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Abstract. Global ocean oxygen concentrations have declined in the past decades, posing threats to marine life
and human society. High-quality and bias-free observations are crucial to understanding ocean oxygen changes
and assessing their impact. Here, we propose a new automated quality control (QC) procedure for ocean profile
oxygen data. This procedure consists of a suite of 10 quality checks, with outlier rejection thresholds being
defined based on underlying statistics of the data. The procedure is applied to three main instrumentation types:
bottle casts, CTD (conductivity–temperature–depth) casts, and Argo profiling floats. Application of the quality
control procedure to several manually quality-controlled datasets of good quality suggests the ability of the
scheme to successfully identify outliers in the data. Collocated quality-controlled oxygen profiles obtained by
means of the Winkler titration method are used as unbiased references to estimate possible residual biases in
the oxygen sensor data. The residual bias is found to be negligible for electrochemical sensors typically used on
CTD casts. We explain this as the consequence of adjusting to the concurrent sample Winkler data. Our analysis
finds a prevailing negative residual bias with the magnitude of several µmol kg−1 for the delayed-mode quality-
controlled and adjusted profiles from Argo floats varying among the data subsets adjusted by different Argo
Data Assembly Centers (DACs). The respective overall DAC- and sensor-specific corrections are suggested.
We also find the bias dependence on pressure, a feature common to both AANDERAA optodes and SBE43-
series sensors. Applying the new QC procedure and bias adjustments resulted in a new global ocean oxygen
dataset from 1920 to 2023 with consistent data quality across bottle samples, CTD casts, and Argo floats. The
adjusted Argo profile data are available at the Marine Science Data Center of the Chinese Academy of Sciences
(https://doi.org/10.12157/IOCAS.20231208.001, Gouretski et al., 2024).

1 Introduction

Progressive warming caused by the human-induced increase
in greenhouse gases in the Earth’s atmosphere leads to a
decline in the dissolved oxygen concentration in the global
ocean because of the reduction in oxygen solubility; an in-
crease in stratification, which hampers the exchange between
the surface layer and the ocean interior; and the accompany-
ing change of ocean circulation (Keeling et al., 2010; Gruber
et al., 2011; Deutsch et al., 2011; Praetorius et al., 2015; Os-

chlies et al., 2017). Another factor related to human activi-
ties is the increasing input of nutrients from agriculture and
wastewater in the coastal regions (Oschlies et al., 2017; Bre-
itburg et al., 2018). Nutrients facilitate the growth of phyto-
plankton, and microbes subsequently decrease oxygen levels
after the phytoplankton dies (Breitburg et al., 2018; Pitcher
et al., 2021).

Recognizing the crucial role of dissolved oxygen in ma-
rine aerobic organisms, oceanographers started to measure
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oxygen in the late 19th century using the chemical method
developed by Winkler (1888). Since then, Winkler titration
has been a standard method used on oceanographic ships and
in laboratories (Langdon, 2010), and the technique has an ac-
curacy estimated to be 0.1 % or ±0.3 µmol kg−1 (Carpenter,
1965).

With the rapid technological progress during the 1960–
1970s and the development of the electronic CTD
(conductivity–temperature–depth) profilers, the first electro-
chemical sensors appeared, providing the possibility for con-
tinuous oxygen profiling, which is not possible with the Win-
kler method restricted by water samples from several depth
levels. Electrochemical sensors are based on a Clark polaro-
graphic membrane (Clark et al., 1953). Oxygen concentra-
tion outside the membrane and oxygen diffusion through the
membrane determine the sensor response. Electrochemical
Clark-type sensors possess a very fast time response (< 1 s),
with an initial accuracy of 2 % of oxygen saturation and pre-
cision of about 1 µmol kg−1 (Coppola et al., 2013). How-
ever, sensor drift due to fouling and electrolyte consump-
tion over time requires periodic calibration. The first sen-
sors applied on biogeochemical Argo profiling floats (bio-
geochemical (BGC) floats) were Clark-type electrodes (Riser
and Johnson, 2008).

Optical oxygen sensors called “optodes” are based on the
principle of fluorescence quenching of a fluorescent indicator
embedded in a sensing foil (Körtzinger et al., 2005; Teng-
berg et al., 2006). The optode sensors appeared soon after
the first implementation of the Clark-type sensors on Argo
floats (Gruber et al., 2010). Compared to electrochemical
sensors, optodes are characterized by long-term stability and
high precision, with the disadvantage of a slower response
time (Grégoire et al., 2021). During the initial period of sev-
eral years, both Clarke-type and optode sensors were used
on Argo floats (Claustre et al., 2020). However, drift and ini-
tial calibration issues with electrochemical sensors have led
to the increased implementation of optodes on Argo floats
(Claustre et al., 2020), for which calibration using simulta-
neous water samples is not possible. From the beginning of
the BGC Argo float implementation until March 2024, there
were more than 2100 profiling biogeochemical (BGC) Argo
floats that provide ocean oxygen observations with unprece-
dented temporal and spatial resolutions in this century (John-
son et al., 2017; Roemmich et al., 2019).

Different techniques have been applied in the past to col-
lect ocean oxygen data, and the number of oxygen pro-
file data from all instrument types within the World Ocean
Database (Boyer et al., 2018) reached a total of more than
1.2 million by 2023. However, there are a lot of data quality
issues in the historical oxygen database for many reasons,
including instrumental errors, data collection failure, data
processing errors, improper sample storage, and unit con-
version. Furthermore, as different instruments have different
data quality, merging several instrumentation types into an
integrated database requires proof of data consistency.

These quality issues impede the various applications of
oxygen data, for instance, investigating how much oxygen
the ocean has lost in the past decades (Levin et al., 2018;
Grégoire et al., 2021). Previous assessments indicate the de-
cline in open-ocean full-depth O2 content of 0.3 %–2 % since
the 1960s, with an upper 1000 m O2 content decrease of
0.5 %–3.3 % (0.2–1.2 µmol kg−1 per decade) during 1970–
2010 (Bindoff et al., 2019). The maximum estimate is at least
6 times larger than the minimum one, suggesting substantial
uncertainty in quantifying the open-ocean oxygen changes,
which is a great challenge for the accurate assessment of
deoxygenation (Helm et al., 2011; Long et al., 2016; Ito
et al., 2017; Schmidtko et al., 2017; Breitburg et al., 2018;
Sharp et al., 2023). Furthermore, there has been a mismatch
between observed and modeled trends in dissolved upper-
ocean oxygen over the last 50 years (Stramma et al., 2012).
Uncertainties and differences between estimates are at least
partly attributed to oxygen data quality issues and inconsis-
tency introduced by different instrument types (e.g., differ-
ent precision, instrument-specific errors/biases) (Grégoire et
al., 2021). For example, some BGC Argo data conduct in-
air oxygen measurements, which can be used to correct po-
tential systematic errors, while in other cases, a climatology
is used (i.e., World Ocean Atlas) as a reference (Bittig and
Körtzinger, 2015; Grégoire et al., 2021). Therefore, a con-
sistent and thorough assessment of oxygen data quality, in-
cluding uniform data quality control for all instruments and
instrumental bias assessments/corrections, is critical to pro-
viding a homogeneous ocean oxygen database for various
follow-on applications, including quantification of the trend
of ocean deoxygenation.

The paper aims to provide a quality-controlled (QC-ed),
consistent global oxygen dataset for the entire period 1920–
2023. To achieve this goal, a novel automated QC procedure
for ocean oxygen profiles was developed. We implement this
QC procedure in the global archive and analyze and describe
the quality of oxygen data obtained by different instrumenta-
tion types. The performance of the quality control procedure
is assessed using subsets of high-quality hydrographic data
and the QC-ed BGC Argo float profiles. Finally, we use bot-
tle sample data obtained through the Winkler method as a
reference to assess oxygen biases for ship-based CTD and
BGC Argo oxygen profiles.

The rest of the paper is organized as follows. The data and
methods employed in the study are presented in Sect. 2. The
data QC procedure is introduced in Sect. 3, with the data
quality assessment presented in Sect. 4. The results of bench-
marking the automated QC procedure using manually con-
trolled datasets are shown in Sect. 5. Assessment of the resid-
ual bias for Argo and CTD profiles is conducted in Sect. 6.
The impacts of QC and bias adjustment on estimating oxy-
gen climatology and its changes (including annual cycle and
long-term changes) are investigated in Sect. 7. The results
of the study are summarized and discussed in Sect. 8. Data
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Figure 1. Yearly number of oxygen profiles from the World Ocean
Database (OSD and CTD profiles) and national DACs (Argo) from
1920 to 2023.

availability and code availability are described in Sects. 9 and
10, respectively.

2 Global archive of dissolved oxygen profiles

The original oxygen profile data at observed levels are
sourced from two large depositories: (1) the World Ocean
Database (WOD) (as of January 2023) and (2) oxygen pro-
files from the Argo Global Data Assembly Center (GDAC)
(ARGO, 2024). World Ocean Database (Boyer et al., 2018)
represents the largest depository of dissolved oxygen pro-
file data. For the current study, we used ship-based WOD
oxygen data coming from two main instrumentation types:
(1) ocean station data (OSD) and (2) high-resolution CTD
profiles. The OSD instrumentation group is represented by
bottle casts with oxygen determined by the Winkler method.
CTD profiles are obtained mainly through the electrochem-
ical sensors. For the Argo float data from GDACs, both raw
(unadjusted) and adjusted and QC-ed data are available, with
the latter used for the current study.

The OSD profiles are most abundant between the 1960s
and 2000s and CTD profiles between the 1990s and 2010s,
and Argo profiles dominate after 2010 (Fig. 1). The geo-
graphical distribution of oxygen profiles is inhomogeneous
(Fig. 2), with OSD profiles exhibiting almost global cover-
age compared to CTD and Argo, with dense sampling typical
of the near-coastal areas and a sparser sampling in the cen-
tral parts of the oceans (Fig. 2a). The CTD profiles are most
abundant in the North Atlantic Ocean and are represented by
a sparse net of transoceanic sections in the central parts of
the main ocean basins, leaving large data gaps, especially in
the central regions of Pacific, Indian, and Southern oceans
(Fig. 2b). The total number of profiles from all three groups
exceeds 1.2 million for the time period 1920 to 2023, so man-
ual QC of the global oxygen dataset is nearly impossible.

Numbers of oxygen profiles disseminated by 10 national
Argo DACs and used for the current study are given in Ta-
ble 1. The most considerable contribution comes from two
DACs: the Atlantic Oceanographic and Meteorological Lab-
oratory (AOML) and the French CORIOLIS Data Centre
(Coriolis). Together, these two DACs contribute 71 % of
all oxygen profiles. The global sampling by Argo floats is
characterized by big gaps in the tropical belt of the World
Ocean (Fig. 2c) and in the marginal seas with shallow bot-
tom depths.

The DACs report oxygen data along with quality flags set
after the QC procedure performed by each DAC. The spa-
tial distribution of the profiles from each DAC is shown in
Fig. 3. Only the AOML dataset is characterized by a more
or less global coverage. The profiles from the second large
Coriolis dataset are concentrated mostly in the Atlantic and
Southern oceans. Other DACs are characterized by a regional
scope: Japan Meteorological Agency (JMA) data come from
the Pacific Ocean east of Japan, profiles from the Com-
monwealth Scientific and Industrial Research Organization
(CSIRO) cover the Southern Ocean, China Second Insti-
tute of Oceanography (CSIO) mainly provides Argo profiles
from the subtropical and tropical western Pacific Ocean and
Argo profiles from the British Oceanographic Data Centre
(BODC) are located in the Atlantic Ocean. Profiles from the
Korea Ocean Research and Development Institute (KORDI)
and from the Korea Meteorological Administration (KMA),
the smallest two datasets, are located in the southern part of
the Sea of Japan.

3 Data quality control

Quality evaluation of hydrographic data typically consists of
two parts: data QC for random errors and evaluation of sys-
tematic errors or biases. These two issues are often treated
separately but represent the entire QC procedure. A unified
QC procedure has yet to be suggested for the global archive
of oxygen profile data, and oxygen-related studies often rely
on WOD (Garcia et al., 2019), Argo (Thierry et al., 2021),
and Bushnell et al. (2015) QC procedures. The efforts un-
dertaken under the International Quality-Controlled Ocean
Database (IQuOD) initiative (Cowley, 2021) resulted in a
comprehensive study, where different quality control proce-
dures for temperature profiles were compared and evaluated
(Good et al., 2022). As shown in the previous section, the
characteristic feature of the global oxygen data archive is its
heterogeneity. In the early years, a relatively small amount of
data permitted expert quality control, but for the actual global
archive, automated quality control (AutoQC) procedures are
required.

The AutoQC procedure aims to identify and flag outliers,
which represent observations significantly deviating from the
majority of other data in the population. Monhor and Take-
moto (2005) noted that there is no rigid mathematical defini-
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Figure 2. Number of profiles (N ) in 1°× 1° latitude–longitude
squares for OSD (a), CTD (b), and Argo (c) data.

tion of an outlier. The outliers do not necessarily represent
erroneous measurements and can occur due to the natural
variability of the measured variable. A QC procedure defines
outliers using a set of thresholds, which are based on physi-
cal laws (for instance, the maximum solubility of gases in the
water) or have to be defined based on the statistical properties
of the data population.

In this paper, we introduce a novel QC procedure capable
of conducting quality assessment of data from different in-
strumentation types. The procedure is applied to the observed
level data and does not require additional quality checks for
profiles interpolated at a predefined set of levels. This second
level of QC is an attribute of the WOD QC system (Gar-
cia et al., 2019). To increase the reliability in detecting er-
roneous data, a set of quality checks is applied to each pro-
file. The larger the number of failed distinct quality checks,
the higher the probability that the flagged observation repre-
sents a data outlier. Based on the available QC schemes for
oceanographic data (most of them were developed for tem-
perature and/or salinity profiles), quality checks can be sub-
divided into the following groups:

– Group 1 – check of location, date and bottom depth of
the profile;

– Group 2 – check of profile attributes (maximum sam-
pled depth, number of levels, variables measured) spe-
cific to each instrumentation type;

– Group 3 – range check, e.g., comparison of observations
at each level against minimum/maximum value thresh-
olds, which are set for the entire ocean or oceanic basin
(global ranges) or for the particular location and depth;

– Group 4 – check of the profile shape, which is charac-
terized by the vertical gradient of the measured variable
at observed levels, by the number of local extrema, and
by the presence of spikes.

It should be noted that QC procedures often assume Gaussian
distribution law, and outliers are defined in terms of multiple
times the standard deviation from the mean value (Z-score
method). For instance, the WOD standard deviation check
is based on this assumption (Garcia et al., 2019; Boyer et
al., 2018). However, distributions of oceanographic param-
eters are typically skewed, and the assumption of Gaussian
distribution leads to false data rejection. Tukey (1977) in-
troduced a so-called box-plot method, which makes no as-
sumption about the distribution law and is often used for
outlier detection. Hubert and Vandervieren (2008) developed
the adjusted Tukey’s box-plot method for skewed distribu-
tion with fences depending on skewness. Following this ap-
proach, Gouretski (2018) and Tan et al. (2023) applied QC
checks, taking into account the skewness of temperature dis-
tribution. In the current study we use the Hubert and Van-
dervieren (2008) adjusted box-plot method as modified by
Adil and Irshad (2015).

Developing the QC procedure, consisting of a suite of dis-
tinct checks, we assume that oxygen data obtained by the
reference Winkler method are superior in quality compared
to the sensor data. As noted by Golterman (1983), the princi-
ple of the Winkler method has been unchanged since its in-
troduction, with the method still providing the most precise
determination of dissolved oxygen. There is a total of 10 dis-
tinct quality checks, which are introduced in Sect. 3.1 to 3.9.
The outlier statistics are shown in the Supplement (Figs. S1–
S10), both for the year–depth bins and within 2°× 4° geo-
graphical boxes and for randomly selected oxygen profiles
affected by the respective check.

3.1 Geographical location check

A comparison of the deepest sampled level with the local
ocean bottom depth may be used for the identification of er-
roneous geographical locations. We use a GEBCO 0.5 min
resolution digital bathymetry map to define thresholds for
this check. For each profile, the range between minimum and
maximum GEBCO bottom depth within the 111 km radius
is calculated. If the difference between the deepest profile
measurement depth and the local GEBCO depth exceeds the
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Table 1. Argo oxygen profiles from different national DACs.

N National Data Code name Number of Number of Argo Percent of Argo profiles
Assembly Center Argo profiles profiles collocated with collocated with

Winkler profiles Winkler profiles

1 Atlantic Oceanographic and Meteoro-
logical Laboratory, US

AOML 89 059 32 396 36.38

2 CORIOLIS Data Centre, France Coriolis 63 220 33 233 52.57

3 Commonwealth Scientific and Indus-
trial Research Organization, Australia

CSIRO 19 183 3302 17.21

4 Japan Meteorological Agency, Japan JMA 15 981 11 233 70.29

5 Indian National Centre for Ocean Infor-
mation Services, India

INCOIS 9901 2069 20.90

6 Second Institute of Oceanography,
Ministry of Natural Resources, China

CSIO 6455 3921 60.84

7 Marine Environmental Data Service,
Canada

MEDS 4605 1404 30.49

8 British Oceanographic Data Centre, UK BODC 3533 1905 53.92

9 Korea Ocean Research and Develop-
ment Institute, South Korea

KORDI 2239 0 0

10 Korea Meteorological Administration,
South Korea

KMA 93 0 0

above-depth range, the geographical coordinates of the pro-
file are considered to be in error, and data at all levels are
flagged. According to Table 2, about 0.5 % of OSD and CTD
profiles fail this check, compared to only 0.08 % for Argo
profiles. For each data type, the spatial distribution of profiles
failing this test exhibits a rather random pattern (Fig. S1).
The highest percentage of OSD outlier profiles is found for
the time period before 1946, probably due to less accurate
navigation methods during the war (Fig. S1b). CTD profiles
exhibit higher outlier scores above 400 m between 200–2014,
linked to several cruises. Only 0.077 % of DAC QC-ed Argo
profiles fail this check (Fig. S1g–i).

3.2 Global oxygen range check

The test is applied to identify observations that are grossly
in error (so-called “blunders”). These data correspond to the
cases of the total instrumentation fault or crude errors in-
troduced during the data recording or formatting. The over-
all minimum–maximum oxygen ranges are defined based on
the entire archive of the OSD profiles. These overall ranges
are set for depth levels and temperature surfaces because the
maximum oxygen solubility depends on temperature. For the
construction of overall limits, we use the normalized fre-
quency histograms (Fig. 4). The depth–oxygen histograms
are constructed similarly with normalization at each depth
level (Fig. 4b). The normalization is done to account for vary-

ing numbers of oxygen observations with depth and temper-
ature. The relative frequencies serve as guidance to produce
the overall oxygen minimum and maximum limits, which ap-
proximately correspond to the relative frequency of 0.05 (in-
dicated by the green lines). The spatial distribution of the
OSD and CTD profiles with levels failing this check broadly
corresponds to the sampling density (Figs. S2a and d, S3a
and d), whereas flagged Argo profiles can be rather linked to
distinct floats (Figs. S2g, S3d). The CTD data are character-
ized by the largest fraction of profiles affected by this check
(Figs. S2e, S3e).

3.3 Maximum oxygen solubility check

According to Henry’s law, the quantity of an ideal gas that
dissolves in a definite volume of liquid is directly propor-
tional to the partial pressure of the gas. It is also known that
gas solubility in the water typically decreases with increasing
temperature. The histograms of observed oxygen concentra-
tion (Cobs) versus maximum oxygen solubility (Cmax) cal-
culated using reported temperature and salinity in different
ocean layers depict a close relationship between the mode
of observed oxygen distribution and the maximum solubil-
ity (Fig. 5a–d). The histograms also show that the distribu-
tion mode for the upper-most layer 0–100 m (Fig. 5a) fol-
lows the line Cobs = Cmax, progressively deviating to lower
Cmax values when Cobs > 300 µmol kg−1, suggesting an oxy-
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Figure 3. The number (N ) of Argo oxygen profiles in 1°× 1° spatial boxes for the datasets from different DACs. The name abbreviation of
each DAC is also presented in each panel.

gen supersaturation. That is because in the photic layer of the
ocean oxygen is produced by phytoplankton through photo-
synthesis, and oxygen supersaturation can evolve. Oxygen
production due to photosynthesis leads to the formation of
small bubbles (10–70 µm) with increasing oxygen supersatu-
ration accompanied by a higher number of bubbles and their
shift towards large sizes (Marks, 2008). In the deeper lay-
ers (Fig. 5b–d), the number of cases with supersaturation de-
creases because of the reduced photosynthesis, so the tem-
perature and pressure effects dominate. According to the his-
tograms (Fig. 5a–d), supersaturation is frequently observed
in the upper layers. The percentage of supersaturated values

decreases from about 45 % in the near-surface layer to less
than 1.0 % below the 200 m level (Fig. 5e, red).

In order to set the threshold percentage for supersaturation,
we calculated histograms of supersaturation values for each
1 m depth level of the upper 500 m layer. The threshold per-
centage of supersaturation (Fig. 5e, blue line) corresponds to
the 99th quantile. The threshold value approaches 100 % near
the depth of 200 m; therefore, below 200 m all supersaturated
oxygen values are flagged. Locations of profiles with at least
one observed level failing this check are shown in Fig. S4a,
d, and g. The distribution of profiles broadly corresponds
to the spatial sampling density. The OSD outliers are more
numerous in the early years before 1955, probably point-
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Figure 4. Normalized oxygen histograms used to define overall oxygen ranges versus temperature (a) and versus depth (b). Minimum and
maximum overall oxygen limits are shown by solid green lines. For each temperature–oxygen bin in (a), the number of oxygen observations is
divided by the number of observations in the most populated bin for the same temperature. The depth–oxygen histograms (b) are constructed
similarly with normalization at each depth level.

Figure 5. Supersaturation check: (a–d) normalized frequency histograms for maximum solubility versus reported dissolved oxygen values
for different layers. The bin size is 10 µmol kg−1. For each maximum solubility level, the frequencies for each bin are normalized by the
number of the values in the most populated bin in order to account for variations in the number of profiles. (e) Percentage of supersaturated
oxygen values over all observed oxygen values (red) and the threshold for the supersaturation check, represented by the percentage relative
to the maximum solubility (blue).

ing to less accurate measurements during that time period.
The check reveals a much higher percentage of CTD outliers
throughout the water column for several years before 2000
(Fig. S4b) compared to other instrumentation types. Argo
floats are characterized by the low outlier percentage for this
quality check, with a higher percentage found for deep Argo
floats between 2017–2018 below 2000 m (Fig. S4h).

3.4 Stuck value check

Malfunctioning of sensors often results in stuck values when
the same oxygen concentration is reported for all or most of
the observed levels. To identify such profiles, we calculated
oxygen standard deviations for each oxygen profile to build
histograms (Fig. 6) for each instrumentation type. Only pro-
files with at least seven oxygen levels are considered. Un-
like the OSD and Argo data, for which the frequency of

profiles drops for low standard deviation values, the CTD
profiles are characterized by a distinct peak for the lowest
standard deviation values (Fig. 6c). Accordingly, based on
the histograms (Fig. 6b, c), we set the thresholds of 3 and
1 µmol kg−1 and for CTD and Argo profiles, respectively.
No lowest value thresholds are applied for OSD profiles, as
stuck values are only characteristics of the electronic sensors.
The geographical distribution of profiles failing this check is
given in Fig. S5a and d. The check is applied only to the CTD
and Argo sensor data and reveals a high percentage of out-
liers for CTD profiles, especially after 2000 (Fig. S5b). Argo
profiles which fail the check are not numerous and are mostly
located in the Northern Hemisphere (Fig. S5d).
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Figure 6. Oxygen profile standard deviation for OSD (a), Argo (b),
and CTD (c) instrumentation types. Only profiles with at least seven
levels of oxygen data are considered. Red vertical lines show the
respective threshold values for Argo and CTD profiles.

3.5 Multiple extrema check

The multiple extrema check aims to identify profiles whose
shape significantly deviates from the majority of profiles.
For each profile with at least seven observed levels (black
dots), the number of local extrema and their magnitudes (de-
noted as Mn in Fig. 7a, defined as oxygen difference between
two adjacent oxygen measurements) are calculated. Then,
the normalized frequency histograms of oxygen profiles for
different combinations of the number of oxygen extrema and
of the extremum magnitude are calculated for three instru-
mentation types separately (Fig. 7b–d). The larger the ex-
tremum magnitude, the less frequent the corresponding pro-
files. Physically, an oxygen profile at a location is not likely
to exhibit both too large and too frequent oscillations of oxy-
gen concentrations. Thus, the profiles with many or big ex-
trema are likely erroneous. The histogram for Argo profiles
differs from that for OSD and CTD because it is based on
profiles already validated by the respective DACs. The mul-
tiple extrema check thresholds (black lines in Fig. 7b–d) are
defined using the histograms as guidance. The lines crudely
correspond to the normalized frequency of 0.01 for OSD and
CTD and 0.05 for Argo profiles. The geographical distribu-
tion of profiles failing the check is given in Fig. S6a, d, and
g. Argo profiles failing the check can be linked to distinct
floats (Fig. S6g). The OSD profiles exhibit a higher outlier
percentage for the years 1990–2002. The highest rejection
rate for the CTD profiles is typical of the years before 2000
(Fig. S6b, e).

3.6 Spike check

Spikes are the values at levels that strongly deviate from the
values at the nearest levels above and below. For each ob-
served level k, the test value s = s1− s2 is calculated, where
s1 = |pk−0.5(pk−1−pk+1)|, s2 = |0.5(pk+1−pk−1)|, and p

denotes the oxygen value. The observation is identified as an
outlier when the test value s exceeds a threshold value. Due
to the larger oxygen variability in the upper layers, we set
depth-dependent spike thresholds, which are defined for nine
depth layers using accumulated histograms for the test value
s (Fig. 8a and b for 0–100 and 400–600 m as examples). The
threshold profile is defined by the 95 % frequency at each

layer (Fig. 8c). The 95 % value is chosen empirically but can
be tuned when additional QC-ed benchmark datasets become
available. Examples of profiles which failed this check are
shown in Fig. 7s. Data from all instrument types are charac-
terized by a rather homogeneous temporal and spatial distri-
bution of outliers.

3.7 Local climatological oxygen range check

The local climatological oxygen range check is one of the
most effective QC modules for identifying outliers compared
to other checks because the minimum–maximum thresholds
are constrained by the local water mass characteristics. For
each 1°×1° latitude–longitude grid point, we calculate min–
max thresholds, accounting for the skewness of the data. For
calculating climatological ranges, we take the ergodic hy-
pothesis in which the average over time is considered to be
equal to the average over the data ensemble within a cer-
tain spatial influence radius. Taking into account the skew-
ness of statistical distribution when defining climatological
ranges for oceanographic parameters was first suggested by
Gouretski (2018), who applied Tukey’s box-plot method,
modified for the case of skewed distributions (Hubert and
Vandervieren, 2008; Adil and Irshad, 2015). In this method,
lower (Lf) and upper (Lu) fences are calculated according to
formula (1):

[Lf Uf] = [Q1− 1.5 · IQR · exp(−SK · |MC|)Q3

+ 1.5 · IQR · exp(SK · |MC|)], (1)

where Q1 and Q3 are quartiles, Q2 is the sample median,
and SK is skewness. MC denotes the medcouple, which is
defined as MC=median h(xi,xj ), where xi ≤ Q2≤ xj , and
the kernel function h(xi,xj )= [(xj−Q2)−(Q2−xi)]/(xj−

xi) (Hubert and Vandervieren, 2008).
The local oxygen ranges are constructed using both the

OSD and Argo oxygen profiles. The OSD used to derive the
local threshold have undergone the preliminary QC (checks
for global oxygen range, spikes, stuck values, multiple ex-
trema), aiming to remove crude outliers to reduce their im-
pact on the local thresholds. This approach is similar to the
two-stage thresholding suggested by Yang et al. (2019). The
Argo oxygen profiles underwent quality control at the respec-
tive DACs.

The local minimum and maximum thresholds were calcu-
lated at 1°× 1° grids at a set of 65 depth levels correspond-
ing to the levels implemented for the World Ocean Circula-
tion Experiment – Argo Global Hydrographic Climatology
(Gouretski, 2018) using Eq. (1). Examples of the thresh-
old spatial distribution are presented for two depth levels:
98 m (level typically located below the seasonal thermocline,
Fig. 9a–c) and 1050 m (level typically located below the main
thermocline, Fig. 9d–f). The most striking features are the
areas with low minimum oxygen values (oxygen minimum
zones, Fig. 9a, b) in the east Pacific, Arabian Sea, Bay of
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Figure 7. (a) Schematics for the multiple extrema check. Black dots represent the observed values, and local extrema are defined by M ,
whereas extremum magnitudes are shown with blue lines. (b–d) Normalized frequency histograms for multiple extrema checks for OSD (b),
CTD (c), and Argo (d). The area to the right of the black line corresponds to oxygen profiles failing the multiple extrema check.

Figure 8. Spike check value histograms (see text for details) for the layer 0–100 m (a) and 400–600 m (b) and spike check value threshold
versus depth (c).

Bengal, Black Sea, and Baltic Sea. The oxygen range map
for level 98 m (Fig. 9c) shows that the areas with the widest
local ranges coincide with minimum oxygen zones. The lo-
cal range map for the 98 m level also depicts wider ranges in
several highly dynamic regions of the Gulf Stream, Malvinas
current, and the area north of the Antarctic coast (Fig. 9c).
During the QC, gridded minimum and maximum local oxy-
gen values are interpolated to the observed levels at profile
locations. The geographical distribution of profiles failing the
check is given in Fig. S8a, d, and g, indicating a rather uni-
form temporal and spatial distribution. A decrease with time
of the outlier percentage for OSD is clearly seen. For CTD
data, the outlier percentage is high for all levels and years ex-
cept for the years after 2020. Argo profiles failing the check
in many cases can be linked to the data from particular floats
(Fig. S8g).

3.8 Local climatological oxygen gradient range check

The oxygen vertical gradient check aims to identify pairs
of levels for which the vertical oxygen gradient exceeds a
certain threshold. Threshold values for the vertical gradient
(Fig. 9g–l) are calculated using Eq. (1), similar to the lo-
cal oxygen ranges. Due to the nonlinearity of oxygen pro-
files, vertical gradient values depend on the profile’s verti-
cal resolution, e.g., from the gap between two neighbors’ ob-
served levels. Respectively, oxygen thresholds have been cal-

culated for several depth gaps between 10 and 100 m, as Tan
et al. (2023) did for the QC of temperature profiles.

For level 98 m, the spatial distribution of the oxygen gra-
dient range (Fig. 9i) is similar to the spatial pattern of the
oxygen range (Fig. 9c), with the largest ranges located in the
oxygen minimum zones, reflecting the highest oxygen vari-
ability in these areas. The region below the main thermocline
(Fig. 9j–l) is characterized by a much smaller range com-
pared to the 98 m level (Fig. 9g–i). The geographical dis-
tribution of profiles failing the check is given in Fig. S9a,
d, and g, indicating a rather uniform temporal and spatial
distribution broadly corresponding to the sampling density.
For CTD data, the lowest outlier percentage is observed after
2000 (Fig. S9e).

3.9 Excessive flagged level percentage check

After applying all previous quality checks, the percentage of
flagged levels for each oxygen profile is calculated to pro-
duce histograms in Fig. 10. A threshold is set based on these
histograms to decide on the quality of the entire profile: we
set 20 %, 15 %, and 30 % thresholds for OSD, Argo, and
CTD profiles, respectively. If the threshold is exceeded, the
entire profile is flagged, and it is suggested that it not be used
in future analyses. Both the OSD and Argo datasets are char-
acterized by a low number of profiles with a high percentage
of flagged data. In contrast, for the CTD group, the histogram
(Fig. 10c) exhibits a thick and long tail, with a significant

https://doi.org/10.5194/essd-16-5503-2024 Earth Syst. Sci. Data, 16, 5503–5530, 2024



5512 V. Gouretski et al.: A consistent ocean oxygen profile dataset

Figure 9. Upper six panels: maps of the lower (a) and the upper (b) climatological oxygen threshold and of the oxygen range (c) for the
98 m depth level. (d–f) Same but for the 1050 m depth level. Lower six panels: maps of the lower (g) and the upper (h) climatological oxygen
vertical gradient threshold and of the oxygen vertical gradient range (i) for the 98 m depth level. (j–l) Same but for the 1050 m depth level.

fraction of profiles having a high percentage of flagged lev-
els.

The geographical distribution of profiles failing the check
is given in Fig. S10a, d, and g, indicating a rather uni-
form temporal and spatial pattern. A decrease in the out-
lier percentage with time for OSD is seen after about 2005
(Fig. S10b). For CTD data, the outlier percentage is high for
all years except 2021. Argo profiles failing the check in many
cases can be linked to distinct floats (Fig. S10g).

4 Evaluation of the QC procedure

Table 2 and Fig. 11 summarize the rejection rates for all 10
quality checks for the three instrumentation types separately.
The Argo oxygen profiles have the lowest overall rejection
rate of 4.8 %, with Winkler data quality ranking second best
(12.0 % outliers). The difference might likely originate from
(1) Winkler profiles covering a century-long period of obser-
vations, with a poor data quality in the earlier decades, and
(2) the analyzed Argo oxygen data being represented by ad-
justed profiles, which have been already quality-controlled.

Figure 10. Percentage of oxygen profiles versus percentage of re-
jected levels per profile for OSD (a), Argo (b), and CTD (c) instru-
ment types.

The CTD oxygen profiles have the highest percentage of
outliers (overall rejection rate of 80.0 %). The significant part
of CTD oxygen outliers is attributed to the stuck value check,
which searches for profiles with identical or very similar oxy-
gen values at all observed (reported) levels (Fig. 11a, check
5). Most of these profiles also fail the local climatological
range check. We note that these profiles have also been iden-
tified as outliers during the compilation of the WOA18 (Gar-
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Figure 11. (a–c) Percent of measurements flagged by distinct quality checks for three instrumentation types and (d–f) percent of profiles
with at least one measurement flagged. For the description of checks, see Table 2. The black bar at the number 11 corresponds to the total
percent of flagged data (a–c) and to the percent of profiles flagged by at least one quality check (d–f).

cia et al., 2019) and WOA23 (Garcia et al., 2024) atlases of
dissolved oxygen and have not impacted climatological oxy-
gen distributions presented in these atlases.

As introduced above, the local climatological range check
(check 8 in Table 2) represents the most important quality
check and results in the highest percentage of flagged obser-
vations and profiles. For OSD, about 17.5 % of profiles have
at least one measurement flagged by this check. For Argo
and CTD profiles, these values are 18.1 % and 61.5 %, re-
spectively.

Figure 12 shows the percentage of flagged measurement
versus time and depth and within 1° latitude–longitude boxes
for three main instrumentation types. The OSD group ex-
hibits a graduate decrease in outlier percentages with time at
all depths (Fig. 12a), indicating the gradual improvement of
data quality with time, especially after the early 1990s, which
coincides with the beginning of the extensive observational
activities during the World Ocean Circulation Experiment
(WOCE). The global spatial pattern of outliers (Fig. 12b) is
characterized by outlier percentages lower than 5 % in most
1° grid cells, with only a few areas exhibiting higher per-
centages, which can be linked to some particular cruises or
observational programs.

Oxygen data from Argo floats (Fig. 12c, d) are charac-
terized by a low percentage of outliers reflecting the impact
of the QC and data adjustments already conducted at DACs.
We also find no clear time trend in outlier scores. There is
an indication of higher outlier percentages in the layer below
1500 m before 2020 (Fig. 12c). Strong spatial contrasts in the

percentage of Argo outliers (Fig. 12d) in most cases can be
linked to particular Argo floats.

Unlike the OSD Winkler data, CTD oxygen profiles do
not suggest a time trend in data quality (Fig. 12e). Compared
to both OSD and Argo, ship-based CTD oxygen profiles are
characterized by a much higher outlier percentage. This is
explained through a significant fraction of CTD profiles fail-
ing the stuck value check, local climatological range check,
and excessive flagged level percentage check (Table 2). The
CTD outlier profiles are evenly distributed over the oceans
(Fig. 12f). Figure 12g and h show outlier distributions for
the profiles that passed both the stuck value and the multi-
ple extrema checks. In this case, most cruise lines (Fig. 12h)
are characterized by a low outlier percentage, with data qual-
ity issues related to a smaller subset of cruises. Finally, we
find that the CTD data since 2018 (Fig. 12g) exhibit very low
outlier scores comparable to those of OSD and Argo float
profiles.

5 Benchmarking of the QC procedure using
manually controlled datasets

Evaluation of the QC system is a crucial part of the dataset
generation. Good et al. (2022) conducted a comprehensive
benchmarking exercise to evaluate the performance of au-
tomated QC checks for temperature profiles implemented
by different research groups, aiming to recommend an op-
timal set of quality checks. They used several reference
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Figure 12. Percentage of flagged observations in year–depth bins (a) and in 1° latitude–longitude boxes (b) for OSD oxygen profiles. (c,
d) Same but for Argo oxygen profiles, (e, f) same but for CTD oxygen profiles, and (g, h) same but for CTD oxygen profiles that passed
multiple extrema and stuck value quality checks.

datasets with known quality (e.g., bench-marking datasets
whose quality was manually evaluated by experts).

Unfortunately, in a deviation from temperature profiles,
no community-agreed oxygen datasets exist which could
be used for benchmarking. In this study, we use for the
bench-marking a comprehensive set of bottle profile data
obtained during the World Ocean Circulation Experiment
(WOCE) – the largest international oceanographic experi-
ment ever conducted (Wunsch, 2006). To achieve high data
quality and consistency between the cruises over the entire
period of observations, the WOCE Hydrographic Program
Office (WHPO) issued operation manuals (WHPO, 1991),
where measurement methods and procedures are described.
As shown by Gouretski and Jancke (2000), the WHPO qual-
ity requirements have been fulfilled, with the WOCE hy-
drographic dataset representing a unique global scale high-
quality collection of the whole suite of oceanographic param-
eters. Specifically, the mean inter-cruise oxygen offset was

found to be 2.39 µmol kg−1. Upon completing the WOCE,
the GO-SHIP program was established in 2007 to revise the
WOCE hydrographic program by repeating several WOCE
lines (Hood et al., 2010).

Applying our QC procedure to the entire WOCE dataset
confirms the high quality of this unique dataset, with only
2.8 % of oxygen outliers (Fig. 13a, b) from the total of
354 028 oxygen measurements for the entire time period
1990–1998. Similar to the entire OSD dataset, the QC di-
agnostics reflect the progressive improvement of the oxygen
data quality over the period of WOCE (Fig. 13a). The spatial
distribution of outliers for the entire time period (Fig. 13c)
indicates that the majority of WOCE oxygen profiles have a
very low percentage of outliers. For 79 % of WOCE oxygen
profiles, our QC procedure identified no data outliers. The
higher rejection rate is found only for several WOCE lines
in the tropical South Atlantic, northwestern Indian Ocean,
and the Labrador Sea. We note that, in the same areas, there
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are data from other cruises which exhibit low outlier percent-
ages, so the flagging cannot be attributed to the spatial selec-
tivity of the QC procedure.

The WOD permits data selection for a large number of
observational programs using the respective project identi-
fication code. The outlier rejection percentage for the data
from 128 projects that reported oxygen data is shown in
Fig. 14. The mean rejection rate over all projects is 7 %.
Apart from WOCE, several outstanding observational pro-
grams like GEOSECS (Geochemical Ocean Sections Study)
(Craig, 1974), SAVE (South Atlantic Ventilation Experi-
ment) (Larqué et al., 1997), CARINA (Carbon dioxide in
the Atlantic Ocean) (Falck and Olsen, 2010), and CLIVAR
(Climate and Ocean: Variability, Predictability and Change)
(Sarachik, 1995) delivered a significant number of high-
quality hydrographic data with quality documented in the lit-
erature. We note that the four projects with a median year af-
ter 1985 (SAVE, WOCE, CARINA, and CLIVAR) are char-
acterized by rejection rates lower than the mean. The 8 %
outlier rate for one of the largest international GEOSECS ex-
periments conducted in the 1970s only slightly exceeds the
mean outlier percentage over all 128 projects.

Finally, we used the delayed-mode quality-controlled
Argo data to evaluate the performance of our QC proce-
dure. The Argo dataset used for the current study consists
of oxygen profiles reported from 1794 floats. The histogram
of the percentage of flagged observations for each Argo float
(Fig. 15a) shows that for 90 % of all floats, the percentage of
rejected observations is less than 15 %, with 84 % of floats
exhibiting less than 5 % of rejected measurements. We con-
clude that the QC applied in the DACs effectively identifies
data outliers for the majority of the floats, resulting in a low
outlier percentage (see Fig. 12c, d). The location map of pro-
files from Argo floats with more than 15 % of data flagged
over the float lifetime (Fig. 15b) shows a rather random dis-
tribution throughout the world ocean, with almost all DACs
contributing with such floats. We interpreted this result as
an implicit confirmation of the ability of our QC scheme to
identify data with quality issues.

6 Bias assessment for sensor oxygen data

The QC procedure described in the previous sections is based
on the underlying statistics of the data and aims to identify
random outliers. The second step in data QC is estimating
the possible systematic errors or biases. These systematic er-
rors may differ depending on the instrumentation type, but
the common cause for systematic errors is the absence of the
possibility to calibrate the instrument. A classic example pro-
vides temperature data obtained by eXpandable BathyTher-
mographs (XBTs) where systematic errors are due to the un-
certainty in depth, which is calculated from the elapsed time,
and the uncertainty in thermistor, which is typically not cali-
brated (Gouretski and Reseghetti, 2010; Cheng et al., 2014).
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Figure 13. QC statistics for the WOCE dataset: (a) percentage of outliers in year–depth bins, (b) percentage of outliers in oxygen–depth
bins, and (c) percentage of outliers in 1°× 1° squares.

Figure 14. Outlier diagnostics for 128 distinct WOD projects (OSD
Winkler profiles): (a) overall percent of outliers and (b) percent of
profiles with oxygen outliers. Acronyms and percentages for se-
lected hydrographic projects described in text are shown in color.

In the case of dissolved oxygen, only Winkler oxygen
determinations of discrete samples can be considered to be
bias-free because the chemical analysis is based on the stan-
dard reference, with the replicate measurements having a
precision better than 0.4 µmol kg−1 (Taillandier et al., 2018).
However, differences in methods and standards between hy-
drographic cruises suggest a lower level of data precision.
Gouretski and Jancke (2000) used the high-quality WOCE
one-time hydrographic dataset and conducted a comprehen-
sive analysis of the inter-cruise oxygen differences at the
cruise cross-over areas. The analysis was performed in the
deep part of the water column (typically below 2000 m),
where the time variations of seawater properties are small.
For 305 cross-over areas, they estimated the mean difference
between WOCE cruises to be 2.40 µmol kg−1 with a stan-
dard deviation of 2.37 µmol kg−1. Considering stringent cri-
teria for the WOCE hydrographic program, this estimate can
be considered to represent an approximate precision of the
Winkler method in application to real hydrographic data. As
noted by Golterman (1983), the Winkler method still repre-
sents the most precise determination of dissolved oxygen. In
spite of some modifications over time, the principle of the
method is unchanged. In the following, we describe residual
biases for CTD and Argo profiles. The term “residual” is used
because CTD oxygen profiles are often adjusted on Winkler
bottle samples, and Argo oxygen profiles used in our study
undergo adjustment procedures at the respective DACs.
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Figure 15. (a) Percent of Argo oxygen profiles versus percent of flagged data per profile and (b) trajectories of Argo floats with more than
15 % of flagged data (a total of 127 floats).

The use of electrochemical and optical oxygen sensors
in oceanographic practice has two main aspects. First, these
sensors permitted a significantly higher rate of data acquisi-
tion and a much finer vertical resolution than bottle data. Sec-
ondly, they made the observational process much easier than
bottle samples, which need chemical titration in the labora-
tory. However, like other electronic sensors, oxygen sensors
are prone to offsets and drift. Takeshita et al. (2013) analyzed
data from 130 Argo floats and found a mean bias of −5.0 %
O2 saturation at 100 % O2 saturation. Bittig et al. (2018) ex-
plained this negative bias by the reduction of O2 sensitivity
proportional to oxygen content, with the decrease in sensitiv-
ity being on the order of several percent per year. Optode drift
characteristics require regular calibration. Use of reference
Winkler profiles is only possible for the ship-based CTD oxy-
gen sensors (mostly electrochemical sensors) if CTD rosette
water samples are obtained simultaneously with sensor pro-
files and are analyzed for oxygen during a cruise (Uchida et
al., 2010). For uncrewed autonomous platforms like Argo,
the direct comparison with reference Winkler data is limited
to samples from the hydrographic casts conducted during the
float deployment. Bittig et al. (2018) recommended adjust-
ing optode data on oxygen partial pressure primarily by the
gain (the Argo Quality Control Manual; Thierry et al., 2021).
If no previous delayed-mode adjustment is available, the ba-
sic real-time adjustments are performed based on the oxygen
saturation maps provided by the WOA digital climatological
atlas (Thierry et al., 2021). In the case that a delayed-mode
adjustment is not available after 1 year, the re-assessment of
the gain factor is recommended. Uncertainty in underlying
optode calibration and time drift characteristics leads to er-
rors in adjusted data.

6.1 Bias assessment method

We aim to assess the magnitude of the possible overall resid-
ual bias for CTD profiles and adjusted Argo profiles by com-
paring these profiles with collocated reference discrete sam-
ples. The data from 10 national DACs were used for this

analysis, for which both unadjusted and adjusted oxygen pro-
files are available. Data centers and the respective number of
oxygen profiles are given in Table 1. Data using the Winkler
method are used as reference data for the comparison with
collocated Argo oxygen profiles.

For the current analysis, we selected a 100 km threshold
distance within which two profiles are spatially collocated.
To decide upon the choice of the optimal maximum time dif-
ference between Argo and reference profiles, we calculated
median oxygen offsets the increasing threshold value for the
time separation between a pair of profiles (Fig. 16a). Increas-
ing the temporal collocation bubble leads to the increase in
the bias magnitude in agreement with the assumption that
the older reference data are richer in oxygen compared to
the more recent data. Below 1000 m depth, the difference be-
tween the median offsets for the temporal collocation bubble
of 5 and 50 years is about 3.5 µmol kg−1, corresponding to a
deoxygenation trend of about 0.7 µmol kg−1 per decade. This
estimate can be compared with 0.75 µmol kg−1 per decade
reported by Grégoire et al. (2021). As Fig. 16c suggests, the
overall offset estimate below 1000 m stabilizes after the time
difference threshold of 5 years. The extension of the temporal
bubble for more than 7 years leads to the progressive increase
in the bias magnitude, which we attribute to the impact of
the general deoxygenation. Based on these calculations, the
5-year threshold was selected as the maximum time sepa-
ration between collocated profiles. For this threshold value,
the number of collocated pairs below 1000 m depth is about
10 000 (Fig. 16b). A step-wise decrease in the number of col-
located pairs below 950 m is explained by a significant part
of reference profiles being limited to the upper 1000 m layer.
These calculations suggest that about 1000 collocated pairs
are required for stable offset estimates.

The number of Argo profiles having collocations with dis-
crete ship-based Winkler profiles is shown in Table 1. No
collocated Winkler profiles are found for the Argo profiles
from the two South Korean DACs. Profiles from these DACs
are restricted within a relatively small area east of the Ko-
rean Peninsula. The four largest contributors of Argo data
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Figure 16. (a) Overall median oxygen bias versus the size of the temporal collocation bubble, (b) number of collocated pairs for different
choices of collocation bubbles, and (c) depth-averaged (1000–1900 m) bias versus time bubble size.

(AOML, Coriolis, JMA, and CSIRO) comprise up to 90 % of
all Argo profiles having collocations with reference profiles.

6.2 Overall bias characteristics of unadjusted and
adjusted Argo oxygen data from DACs

The normalized frequency histograms (Fig. 17) characterize
the spread of individual bias estimates around the distribu-
tion mode. These histograms are based on all Argo profiles
having collocations with reference Winkler data. In these his-
tograms, for each depth bin, the number of values in each
bias bin is normalized by the number for the most popu-
lated bias bin at each depth level to account for the decrease
in data with depth. The histograms are shown for raw (un-
adjusted) (Fig. 17a) and adjusted Argo profiles (Fig. 17b).
The adjustment procedures applied at different DACs reduce
the spread of the individual bias estimates and the skewness
of the bias distribution, with the overall median bias of 10–
12 µmol kg−1 for unadjusted data and 1–2 µmol kg−1 for ad-
justed data. As suggested by the bias distribution with depth,
we estimate residual bias using the collocated data below
1000 m depth, where the bias spread reduces significantly
compared to the upper part of the water column.

6.3 Residual oxygen biases for distinct oxygen sensor

A total of 11 oxygen sensor models were implemented on
BGC Argo floats, with 8 sensor models found among Argo
profiles having collocations with reference data (see Table 3).
Figure 18 shows the yearly number of Argo profiles that have
collocations with reference data and are equipped with differ-
ent models of oxygen sensors. The SBE43-series sensors are
electrochemical Clark-type sensors, whereas all other mod-
els are optical sensors (optodes). Since the beginning of the
2000s, several models of optodes have been implemented
in BGC Argo floats. The two most widespread sensors are
AANDERAA 3830, implemented between 2004 and 2018,
and the newer model AANDERAA 4330 used since 2010.
The majority of Argo floats from the three largest AOML,
Coriolis, and JMA datasets have been equipped with this

sensor. Data from AOML, Coriolis, JMA, and CSIRO in-
clude oxygen profiles obtained by means of several sensor
models. The other four DAC subsets of data are represented
by a single sensor model: AANDERAA_OPTODE_4330
prevails in the data from INCOIS, CSIO, and BODC, and
AANDERAA_OPTODE_3830 is typical of MEDS data.
AROD_FT and ARO_FT optodes have only been imple-
mented on Argo floats managed by JMA.

According to the Argo Quality Control Manual (Thierry et
al., 2021), several adjustment procedures can be applied to
unadjusted data (adjustment to climatology, nearby Winkler
samples, or in-air data). The adjustment results may depend
on many factors, such as the subjective decision of the oper-
ator in a DAC, the use of specific software, and the availabil-
ity of the respective reference data. If a climatology is used
as a reference, the Argo oxygen values will be adjusted to
the median year of a climatology, which can differ by sev-
eral decades from the year of an Argo profile. In such cases,
the long-term deoxygenation trend of the world ocean might
impact the results of the adjustment procedure. Differences
in the applied adjustment procedures may potentially result
in DAC-specific residual offsets. Considering these two main
causes for biases in sensor oxygen data, we calculated pro-
files of overall oxygen biases versus depth (e.g., biases based
on the data from all years) for six sensor models (1, 2, 5, 6,
8, and 10; see Table 3) and for six DACs, which provided a
sufficient number of collocated pairs (Fig. 19).

The number of available collocations with reference Win-
kler profiles varies by 2 orders of magnitude for differ-
ent DACs. Since reference bottle data often cover only part
of the upper 2000 m layer, the number of collocated pairs
also changes over depth, with the main step-wise decrease
seen around 1000 m. However, our calculations suggest that
changes in the number of collocated pairs over depth do not
significantly impact the diagnosed bias. In order to reduce
the effect of the varying geographical sampling pattern over
depth, only Argo profiles deeper than 1000 m were used for
bias calculations. Figure 19 shows a much higher variability
of diagnosed biases in the upper part of the water column
due to a stronger temporal and spatial oxygen variability.
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Figure 17. Normalized histograms of the unadjusted (a) and adjusted (b) Argo oxygen bias versus collocated Winkler profiles. The black
lines show the median bias value.

Table 3. Oxygen sensors installed on BGC Argo floats.

N Oxygen sensor model Number of Number of Argo profiles
Argo profiles collocated with Winkler profiles

Optode sensors

1 AANDERAA_OPTODE_4330 160 261 16 112
2 AANDERAA_OPTODE_3830 49 049 8234
3 AANDERAA_OPTODE_3835 405 0
4 AANDERAA_OPTODE_4831 454 0
5 SBE63_OPTODE 16 775 1978
6 SBE83_OPTODE 462 0
7 ARO_FT 2792 618
8 AROD_FT 370 31

Clarke-type sensors

9 SBE43F_IDO 12 234 2341
10 SBE43I 9620 1046
11 SBE43_IDO 2173 246

However, in the layer below 1000 m (e.g., crudely below the
main thermocline), all profiles indicate much smaller vari-
ations over depth, and in the following discussion, we will
focus on biases within this layer.

For almost all oxygen sensors, the overall bias exhibits a
characteristic hook below about 1900–1950 m. Such hooks
on Argo oxygen profiles were found by Taillandier et
al. (2018). The hook can reflect the adjustment of the oxy-
gen sensor at the beginning of the float ascending. Further,
we note that Clarke-type sensors from SBE43 series are char-
acterized by a positive oxygen bias below 1000 m, whereas
the majority of optodes are characterized by negative biases,
with the exception of SBE63 profiles in CSIRO data.

Another feature common to AANDERAA optodes and
SBE43-series sensors is the dependence of bias on depth
(pressure). For one and the same sensor model, the slope

of the bias profile differs among the DACs. The most clear
dependence on pressure is seen for the SBE43F IDO and
SBE43I models for AOML data (Fig. 19c, d) and for AAN-
DERAA_3830_OPTODE for the four largest DAC datasets
(Fig. 19a). It is known that dissolved oxygen measurements
by SBE43 IDO-series sensors are influenced by changes
in sensor membrane characteristics due to temperature and
pressure. Depending on the sensor’s time-pressure history,
these changes have long time constants, resulting in hystere-
sis at depths greater than 1000 m (Thierry et al., 2021). Until
now, there has been no effective method for adjusting the
pressure effects of these sensors on profiling floats under op-
eration. Data from all optodes also require adjustments for
pressure effects (Bittig et al., 2015). Increasing pressure re-
duces the oxygen concentration inside the sensing membrane
(which is relevant for luminescence quenching) by ca. 3.0 %–
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5.5 % per 1000 dbar. The optodes are thus expected to show
lower oxygen under pressure, which is confirmed by Fig. 19a
and b in this paper for all DACs except JMA.

Also shown in Fig. 19 are estimates of mean biases cal-
culated for the layer 1000–1900 m (B1000–1900 m). The lower
boundary of 1900 m was selected in order to exclude the
depth range where bias profiles exhibit characteristic hooks
described above.

In order to assess the stability of the overall bias estimates
shown in Fig. 19, we calculated time series of the average
bias within the layer 1000–1900 m for six most abundant
sensor models (Fig. 20). The changes in the diagnosed bi-
ases over time indicate a certain degree of sensor stability,
with biases typically remaining positive or negative over the
entire period of observations. At least part of this apparent
time variability may be due to the changes in the number
of collocated pairs and their geographical distribution over
time. Considering the strong limitation imposed by the num-
ber of available collocated pairs, we suggest overall constant
bias corrections for different sensors and DACs (Table 4).
These corrections correspond to the residual biases in the
layer 1000–1900 m (see Fig. 19).

Finally, overall biases were calculated for the data from
eight distinct DACs (South Korean datasets from KORDI and
KMA are relatively small and do not have collocations with
reference cruises available for this study). Biases were cal-
culated for the original data (QC-ed and adjusted by DACs)
and for the data corrected for residual biases according to Ta-
ble 4 (Fig. 21). For all DACs, the suggested bias corrections
led to the reduction of the overall bias. AOML, CSIRO, and
MEDS data are characterized by a rather constant bias be-
low about 700 m depth. Bias profiles for Coriolis and JMA
subsets of data indicate the possible impact of pressure ef-
fect on oxygen sensors discussed above. It should be noted
that the number of collocated profile pairs differs by 2 or-
ders of magnitude among the eight DACs. In the layer above
1900 m, the AOML data have between 6500–9500 collocated
pairs for each depth level, whereas the BODC dataset con-
tributes only with 37 Argo profiles having collocations with
reference data. A larger variability of the bias over depth for
CSIO and BODC data is most likely explained by the insuf-
ficient sample size.

6.4 Residual oxygen biases for CTD oxygen sensors

We conducted similar bias calculations for the CTD oxy-
gen profiles obtained by both electrochemical and optical
sensors. Only CTD data which passed all QC checks were
used for the bias estimation. Unlike Argo profiles, the CTD
oxygen sensor data can be adjusted on the simultaneously
collected bottles analyzed in the ship laboratory using the
Winkler method (Taillandier et al., 2018). Unfortunately, it is
not possible to identify profiles with such adjustments within
the WOD archive because of missing metadata. As noted by
Boyer et al. (2018) “in many cases, the dissolved oxygen . . .

data are uncalibrated and not of high quality. Information on
whether these variables are calibrated is not usually supplied
by the data submitter”. As noted by Uchida et al. (2010),
calibration of oxygen sensor profiles is not straightforward,
requires some expertise, and depends on the quality of the
reference data. Saout-Grit et al. (2015) described the calibra-
tion procedure for SBE 43 sensors done by fitting to refer-
ence Winkler data and found a time trend in residuals during
the analyzed cruise. WOD archives the data submitted by the
data producers and other resources. Thus, the data quality
and calibration procedure of the CTD oxygen data are likely
inhomogeneous.

For 0–1900 m, we find an overall CTD oxygen offset
of about 0.25 µmol kg−1 (median) relative to the Winkler
data over the 1960–2022 period, which is much smaller
than Argo oxygen biases ranging from −3.72 (JMA) to
0.76 µmol kg−1(CSIRO) (see Fig. 19). Similar to Argo data
the offset distribution above 1000 m level (Fig. 22e) exhibits
stronger spread than that below 1000 m. The median off-
set for the layer 1000–2000 m is 0.25 µmol kg−1. Grégoire
et al. (2021) indicated that “the uncertainty associated with
the last generation of O2 sensors that uses the best cali-
bration and calculation methods amounts, in the best case,
at ∼ 2 µmol kg−1”. Therefore, the overall median offset of
0.25 µmol kg−1 identified by this study is well within the ex-
pected uncertainty of the CTD sensors. Besides, there is no
spatial uniform pattern for the CTD offsets (Fig. 22d), im-
plying that this offset might not be systematic. Further inves-
tigation of the offsets for different cruises (figure not shown)
indicates that the offset varies cruise by cruise and year by
year. Therefore, in this study, we decided not to adjust the
CTD data before the offset can be further confirmed after a
cruise-by-cruise investigation and the underlying reasons for
the bias can be understood.

7 Impact of quality control and bias adjustment on
estimating oxygen changes

Applying the QC and bias adjustment to historical in situ
oxygen data is expected to impact the derived ocean oxy-
gen changes on various spatial and temporal scales. To illus-
trate this impact, we implemented the new Auto-QC system
for all oxygen data and adjusted the Argo data based on the
approach described in Sect. 6. Based on these data, we ap-
plied the mapping method (ensemble optimal interpolation
approach with a dynamic ensemble from climate model sim-
ulations, EnOI-DE) proposed by Cheng et al. (2017, 2020) to
spatially interpolate oxygen data, yielding a spatially com-
plete gridded global ocean oxygen dataset. Because of the
limited spatial coverage of oxygen data, we combine each
successive 3 years of data to derive oxygen fields for each
calendar year. Respectively, the oxygen time series are based
on these fields. The reconstruction is only done for the up-
per 2000 m because of the insufficient in situ data in the
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Figure 18. Yearly number of BGC Argo profiles equipped with different types of oxygen sensors (colored lines; see sensor attribution in
panel (e)). (a) AOML, (b) Coriolis, (c) JMA, and (d) CSIRO and (e) CSIO, (f) INCOIS, (g) BODC, and (h) MEDS.

Figure 19. Overall oxygen biases for six oxygen sensor models: (a) AANDERAA_OPTODE_3830, (b) AANDERAA_OPTODE_4330,
(c) SBE43F_IDO, (d) SBE43I, (e) SBE63_OPTODE, and (f) ARO_FT. Bias profiles are shown for the six largest DAC datasets (color lines).
Values of the average bias for the layer 1000–1900 m (B1000–1900 m) are shown in the lower right part of each panel, with standard errors
given in parentheses. Light color shading corresponds to the bias standard error at depth levels, with the number of degrees of freedom equal
to the number of distinct Argo floats.
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Figure 20. Residual oxygen bias for the layer 1000–1900 m versus time. Vertical bars show standard error with the number of degrees of
freedom equal to the number of distinct floats. Each value corresponds to the bias averaged within the 5-year time window. Calculations are
shown for the data from distinct DACs: (a) AOML, (b) Coriolis, (c) JMA, and (d) CSIRO.

Figure 21. Overall mean Argo oxygen offsets versus Winkler profiles for distinct DACs: (a) AOML, (b) Coriolis, (c) JMA, and (d) CSIRO
and (e) INCOIS, (f) MEDS, (g) CSIO, and (h) BODC. Offset profiles for DAC-adjusted data and for the data corrected for residual biases
(Table 4) are shown in red and blue, respectively. Standard error bars (light shading) are calculated using the number of distinct floats at each
level as the number of degrees of freedom. Green lines show number of collocated pairs in thousands.
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Table 4. Sensor-specific bias corrections for data from different DACs∗).

Sensor AANDERAA_OPTODE_3830 AANDERAA_OPTODE_4330 AROD_FT, SBE43F_IDO SBE43I SBE63_OPTODE
model ARO_FT

1 AOML 1.36 (0.43) −3.22 (0.19) 2.17 (0.42) 0.52 (0.42) −1.07 (0.16)
2 Coriolis −1.78 (0.72) −2.06 (0.62) 2.17 (3.32) 0.50 (0.68)
3 JMA 4.38 (0.99) −3.19 (0.52) −6.24 (0.36) 2.08 (0.67) 0.52 −0.74 (0.42)
4 CSIRO 0.44 (0.24) −1.23 (0.70) 2.57 (0.72) 1.22 (0.70)
5 CSIO −2.43 −0.02
6 INCOIS −2.43 0.52
7 BODC 4.00 (2.07)
8 MEDS −1.09 −2.43 −0.02
9 KORD 1.09 2.25
10 KMA −2.43
∗ Bias corrections are given in µmol kg−1. Values in parentheses show standard errors. If the standard error is not shown, the correction indicates a guess value equal to the mean of values with standard
error estimate. Corrections indicated in the table should be subtracted from the reported oxygen value. Empty boxes correspond to the sensors which are absent for a specific DAC.

Figure 22. Statistics of the CTD oxygen bias relative to collocated Winkler data. Histograms of layer-averaged bias for 0–2000 m (a), 0–
1000 m (b), and 1000–2000 m (c). Number of negative (N ) and positive (M) bias values is shown respectively on the left and right side of
each histogram. (d) Median of depth-averaged bias (1000–2000 m) in 2°× 4° grid boxes and (e) overall median CTD oxygen offset as a
function of depth.

abyssal layers. The resultant oxygen field is denoted as “after
QC/adjustment”. To show the impact of QC and adjustment
on the oxygen changes’ estimate, we also applied the same
method to the data without QC (e.g., with only several crude
QC checks applied to remove most likely erroneous values,
including overall range checks, solubility check, and spike
check) and without Argo adjustments. The resultant field is
denoted as “before QC/adjustment”.

The long-term mean states (e.g., the climatology, recon-
structed using all data between 1990–2022 based on the

EnOI-DE approach) of the upper 1000 m oxygen before and
after QC/adjustment are very similar (Fig. 23a, b). One rea-
son is that the EnOI-DE method (as any mapping approach)
has a smoothing effect, so the erroneous data are less visi-
ble behind high spatial variability. This indicates the robust
large-scale pattern, where the oceans in the low latitudes have
lower oxygen concentrations than in the higher latitudes be-
cause of the water temperature and ocean circulation differ-
ence. The eastern Pacific and north Indian oceans show even
lower oxygen levels because of the subsurface oxygen min-
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imum zone. The difference between oxygen climatologies
calculated before and after QC/adjustment ranges from −15
to 15 µmol kg−1 but differs at different locations (Fig. 23c).
The zonal mean difference is smaller (−3 to 1 µmol kg−1)
because of the error cancellation at each latitude (Fig. 23d).

The QC/adjustment also impacts the annual cycle (includ-
ing both phase and magnitude) of the global mean oxygen
changes (Fig. 23e). Examples for the layers 0–100 m (repre-
senting the upper seasonal change layer), 100–600 m (rep-
resenting the main thermocline)„ and 0–2000 m (showing
the ocean oxygen inventory) are shown in Fig. 23e. For 0–
100 m, the mean oxygen level shifts from negative to posi-
tive in November after QC/adjustment but in September be-
fore QC/adjustment. The magnitude of the annual cycle (de-
fined as the difference between the maximum and minimum
of the 12-month climatology time series) is 1.45 µmol kg−1

but slightly reduced after QC/adjustment (1.22 µmol kg−1).
Similarly, the annual cycle magnitude for the layers 100–600
and 0–2000 m reduced from 1.18 and 0.55 µmol kg−1 before
QC/adjustment to 0.79 and 0.48 µmol kg−1 after QC/adjust-
ment (Fig. 23e).

The QC and adjustment also impact the estimates of long-
term oxygen changes, for example the global deoxygena-
tion estimates for 0–100, 100–600 and 0–2000 m layers de-
picted in Fig. 24. After QC/adjustment, the standard devi-
ation of the time series is decreased from 1.71 (0–100 m),
2.37 (100–600 m), and 1.60 (0–2000 m) to 1.62 (0–100 m),
2.24 (100–600 m), and 1.44 (0–2000 m) µmol kg−1, show-
ing a reduced variability in global oxygen time series after
QC/adjustment. This indicates a reduction of noise, which is
mainly attributed to both QC and Argo adjustment. For ex-
ample, before QC/adjustment, there was a big global deoxy-
genation of ∼ 3 µmol kg−1 from 1995 to 1996 in the layer
0–100 m, which is likely non-physical and spurious. This
feature disappeared after QC/adjustment (Fig. 24). The lin-
ear rate of deoxygenation differs for the two test changes as
well: −0.77± 0.43 (0–100 m), −1.45± 0.30 (100–600 m),
and −0.95± 0.30 (0–2000 m) µmol kg−1 per decade before
QC/adjustment and −0.90± 0.38 (0–100 m), −1.37± 0.40
(100–600 m), and −0.84± 0.41 (0–2000 m) µmol kg−1 per
decade after QC/adjustment. The linear trend is calculated
by the ordinary least-squares regression with a 90 % confi-
dence interval shown (accounting for the reduction in de-
gree of freedom). The deoxygenation rates are reduced af-
ter QC/adjustment for both 100–600 and 0–2000 m, mainly
because of the Argo adjustment, which shifted the oxygen
level in the past decade by ∼ 0.76 µmol kg−1 for 100–600 m
average and ∼ 0.82 µmol kg−1 for 0–2000 m average within
2015–2023 (Fig. 24).

By means of these tests we demonstrate that QC and bias
adjustment can impact the estimation of the oxygen changes
at various temporal–spatial scales, highlighting the need for
a careful oxygen data processing before application. How-
ever, we note here that the validity of the mapping approach

on oxygen reconstruction has not been thoroughly evaluated,
which deserves a separate study.

8 Data availability

The quality control procedure described above was applied
to the OSD and CTD oxygen profiles between 1920 and 2023
from the World Ocean Database (https://www.ncei.noaa.
gov/access/world-ocean-database-select/dbsearch.html,
Mishonov et al., 2023) and to the oxygen profiles from the
BGC Argo floats (https://doi.org/10.17882/42182, Argo,
2024). The resulting dataset comprises observed level data
with quality flags and data interpolated on 10 m levels. The
data are in NetCDF format and include metadata informa-
tion. The complete dataset (Gouretski et al., 2024) can be
found at https://doi.org/10.12157/IOCAS.20231208.001 and
http://www.ocean.iap.ac.cn/ftp/cheng/IAP_oxygen_profile_
dataset (last access: 26 November 2024).

9 Code availability

The code of the QC system developed in this paper is avail-
able at http://www.ocean.iap.ac.cn/ftp/cheng/IAP_oxygen_
profile_dataset/QC_Code_SAMPLE.zip (Gouretski et al.,
2024).

10 Conclusion and discussion

This study developed a new automated QC scheme for ocean
oxygen profile data and applied it to the OSD and CTD
oxygen profiles from the WOD and to the Argo float oxy-
gen profiles provided by national DACs. The procedure con-
sists of 10 quality checks based on local or global parameter
thresholds. Some checks are conceptually similar to the qual-
ity checks used to validate the profiles in the World Ocean
Database (Boyer et al., 2018) (for example, the global range
test and vertical gradient test) and in the Argo Data Ac-
quisition Centers (Thierry et al., 2021) (for example, spike
and “frozen” profile tests). However, we provide additional
checks (for example, test for the number of local extrema and
local climatological range test), which increase the ability of
the QC procedure to better identify erroneous data. For in-
stance, the procedure proves whether an oxygen value falls
out of accepted ranges (defined by globally or locally) or
whether an oxygen profile exhibits a very untypical shape.
The shape of the profile is characterized by the vertical oxy-
gen gradient, by the number and magnitude of local oxygen
extrema, and by the presence of spikes. The check is also
done for the so-called “frozen” profiles occurring when the
oxygen sensor sticks and reports the same values throughout
the profile.

The QC procedure presented here is tailored for the qual-
ity assessment of the archived oxygen data obtained by both
Winkler methods and sensors. Large ocean depositories like
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Figure 23. The climatological upper 1000 m oxygen field before (a) and after (b) QC/adjustment, with their spatial difference shown in (c)
and zonal mean differences in (d). The annual cycle (relative to the climatological annual mean level) before (dashed line) and after (solid
line) QC/adjustment are compared in (e) for different vertical layers. The climatology field is reconstructed by combining all data within
1990–2022 with EnOI-DE mapping method (Cheng et al., 2017, 2020).

Figure 24. The reconstructed global averaged oxygen time series
before (dashed line) and after (solid line) QC/adjustment from 1970
to 2023 for the layers 0–100, 100–600, and 0–2000 m. Here, we
combine each successive 3 years of data to estimate the oxygen
changes. The anomalies are calculated relative to the climatology
shown in Fig. 23.

WOD often contain observed data that have already under-
gone a certain degree of QC and adjustment. Therefore, our
QC procedure differs from the real-time QC of dissolved
oxygen observations by means of oxygen sensors as sug-
gested in the frame of the Integrated Ocean Observing Sys-
tem (IOOS) in the quality control manual by Bushnell et

al. (2015) (B2015 hereafter). Three quality tests which have
been required or suggested in that manual can only be applied
to real-time data: the application of the gap test needs the
time stamp of each measurement, the application of the syn-
tax test requires the full original data record, and the appli-
cation of the neighbor test is only possible in the case when
a nearby second sensor is installed on the device. Informa-
tion needed for these tests is not kept in the WOD; therefore
these tests cannot be applied to “static” archive data. Five
other tests outlined in B2015 are conceptually similar to the
tests applied by our QC procedure: location test, gross range
test, climatology test (all three required by B2015), spike test,
and flat line test (both recommended by B2015). In a devia-
tion from our QC procedure, thresholds for test variables ac-
cording to B2015 should be chosen subjectively by operators
in the data centers. We note that the metadata on decisions
made operators are usually missing in the data archives.

The novelty of the proposed quality scheme is that the
threshold choice is based on the respective statistics of test
variables, and the Gaussian distribution is not assumed for
the important local climatological range checks for oxygen
and for oxygen vertical gradient. The QC procedure pre-
sented in this study was benchmarked against several hydro-
graphic datasets known for their outstanding measurement
quality, with WOCE experiment data collection being the
largest and best documented. Analysis of the outliers and
their distribution among distinct hydrographic sections and
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cruises suggests the ability of the procedure to flag outliers
but retain the overwhelming majority of good data. The ac-
companying diagnostic tool provides the overview of outlier
scores and permits tuning of thresholds when new bench-
mark quality-controlled datasets become available. Finally,
we note that the transparent choice of test threshold values
on the basis of the underlying statistics and the subsequent
analysis of outliers for each quality check permits further
tuning of the quality control procedure in order to increase
the percentage of true outliers and to decrease the percentage
of falsely identified outliers.

Further, we estimated possible residual oxygen biases in
the delayed-mode adjusted Argo oxygen profiles. The bias
estimates are based on the collocated Argo and discrete wa-
ter sample ship-based profiles. The latter represents reference
measurements as the bottle samples are analyzed by means
of the Winkler chemical method. The size of the colloca-
tion bubble (e.g., the maximum distance between two pro-
files and the maximum time difference) was set at 100 km
and 5 years, respectively, after several experiments with dif-
ferent bubble sizes. Residual biases relative to the Winkler
reference data are represented by the difference at an isobaric
level between the Argo sensor oxygen value and the Winkler
oxygen, with the overall bias at each level being defined by
the average of individual differences. To reduce the impact of
time- and spatial variability, the final bias assessment is done
for the layer 1000–1900 m, which is typically located below
the main thermocline.

Using all available Argo profiles which have collocations
with reference Winkler data, we calculated overall oxygen
offsets for six models of oxygen sensors implemented on
Argo BGC floats and for six Argo DACs. Our results sug-
gest that derived biases are both sensor- and DAC-specific,
with the electrochemical SBI-series sensors exhibiting a pos-
itive bias in the range from 0.5 to 2.6 µmol kg−1. The optode
sensors typically are characterized by negative biases rang-
ing between −0.7 and −6.2 µmol kg−1 depending on sensor
model and DAC. Only for AANDERAA_OPTODE_3830
were small positive offsets found for AOML and CSIRO,
as well as positive offsets for SBE63_OPTODE for Cori-
olis and CSIRO. These diagnosed biases are crucial to ac-
curately identify the deoxygenation trend, as current assess-
ments suggest an upper 1000 m O2 content decrease of 0.2–
1.2 µmol kg−1 per decade during 1970–2010 (Gulev et al.,
2021). Our calculations suggest that at least 1000 collocation
pairs are needed for the stable residual bias estimation. This
number of collocations is available only for AOML, Coriolis,
JMA, CSIRO, INCOIS, and MEDS datasets.

Diagnosed residual biases for the quality-controlled CTD
oxygen sensor profiles revealed a good agreement between
the CTD and Winkler reference data, with a small median
bias of 0.25 µmol kg−1 within the layer below 1000 m. Be-
cause of a relatively small bias value, which is well within
the uncertainty of the CTD sensors and due to a non-uniform
spatial CTD bias pattern, the diagnosed overall bias is not

considered to be a common and robust feature, and no adjust-
ment of CTD data is performed in this study. Our preliminary
investigation also indicates that the CTD offset varies cruise
by cruise, probably associated with the differences in the cal-
ibration or re-calibration (or post-processing). Therefore, the
follow-on work should include investigating the offsets on a
cruise-by-cruise basis and providing an understanding of the
causes of bias. Only after these examinations are done can
the adjustment of CTD profiles be physically tenable.

This study also has some limitations and caveats:

1. Although systematical errors have been identified for
Argo oxygen data, the cause of the biases is still poorly
known and requires further work. The differences be-
tween the DACs are also mysterious, and we suspect
that the non-standard adjustment procedure developed
by different National Argo Data Centers and the differ-
ence in sensors on Argo floats used in different countries
might be responsible for the differences in diagnosed bi-
ases, which needs further confirmation.

2. Because the sources of biases are poorly known, the cor-
rection proposed in our study is largely empirical and
can be applied only to the Argo data used in this study.
If the Global Argo Data Center updates quality control
and adjustment procedures, our bias corrections also re-
quire an update.

3. The QC procedure is designed to detect and flag the out-
liers. However, there are also risks of removing the “real
extremes” in the ocean, especially under rapid climate
change, as ocean extreme events are expected to become
more frequent. One possible way to partly resolve this
problem is imposing a trend in the local climatologi-
cal range, accounting for the time variation of the lo-
cal oxygen distributions due to climate change, which
would help to reduce the false rejection of the real ex-
treme data. This requires further work when the local
oxygen trends become clearer.

4. The Winkler data are used in this study as a reference.
However, it is likely that the Winkler data are not al-
ways taken to the same standard, thus posing inconsis-
tency within the Winkler dataset, especially for the data
taken by different countries and in different time peri-
ods. Investigating offsets on a cruise-by-cruise basis is
also recommended in the future, as for CTD data.

In summary, this study proposed a new quality control ap-
proach and bias assessment for the CTD, bottle, and Argo
oxygen data and investigated the consistency between these
three primary instrumentation types. Our investigations en-
sured the consistency between the three data types and pro-
vided a solid basis for merging them into a single, integrated,
and homogeneous oxygen database. Therefore, the database
obtained in this study supports the next-step assessment and
understanding of the change in ocean oxygen levels.
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