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Introduction The Supporting Information provides details of the statistical models used10

for this study, as well as the data reprocessing procedure for Earth System Model predic-11

tors. Supporting figures S1 to S7 provide complementary analysis and/or deeper insight12

to the main analysis of the manuscript as referenced and described in the main text.13



S1. Statistical models

S1.1. Linear model

The linear model used in this study is a least square multi linear regression model.14

For this model, training is done on monthly mean time resolution at each grid cell on a15

normal one-by-one grid. The predictands are deseasonalized monthly mean ocean carbon16

flux time series at each ocean grid cell. For the linear model, the predictors are: SST,17

SSS, log(CHL), sfcWind squared, linear xCO2 trend, and detrended xCO2. Each of the18

predictors are monthly mean time series that are deseasonalized using a repeating seasonal19

cycle over 1990-2019 period. This combination of predictors was chosen to represent20

variability across different time scales. For instance, the linear atmospheric trend is the21

dominant driver of long term changes in ocean carbon flux, deviations of atmospheric22

forcing from the trend are the main drivers of the (multi)decadal variability of the sink, and23

other predictors are believed to drive variabilities on inter-annual to sub decadal scales.24

After trial and error with different combinations of our five predictors, this combination25

yielded best skills of reconstruction. Moreover, a repeating seasonal cycle over the period26

of study is removed to acquire the deseasonalized time series to reduce the variability of27

the variables. This showed however, to only marginally increase the skills. Finally, the28

training was done once with CHL and once without CHL and the results were combined29

with priority given to the model with CHL. This step was taken to account for possible30

missing CHL data point as satellite imaging of surface chlorophyll concentrations is not31

possible in time and space grids where clouds block the surface ocean.32



S1.2. Neural Network model

NN models establish non-linear relationships between the target variable and the pre-33

dictors through the use of non-linear activation functions and interconnected networks of34

neurons. Here, the predictant is the annual mean ocean carbon flux anomaly relative to35

the 1990-2019 period coming from each of the six SeaFlux data products (Fay et al., 2021).36

The predictors are annual mean anomalies of SST, SSS, log(CHL), sfcWind square, xCO237

over the same period of time. These predictors are sufficient to reproduce the variability38

on different time scales on each data product with very high skill (Fig. S2). The NN39

model used in this study is a modified and simplified version of the SOM-FFN model40

from (Landschützer et al., 2016). The network was designed using Python Tensorflow as41

a dense fully connected Keras model with one hidden layer with sigmoid activation and42

an output layer with linear activation function. The criteria for the number of hidden43

layer neurons is not only minimizing the root mean square error in a randomly generated44

evaluation sample from training data, but more importantly, not overfitting over the fore-45

cast period, i.e., consistency of the forecast with the expected near term future behaviour46

of the global flux based on the evolution of the atmospheric forcing. More concisely, we47

already have observational references over the historical period. What we want are mod-48

els that are consistent with these observation based estimates over the historical period,49

yet, are not overfitting to the same period of training and are extendable to future time50

period for actual forecasts. This is the ultimate goal of decadal prediction systems. The51

number of neurons was set to 15 after trial and error with a variety of neuron numbers.52

Comparison with the linear model where a different combination for external forcing is53

utilized, serve as a validation tool for the products, and against what theory suggests.54



Unlike the linear model, the training resolution of the NN model is not grid scale.55

Here, data points are grouped into ocean biomes as used in the version 2021 of MPI-56

SOM-FFN product (Landschützer et al., 2020) and training is done at each biome. These57

biomes are acquired by a self organizing map that divides the ocean into 16 regions58

based on statistical similarities in the seasonal cycles of SST, SSS, mixed layer depth59

and surface partial pressure of CO2. The details of the SOM-FFN method can be found60

in (Landschützer et al., 2016). This choice was made because grid scale resolution does61

not provide enough data point for the complex NN model and would end up in large62

overfitting. On biome scale resolution, training with monthly timeseries was very costly63

in terms of computational resources. Hence, annual means were used. The output of the64

NN model is comparable with the simple linear model both over the 1990-2019 period65

and for forecasts (refer to the manuscript). Finally, the method is not limited to the66

choice of biomes. For instance, we used (Fay & McKinley, 2014) biomes and trained67

the network using MPI-SOM-FFN as the target (not shown here). The results showed68

similar skill of reconstruction on the global scale, while differences were more detectable69

on regional scales. Lastly, to avoid sharp changes over the edges of the biomes, a 3-by-370

lat-lon moving window spatial smoothing was applied to the NN outputs after biomes71

were combined (Landschützer et al., 2016).72

S2. Preprocessing of CanESM5 predictors

Except for the atmospheric CO2 concentrations that is the same xCO2 as seen by73

CanESM, when making historical, assimilation, hindcast, and forecast simulations using74

the statistical models, ensemble means of CanESM5 predictors from the corresponding75

model runs where selected. These predictors were regridded into normal one-by-one degree76



resolution for compatibility. The CHL obsearvational data used for training (table S1),77

only extends back to 1998. To acquire estimates prior to this date (1982-1998), the time78

series are extended using the mean seasonal cycle of the observed period (Landschützer79

et al., 2016). To maintain consistency between the data that is used for training the sta-80

tistical models and predictions using CanESM5 predictors, the same procedure is applied81

to CanESM5 CHL predictors.82

Studies with ESMs have shown that initialized hindcasts simulations have biases and83

systematic errors when compared to the observations as a function of lead time (Kharin et84

al., 2012). Consequently, post processing bias correction is common practice for seasonal85

to decadal predictions. For each of the physical predictors and as a function of the lead86

time (number of years between the initialization year and prediction year), we perform a87

grid wise mean and trend adjustment to the corresponding observational data. The mean88

adjustment corrects for the mismatch between the mean over the period of the prediction89

at each grid cell with the mean of observations. Additionally, ESM hindcasts drift towards90

the preferred state of the model as represented in the historical simulation (Kharin et al.,91

2012). To counter this, trend adjustment based on the lead time is done to adjust for the92

systematic drifts of the predictors as a function of lead time. Please refer to (Kharin et al.,93

2012) for further details on the bias correction scheme. For CHL, only mean adjustment94

to the observation is applied as CHL does not exhibit a clear trend.95



References

Bethke, I., Wang, Y., Counillon, F., Kimmritz, M., Fransner, F., Samuelsen, A., . . .96

Keenlyside, N. (2019). NCC NorCPM1 model output prepared for CMIP6 DCPP97

dcppA-hindcast. Earth System Grid Federation [Dataset]. doi: 10.22033/ESGF/98

CMIP6.1086599

Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., . . .100

Swingedouw, D. (2020). IPSL IPSL-CM6A-LR model output prepared for CMIP6101

DCPP dcppA-hindcast. Earth System Grid Federation [Dataset]. doi: 10.22033/102

ESGF/CMIP6.5137103

Danabasoglu, G. (2019). NCAR CESM1-1-CAM5-CMIP5 model output prepared for104

CMIP6 DCPP. Earth System Grid Federation [Dataset]. doi: 10.22033/ESGF/105

CMIP6.11542106

Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M., . . .107

Zeng, J. (2021). Seaflux: harmonization of air–sea co2 fluxes from surface pco2 data108

products using a standardized approach. Earth System Science Data, 13 (10), 4693–109

4710. Retrieved from https://essd.copernicus.org/articles/13/4693/2021/110

doi: 10.5194/essd-13-4693-2021111

Fay, A. R., & McKinley, G. A. (2014). Global open-ocean biomes: mean and temporal112

variability. Earth System Science Data, 6 (2), 273–284. Retrieved from https://113

essd.copernicus.org/articles/6/273/2014/ doi: 10.5194/essd-6-273-2014114

Good, S. A., Martin, M. J., & Rayner, N. A. (2013). En4: Quality controlled ocean115

temperature and salinity profiles and monthly objective analyses with uncertainty116

estimates. Journal of Geophysical Research: Oceans , 118 , 6704–6716.117



Kharin, V. V., Boer, G. J., Merryfield, W. J., Scinocca, J. F., & Lee, W.-S. (2012). Statis-118

tical adjustment of decadal predictions in a changing climate. Geophysical Research119

Letters , 39 (19). Retrieved from https://agupubs.onlinelibrary.wiley.com/120

doi/abs/10.1029/2012GL052647 doi: https://doi.org/10.1029/2012GL052647121

Landschützer, P., Gruber, N., & Bakker, D. (2020). An observation-based global122

monthly gridded sea surface pco2 and air-sea co2 flux product from 1982 onward and123

its monthly climatology. NOAA National Centers for Environmental Information124

[Dataset]. (NCEI Accession 0160558, Version 6.6)125

Landschützer, P., Gruber, N., & Bakker, D. C. E. (2016). Decadal vari-126

ations and trends of the global ocean carbon sink. Global Biogeo-127

chemical Cycles , 30 (10), 1396–1417. Retrieved from https://agupubs128

.onlinelibrary.wiley.com/doi/abs/10.1002/2015GB005359 ( eprint:129

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015GB005359) doi:130

https://doi.org/10.1002/2015GB005359131

Pohlmann, H., Müller, W., Modali, K., Pankatz, K., Bittner, M., Früh, B., . . . Roeckner,132

E. (2019). MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 DCPP dcppA-133

hindcast. Earth System Grid Federation [Dataset]. doi: 10.22033/ESGF/CMIP6134

.6490135

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002).136

An improved in situ and satellite sst analysis for climate. Journal of Climate, 15 ,137

1609–1625.138

Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N., Kharin, V. V.,139

. . . Sigmond, M. (2019). CCCma CanESM5 model output prepared for CMIP6 DCPP140



dcppA-hindcast. Earth System Grid Federation [Dataset]. doi: 10.22033/ESGF/141

CMIP6.3557142



Table S1. Observational products used for training

Variable Source
Sea surface temperature NOAA OISST V 2.1 a

Sea surface salinity Hadley centre EN4.2.1b

Surface Chlorophyll − a concentration GlobColour project
Surface wind speed ERA5
Atmospheric CO2 concentrations NOAA ESRL

a (Reynolds et al., 2002)

b (Good et al., 2013)
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Figure S1. Cross-correlation matrix for detrended global SeaFlux observation-based ocean

carbon flux products using ERA5 wind product.
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Figure S2. Time series of the detrended global ocean carbon flux reconstruction using ob-

servational predictors. Columns represent NN and linear models trained on individual products.

Numbers in the legends are correlation (first number) skills versus the same product as used

for training (dashed black lines), and root mean square error for the same time series (second

number).
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Figure S3. Detrended global ocean carbon flux skills based on bias corrected histori-

cal/hindcast predictors from CanESM5 (black dots) as well as raw CanESM5 scores (blue dots)

for the hybrid model trained and evaluated using SF-MEAN. The scores that are statistically

better than the raw CanESM5 score based on 1000 iteration bootstrap tests are shown with black

boxes and the lead years where scores are significantly better than the historical score are filled.

Colored dots are hindcast skills from ensemble means of all available CMIP6 models. The time

period of this analysis is 1990-2017 as this is the common time period to all available CMIP6

models and our hybrid models.
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Figure S4. Time series of the smoothed detrended global ocean carbon flux simulations from

NN models (top) trained on SF-MEAN for hindcast years 1,2,5, and 10 (dashed grey), historical

(red), as well as CanESM5 assimilation (solid grey). Numbers are correlation coefficients with

the smoothed detrended SF-MEAN (dashed black). Bottom) same as top but for linear models.



Figure S5. Interannual skills of global ocean carbon flux based on bias corrected histori-

cal/hindcast predictors from CanESM5 (black dots) as well as raw CanESM5 scores (blue dots)

for the hybrid model trained and evaluated using SF-MEAN. The scores that are statistically

better than the raw CanESM5 score based on 1000 iteration bootstrap tests are shown with black

boxes and the lead years where scores are significantly better than the historical score are filled.
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Figure S6. Detrended global ocean carbon flux time series for assimilation, hindcast years 1, 2,

5, 10, and historical simulations from NN (left column) and Linear (right column) models trained

on SF-MEAN. The dashed line in the background is the detrended SF-MEAN and numbers in

legends are correlation coefficients (first number) and root mean square error of the time series

(second number). The plot shows how on longer lead times, the time series grow smoother and

more similar to the historical time-series. They indicate less year to year variability, and are

closer to the smooth (multi)decadal scale signal.
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Figure S7. Regional patterns of forecasted changes in the ocean carbon flux for bias corrected

CanESM5 (left column), hybrid NN model trained on SF-MEAN (middle column), and hybrid

linear model trained on SF-MEAN (right column), relative to each product’s 2019 projection.

Numbers above each panel are global ocean carbon flux anomaly relative each product’s 2019 in

Pg C yr−1 over the same time periods of the maps.


