## Science Advances

## Supplementary Materials for

## Progression of ocean interior acidification over the industrial era

Jens D. Müller and Nicolas Gruber

Corresponding author: Jens D. Müller, jensdaniel.mueller@usys.ethz.ch

*Sci. Adv.* **10**, eado3103 (2024) DOI: 10.1126/sciadv.ado3103

## This PDF file includes:

Figs. S1 to S17



Fig. S1: Same as Fig. 1, but showing incremental changes between reference years instead of total changes since 1800.  $CO_2$  system sensitivities are not displayed.



**Fig. S2:** Same as Fig. 1, but averaged across individual ocean biomes according to Fig. S17. In addition to the acidification trends driven solely by the accumulation of  $C_{ant}$  (solid lines), we consider here also the impact of observation-based temperature changes for the past two decades (dashed lines). Note that temperature-induced changes in natural carbon (e.g. DIC loss due to warming) are not considered.



Fig. S3: Same as Fig. 2, but for changes in the anthropogenic carbon content ( $\Delta C_{ant}$ ).



**Fig. S4:** Same as Fig. 2, but for changes in pH on the total scale  $(\Delta pH_T)$ .



Fig. S5: Sensitivity of the saturation state of aragonite to a change in the dissolved inorganic carbon concentration ( $\Delta\Omega_{arag}/\Delta$ DIC) averaged over four depth layers (rows). Central panels show maps of  $\Delta\Omega_{arag}/\Delta$ DIC in 2014. Left panels show zonal mean  $\Delta\Omega_{arag}/\Delta$ DIC for the reference years 1800, 1994, 2004 and 2014. Right panels show the global and regional mean  $\Delta\Omega_{arag}/\Delta$ DIC as a function of the increase in atmospheric CO<sub>2</sub>.



**Fig. S6:** Same as Fig. S5, but for the sensitivity of the free proton concentration to a change in the dissolved inorganic carbon concentration ( $\Delta H^+/\Delta DIC$ ).



Fig. S7: Same as Fig. S5, but for the sensitivity of pH on the total scale to a change in the dissolved inorganic carbon concentration ( $\Delta p H_T / \Delta D IC$ ).



**Fig. S8:** Absolute levels of the saturation state of aragonite ( $\Omega_{arag}$ ), the free proton concentration (H<sup>+</sup>), pH on the total scale (pH<sub>T</sub>) and dissolved inorganic carbon concentration (DIC) in 2014 averaged over four depth layers (rows).



Fig. S9: Acidification trends over the industrial era (1800-2014) relative to the preindustrial state of the free proton content ( $\Delta H^+$ , left panels) and the saturation state of aragonite ( $\Delta \Omega_{arag}$ , right panels) averaged over four depth layers (rows). White contour lines highlight relative changes of 30%.



**Fig. S10:** Global mean sections of the sensitivity of the saturation state of aragonite ( $\Delta\Omega_{arag}$ ), the free proton content ( $\Delta H^+$ ), and pH on the total scale (pH<sub>T</sub>) to a change in the dissolved inorganic carbon content ( $\Delta$ DIC).



Fig. S11: Depth of the highest absolute changes in the free proton concentration (H<sup>+</sup>), the saturation state of aragonite ( $\Omega_{arag}$ ), pH on the total scale (pH<sub>T</sub>) and anthropogenic carbon concentration (C<sub>ant</sub>) from 1800 through 2014.



**Fig. S12:** Mean vertical profiles of the saturation state of aragonite ( $\Omega_{arag}$ ) averaged over five ocean regions (Fig. S17) and globally, showing absolute values for four reference years between 1800 and 2014.



Fig. S13: Same as Fig.6, but for the saturation thresholds 1.5, 2, and 3.5.



Fig. S14: Maps of acidification at the seafloor located within the top 500 m of the ocean. The areas shown here underlie also the results shown in Fig. 5. Changes are displayed for the saturation state of aragonite ( $\Delta\Omega_{arag}$ ), free proton concentration ( $\Delta H^+$ ), and anthropogenic carbon concentration ( $\Delta C_{ant}$ ).



Fig. S15: Global mean vertical profiles of the contributions to the uncertainty in changes in the saturation state of aragonite ( $\Delta\Omega_{arag}$ ), free proton concentrations ( $\Delta H^+$ ), and anthropogenic carbon concentration ( $\Delta C_{ant}$ ). Panel columns distinguish changes since 1800 for the reference years 1994, 2004, and 2014.



**Fig. S16:** Sensitivity of the free proton concentration (H<sup>+</sup>) and the saturation state of aragonite  $(\Omega_{arag})$  to a change in DIC as a function of their absolute value. The relationship is displayed for the mean state of the CO<sub>2</sub> system across the 5 regions (symbol shape), four depth layers (color) and four reference years (transparency) analyzed in this study. Estimates of the same region and depth layer are connected by a line to emphasize the temporal evolution.



**Fig. S17:** Ocean regions used to average ocean acidification trends in the horizontal dimension, based on aggregated provinces from Longhurst (2007).