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Abstract This paper aims to study the changes in the Indian Ocean seawater pH in response to the changes
in sea‐surface temperature, sea‐surface salinity, dissolved inorganic carbon (DIC), and total alkalinity (ALK)
over the period 1980–2019 and its driving mechanisms using a high‐resolution regional model outputs. The
analysis indicates that the rate of change of declining pH in the Arabian Sea (AS), the Bay of Bengal (BoB), and
the Equatorial Indian Ocean (EIO) is − 0.014 ± 0.002, − 0.014 ± 0.001, and − 0.015 ± 0.001 unit dec− 1,
respectively. Both in AS and BoB (EIO), the highest (lowest) decadal DIC trend is found during 2000–2009.
The surface acidification rate has accelerated throughout the IO region during 2010–2019 compared to the
previous decades. Further, our analysis indicates that El Ninõ and positive Indian Ocean Dipole events lead to an
enhancement of the Indian Ocean acidification. The increasing anthropogenic CO2 uptake by the ocean
dominantly controls 80% (94.5% and 85.7%) of the net pH trend (1980–2019) in AS (BoB and EIO), whereas
ocean warming controls 14.4% (13.4% and 7.0%) of pH trends in AS (BoB and EIO). The changes in ALK
contribute to enhancing the pH trend of AS by 5.0%. ALK dominates after DIC in the EIO and, similar to the AS,
contributes to increasing the negative pH trend by 10.7%. In contrast, it has a buffering effect in the BoB,
suppressing the pH trend by − 5.4%.

Plain Language Summary The oceans play a significant role in regulating the amount of CO2 in the
atmosphere. The increasing oceanic uptake of CO2 counterbalances the increase in atmospheric CO2. This
uptake has a considerable impact on marine biogeochemistry, leading to pH and alkalinity imbalances in the
water column, commonly referred to as ocean acidification. In an acidic ocean, excess CO2 reacts with seawater
to form carbonic acid, which is highly unstable and undergoes further reduction by releasing hydrogen ions (H+)
and acidifying the seawater (reduces the pH). Several studies have projected a decline of upper ocean pH by 0.3–
0.4 by the end of the 21st century, which has the potential to reduce oceanic biological production considerably.
The number of available observations to study Indian Ocean acidification is limited. There is a critical need to
understand the status of Indian Ocean acidification and identify its key drivers. This article consolidates the
current level of understanding about the Indian Ocean acidification based on the available field observations,
reconstructed data sets, and model simulations.

1. Introduction
Anthropogenic activities like deforestation, land‐use land‐cover change, cement production, and fossil fuel
emission since the industrial revolution have been increasing the levels of atmospheric CO2 (Friedlingstein
et al., 2022; Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018; Le Quéré, Andrew, Friedlingstein,
Sitch, Pongratz, et al., 2018). The growth rate of atmospheric CO2 has increased to ≈5.7 ± 0.1 PgC yr− 1 in 2021
from ≈1.7 ± 0.1 PgC yr− 1 in the 1960s (Friedlingstein et al., 2022). Nearly half of this anthropogenically emitted
CO2 is absorbed by land and ocean together (Canadell et al., 2021). According to the Global Carbon Budget,
2022, the ocean absorbed ≈28% of the total CO2 emissions in 2021 (Friedlingstein et al., 2022).

The increasing oceanic uptake of CO2 has a considerable impact on marine ecosystems as it causes pH reduction
in the water column, which is commonly referred to as ocean acidification. There has been growing concern for
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the potential adverse impacts of slowly acidifying the Indian Ocean (IO). Dalpadado et al. (2023) reported
significant effects of the IO acidification on coral reefs and shell‐forming living organisms (like gastropods, bi‐
valves, and many more). The IO basin is geographically smaller than the Pacific and Atlantic, whereas the land
enclosing the north makes it a geographically unique basin. The coasts of the IO accommodate approximately
30% of the world's population (Wafar et al., 2011), resulting in higher anthropogenic activities. The north IO
receives high freshwater flux from local precipitation and high discharge from perennial rivers (such as Ganga
and Brahmaputra) (UNESCO, 1969). The seasonal reversing winds in the northern IO result in seasonal reversing
currents (Shetye et al., 1996). This seasonal reversal of currents substantially controls the carbon and nitrogen
cycles of the IO (Chakraborty et al., 2021; Joshi et al., 2021; Sarma et al., 2018; Sreeush et al., 2018).

The carbonate chemistry of the regional IO is comparatively poorly studied than to the Pacific and Atlantic,
especially in terms of long‐term analysis. The paucity of observational data is a major obstacle and the main
reason this region is understudied. However, appreciable efforts are being made to explore the carbonate dy-
namics of this region (Chakraborty et al., 2021; Ghosh et al., 2021; Joshi & Warrior, 2022; Sreeush et al., 2020;
Valsala et al., 2012; Valsala & Maksyutov, 2013). It is shown that both physical (upwelling, seasonal reversal of
currents, mixing, etc.) and biological (such as photosynthetic uptake of CO2, respiration, remineralization, etc.)
processes primarily control the spatial and temporal variability of surface pCO2 (partial pressure of CO2) and
associated sea‐to‐air CO2 flux (Chakraborty et al., 2018; Valsala et al., 2020; Valsala & Maksyutov, 2013). The
modeling studies in the Arabian Sea (AS) and Bay of Bengal (BoB) show that temperature and DIC are the
primary drivers controlling the seasonality of pCO2 (Chakraborty et al., 2021; Joshi et al., 2020). The climate
indices like the Indian Ocean Dipole (IOD) and El Ninõ southern oscillations (ENSO) also play an important role
in regulating the interannual variabilities of the sea‐air CO2 flux, especially in the subtropical IO and the western
AS (Valsala et al., 2020; Valsala & Maksyutov, 2013). Valsala et al. (2020) reported that the sea‐to‐air CO2

fluxes, pCO2, DIC and ALK vary by as much as ±1 mol m− 2 yr− 1, ±20 μatm, ±35 μmole kg− 1 and ±22 μmole
kg− 1 within 80–105°E, 0–10°S due to IOD, respectively.

Despite the rise in the atmospheric CO2, the north IO (north of 35°S) is known to be a moderate sink of the
atmospheric CO2 (Chau et al., 2022; Sarma et al., 2013, 2023; Takahashi et al., 2009; Valsala & Maksyu-
tov, 2010). Sea‐to‐air fluxes of CO2 are known to be maximum during the summer monsoon season in the AS (De
Verneil et al., 2022; Sreeush et al., 2018). The BoB carbon cycle (which affects the CO2 source and sink char-
acteristics of this region) is strongly regulated by high river discharge and local precipitation (Chakraborty
et al., 2021; Joshi et al., 2021, 2022; Joshi & Warrior, 2022; Kumar et al., 1996; Sridevi & Sarma, 2021). The
peninsular rivers of BoB bring acidic and pCO2‐rich waters to the ocean; hence, the south‐western BoB acts as a
source of atmospheric CO2 (Joshi et al., 2021; Sarma et al., 2012). On the contrary, glacial rivers, such as Ganges
and Brahmaputra, bring basic and pCO2‐poor waters to the coast, which makes the northern BoB a sink of at-
mospheric CO2 (Joshi et al., 2021; Sarma et al., 2012). Therefore, the impact of river discharge is not uniform in
the BoB. Moreover, the aerosol deposition and increase in river discharge due to global warming influence the
interannual variability of surface pCO2, CO2 flux, and pH in the BoB (Sridevi & Sarma, 2021). The uncertainties
associated with the CO2 flux are shown to be higher in the numerical models (≈0.1 to 0.12 PgC yr− 1) than
observations‐based models (≈0.002 to 0.03 PgC yr− 1) (Chau et al., 2022). The limited number of observations in
the north Indian Ocean increases the uncertainty in estimating surface pCO2 and associated air‐sea CO2 flux
(Chau et al., 2022, 2024).

The storage of anthropogenic CO2 (Cant) in the Indian Ocean was first estimated from observation data collected
during theWorld Ocean Circulation Experiment (Sabine et al., 1999) and its decadal changes evaluated using data
incorporated in GLODAP (Gruber et al., 2019; Müller et al., 2023). These studies indicate an increase of Cant in
the water column which may affect the Indian Ocean acidification. For the period 1991–2011, Lauvset
et al. (2015) reported a decreasing rate for the IO surface pH by − 0.027 ± 0.005 dec− 1 using the available ob-
servations from the Surface Ocean CO2 Atlas (SOCAT)v2. In a recent study, Chau et al. (2024) reported a lower
rate of decrease of the IO pH by − 0.017 ± 0.001 dec− 1 for the period 1985–2019. Interestingly, in another study,
Ma et al. (2023) estimated a further lower rate of decrease in the IO surface pH for the period 1982–2021
(− 0.0155 ± 0.0009 dec− 1) compared to Lauvset et al. (2015). An observations‐based regional study in the
Mozambique region showed an increase in the pH declining trend in recent decades (Lo Monaco et al., 2021).
Therefore, it is clear that there is a considerable difference in the Indian Ocean acidification rate estimates derived
using different approaches for different periods.
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Sarma et al. (2023) demonstrated that the spatial and temporal variability of CO2 fluxes is better captured
by regional than global models. The errors in the reconstruction of pH among the global products are
globally not uniform. We must acknowledge the errors in observations‐based global products due to
mapping methods, particularly in higher latitudes (Burger & Frölicher, 2023). Specifically, this difference is
most appreciable where sufficient observations are unavailable, such as in the Indian Ocean. On the other
hand, high‐resolution regional models have shown notable skill in simulating mesoscale processes and
capturing coastal processes. This creates the opportunity, and perhaps necessity, to develop numerical so-
lution schemes that adapt the resolution in specific areas of interest. Hence, this study attempts to un-
derstand long‐term changes in the carbon cycle for the IO region using a high‐resolution regional model
outputs and its comparison with synthesized data products and outputs from a global model simulation. We
ran a regional, high‐resolution coupled ocean‐ecosystem model for 40 years and evaluated the trend of
acidification and driving mechanisms controlling the trend. We hypothesize that this analysis will provide
a deeper understanding of the factors regulating the evolution of carbonate chemistry for the entire IO
region.

2. Data and Methodology
This section comprehensively describes the configuration of a high‐resolution regional model, which is used for a
plausible reconstruction of the physics and carbonate chemistry of the IO when forced by reanalysis. Besides this,
an offline global biogeochemical model simulated outputs are also used for analysis. Along with the in‐situ
observations, this study uses two global machine learning‐based products (OceanSODA‐ETHZv2023 (Ocean-
SODA) (Gregor & Gruber, 2021; Ma et al., 2023) and Copernicus Marine Environment Monitoring Service
Laboratoire des Sciences du Climat et de l’Environnement feed‐forward neural network (CMEMS‐LSCE‐FFNN
(Chau et al., 2024)) for analysis. The cluster and training for each cluster method (GRaCER) used for preparing
OceanSODA should emulate suitable regional ocean acidification. CMEMS‐LSCE‐FFNN is the latest machine
learning‐based study with a higher resolution than OceanSODA, which should be an advantage in regional
acidification studies (expected to be a better product for the near coastal and coastal regions). Owing to these
advantages in machine learning‐based products, we use OceanSODA and CMEMS‐LSCE‐FFNN to compare our
regional model results. Further details of the methodology, in‐situ observations and machine learning products are
provided hereafter in this section.

2.1. Models

2.1.1. INCOIS‐BIO‐ROMS Modeling System

Biogeochemical State of the Indian Ocean (BIO) is a high‐resolution, coupled ocean‐ecosystem modeling system
developed at the Indian National Center for Ocean Information Services (INCOIS) under the modeling projects of
the Ministry of Earth Sciences (MoES), which integrates ocean simulation, observation, and analysis to study the
role ocean physics plays in marine environmental health and ecosystem functioning in the coastal ocean and
adjacent deep sea. The modeling framework involves an online coupling of the Ocean General Circulation Model
dynamics integrated with an ecosystem model at scales that resolve the variability of the region's physics and
ecosystems.

Further, the international carbon cycle research community carried out the largest, most comprehensive
assessment to better quantify and understand the CO2 fluxes into and out of the ocean, the associated changes in
ocean carbon storage beneath the sea surface, as well as the role of the ocean's biological pump in the form of
“REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP‐2)” to assist IPCC. To participate in the
RECCAP‐2 assessment process, a regional high‐resolution (1/12°) coupled ocean‐ecosystem model (INCOIS‐
BIO‐ROMS) for the Indian Ocean region was configured as a part of the BIO modeling system following the
“RECCAP‐2: Ocean Modeling Protocol” for the regional Oceans.

The ocean general circulation model used for simulating the ocean carbon cycle variability of the Indian Ocean is
the Regional Ocean Modeling System (ROMS; version 3.9). The scientific community widely uses ROMS, a
free‐surface, terrain‐following, primitive equations ocean model, for a diverse range of applications. The physical
model is coupled to an ecosystem model (Fennel et al., 2006, 2008, 2013; Laurent et al., 2017). The model has a
horizontal grid resolution of 1/12° (approximately 9 km) and uses 40 vertical layers in a terrain‐following
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coordinate system. A ROMS‐based coupled, high‐resolution ocean‐ecosystem modeling system, known as
INCOIS‐BIO‐ROMS, has been developed for the Indian Ocean basin. For more details, please refer to Chak-
raborty et al. (2017, 2018, 2019, 2021).

The model state of the carbon state variables has been initialized using quality‐controlled observation from the
Global Ocean Data Analysis Product (GLODAPv2 (Key et al., 2004; Lauvset et al., 2021)). The model is
initialized for the early 1970s, followed by the spin‐up phase for the 1970s, during which atmospheric CO2 rises
according to the observations. The atmospheric history of the pCO2 has been taken from Keeling et al. (1995) at
monthly resolutions. From 1980 onward, the simulation continued until 2019, providing the basis for the analyses.

An ensemble coupled data assimilation (ECDA) system simulated reanalysis data produced by the Geophysical
Fluid Dynamics Laboratory has been used to prescribe open boundaries for the INCOIS‐BIO‐ROMS. The
reanalysis data have a zonal resolution of 1° with 360 grid points longitudinally and 1° at higher latitudes but have
a finer resolution of 0.8° in the tropics, with 200 grid points along the latitude. The data have 50 vertical levels
with 10 m increments in the upper 225 m and stretched vertical levels after 225 m depth. The horizontal grids are
in spherical coordinates, and the vertical grids are in z levels. The data are available as monthly means centered on
the 15th of every month from 1960 to 2019 (Chang et al., 2013).

The model has been forced by observed climate (e.g., from reanalysis products) and observed atmospheric CO2

throughout the entire simulation time to reproduce the interannual variability and trend in the ocean carbon uptake
in response to changes in both atmospheric CO2 and climate during the model simulation period from 1980 to
2019. To ensure continuity in forcing, that is, only one forcing data for the entire time series of the analysis period,
that is, 1980 through 2019, the reanalysis product Japanese 55‐year Reanalysis‐Driving Ocean (JRA55‐do) has
been used (Tsujino et al., 2018).

The monthly river discharge has been implemented as a freshwater flux from the JRA55‐do forcing data set
(Tsujino et al., 2018). The JRA55‐do data set includes the daily river runoff produced by a global river hydro-
dynamic model forced by an adjusted runoff from the land‐surface component of the Japanese 55‐year Reanalysis
(JRA‐55) (Suzuki et al., 2018). The transport of associated concentrations of tracers (temperature, salt, nutrients,
carbon fluxes, etc.) from rivers into the ocean has been prescribed using available observations. The point‐source
method is used to distribute the freshwater discharge volume of all the rivers individually in the model grids. The
river's total volume flux distribution occurs in single or multiple horizontal grid points identified at the river
drainage points and the corresponding vertical levels. The freshwater gets spread throughout the domain
following the ocean general circulation.

2.1.2. OTTM Biogeochemistry and Carbon Cycle Model

Ocean Tracer Transport Model (OTTM) simulates the global ocean biogeochemistry and carbon cycle (Valsala
et al., 2008; Valsala &Maksyutov, 2010). It is an offline model driven by a re‐analyzing ocean currents and other
data from the ECDA system (Chang et al., 2013). Ocean Tracer Transport Model utilizes a phosphate restoration
approach to calculate the biological pumps and OCMIP‐2 protocols to solve the surface ocean carbonate
chemistry. A spatio‐temporal community compensation depth is parameterized to reduce the biases in the sea-
sonal cycle of pCO2 (Sreeush et al., 2018, 2020). The details of the model simulations can be found at Valsala
et al. (2020). The model outputs from 1980 to 2019 are used in this study.

2.2. Data

We use time series observations of pCO2 and pH from a mooring and ship‐based observations of pCO2 available
from SOCATv2022 database to validate both the regional and global model simulated outputs. Further, the long‐
term evolution of various state variables from the model is compared to corresponding estimates from
observations‐based Machine‐Learning (ML) models. Thus, the analysis presented in this paper has been carried
out using the outputs from a high‐resolution regional ocean‐ecosystem model (ROMS Chakraborty et al., 2017,
2018, 2019, 2021) and a global biogeochemistry model (OTTM (Valsala et al., 2008; Valsala & Maksyu-
tov, 2010)) along with reconstructed data sets from two state‐of‐the‐art global data products of the surface ocean
CO2 system, CMEMS‐LSCE‐FFNN (Chau et al., 2024) and OCEAN‐SODA (Gregor & Gruber, 2021). The
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details of the data used in this study are described below. Figure 1 depicts the available in‐situ measurements from
different cruises and mooring‐based measurements used in this study.

2.2.1. BOBOA Mooring

In the IO, the consistent and long‐term surface pCO2 and pH data is available only from a RAMA buoy located at
15°N, 90°E in the BoB, commonly known as the BoB Ocean Acidification (BOBOA) moored buoy (Sutton
et al., 2014, 2019). The Research Moored Array for African‐Asian‐Australian Monsoon Analysis and Prediction
(RAMA) network includes this mooring. The frequent cyclones in BoB and the maintenance activities make it
challenging to have continuous measurements from this mooring. Table 1 indicates that the buoy has four active
periods. The wind speed, currents, precipitation, and density measurements are also available from this buoy in
addition to the variables listed in Table 1.

2.2.2. SOCAT Data

The Surface Ocean CO2Atlas (SOCATv2022; Bakker et al. (2016, 2022)) is a
publicly available in‐situ database for quality‐controlled surface f CO2 (the
fugacity of the CO2) observations. SOCAT version 2022 has quality‐
controlled in‐situ surface ocean f CO2 measurements made on ships, moor-
ings, autonomous, and drifting surface platforms for the global ocean and
coastal seas from 1957 to 2021. The SOCAT synthesis and gridded products
contain 33.7 million f CO2 values with an estimated accuracy of <5 μatm. To
keep consistency with model outputs, we convert fCO2 to pCO2 using the
MATLAB CO2SYS program (Van Heuven et al., 2011).

2.2.3. OceanSODA Data

The OceanSODA is an observations‐based gridded (1° × 1°) product, which
provides carbonate variables from 1982 through 2021 (Gregor &
Gruber, 2021). The product extrapolates in space and time surface pCO2 from
SOCAT and ALK from GLODAP using GRaCER (Geo‐spatial Random
Cluster Ensemble Regression) method. The GRaCER method creates spatial
clusters and applies machine learning algorithms (Neural Network and
Gradient Boosting) on each cluster. Using thermodynamic equations, other
carbonate variables (such as DIC, Aragonite, and pH) are computed based on
the pCO2 and ALK.

Figure 1. Representation of SOCATv2022 (1980–2022) cruise lines (color represents the year of cruise occurrence), BOBOA
mooring (Black star), and three regions of analysis. The AS stands for the Arabian Sea, BoB for the Bay of Bengal, and the
Equatorial Indian Ocean.

Table 1
BOBOA Mooring Data Details (Adopted From Sutton et al. (2019), Joshi
et al. (2020, 2021))

Location 15°N 90°E

Type Time series data

Temporal Resolution 3 hourly data (converted to daily for this
study)

Duration 24 Nov 2013 to 6 Dec 2014
(Deployment 1)

6 Dec 2014 to 19 Jun 2015
(Deployment 2)

6 Mar 2016 to 9 Jan 2017
(Deployment 3)

11 Jan 2017 to 20 Nov 2018
(Deployment 4)

Variables Seawater pCO2, pH, SST, SSS

Investigator Institution Pacific Marine Environmental
Laboratory
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2.2.4. CMEMS‐LSCE‐FFNN Data

The CMEMS‐LSCE‐FFNN is developed using an ensemble‐based approach described in Chau et al. (2022). For
this study, the latest version (Chau et al., 2024) is used consisting of monthly reconstructed surface pCO2 and CO2

fluxes at a spatial resolution of 0.25° × 0.25° over the global and coastal oceans. Carbonate variables are
computed at the same spatial and temporal resolution using the CO2SYS software (Lewis et al., 1998; Van
Heuven et al., 2011) with the reconstructions of pCO2 and ALK, as well as nutrient concentrations (silicate,
phosphate), physical variables (sea‐surface temperature (SST) and sea‐surface salinity (SSS)), and dissociation
constants as inputs. Chau et al. (2022, 2024) provide details of the algorithms and derivations. ALK is derived
from Local Interpolated Alkalinity Regression (Carter et al., 2018).

2.3. Methods

2.3.1. Statistics for Model Evaluation

This section describes different statistics employed in this study. The first is the correlation coefficient (r), which
explains how well the model reproduces observations. The root mean square error (RMSE) provides insight into
the closeness between the model and observed values. The central tendency measures (mean, median, and mode)
compare the model's and observation's statistical distribution. Along with central tendencies, spread measures
such as standard deviation (STD), Inter Quartile Range, Skewness, and Kurtosis are used to gain perspective on
the total spread of model simulations and observations.

2.3.2. Drivers

The changes in DIC, ALK, SST, and SSS primarily govern the spatial and temporal variability of pH and pCO2.
The effect of each of these drivers has been analyzed using a decomposition analysis (Takahashi et al., 1993; J. L.
Sarmiento, 2013; Takahashi et al., 2014; Chakraborty et al., 2021; Joshi & Warrior, 2022). The equation can be
expressed based on Taylor series expansion as follows.

dX
dt
=

∂X
∂DIC

dDIC
dt

+
∂X

∂ALK
dALK
dt

+
∂X
∂SST

dSST
dt

+
∂X
∂SSS

dSSS
dt

+ (other_minor_ions) (1)

where X represents either pH or pCO2.

The left‐hand side of Equation 1 shows the temporal variation of pCO2 or pH. The right side of Equation 1
represents the changes in X due to the changes in each of the drivers. The reconstructed pCO2 and pH is denoted as
CTRL. We use the abiotic pump routines of OCMIP‐2 to reconstruct the pCO2 and pH using model‐simulated
DIC, SST, SSS, and ALK. To assess the sensitivity of each of these drivers, we reconstruct the pCO2 or pH
separately for each driver by providing the detrended values of the corresponding driver while keeping the other
drivers as it is. If the SST is our driver for which we want to assess the sensitivity, then we denote it as SEN(SST).
Now, subtracting the sensitivities (such as SEN(SST)) separately for each of the drivers from the CTRL provides
the required quantification of each of these drivers in the trend of pCO2 and pH.

2.3.3. Empirical Orthogonal Function (EOF) Analysis

In climate studies, Empirical Orthogonal Function (EOF) analysis is often used to identify plausible temporal
changes in the variability of spatial patterns. We perform an EOF analysis to understand the effect of interannual
climate signals like ENSO and IOD on ocean acidification in IO. The long‐term simulation of ROMS for a
prolonged duration (40 years) resolves the interdecadal variability and long‐term trends along with interannual
variability of the carbonate variables (Valsala et al., 2020). We carried out an EOF analysis to analyze the
interannual variability of pH (pCO2). Before the EOF analysis, we remove a 5‐year running climatology from
ROMS simulated pH (pCO2) and normalize these anomalies using the STD for the same 5‐year period following
the procedure described in Valsala et al. (2020). To understand the effect of ENSO and IOD, we correlate the
principal components (PC) with the Nino3.4 and Dipole Mode Index (DMI) indices. The Nino3.4 indices are the
SST anomaly difference in the central equatorial Pacific region, which is an indicator of the ENSO events. The
DMI is defined as the difference in SST anomaly between the western part of the IO and the eastern part of the IO,
which is an indicator of the IOD events.
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3. Results and Discussions
3.1. Model Evaluation

We compare ROMS and OTTM simulated outputs against available SOCAT observations and the measurements
available from the BOBOA mooring to evaluate the capability of models in resolving spatio‐temporal variability
of pCO2 and pH. Since SOCAT does not include pH data, a comparison of ROMS and OTTM simulated outputs
against the most recent observations‐based reconstructed data products (CMEMS‐LSCE‐FFNN and Ocean-
SODA) is also presented here to check the capability of an eddy‐resolving (eddy‐permitting) regional (global)
model in reproducing the Indian Ocean carbon cycle.

3.1.1. Evaluation With the BOBOA Mooring Data

The surface pCO2 observations are available from the BOBOA mooring from November 2013 till November
2018 (please see Section 2.2.1). We extract the model simulated (ROMS and OTTM) time series for a similar
period for the mooring location (using nearest neighbor interpolation) to make a comparison. From Figures 2a and
2b, we observe that the ROMS captured the seasonal cycle of pCO2 and pH better than OTTM. Compared with
mooring data, the ROMS leads the peaks and troughs. The correlation between the ROMS (OTTM) and BOBOA
for pCO2 is 0.79 (0.19), and for pH, it is 0.88 (0.38). The correlation shows that ROMS can capture the seasonality
adequately. The lowering of surface pCO2 due to the freshwater impact from rivers and precipitation is well
emulated by ROMS. The October‐November months are known to have the lowest surface pCO2 due to the
maximum spread of the freshwater plume (Joshi et al., 2021), this too is well captured by ROMS. Sea‐surface
temperature is known to drive the increase in surface pCO2 from Jan to Sep (Chakraborty et al., 2021; Joshi &
Warrior, 2022), which is also well captured by ROMS. The seasonality of pH is opposite to that of pCO2, which
shows high pH in months of freshwater dominance (refer Figure 2b). The ROMSmodel overestimates both pCO2

(RMSE of 16.6 μatm and mean bias of 11.21 μatm) and pH (RMSE of 0.016 and mean bias of 0.01 units) while the
OTTMmodel underestimates pCO2 (RMSE of 36.44 μatm and mean bias of − 29.13 μatm) and overestimates pH
(RMSE of 0.035 and mean bias of 0.03 units), as observed from Figure 2. These discrepancies could be attributed
to the biases in model simulated physical and biogeochemical states. Further, the limited number of pH obser-
vations from the BOBOA mooring is a constraint in validating modeled pH in the IO region. The mooring
represents a single location, whereas the corresponding model values are sampled from a grid encompassing the
mooring location, and some of the discrepancies in the comparison may arise from this fact. Nevertheless, the
comparison of the seasonal cycle of pCO2 and pH is encouraging.

3.1.2. Evaluation With SOCAT Data

The SST, SSS, and pCO2 observations available from the SOCAT database have been utilized to establish the
capability of ROMS (pCO2 from OTTM) model in simulating spatial variability of these variables. The ROMS

Figure 2. Figure (a) shows the time‐series comparison of model simulated outputs (red line indicates ROMS and blue line
indicates OTTM) with BOBOA (black line) mooring observations for pCO2. Figure (b) is the same as (a) but for pH.
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simulated estimates of SST, SSS, and pCO2 as well as OTTM simulated pCO2, are compared with SOCAT track
data from 1980 to 2019. Model estimates are projected on the time‐space of SOCATmonthly track data adding up
to approximately 3,100 observations over the IO region from 1980 to 2019. Spatial RMSE is computed at all the
available grid points with at least one observation. Spatial correlation is computed for only those grid points with
at least three observations and is shaded with respective correlations ranging between 0 and 1. The spatial dis-
tribution of the p‐value and number of available observations at each grid point are provided in Figure S1 in
Supporting Information S1.

To understand the spatial agreements between ROMS (OTTM) outputs and SOCAT observations, we plot spatial
correlation and RMSE in Figure 3 (Figure S2 in Supporting Information S1). The mean correlation coefficient
between ROMS simulated SST, SSS, pCO2, and SOCAT observations are, respectively, 0.94, 0.80, and 0.63
(0.44 for OTTM simulated pCO2) (with 95% confidence level). Similarly, the mean RMSE for SST, SSS, and
pCO2 are 0.89°C, 0.64, and 30.02 (37.65 for OTTM simulated pCO2) μatm. The statistical analysis indicates that
ROMS captures the observed variability of pCO2 in the IO (30°S to 30°N and 30°E to 120°E) better than OTTM.
Slightly high values of RMSE in both models could be due to the temporal discontinuity of the SOCAT ob-
servations. ROMS simulated SST and SSS have been observed to correlate well with low RMSE values
throughout the IO except for a few points in the AS when compared with the SOCAT based observations (Figure
S2 in Supporting Information S1). Further details are provided in the supplementary document. The pCO2

comparison between the models (ROMS and OTTM) and SOCAT in the first and second rows of Figure 3 reveals

Figure 3. Correlation and RMSE of ROMS and OTTM simulated outputs with the available SOCAT grided data (1° × 1°). Simulated pCO2 (ROMS in first row and
OTTM in second row) comparison with SOCAT observations. The black dot in shaded spatial correlation indicates the locations with more than 95% significant
correlation.
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high RMSE and low correlation in the northwestern coast of the AS. The OTTMmodel shows high RMSE in the
south, that is, below 20°S likely due to the overestimation of biological pumps (Valsala et al., 2020). OTTM's
RMSE within the region of ±20°S is smaller than in the subtropics. The higher RMSE in the coastal upwelling
zone (northwestern AS) could be due to a stronger upwelling simulated by the models. The stronger upwelling
may result from the high spatial model resolution (for ROMS) and the use of the KPP vertical mixing scheme,
known to enhance vertical mixing (Chakraborty et al., 2019).

3.1.3. Consistency With OceanSODA Data

The consistency between ROMS, OTTM, and OceanSODA data is shown in Figure 4. The correlation between
modeled (ROMS and OTTM) SST and OceanSODA SST is above 0.8 throughout the IO domain, except for the
central‐eastern region (Figures 4a and 4b). The spatial RMSE in SST is below 1–1.2°C throughout the IO domain
(Figures 4c and 4d). The northwestern region (especially near the coast) is observed to have higher RMSE. The IO
domain average temporal comparison between ROMS (OTTM) and OceanSODA reveals the mean correlation to
be 0.97 (0.98) (95% significance) and the mean RMSE to be 0.62 (0.56) °C. Here it is to be noted that OTTM is an
offline biogeochemistry model driven by the physical state variables from a reanalysis product.

Figures 4e, 4f, 4i, and 4j represent the correlation of pH (pCO2) between models (ROMS and OTTM) and
OceanSODA, respectively. The spatial pH in ROMS correlates better than pH in OTTM when compared with
OceanSODA (Figures 4e, 4f, 4i, and 4j). Low correlation (0.6–0.7) for ROMS of pH and pCO2 are evident only in
the northwestern region (could be due to the bias in estimating upwelling strength). In contrast, a high correlation

Figure 4. In the first panel, figures (a–d) represent the correlation and RMSE between ROMS and OTTM simulated SST and the reconstructed SST from OceanSODA.
In the second panel, figures (e–h) represent the correlation and RMSE between ROMS and OTTM simulated surface pH and the reconstructed pH from OceanSODA. In
the third panel, figures (i–l) show the correlation and RMSE between ROMS and OTTM simulated pCO2 and the reconstructed pCO2 from OceanSODA, and in the
fourth panel, figures (m–p) represent the same statistics but between ROMS and OTTM simulated DIC and the reconstructed DIC from OceanSODA.
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(above 0.8) is seen in the rest of the IO domain. The RMSE in the OTTM model is higher with respect to ROMS
for both pH (Figures 4g and 4h) and pCO2 (Figures 4k and 4l). Figures 4g and S3l in Supporting Information S1
show high RMSE values for the OTTM model in the region below 20°S and the eastern domain above 10°S for
both pCO2 (above 35 μatm) and pH (above 0.035). The RMSE in ROMS is high only in the northwestern zone
(Figures 4g and S3k in Supporting Information S1). The domain average correlation between ROMS (OTTM)
and OceanSODA for pH (0.84 (0.49)) and pCO2 (0.82 (0.50)) shows that ROMS can satisfactorily capture the
temporal variability of both variables. However, here we must note that OceanSODA is an extrapolated data
product developed using the available observations of pCO2 and ALK, and the rest of the carbonaceous variables
are derived from the thermodynamical relations. The limited number of observations in the Indian Ocean pri-
marily determines the uncertainty of observations‐based reconstructed data products such as OceanSODA.

DIC from the models are compared with OceanSODA in the last row of Figure 4. The OTTM shows a low
correlation (Figure 4n) throughout the BoB region, but this low correlation is restricted only to the head‐bay
region in ROMS (Figure 4m). The measurements of DIC fluxes entering to the BoB from rivers are not avail-
able, hence, we provide a climatological DIC value corresponding to the nearest grid point from the river mouth.
This could result in a low correlation in the BoB head‐bay region. High RMSE in the northern BoB and AS is
shown by ROMS (Figure 4o), but the rest of the domain has low RMSE.

Figure 5. In the first panel, figures (a–d) represent the correlation and RMSE between ROMS and OTTM simulated SST and the reconstructed SST from CMEMS‐
LSCE‐FFNN. In the second panel, figures (e–h) represent the correlation and RMSE between ROMS and OTTM simulated surface pH and the reconstructed pH from
CMEMS‐LSCE‐FFNN. In the third panel, figures (i–l) show the correlation and RMSE between ROMS and OTTM simulated pCO2 and the reconstructed pCO2 from
CMEMS‐LSCE‐FFNN, and in the fourth panel, figures (m–p) represent the same statistics but between ROMS and OTTM simulated DIC and the reconstructed DIC
from CMEMS‐LSCE‐FFNN.
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3.1.4. Consistency With CMEMS‐LSCE‐FFNN Data

The spatial correlation and RMSE between ROMS (OTTM) and CMEMS‐LSCE‐FFNN in Figure 5 are similar to
that of ROMS (OTTM) and OceanSODA. We observe, from Figures 4a and 5a, that model‐simulated SST
(ROMS and OTTM (Figures 4b and 5b)) agrees better with CMEMS‐LSCE‐FFNN SST than OceanSODA SST.
However, it is to be noted that both reconstructed data products used SST as a predictor. The low correlation in the
central‐eastern zone compared with OceanSODA is reduced compared to CMEMS‐LSCE‐FFNN (Figures 4a and
5a). The comparison of modeled DIC, pCO2, and pH with CMEMS‐LSCE‐FFNN data indicates similar results as
in OceanSODA.

3.2. Comparison of SST and Carbonate System Variables Between 1985 and 2019

The increasing uptake of anthropogenic carbon by the oceans in the changing environment reduces ocean pH. In
addition, the increase in Global temperature causes enhanced vertical stratification, resulting in less CO2 out-
gassing (reduced upwelling) and reduced transport of excess carbon to the deep ocean. Further, oceanic heat
waves cause noteworthy changes in the oceans' biological production and affect the air‐sea exchange of gases in a
changing environment. Further, ocean warming has a severe impact on the speciation of carbonate chemistry
species, which in turn affects pH. These climatic changes are directly related to the changes in ocean pH. This
section explores the changes in surface pH, pCO2, DIC, and SST simulated by ROMS (OTTM). We also compare
the changes (difference between 2019 and 1985) in pH, SST, DIC, and pCO2 between observations‐based
reconstructed data products (CMEMS‐LSCE‐FFNN and OceanSODA) and ROMS (OTTM).

The statistical distributions of SST (for 1985 and 2019) in the IO region, from models (ROMS and OTTM) and
SST reanalysis products underlying observations‐based pCO2 reconstructions (CMEMS‐LSCE‐FFNN and
OceanSODA), are depicted in Figure 6a. A right shift in the peak of SST in 2019 from 1985 is seen in both ROMS
and OTTM as well as in CMEMS‐LSCE‐FFNN and OceanSODA data products (Figure 6a). This clearly shows
that there has been a rise in SST in the IO in the past 34 years (owing to the global warming). The changes in mean
SST values between 2019 and 1985 are 0.9°C for SST used as predictor in OceanSODA, 0.93°C for SST used as
predictor in CMEMS‐LSCE‐FFNN, and 0.7°C for ROMS (0.3°C for OTTM) (Table S1 in Supporting
Information S1).

The left shift in the peak of pH in 2019 compared to 1985 indicates acidification caused by the global warming
and anthropogenic activities in the IO region (Figure 6b). Figure 6b represents the pH distribution from

Figure 6. The probability density function of model (ROMS and OTTM) simulated (a) SST, (b) pH, (c) pCO2, and (d) DIC
compared to the observations‐based products (OceanSODA and CMEMS‐LSCE‐FFNN).
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OceanSODA, CMEMS‐LSCE‐FFNN, and ROMS (OTTM). Both CMEMS‐LSCE‐FFNN and ROMS suggest a
drop in mean sea‐surface pH value between 1985 and 2019 by 0.06 and 0.058 respectively, whereas a drop by
0.054 (0.065) is seen from OceanSODA (OTTM) (Table S1 in Supporting Information S1). Figure 6c shows a
right shift in peak, indicating an increase in the sea‐surface pCO2. The change in mean values between 1985 and
2019 is 62.30 (73.2) μatm for ROMS (OTTM), whereas it is 57.20 and 62.40 μatm for OceanSODA and CMEMS‐
LSCE‐FFNN, respectively. Interestingly, the rise in sea‐surface pCO2 seen from ROMS, OceanSODA, and
CMEMS‐LSCE‐FFNN is almost equal to the atmospheric CO2 rise (as seen fromMauna Loa station) in the same
period (≈64 ppm). A similar increment in sea‐surface DIC (Figure 6d) is observed from ROMS and the
observations‐based reconstructed data products of the order of 25–30 mmol m− 3 (50 mmol m− 3 for OTTM).

Table S1 in Supporting Information S1 shows a detailed statistical description of the spread of pH, DIC, SST, and
pCO2 in 1985 and 2019. Figure 6 indicates that the distribution of pH, DIC, SST, and pCO2 for the years 1985 and
2019 derived from model outputs and observations‐based data products are low leptokurtic, except for ROMS
simulated DIC. DIC (Figure 6d) distribution from ROMS indicates the distribution to be highly leptokurtic (in
both 2019 and 1985). The spatial variability of DIC simulated by ROMS is essentially less compared to other
reconstructed data products and model outputs used in the analysis. It may be caused due to several factors. We
have used the KPP mixing scheme in the present model configuration. This scheme seems to respond differently
throughout the regional Indian Ocean to the biogeochemical fluxes. The diffusive thermocline (when compared
with in‐situ observations) confirms the same (Chakraborty et al., 2019). As a result, bias in the model‐simulated
physical state of ocean subsequently propagates to model simulated biogeochemical state through the prescribed
coupled dynamics. Further, ROMS was initialized using GLODAP data, which itself has a very low spatial
variability of DIC since the number of observations available in the Indian Ocean is very limited. On top of that
GLODAP is an annual mean climatology, which may not be an ideal initial condition. The river distribution, its
discharge, and the amount of nutrients available from rivers are provided climatologically, which is also not ideal.
Moreover, the nutrients and carbonate variables (DIC and ALK) from the rivers are estimated from the nearest
grid value available from the WOA or GLODAP, hence until a more realistic representation of rivers is not
available, the variability of DIC is expected to be less, especially in the BoB region.

In contrast, the observations‐based products and OTTMmodel show the DIC distribution for both years to be low
leptokurtic. The mean DIC differs between ROMS and observations‐based products by almost 20 mmol m− 3 for
both years (2019 and 1985). This difference in DIC should not affect the driver analysis as this magnitudinal
difference seems to be consistent and should have no effect on the trends.

Figures 7a–7d show the difference (between 2019 and 1985) in annual mean SST from ROMS, OTTM along with
the predictor SST used in OceanSODA and CMEMS‐LSCE‐FFNN. The spatial pattern of these differences is
similar for both the models (ROMS and OTTM) and the observations‐based reconstructed data products (SODA
and CMEMS‐LSCE‐FFNN), but the difference is much lower in the OTTMmodel. The increase in SST is seen to
be relatively lower in ROMS than in observations‐based products. The southeastern region is observed to have a
decrease in SST in 2019 compared to 1985 (shown by models and observations‐based products). We observe the
regional spread of low SST values in 2019 concerning 1985 to be higher in the models (ROMS and OTTM) than
in OceanSODA and CMEMS‐LSCE‐FFNN. The northern BoB has lower warming in the ROMS and OTTM,
unlike in CMEMS‐LSCE‐FFNN and OceanSODA.

Figures 7e–7h show a decrease in pH in 2019 compared to 1985 in all four products. The coastal regions of
northern AS are observed to have a lower decrease in pH than other regions. The eastern IO region has the lowest
change in oceanic pH in ROMS, but the OTTMmodel shows the reverse. ROMS and observations‐based products
show that pH reduces less rapidly in the eastern IO region. Similarly, Figures 7i–7k show a high rise in sea‐surface
pCO2 in the western region. The OTTM model shows the highest rise of sea‐surface pCO2 in eastern IO. The
positive pCO2 change and large negative values in pH change are due to the DIC increase in OTTM. The increase
in pCO2 shown by ROMS is higher than that of the estimated increase seen in OceanSODA and CMEMS‐LSCE‐
FFNN.

The spatial pattern of the difference in DIC between 2019 and 1985 is relatively similar for ROMS and
observations‐based products (Figures 7m–7o), while OTTM shows a much higher increase in DIC in the eastern
region (Figure 7p). The change in DIC from SODA is slightly higher than in ROMS and CMEMS in the
southeastern part of the IO and lower in the Western Equatorial region (Figure 7n). The overall discrepancies in
the models and the observations‐based products may be attributed to the paucity of required observation of the
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carbonate variables in the IO region, along with model biases (e.g., imperfect representation of biology and
biogeochemistry interacting with the ocean carbon cycle, model resolution, etc.).

3.3. Interannual Variability

To compare the interannual variability of pH (pCO2) from ROMS and OTTM with the observations‐based
products CMEMS‐LSCE‐FFNN and OceanSODA, we first deseasonalize and detrend the pH (pCO2) for the
IO and its sub‐domains (AS, BoB and Equatorial Indian Ocean (EIO)). In Figure 8 (Figure S7 in Supporting
Information S1), the deseasonalized and detrended region averaged time‐series of pH (pCO2) is shown for all four
products used in this study. The pH (pCO2) from the OTTM model is observed to have higher values than pH
(pCO2) from other products (Figures 8 and S7 in Supporting Information S1). From Figure 8, we observe that pH
from the OceanSODA model has low trough values at certain times, which are absent from pH from other
products. Such troughs are also absent for pCO2 from OceanSODA (Figure S7 in Supporting Information S1).

Table 2 (Table S4 in Supporting Information S1) shows a statistical comparison of model‐simulated (ROMS and
OTTM) pH (pCO2) with the observations‐based products (CMEMS‐LSCE‐FFNN and OceanSODA). The
interannual variability of pH (pCO2) simulated by ROMS shows better agreement with the interannual variability
of pH (pCO2) from CMEMS‐LSCE‐FFNN and Ocean SODA than OTTM‐based pH (pCO2). The correlation
with observations‐based fields and corresponding RMSE for ROMS‐generated pH (pCO2) are consistently better
than the OTTMmodel throughout the IO and its subdomains. This result highlights that a high‐resolution regional
model is capable of capturing the key processes controlling the interannual variability of pH better than a coarse
resolution global model on a regional scale. Based on the synthesis of 12 global and two regional model simulated
outputs, Sarma et al. (2023) showed that the high‐resolution regional models perform relatively better than the

Figure 7. Spatial annual mean difference (between 2019 and 1985) in SST (°C, figures a–d), pH (figures e–h), pCO2 (μatm, figures i–l), and DIC (mmol m− 3, figures m–
p) from ROMS (first column), OceanSODA (second column), CMEMS‐LSCE‐FFNN (third column), and OTTM (fourth column).

Global Biogeochemical Cycles 10.1029/2024GB008139

CHAKRABORTY ET AL. 13 of 24

 19449224, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

B
008139 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [07/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



coarse resolution global models in the Indian Ocean due to an improved representation of key processes con-
trolling the air‐sea CO2 flux variability in the regional models. It is evident that a high horizontal resolution
regional model can capture the mesoscale processes better than a coarse resolution global model. Hence, high‐
resolution regional models like ROMS used in this study are required to understand the interannual spatial and
temporal variabilities on a regional scale.

3.4. Long‐Term Trend Analysis in Different Regions of IO

In this section, we report the trends in pH (pCO2) and DIC for the IO and also separately for AS, BoB, and EIO.
Table 3 shows ROMS‐simulated trends (having 95% significance) of DIC, pH, and pCO2 for each decade over the
period 1980 to 2019. The trend is calculated at all the spatial grid points. Then, the grids are identified as having at
least 95% significance in the trend. Finally, the trend in each of these grid points is averaged to represent the mean
trend of the region under consideration and the uncertainty bars represent the spatial STD in the trends.

Further, we compare model‐simulated (ROMS and OTTM) trends with trends estimated from OceanSODA and
CMEMS‐LSCE‐FFNN data products (the grids having trends above 95% significance are selected while
calculating the trend for a region). We select the common data‐availability period between ROMS (OTTM),
OceanSODA, and CMEMS‐LSCE‐FFNN, that is, 1990–2019, and compare the pH trends for the three decades of
this period (Figure 9). We observe that the estimates of pH trend from OceanSODA, CMEMS‐LSCE‐FFNN, and
ROMS match well whereas the estimates of pH trend from OTTM differ (Figure 9). A steeper decrease is

Figure 8. Comparison of interannual variability of pH in the IO region and its subdomains (AS, BoB, and EIO) between observations‐based products (SODA and
CMEMS‐LSCE‐FFNN) and models (ROMS and OTTM).
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observed in AS in ROMS and OceanSODA than in CMEMS‐LSCE‐FFNN
and OTTM. During 1990–1999 in AS, the pH trend from the ROMS and
OceanSODA (Table S6 in Supporting Information S1) are − 0.012 ± 0.0027
dec− 1 and − 0.012± 0.002 dec− 1, which are lower than the pH trend shown in
CMEMS‐LSCE‐FFNN (− 0.016 ± 0.001 dec− 1) and OTTM (− 0.015 ± 0.004
dec− 1). In the subsequent decade in AS, 2000–2009, the rate of decrease is
seen to be lowest in ROMS (− 0.014 ± 0.002 dec− 1) and highest in CMEMS‐
LSCE‐FFNN (− 0.019± 0.002 dec− 1) and OTTM (− 0.019± 0.006 dec− 1). In
the recent decade (2010–2019), the rate of pH decrease simulated by ROMS
is highest (− 0.021 ± 0.002 dec− 1), and the rates of OceanSODA and
CMEMS‐LSCE‐FFNN are almost the same in AS.

In the BoB, the decreasing trend of pH simulated by ROMS (− 0.015 ± 0.003
dec− 1 during 1990–1999, and − 0.015 ± 0.002 dec− 1 during 2000–2009) is
higher than OceanSODA and lower than CMEMS‐LSCE‐FFNN for the first
two decades. The OTTM pH trends (− 0.027 ± 0.011 dec− 1) considerably
diverge from the rates shown by ROMS, OceanSODA, and CMEMS‐LSCE‐
FFNN for 2000–2009 in the BoB. In EIO, the pH trend simulated by ROMS
and estimated from OceanSODA is almost the same during 1990–1999
(− 0.012 ± 0.004 dec− 1). In the subsequent decade, there is a slight in-
crease in ROMS simulated pH trend (− 0.011 ± 0.002 dec− 1) but CMEMS‐
LSCE‐FFNN shows a clear decrease in pH trend.

In EIO, during 2010–2019, a high decrease in pH trend is observed for all
products. OTTM model shows the highest rate of pH decrease. Interestingly,
ROMS and CMEMS‐LSCE‐FFNN show the same rate of decreasing pH trend
in the recent decade. For the complete IO region, the pH trends in Ocean-
SODA and ROMS are almost the same (Figure 9). Although CMEMS‐LSCE‐
FFNN shows a similar decreasing pattern, the magnitude of change in trends
is slightly different. An acceleration of pH trend in the last decade is common
in all models and observations‐based products. Lo Monaco et al. (2021) show

Table 2
Statistical Comparison of the Deseasonalized and Detrended pH Between
Models (ROMS and OTTM) and Observations‐Based Products
(CMEMS‐LSCE‐FFNN and OTTM)

Correlation RMSE

Arabian Sea

ROMS versus OceanSODA 0.18 0.002

OTTM versus OceanSODA 0.12 0.003

ROMS versus CMEMS‐LSCE‐FFNN 0.11 0.002

OTTM versus CMEMS‐LSCE‐FFNN 0.01 0.003

Bay of Bengal

ROMS versus OceanSODA 0.35 0.001

OTTM versus OceanSODA 0.14 0.004

ROMS versus CMEMS‐LSCE‐FFNN 0.23 0.001

OTTM versus CMEMS‐LSCE‐FFNN 0.04 0.004

Equatorial Indian Ocean

ROMS versus OceanSODA 0.31 0.003

OTTM versus OceanSODA 0.21 0.005

ROMS versus CMEMS‐LSCE‐FFNN 0.34 0.003

OTTM versus CMEMS‐LSCE‐FFNN 0.01 0.005

Indian Ocean

ROMS versus OceanSODA 0.55 0.001

OTTM versus OceanSODA 0.46 0.002

ROMS versus CMEMS‐LSCE‐FFNN 0.44 0.001

OTTM versus CMEMS‐LSCE‐FFNN 0.19 0.002

Table 3
Slope (Rate of Change) for Decadal Intervals (10 Years) of ROMS, Averaged Over AS, BOB, EIO, and IO Regions

Regions Decades pH(units dec− 1) pCO2 (μatm dec− 1) DIC(mmol m− 3 dec− 1)

AS 1980–1989 − 0.01 ± 0.007 10.48 ± 8.65 5.68 ± 7.39

1990–1999 − 0.012 ± 0.003 13.31 ± 2.84 7.97 ± 1.39

2000–2009 − 0.014 ± 0.002 15.88 ± 2.13 9.57 ± 2.20

2010–2019 − 0.021 ± 0.002 23.84 ± 2.42 7.24 ± 1.74

BoB 1980–1989 − 0.009 ± 0.002 9.60 ± 1.32 6.95 ± 1.51

1990–1999 − 0.015 ± 0.003 15.72 ± 2.79 10.26 ± 1.47

2000–2009 − 0.016 ± 0.002 17.17 ± 2.11 11.46 ± 1.25

2010–2019 − 0.018 ± 0.003 20.94 ± 2.76 6.73 ± 1.54

EIO 1980–1989 − 0.011 ± 0.002 11.81 ± 1.89 11.10 ± 2.11

1990–1999 − 0.012 ± 0.004 12.95 ± 4.02 10.15 ± 2.32

2000–2009 − 0.011 ± 0.002 12.86 ± 2.85 4.22 ± 6.67

2010–2019 − 0.018 ± 0.004 21.82 ± 4.19 12.21 ± 6.39

IO 1980–1989 − 0.011 ± 0.00 11.56 ± 4.18 10.81 ± 4.55

1990–1999 − 0.013 ± 0.004 14.07 ± 3.87 10.04 ± 2.54

2000–2009 − 0.014 ± 0.004 15.58 ± 3.48 6.69 ± 7.19

2010–2019 − 0.019 ± 0.004 22.67 ± 4.19 13.29 ± 7.69
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a similar acceleration of pH trend (− 0.0243 dec− 1) in the Mozambique channel for the period 2004–2019.
Interestingly, the ROMS result shows a similar magnitudinal increase in the decreasing pH trend (≈ − 0.02 dec− 1)
for all the regions (Table 3) in the last decade. Similarly, the pCO2 trends for each region are shown in sup-
plementary, which reveals that pCO2 increasing trends simulated by ROMS and estimated from OceanSODA are
close to each other (Figure S3 in Supporting Information S1).

The DIC in the ocean is steadily increasing by the continuous uptake of anthropogenic CO2 emitted to the at-
mosphere. The Indian Ocean region is second to the South Pacific in terms of increase in anthropogenic carbon
storage (Müller et al., 2023). The anthropogenic carbon storage is reported to increase at 7.2 ± 0.9 from 1994 to
2004 and 5.7 ± 0.6 Pg C dec− 1 from 2004 to 2014 (Müller et al., 2023). As DIC is the primary driver controlling

Figure 9. Decadal trend of pH in AS, BoB, EIO, and IO regions. The years 1995, 2005, and 2015 denote the center of 1990–
1999, 2000–2009, and 2010–2019. The uncertainty bars represent the standard deviation of region averaged trend values
with 95% significance.

Figure 10. Decadal trend of DIC in AS, BoB, EIO, and IO regions. The years 1995, 2005, and 2015 denote the center of
1990–1999, 2000–2009, and 2010–2019.
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trends of pH and pCO2, we look at the decadal trends of DIC in AS, BoB, EIO, and IO regions from all the
products (Figure 10).

Interestingly, the variation of DIC trends in AS and BoB from OceanSODA and the ROMS are opposite. The
ROMS shows that the DIC trend increased in the northern Indian ocean during 2000–2009 period (9.57 ±
2.18 mmol m− 3 dec− 1 in AS and 11.46 ± 1.25 mmol m− 3 dec− 1 in BoB) than 1990–1999 (7.97 ± 1.39 mmol m− 3

dec− 1 in AS and 10.26 ± 1.47 mmol m− 3 dec− 1 in BoB). The trend in DIC again decreases in the third decade
(7.24 ± 1.74 mmol m− 3 dec− 1 in AS and 6.73 ± 1.54 mmol m− 3 dec− 1 in BoB).

The CMEMS‐LSCE‐FFNN had no significant trend during 1990–1999 in the AS and 2010–2019 in BoB
(Figure 10). Similarly, no significant trend in AS is found between 2000 and 2009 for the OTTM model
(Figure 10). The DIC trends in the EIO region by Ocean‐SODA and the ROMS are synchronous, that is, high in
1990–1999 and 2010–2019, while low in 2000–2009, whereas OTTM showed a much higher DIC trend in 2000–
2009. The lower DIC trend in the EIO region during 2000–2009 is also reflected in the pCO2 trends (Figure S4 in
Supporting Information S1). Results from Ocean‐SODA, CMEMS, and ROMS indicate that the pCO2 trends
appeared stable over 1990–2009 (i.e., not tracking the rising of atmospheric CO2), and accelerated in 2010–2019
(pCO2 trend > +2 μatm yr− 1 for all models, Figure S4 in Supporting Information S1). The low DIC trend 2000–
2009 from ROMS (+0.4 ± 0.08 μmol kg− 1 yr− 1) is about half the expected Cant trend (+1 μmol kg− 1 yr− 1). In the
southwestern IO, Metzl et al. (2022) evaluated a trend of +1.05 ± 0.08 μmol kg− 1 yr− 1 in the subsurface. A
calculation of Cant concentrations based on the TrCOCA method (Touratier et al., 2007) using the GLODAP data
available in the EIO region over 1978–2020 leads to a Cant trend of+0.86± 0.10 μmol kg− 1 yr− 1 in the subsurface
(Figure S9 in Supporting Information S1). The low DIC trend in the EIO region during 2000–2009 represents an
anomaly that could be explained by natural processes that would counteract the DIC increase due to the pro-
gressive Cant accumulation. After 2010, the system is back to a high DIC trend in the EIO and the pH trends are the
same for ROMS, SODA, and CMEMS (average of − 0.019 per decade). Hence, there is a corresponding rise in the
pH trend in the IO region from 2000 to 2009 (Figure 9). However, the link between the storage of anthropogenic
carbon and surface DIC needs further investigation. The link between surface changes to the inventories is related
to the exchange of properties between mixed layer to thermocline and deeper ocean with expected inventory
changes due to biological export and redistribution pathways of the tracers in the deep. It is also observed that
although the decadal trends in pH and pCO2 in the ROMS and OceanSODAwere reasonably close, the DIC trend
does have differences in magnitude.

3.5. Effect of ENSO and IOD on the Indian Ocean Acidification

In this section, we perform the EOF analysis as described in Section 2.3.3 to understand the effect of ENSO and
IOD on the interannual variability of ocean acidification in the IO region. Figure 11a shows a negative spatial
pattern of pH (positive spatial pattern for pCO2 in Figure S6a in Supporting Information S1) anomalies. The
corresponding PC‐1 shows a negative correlation (− 0.52 with 99% significance) between the pH anomalies and
the Nino3.4 index, and a positive correlation between the pCO2 anomalies and the Nino3.4 index. Further, PC‐1
of pH anomalies and DMI index shows a moderate negative correlation (− 0.37 with 99% significance) whereas
pCO2 anomalies and DMI index has a moderate positive correlation. The first mode is found to explain 18.44% of
the variance. Therefore, it is evident from EOF‐1 mode and associated PC‐1 that ENSO dominantly influences the
IO pH variability (pCO2 variability as well). The basin‐wide warming during the El Niño increases the free H+

ions and pCO2, shifting toward lower pH values. However, the moderate correlation of PC‐1 with DMI indicates
the combined influence of ENSO and IOD on ocean acidification.

Figure 11b shows a negative spatial pattern of pH (positive spatial pattern of pCO2 anomalies as shown in Figure
S6b in Supporting Information S1) anomalies in the east and a positive in the west. The corresponding PC‐2
shows a moderate negative (positive for pCO2 anomalies as shown in Figure S6d in Supporting Informa-
tion S1) correlation (− 0.30 with 99% significance) with the DMI index, indicating the influence of IOD
(Figure 11d). PC‐2 correlates poorly (for both pH and pCO2 anomalies) with Nino3.4, indicating no influence of
ENSO on the second mode. The second mode explains 8.56% of the total variance. Hence, although from EOF‐1
mode the impact of ENSO dominance on the IO pH variability is evident, the influence of IOD is spread across
EOF‐1&2 modes. The positive IOD often enhances upwelling in the eastern coastal region, which brings the low
pH (high pCO2) sub‐surface waters to the surface. Thus, the strength of El Niño could affect the ocean
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acidification of the IO region. As the strength increases, the basin‐wide warming could increase, resulting in more
acidified IO in the future.

3.6. Effect of Each Driver on pH and pCO2 Trends in Different Regions of the Indian Ocean

In this section, we analyze the effect of the trends of each driver (DIC, SST, SSS, and ALK) on the trend of pH and
pCO2 individually for the past four decades followed by the entire 40 years (1980–2019) separately for the AS,
BoB, and EIO regions and the IO basin using ROMS simulated outputs. Figure 12 represents the percentage
contribution of each driver on the pH trends (similar contributions on pCO2 trends can be seen in Figure S8 in

Figure 11. The figures (a, b) show EOF‐1 and EOF‐2 of pH in terms of covariance (from ROMS). Figures (c, d) show the statistical comparison of the first two principal
components (PC‐1 and PC‐2) with Nino3.4 and DMI indices.
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Supporting Information S1). The method to quantify the effect of each driver on pH (pCO2) trends is described in
Section 2.3.2.

Figure 12 shows that in the AS, DIC trends primarily control ocean acidification (OA) trends during each of the
past four decades (71.1%, 98.5%, 115.9%, and 52.9% (Figures 12a–12d)) and also the net 40 years trend
(Figure 12e). The ALK trends contribute to enhancing OA during 1980–89 (Figure 12a) and 2010–19
(Figure 12d). While it acts as a buffer to the relative enhancement of OA rates during 1990–99 (Figure 12b)
and 2000–09 (Figure 12c). Further, the buffering effect caused by the contribution of ALK is more crucial during
2000–09 (Figure 12c).

The SST rise due to global warming consistently affects the OA trends in the AS (Figure 12). During 1980–89, the
SST played almost no role in moderating the OA trends (− 1.1%), but from 1990 to 99, the SST contributed to the
increasing OA trend (13.6%). The contribution of SST trends toward decreasing pH trends has consistently
increased till the recent decade (2010–19) (Figures 12a–12d). In the recent decade, the three major drivers (SST,

Figure 12. Percentage contribution of each driver (with standard deviation shown by error bars) on the trend of pH individually for the four decades (a–d), and for the
entire 40 years period (1980–2019) (e).
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DIC, and ALK) have been found to collectively increase the OA in the AS (SSS has negligible effect (0.5%)). This
indicates that the global warming and anthropogenic carbon storage increase in the future will lead to an increase
in acidity (a measure of H+) of the surface waters of AS. We also observe that the AS acidifies much faster in the
recent decade than in the past three decades (Table.3). Sreeush et al. (2019) reported an exacerbation of acidi-
fication by 16% in the AS due to the SST warming alone, which is found to be consistent with the contribution of
SST derived from ROMS outputs (Figure 12e).

Although the decadal rates of OA for AS and BoB are similar, the drivers controlling the acidification rates are
different. During 1980–89, DIC was the only driver increasing the rate of OA in the BoB (126.7%). The ALK was
found to be the second important driver, which buffers the OA rates (− 22%), reducing the magnitude of the
negative slope. SSS (though very low compared to DIC and ALK, − 4.2%) also acts as a buffer to the OA. During
1990–99, ALK again buffers OA (− 15.6%) in the BOB, but DIC and SST both positively contribute to the rate of
pH decrease (108.9% and 10.6%). The influence of SST is almost completely neutralized by ALK, leaving DIC as
a major contributor to the rising OA rates during 1990–99.

For the BoB, the role of drivers controlling the OA rates in the first (1980–89) and third (2000–09) decades are
almost similar, that is, DIC is the major contributor to the rise in OA, and ALK buffers these increasing rates.
ALK has acted differently in the recent decade (2010–19) compared to the past three decades. In this decade, ALK
enhances the rates of OA (34.1%) in BoB along with DIC (54.9%) and SST (12.9%). In BoB, the buffering of OA
rates has consistently decreased from the first (1980–89) to the last decade (2010–19). This could be due to the
variation in the stratification strength (which influences productivity in surface and near‐surface waters) of the
BoB from 1980 to 2019 (Joshi et al., 2021; Takahashi et al., 2014). The influence of drivers on pH trends over the
40 years shows that SST is the second most crucial driver controlling pH trends after DIC in the AS and BoB
(14.8% and 13.4%; Figure 12e). The ALK is seen to have a buffering effect on pH decrease in the BoB (− 5.4%),
whereas it positively contributes to pH decrease in AS (5%).

During 1980–89, the contribution of SST in controlling OA trends, both in the AS and BoB, was insignificant,
whereas, in the EIO, SST was found to decelerate the negative slope of pH (− 45.8%). Further, in the EIO, the
contribution of SST in balancing the pH trends was found to be more compared to the contribution of ALK
(− 19.7%) during 1980–89 (Figure 12a). DIC (162.9%) remained the primary contributor to the increasing OA
rates in EIO.

In the EIO, the effect of all drivers remained the same during 1990–99 as it was in 1980–89, but ALK (70.7%)
became the primary driver of the pH trend during 2000–09 (Figure 12c). ALK was found to have a negative slope
in the EIO during 2000–09. As a result of which, instead of buffering, it primarily enhanced the OA rates. DIC
(45.4%) acts as a secondary driver, enhancing the OA rates during 2000–09. Further, in the EIO, SST's buffering
effect or deceleration of negative pH slope from 1980 to 1999 (− 45.8% and − 34.2% during 1980–89 and 1990–
99, respectively) became almost negligible during 2000–09 (− 3.1%). SSS played a major buffering role in 2000–
09 (− 12.7%), which is the greatest contribution of SSS on the OA trends in the IO throughout 1980–2019. The
decrease in SSS and thus ALK in the EIO is attributed to the combined effect of variations in local precipitation
and freshwater transport through ITF during 2000–2009 (Li et al., 2023). Based on a series of numerical ex-
periments (interestingly using a high‐resolution ROMS), Li et al. (2023) showed that the primary driver con-
trolling SSS variability in the EIO during 2000–2010, is local precipitation, whereas the contribution of local
winds and evaporation is insignificant. Further, they showed that the SSS in the southern EIO increased between
2000 and 2005 but decreased strongly from 2005 to 2011. The increase of local precipitation (resulting in
decreasing SSS) during 2005–2011 was attributed to Ningaloo Nino condition.

During the recent decade (2010–2019), the DIC (108.2%) again dominates the increasing OA rates in the EIO.
The ALK (− 11.4%) is the secondary driver that buffers the OA trend, but the effect is small compared to the DIC.
Further, we observe a higher negative pH trend during 2010–2019 due to ALK's weak buffering contribution in
the EIO (Table 3). The contrasting change in the contribution of ALK in the recent decades further exacerbates
OA rates in the EIO. The contribution of ALK in controlling pH trends in the EIO over the 40 years (1980–2019)
indicates that the ALK is positively contributing to enhancing OA rates in the EIO (10.7%). The positive
contribution of ALK to OA could be due to the biological influence in EIO (Madkaiker et al., 2023). When a soft
tissue pump occurs, in addition to decreasing the concentration of DIC, the formation of organic matter also
decreases the concentration of the free protons, [H+], and therefore increases alkalinity (Brewer et al., 1975;
Sarmiento & Gruber, 2006). Thus, the contribution of ALK can be positive or negative in the total trends of pH
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depending on the strength of biological pumps (Madkaiker et al., 2023). Although ALK dominates OA after DIC
in EIO, the role of SST (7%) is also considerable. Therefore, it can be inferred that all three drivers, DIC, ALK,
and SST, strongly influence the pH trends in the EIO. Although SSS's influence is negligible, it plays a vital role
in modifying surface ALK (Madkaiker et al., 2023).

Table S5 in Supporting Information S1 shows that, from 1980 to 2019, the whole IO region is acidifying at
− 0.015 ± 0.001 units dec− 1. The net trend for pH (1980–2019) in the IO is dominated by DIC (78.3%), followed
by SST and ALK (SSS contribution is negligible) (Figure 12e). For the entire IO region, DIC (154.5% (1980–89)
and 136.5% (1990–99)) remains the primary driver of the OA trend, followed by SST (− 33.5% (1980–89) and
− 18.8% (1990–99)) during 1980–89 and 1990–99. SST and ALK (− 21.4% (1980–89) and − 16.2% (1990–99))
both buffer the pH decrease during the first two decades. During 2000–09, the ALK, along with DIC, increases the
OA rates, possibly due to the positive contribution from the EIO (Figure 12e) sub‐region. The contributions of
SST (− 0.1%) and SSS (− 5.3%) are almost negligible during 2010–19. Thus, DIC (103.9%) is the primary
contributor to the increasing OA during the last decade. Hence, this analysis indicates that detailed long‐term
measurements of ALK and DIC are critical to investigating OA changes throughout the IO region.

4. Summary and Conclusions
This study attempts tomodel and explore the drivers affecting the long‐term variability in sea‐surface pH and pCO2

in the IO region. In this study, we divide the IO region into three sub‐regions: AS, BoB, and EIO to examine the
present status of Indian Ocean acidification more comprehensively. The trends in each sub‐region are explored
from ROMS (OTTM) and observations‐based data products like OceanSODA and CMEMS‐LSCE‐FFNN.

The comparison between ROMS and OTTM simulated pH and pCO2 with in‐situ measurements from BOBOA
mooring and SOCAT database indicates that ROMS is more capable of satisfactorily simulating the Indian Ocean
carbon dynamics. In addition to in‐situ observations, we have compared ROMS and OTTM simulated carbon
variables (pH, pCO2, and DIC) with recently developed observations‐based reconstructed data products. The
results of model validation exercises indicate that the high‐resolution ROMS provides a plausible reconstruction
of the physics and carbonate chemistry of the IO when forced by reanalysis. Therefore, the high‐resolution
regional ROMS simulated long‐term outputs are subsequently used to understand the spatial and temporal
changes of IO pH and to identify the mechanisms and drivers controlling the changes in pH.

Further analysis shows the warming of the sea surface between 1985 and 2019. ROMS shows a shift in the SST
mean from26.27°C in 1985 to 26.97°C in 2019. In the presence of surfacewarming, we find a change in oceanic pH
(8.09 in 1985 to 8.03 in 2019) and associated carbonate variables such as surface pCO2 (350 μatm in 1985 to 412
μatm in 2019) and surface DIC (1979 mmol m− 3 in 1985–2005 mmol m− 3 in 2019). The spatial comparison be-
tween the annual mean SST, pH, DIC, and pCO2 shows a decrease in surface warming in the southeastern region
(extremely influenced by the Indonesian Throughflow dynamics) but a relative increase in ocean acidification.
However, the rise in pCO2 and DIC between 1985 and 2019 is almost consistent throughout the IO domain.

The analysis to identify drivers indicates that DIC is the dominant factor controlling the trends of OA in the IO
region. However, for the sub‐regions (such as AS, BoB, and EIO), DIC and SST are the dominant drivers
controlling pH trends in AS and BoB, whereas DIC and ALK are dominating drivers in the EIO. Further, in the
EIO region, the effect of SST is prominent in controlling pH trends. An increase in the strength of biological pump
is identified as a possible reason for the increased contribution of ALK in the EIO (Madkaiker et al., 2023). The
contribution of ALK in controlling pH trends became primary during 2000–09 in the EIO; otherwise, the
dominance of DIC in controlling pH trends was evident throughout all decades and in all the sub‐regions of IO.
These results highlight the need for long‐term measurements of DIC and ALK in the IO to better quantify drivers'
contribution in controlling OA in the IO region.

The analysis to estimate the changes in pH trends shows a decreasing pH trend throughout the entire IO domain
between 1980 and 2019. The pH decreases at a rate of − 0.015 ± 0.002 dec− 1 in AS, − 0.014 ± 5.74e− 04 dec− 1 in
BoB, and − 0.015 ± 0.001 dec− 1 in EIO. The DIC rate is seen to be high during 1990–1999 (10.04 ±

2.53 mmol m− 3 dec− 1) and 2010–2019 (13.29 ± 7.69 mmol m− 3 dec− 1), but lower in 2000–2009 (6.69 ±
7.19 mmol m− 3 dec− 1).

The primary limitation of this study is the lack of a sufficient number of observations in the IO for quantifying the
models' errors in spatial and temporal scales. This induces considerable uncertainty in the estimated trends in
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ocean acidification. A comparison with OceanSODA and CMEMS‐LSCE‐FFNN is performed to assess if the
spatial variability and trends of ocean acidification simulated by ROMS are similar to those of these recent
observations‐based reconstructed data products. The contribution of drivers toward pCO2 trends in different
regions shown in this study slightly differs from the results reported in Mohanty et al. (2024) (especially in the
EIO and BoB regions). Here it is to be noted that the spatial resolution of CMIP Earth SystemModels is too coarse
to adequately simulate regional ocean dynamics. This is especially true for the regional IO, which experiences a
seasonal reversal of winds and associated surface currents, intense upwelling at its western boundary in the AS,
extensive riverine runoff in the BoB and freshwater‐induced stratification, the IOD, the Indonesian through‐flow,
etc. that results in a unique physical and biogeochemical dynamics in this region. Further, an improved repre-
sentation of key ocean processes in the regional models compared to global coarse resolution models resulted in a
better simulation of regional ecosystem dynamics and biogeochemical cycles. Sarma et al. (2023) showed that
regional high‐resolution models better simulate regional ocean dynamics than low‐resolution global models.
Therefore, identifying drivers and their contributions toward controlling IO acidification reported in this study is
more acceptable than the estimates available from coarse‐resolution global models. Further, the high‐resolution
regional models, like ROMS initialized and forced with bias‐corrected and downscaled CMIP Earth System
Model outputs, are expected to provide a better estimate of the predicted future of regional surface pCO2 and pH
changes than the estimates available from the coarse‐resolution global CMIP models. Additionally, studying
Aragonite depth and subsurface biogeochemistry with links to the coral growth and species would be the next step
in the Indian Ocean analysis.
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