forcing
(Kirtman et al., 2013). Predictive skill of key physical climate variables from such simulations have been well
established in the literature (Boer et al., 2016). However, near term predictability of the ocean carbon flux and
other biogeochemical variables have only become possible with the recent advent of Earth System Models
(ESMs) (Meehl et al., 2021) and are still at their infancy. For ocean carbon flux in particular, previous studies have
shown potential predictability for up to 7 years (Li et al., 2019; Lovenduski et al., 2019; Séférian et al., 2018) and
actual skill versus observation‐based estimates for 2–6 years based on different ESMs (Ilyina et al., 2021; Li
et al., 2019). However, ESM simulations are subject to biases, drifts (Kharin et al., 2012) and exhibit a wide range
of prediction skill globally and regionally (Ilyina et al., 2021). Predictions of ocean carbon flux using ESMs are
especially challenging given that ocean biogeochemical variables are not directly initialized in current decadal
prediction systems (Sospedra‐Alfonso et al., 2021), and that the ocean biogeochmical models themselves are
heavily parameterized using empirical parameterizations (Christian et al., 2022). While perfect‐model studies
show direct carbon cycle reconstruction adds little improvement to the global carbon cycle predictions because
imperfect reconstruction of the physical climate state impedes better biogeochemical reconstruction (Fransner
et al., 2020; Spring et al., 2021), the question remains whether an alternative model can leverage initialization skill
in physical predictors for better predictions of ocean carbon flux?

Here we propose using observationally‐trained statistical models forced by predictors from GCM/ESM‐based
decadal predictions, as an alternative to using the raw predictions of ocean carbon flux obtained from the ESMs
ocean biogeochemistry models. It is well established that the surface ocean partial pressure of CO2, and by
extension the surface carbon flux, is closely related to physical predictors, such as sea‐surface temperature and
salinity, atmospheric CO2 concentration and wind speed. These empirical relationships are widely exploited in the
observational community to infill sparse direct observations of the ocean carbonate system (e.g., Surface Ocean
CO2 Atlas, SOCAT), using indirect but more widely sampled physical variables (Landschützer et al., 2016). It is
also common to post‐process raw GCM results to produce more skillful predictions, for example, through bias
correction (Kharin et al., 2012). Our proposal is a logical extension of these two established practices that
combines the explanatory power that statistical models learn from the relationships between observational pre-
dictors, and the established prediction skill of the process based physical models. Our principal goal is to establish
a methodology that allows us to improve near‐term predictions of the ocean carbon sink over and above the skill
obtained from raw ESM predictions.

We begin by introducing the methodology and our statistical models of choice in Section 2. In Section 3 we
evaluate observational uncertainties and the performance of our statistical models when forced by observation
based predictors. In Section 4, we apply the observationally trained statistical models to physical predictors from
CanESM5 simulations, and evaluate the skill of this hybrid approach relative to the raw CanESM5 predictions
over the hindcast period of 1990–2019. We go on to provide forecasts for ocean carbon flux over the decade 2019
to 2029 in Section 5. We conclude by reflecting on how our approach could be improved and expanded on in
future work.

2. Materials and Methods
2.1. Surface CO2 Flux Data

For observations of the atmosphere‐ocean CO2 flux we use the SeaFlux Ocean carbon sink ensemble product (Fay
et al., 2021). SeaFlux contains an ensemble of flux estimates, based on six global observation‐based mapping
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products for surface ocean partial pressure of CO2 (pCO2), and wind speeds from ERA5. The six products include
three neural‐network‐derived products (CMEMS‐FFNN, MPI‐SOMFFN, NIES‐FNN), a mixed layer scheme
product (JENA‐MLS), a multiple linear regression (JMA‐MLR), and a machine learning ensemble (CSIR‐ML6)
(Fay et al., 2021). We also use the mean across the products, which we refer to as SF‐MEAN. Given the
sparseness of actual pCO2 measurements, using the ensemble of products allows us to quantify uncertainties
associated with the data infilling and mapping techniques, and avoids overfitting to a single product.

All six SeaFlux products show strong agreement in the long term (trended) changes in ocean carbon flux (not
shown here). Comparing linearly detrended versions of the SeaFlux products shows cross correlation coefficients
between them ranging from 0.47 to 0.95 (Figure S1 in Supporting Information S1). The MPI‐SOM‐FFN and
JENA‐MLS are least correlated with others. The lower correlation skills for the two show that there are vari-
abilities specific to these products that are not common to other data sets, and known biases linked to data sparsity
(Gloege et al., 2021; Hauck et al., 2023). The averaged SF‐MEAN contains signals common to all of the products,
and we use this as the most reliable estimate moving forward.

2.2. Statistical Models and Observed Predictors

For each individual SeaFlux input data set and SF‐MEAN, we train a multi‐linear regression model and a neural
network (NN) model to predict the surface atmosphere ocean carbon flux, using three observation‐based physical
predictors ‐ sea surface temperature (SST), sea surface salinity (SSS), surface wind speed (sfcWind), one bio-
logical predictor ‐surface chlorophyll concentrations (CHL), as well as atmospheric CO2 concentrations (xCO2)
(Table S1 in Supporting Information S1). These are mainly physical predictors for which full coverage obser-
vational products are available and are believed to drive the variability in ocean carbon flux (Landschützer
et al., 2016) on different time scales. Linear models are trained for each grid cell on a standard one degree grid,
while the NN models are trained over 16 biomes (Landschützer et al., 2016), as explained further in SI (Sect.
S1.1). By combining these biomes, we can produce spatially resolved maps of the surface CO2 flux, given the set
of five input predictors at any point. In total that gives us 14 sets of models (7 set of linear models, and 7 NN
models, one for each SeaFlux target predictand) that are later used to make hindcasts and forecasts using modeled
predictors from CanESM5. We have chosen to illustrate our approach using the linear and NN models, which
have different structures and levels of complexity, as illustrative examples. However, alternative models and
predictor variables could be used.

We did not perform any tests on the optimization of predictors, but rather follow some of the most commonly
applied predictors used for global assessment studies (see Friedlingstein et al., 2023; Table S3 in Supporting
Information S1). Predictors are usually selected to represent physical, chemical and biological controls of the
carbon cycle and often limited to data availability (Landschützer et al., 2013, 2014). Particularly the use of
chlorophyll‐a as predictor has been challenged in the recent literature (Ford et al., 2022; Rödenbeck et al., 2022),
however, it still represents one of the few globally available proxies for primary production, that is, an essential
process describing the local draw‐down of CO2 in surface waters, and has been shown to regionally improve
reconstructions of the sea surface pCO2 variability (Zhong et al., 2022).

2.3. Decadal Predictions Using GCM Base Predictors

To make predictions, the five predictors from Table S1 in Supporting Information S1 are obtained from Can-
ESM5 simulations (Sospedra‐Alfonso et al., 2021; Swart et al., 2019). We use a range of simulations, including
standard free running CMIP6 historical simulations (Eyring et al., 2016), as well as assimilation (dcppA‐assim),
hindcast (retrospective forecasts as in dcppA‐hindcast) and forecast runs (Boer et al., 2016). In assimilation runs,
CanESM5 is nudged toward observations for key physical variables (Sospedra‐Alfonso et al., 2021). For his-
torical, hindcast and forecast simulations, the five predictors are bias corrected to the same observational pre-
dictors used for training the models following the approach of (Kharin et al., 2012). This bias correction adjusts
the mean and trend of the predictors to be consistent with observations. These CanESM5 predictors are fed to the
each of the 14 statistical models mentioned above to produce hybrid predictions of surface ocean CO2 flux. For
hindcasts and forecasts, predictions are made for lead years 1–10. To test significance of prediction skill dif-
ferences, we use a nonparametric bootstrap test (Goddard et al., 2013) to generate the probability distributions.
We resampled the initialized/uninitialized simulations and the observations in time using the same sets of
randomly selected indexes with replacement. The correlations are calculated using the resampled time‐series with
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the resampled observation. We repeated this process 1000 times to generate a large sample for the distribution of
the predictive skill improvements. The randomly selected time steps are separated for at least 5 years to account
for auto‐correlation and scores are considered significant at 95% confidence limit.

3. Evaluation of Statistical Models
In this section, we consider the performance of the statistical models trained on the SeaFlux ensemble and using
observed predictors, for predicting the global surface carbon flux as defined by SF‐MEAN (Figure 1). When
trained on SF‐MEAN, both the NN and linear models can accurately reconstruct the changes of the SF‐MEAN
(r > 0.9), indicating that the statistical models are able to capture the majority of the variance in the global surface
flux. The NN model shows higher skill in reconstructing SF‐MEAN relative to the linear model, reflected in
higher correlations and lower root mean square error (Figure 1). Similarly, both linear and NN models are able to
successfully reproduce individual SeaFlux products on which they are trained (Figure S2 in Supporting Infor-
mation S1), with the NNmodels again achieving tighter fits than the linear models. The orange and green shading
in Figure 1 represents the spread across models trained on individual SeaFlux products. These models are still able
to successfully reproduce SF‐MEAN, which gives an indication of their generalizability. The smaller spread for
the linear models (Figure 1b, orange shading), suggests they may be more generalizable (i.e., successful in
predicting data they were not trained on) than the NN models. We further explore the idea of generalizability
when using model‐derived predictors in the following section.

4. Applying Statistical Models to Physical Predictors From the ESM
4.1. Assimilation Run

The CanESM5 assimilation run is relaxed toward the observed physical state of the system, which forces physical
variables, including our input predictors, to be close to observations. However, the detrended CO2 flux from the
CanESM5 biogeochemical component is not in good agreement with observations (Figure 2 bottom row). We
have identified issue in the model derived CO2 flux, including seasonality that is out of phase with observations
(not shown here), and it appears that the data ingestion in the assimilation run degrades the biogeochemical
models performance. Indeed, previous results have shown that atmosphere‐ocean CO2 flux predictability is low in

Figure 1. Time series of the global ocean CO2 flux anomalies for the (a) NN model (left panel) and (b) linear model (right panel) reconstruction using observational
predictors. The black lines shows reconstruction using models that are trained on mean of SeaFlux products (SF‐MEAN; solid) as well the mean product itself (dashed).
The shadings represent the range estimates from the six different SeaFlux products (gray) and from NN and linear models reconstructions (green and orange). The
numbers in the legends are correlation coefficients between the solid black lines and dashed black lines (first number) and root mean square error of the two time series
(second number). (c) and (d) are same as panels (a) and (b) but are linearly detrended.
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CanESM5, and particularly poor in the early lead years immediately following the assimilation run (Ilyina
et al., 2021). A major goal of our effort is to see whether by replacing the CanESM5 biogeochemical model
derived flux with one computed based on the statistical models leads to improvement.

We use the linear and NN models previously trained using observed predictors, and for each of the six individual
SeaFlux products and SF‐MEAN as predictands (for a total of 14 model sets). We then extract the five input
predictors from the (ensemble mean of 10) CanESM5 DCPP assimilation runs, apply the statistical models on
these GCM‐based predictors, and compare their skill against the original SeaFlux observational products
(Figure 2).

The statistical models forced by CanESM5 assimilation predictors obtain similar skills in reproducing the in-
dividual SeaFlux products to the skills of the reconstructions that used predictors from observations (compare
Figure 2 and supplementary Figure S2 in Supporting Information S1). This is a somewhat expected result given
that assimilation runs assimilate physical predictors and are very close to the observations, but nonetheless it is
first step in applying the models on data on which they were not directly trained. For both the linear and NN
statistical models, the skill in all cases is significantly higher than skill of the raw CanESM5 CO2 flux. These
results indicate that statistical models trained on observations can usefully be applied to GCM‐derived predictors.
By using this approach we are able to avoid biases in the CanESM5 biogeochemical model by combining the
observationally constrained statistical models with the directly initialized physical predictors from CanESM.

We compute the cross‐correlation matrix for statistical models trained on one SeaFlux product in reproducing all
the other five product and SF‐MEAN (Figure 2). This allows us to assess the impacts of observational uncertainty,
and the potential consequences of overfitting statistical models to a single observational product. As expected, the
statistical models are most skillful in reproducing the product on which they were trained (diagonal in Figure 2).
Correlation in reproducing other products can be lower than 0.5. The extent to which a model trained on one
observational product can be generalized to others is measured with the mean of scores versus all other obser-
vational data products (mean of rows excluding the diagonal values as indicated in Figure 2 EXT column).
Overall, the linear models have larger extendibility scores, while the NN models produce better fits for the
products on which they were trained. Our results illustrate that care should be taken in tightly fitting statistical
models to a single observation based CO2 flux product, as uncertainties exist. Moving forward, we will use
statistical model trained on the SF‐MEAN product as the best estimate. Based on the encouraging success so far,
in the next section we will apply our approach to decadal predictions.

Figure 2. (a) Correlation matrix for the detrended global ocean carbon flux anomaly. The y axis indicate the product on which the NN model is trained and the x axis
shows the data products against which the skill is evaluated. Predictors are chosen from assimilation runs for this test. The EXT column measures the mean of skills
excluding the diagonal element for each row. (b) Same as panel (a) but for the Linear model.
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4.2. Prediction Skill of CO2 Flux Over the Hindcast Period

Hindcasts are ESM simulations that use the observationally constrained assimilation simulation as initial con-
ditions, and which are then run freely under standard CMIP6 external forcings for 10 years (Boer et al., 2016).
Generally, as lead years increase (i.e., number of year since initialization) the hindcasts simulations lose memory
of initializaton and drift toward the preferred state of the model (historical simulations). However, raw CanESM5
ocean carbon flux DCPP scores show a decrease in the skill after initialization in hindcast compared to the
historical free runs (Ilyina et al., 2021). This is not the expected result of initialization and indicates possible
discrepancies with interactions between initialization and the CanESM5 biogeochemical decadal prediction
system (initialization ”shocks”).

As an alternative to the biogeochmical model flux, we apply our SF‐MEAN trained statistical models on pre-
dictors from the CanESM5 hindcast simulations over the period 1990 to 2019. The hindcast skill from both the
linear and NN model when trained and evaluated against SF‐MEAN are significantly larger than raw CanESM5
skills, with NN yielding slightly better scores (Figure 3). Both statistical models show increase in skill after
initialization and a gradual drop with lead time, as expected and seen in physical predictors (Boer et al., 2013).
Next, we compare the skill of the statistical models driven by CanESM5 predictors against the skill from all other
available CMIP6 models that participated in DCPP. The NN model skill is higher than that shown by any raw
CMIP6 model, when evaluated against SF‐MEAN (Figure S3 in Supporting Information S1) over 1990–2017 that
is the period common to all models. Linear model scores are higher than all CMIP6 models on all lead years
except lead year 3 where CESM1 (Danabasoglu, 2019a, 2019b) yields slightly larger score (Figure S3 in Sup-
porting Information S1). Analyzing individual CMIP6 ESMs skills is beyond the scope of this study. However,
these results clearly show the potential of our approach for improving the decadal CO2 flux prediction skills
relative to that achieved when using result directly from the biogeochmical component of ESMs. For a
comprehensive analysis of prediction skills of different ESMs refer to (Ilyina et al., 2021).

To this point we have considered the absolute skill in predicting global mean surface CO2 flux. An important
concept in decadal prediction is the relative contribution to the absolute skill that is provided by the initialization
which itself can be decomposed into a forced and an unforced component (Sospedra‐Alfonso et al., 2021). To
asses whether initialization has added additional value to the predictions, the hindcast simulation skill can be
compared to that found in standard, non‐initialized CMIP6 historical simulations (Figure 3). For the linear sta-
tistical models, hindcast skills are close to the corresponding historical skill, and do not show statistically sig-
nificant improvement. That is, the linear model scores do not show significant added skill due to initialization. For
the NN model, the hindcast skills are significantly larger than the historical skills at least for the first 3 years,
based on a bootstrapping test (Figure 3). This is the range where temperature variations largely control short term
predictability of ocean carbon sink (Li et al., 2019). The NN hindcast scores are not significantly better than

Figure 3. (a) Detrended global ocean carbon flux skills versus SF‐MEAN for raw CanESM5 model (blue dots) and NN model trained on the SF‐MEAN using bias
corrected historical/hindcast predictors from CanESM5 (black dots). The scores that are statistically better than the raw CanESM5 score based on 1000 iteration
bootstrap tests are shown with black boxes and the lead years where scores are significantly better than the corresponding historical score are filled. The gray marks in
the background show scores from models trained on individual SeaFlux products versus the SF‐MEAN. (b) Same as panel (a) but for the linear model.
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historical for lead years 4–6, but show re‐emergence of significance afterward. NN models consistently show
better fits to the data set used for training them (Figure S2 in Supporting Information S1), but are also more subject
to overfitting than the linear models (Figure 2). While more work is needed to understand difference in model
structure, our results show that initialization does add value to predictions made with the NN models (see also
Figure S6 in Supporting Information S1).

While bootstrapping shows improved skill compared to the historical simulations for the statistical models, high
correlation skills on detrended statistical model‐based historical timeseries indicate the presence of a residual
signal common to historical and hindcast simulations. With atmospheric forcing being the only common pre-
dictor, this can be mainly attributed to the (multi)decadal signal imprinted by the slow down and re‐acceleration in
the growth rate of atmospheric CO2 over the 90s and early 2000s (McKinley et al., 2020). To assess whether there
is any skill added due to initialization for the unforced interannual variabilities, we remove this (multi)decadal
signal using a locally weighted regression (Gloege et al., 2021) (Figure S4 in Supporting Information S1).
Given that the (multi)decadal signal is mainly driven by external forcing, we approximate the interannual re-
siduals from this signal as unforced. However, this approach has its own discrepancies as it could conflate low
frequency internal variability with the forced signal. The results show the NN skills are higher than that of the
linear models, with linear skills being lower than raw CanESM5 skills on longer lead years (Figure S5 in Sup-
porting Information S1). This suggests that the increase in skills observed on the detrended time series could
largely be attributed to the (milti)decadal signal. NNmodels show statistically significant improvement relative to
CanESM5 on nearly all lead times as opposed to only 1 year in the Linear models. NN and linear models show
statistically significant improvement in skill due to initialization on at least the first 2 years for the former and
1 year for the later. Finally, the degree to which the (multi)decadal signal in ocean carbon flux is accurately
estimated in the observation based products is itself a question of ongoing research (Gloege et al., 2021; Hauck
et al., 2023) which will affect these results. However, within the current accuracy on the observational side for
ocean carbon flux, our results show clear improvements from statistical models as alternatives (emulators) to
biogeochemistry models.

Both the hindcasts and historical runs used observed atmospheric CO2 concentrations (as do our statistical
models, as an input predictor). We expect that skills estimated from the hindcast are higher than those achievable
in true forecasts, because in true forecasts the atmospheric CO2 concentration will not be known. It is not just the
background rate of increase that is relevant, but deviations in the growth rate of atmospheric CO2 are also known
to be a key driver of (multi)decadal scale variability in the ocean CO2 sink (McKinley et al., 2020). This is an issue
common to any DCPP‐style hindcast. Regardless, the improved skill that the statistical models driven by Can-
ESM5 based predictors show over and above CanESM5 or other raw CMIP6 DCPP model hindcast skills en-
courages us to apply our methods to making future predictions in the following section. First however, we turn to
considering the spatial pattern of skill over the hindcast period.

We compare spatially resolved temporal correlations between SF‐MEAN, the CanESM5 raw biogeochemical
model, and the two statistical models for the historical, assimilation and lead years 1–10 of the hindcast exper-
iments. Both the NN and linear models show large correlations for the detrended flux over the majority of global
ocean, when driven by predictors from the CanESM5 assimilation run (Figure 4). Compared to the raw flux from
the CanESM5 assimilation run, the statistical models significantly improve skill over more than 55% of the global
ocean (56% for NN and 65% for linear). The linear model shows better average grid scale correlation compared to
the NN model for assimilation and lead year one hindcast. This is most likely due to the high grid scale training
resolution of the linear model as opposed to biome scale resolution of the NN model (see supplements). Notably,
the linear models has improved skill regionally, while the skill of the globally integrated sink is better from the
NN model. On longer hindcasts lead years, the mean grid scale skill for the linear models drop faster than NN
model and NNmodel beats the linear model with small offsets and more percentage of grid cells (not shown here)
with significantly improved skills.

The regions that show significant improvements relative to raw CanESM5model include but are not limited to the
highly active regions for the sink (Gooya et al., 2023) which makes them important for both the flux magnitude
and uncertainty. These are regions where the largest sink is concentrated in smallest ocean surface area and where
internal and model uncertainty tend to be largest. Specifically, significant improvements over the Southern Ocean
is the common feature to all simulations. The Southern Ocean is of key importance for ocean carbon sink (Gruber
et al., 2019) where the models disagree most (Frölicher et al., 2015; Gooya et al., 2023). The added skill in the
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Figure 4. Grid wise correlation for detrended ocean carbon flux anomalies versus SF‐MEAN. Rows show predictions using
assimilation, historical as well as lead years 1, 2, 5, and 10 predictors from CanESM5. The first column shows raw CanESM5
model skills, while the second and third columns show the NN and linear model based simulations. Hatches show regions
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Southern Ocean is seen in hindcast as well as historical simulations. As discussed above, the improvement thus
likely is mainly driven by the improvement in representing the (multi)decadal signal, specially on longer lead
years. In the hindcast simulations, skills decrease with lead year, approaching the corresponding historical
simulation skill on longer lead times (>7), as expected. For all lead years there is significant improvement beyond
the raw CanESM5 results regionally over more than 30% of the global ocean (hatched areas in Figure 4). Our
results offer a potential pathway to better quantification of ocean carbon sink predictions both regionally and
globally.

5. Hybrid Forecast of the 2020–2029 Ocean Carbon Sink
The ultimate purpose of decadal prediction systems is to provide forecasts of the short term future evolution of the
climate system, including the ocean carbon flux. In this section, we use the statistical models trained on the SF‐
MEAN, and evaluated over the hindcast period, to make predictions for the near term evolution of ocean carbon
flux. We extract ensemble means of our five predictors from CanESM5 DCPP forecasts for the period 2019–
2029, and bias correct them according to lead time following (Kharin et al., 2012). We apply the statistical
models on these predictors, and include the atmospheric concentration of CO2 from SSP245 (Eyring et al., 2016),
which is the same procedure applied to the hindcasts in the previous section.

Both NNmodel and linear model based forecasts predict that ocean carbon sink is going to grow with a faster than
linear rate over the next decade under the SSP245 scenario (Figure 5). The linear model predicts slower rate of
increase until 2022 compared to the NN model, and an accelerated increase after to nearly 1.29 pgC yr− 1 relative
to 2019 by 2029. The rate of change in the linear model is consistent with the rate of change of the atmospheric
CO2 concentrations under the SSP245 scenario. The NN model predicts a more steady yet faster than linear
increase of approximately 1.09 pgC yr− 1 in global ocean carbon sink relative to 2019. Both models are in close
agreement regarding decadal scale changes in the flux and predict larger changes compared to the bias corrected
flux from the CanESM5 biogeochemical component. The fact that the results are largely consistent between the
two statistical models over 1990–2019 as well as the future forecast globally and regionally (Figure S7 in
Supporting Information S1), increases our confidence in the results. Based on the skill demonstrated in the
hindcasts, we assert that our hybrid statistical‐GCM predictions represent a more reliable estimate of future
changes in the ocean carbon flux than the raw model predictions.

6. Discussion and Conclusions
We have proposed a methodology to improve the decadal predictability of the ocean carbon flux by using sta-
tistical models as alternatives to the ocean biogeochemistry components of decadal prediction systems. Through
their training, the statistical models encode the relationships between physical predictors and the surface carbon
flux found in observations. Predictions are made by applying these observationally trained statistical models on
(largely) physical predictors obtained from the GCM‐based decadal prediction systems. Unlike biogeochemical
variables, the physical variables are directly initialized in current prediction systems, have a more established
track record of skill, and are based on less heavily parameterized processes than ocean biogeochemistry. In
principal, our approach can be thought of as an extension of traditional bias correction (Kharin et al., 2012).
Statistical bias correction schemes using linear/NN algorithms have previously been used for physical parameters
in prediction system for example, (Hess et al., 2023; Sospedra‐Alfonso et al., 2022; F. Wang & Tian, 2022).
Unlike those, our approach uses statistical models as emulators and relies primarily on key physical predictors
whose predictability have been well evaluated.

We have demonstrated that in hindcasts, our hybrid statistical‐GCM system improves prediction skill for the
surface ocean carbon flux relative to the ocean biogeochemical model, both in the global flux, and regionally over
broad areas of the ocean. The added skill can be largely attributed to the low frequency (multi)decadal signal
present on observation‐based products which is believed to be mainly driven by external forcing from atmo-
spheric CO2 concentrations. Indeed, for the global flux, our hybrid skills based on CanESM5 predictors beat all

where there is an statistically significant improvement in skill using a 1,000 iteration bootstrap test compared to the raw
CanESM5 results. The numbers on top of each panel are global mean of correlations.
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available CMIP6 DCPP models. Globally, the NN model can retain the memory of initialization of the predictors
at least up to lead year three after initialization.

We have demonstrated our approach using two examples of observationally constrained statistical models of
different complexities; a linear and a neural network model. The two statistical models used here have different
structures and use different combinations of predictors. Both statistical models are able to reconstruct observed
CO2 fluxes when forced by observed predictors, and both perform well in hindcast evaluations driven by
CanESM5‐based predictors (i.e., beating the skill of the raw CanESM5 flux). In general, the NN model was able
to achieve higher correlations when trained and evaluated against a given surface flux product, but the linear
model showed more ”generalizability” across products. In addition, while the linear model was quite robust to
changes in structure (predictors), the NN model was quite sensitive to changes in the number of predictors or
neurons used. This shows the need for carefully adjusting such complex models and validation against other such
models to avoid possible overfitting and to make reliable estimates.

We emphasize that the two statistical models we have used are just examples of our more general approach of
applying observationally trained statistical models to GCM predictors. Our method is not limited to the choice of
ESM, observation based product, or to the choice of the alternative model. Future work should test the ability of
different types of statistical models to improve upon our results, and could draw upon the large body of work in
developing empirical relationships for the purposes of infilling sparse pCO2 observations (Fay et al., 2021).
Currently, CanESM5 is the only model with sufficient number of simulations publicly available for 10‐year
hindcasts and forecast for all of the required predictors. More robust estimates of the future changes of ocean
carbon sink would be possible with multimodel averages of predictors, since such multi‐model predictions are
generally more skillful (Tebaldi & Knutti, 2007). Furthermore, we would like to note that by testing and opti-
mizing predictor data, there is a potential to further improve the prediction skill. Finally, we also note that our
approach is not limited to surface ocean carbon flux, but could also be applied to other biogeochemical predictors,
or even less certain physical variables that could benefit from exploiting empirical relationships based on well
predicted quantities such as SST.

Based on the demonstrated skill of our hybrid approach in hindcasts, we have made forecasts of the near term
evolution of ocean carbon flux using both the linear and NN models under SSP245 scenario. Both hybrid sta-
tistical models show consistent changes over the period of 2019–2029 with faster than linear increase in the sink
that are larger than bias corrected CanESM5 forecasts. This information about predicted future changes in the
ocean carbon sink might be useful to climate science and policy effort, for example, the assessment of the global
carbon budget (Friedlingstein et al., 2022). Moving forward we encourage further research into improving
decadal predictions by optimally exploiting all available observational information, and data science techniques,
in conjunction with traditional GCM based predictions.

Figure 5. Global ocean carbon flux decadal forecast based on bias corrected CanESM5 (olive), NN model (green), and linear model (blue) trained on SF‐MEAN. The
dashed black line shows SF‐MEAN over the period of 1990–2019. The Forecasts show assimilation runs over this period and forecast initialized in 2019 after. The
subplot shows anomalies relative to the 2019 ocean carbon flux on each product and shows the predicted changes until 2029 from different estimates. All global
timeseries are scaled based on the spatial coverage of the SF‐MEAN to account for differences in coverage.
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Data Availability Statement
The SeaFlux observation based ensemble is available publicly (Gregor & Fay, 2021). All model data used in this
study are part of the World Climate Research Programme's (WCRP) 6th Coupled Model Intercomparison Project
(CMIP6) and open‐access through Earth System Grid Federation (ESGF) repositories. Observational predictors
used for training the statistical models were obtained from (Lan et al., 2023) for atmospheric CO2 concentrations,
(Copernicus Climate Change Service (C3S), 2017) for surface wind speed, https://www.ncei.noaa.gov/data/sea‐
surface‐temperature‐optimum‐interpolation/v2.1/access/avhrr/ for sea surface temperature, (Good et al., 2013a,
2013b) for sea surface salinity, and (Copernicus Marine Service, 2023) for surface Chlorophyll concentrations.
All other inquiries should be directed to P. Gooya.
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