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The importance of adding unbiased 
Argo observations to the ocean 
carbon observing system
Thea H. Heimdal * & Galen A. McKinley 

The current coverage of direct, high-quality ship-based observations of surface ocean  pCO2 includes 
large gaps in time and space, and has been declining since 2017. These ocean observations provide the 
basis for the data products that reconstruct surface ocean  pCO2 and estimate ocean carbon uptake. 
Improved data coverage is needed to advance our understanding of the ocean carbon sink and air–
sea  CO2 exchange. Targeted sampling from autonomous platforms, such as biogeochemical floats, 
combined with traditional shipboard measurements represents a promising path forward to improve 
surface ocean  pCO2 reconstructions. However, floats provide indirect  pCO2 estimates derived from 
pH, and thus have higher uncertainty and are biased compared to direct shipboard measurements. 
Here, we use a Large Ensemble Testbed (LET) of Earth System Models and the  pCO2-Residual method 
to reconstruct surface ocean  pCO2 globally to test the impact of additional float observations, both 
with and without measurement uncertainties. Through comparison to the ‘model truth’, the LET 
allows for robust evaluation of the reconstructions. With only shipboard sampling, surface ocean 
 pCO2 is overestimated, and the 2000–2016 global ocean carbon sink is underestimated by 0.1 Pg 
C  year−1. Additional float observations significantly reduce this underestimation, and deviate from 
the ‘model truth’ by as little as 0.01 Pg C  year−1, even when floats have random uncertainties of ± 11 
μatm. However, systematic bias in the float observations significantly degrades the accuracy of  pCO2 
reconstructions, leading to an even stronger underestimation of the global ocean carbon sink of up 
to 0.32 Pg C  year−1. We conclude that adding float-based observations to the global observing system 
can significantly improve reconstructions of global surface ocean  pCO2, but only if these data are 
unbiased.

The Surface Ocean  CO2 ATlas database (SOCAT 1) provides the basis of observation-based data products that are 
used to reconstruct surface ocean  pCO2 globally in space and time. These products are used to constrain air–sea 
 CO2 fluxes, some of which contribute to the Global Carbon Budget (GCB)2. From 1850 to 2023, the oceans have 
removed a total of 180 ± 35 Pg of  carbon2. Air–sea flux estimates from the data products show a large spread, 
and deviate from those of global ocean biogeochemistry models (GOBMs), leading to a large uncertainty of the 
global ocean carbon sink (0.4 Pg C  year−1; Ref.2). In order to fully understand the climate impacts from rising 
emissions, it is essential to reduce uncertainties and accurately quantify the ocean carbon sink in space and time.

SOCAT is the largest global database of high-quality surface ocean  CO2 observations, which have traditionally 
been gathered by ships since the  1950s1. The main synthesis and gridded products (flags A–D) contain direct 
measurements of  fCO2 (fugacity of  CO2) with an uncertainty of < 5 μatm3. However, the SOCAT database is 
highly spatially biased towards the northern hemisphere, and covers only about 2% of the global ocean (at 
monthly 1° × 1° spatial resolution over the period of 1982–2022), and the number of observations collected 
has slowly decreased since 2017 (Ref.3). Reasons for the scarce and declining SOCAT coverage include limited 
resources for ocean observing, limited number of ships/routes and inaccessible/unsafe ocean regions. Therefore, 
estimates of the ocean sink and air–sea  CO2 flux in space and time are uncertain, especially on interannual to 
decadal  timescales4,5. Improved data coverage, especially from undersampled regions, such as the Southern 
Ocean, is needed to reduce these  uncertainties6,7.

Only direct  pCO2 measurements are currently included in the SOCAT database, and these are generally 
collected from ships. There are also some contributions from autonomous platforms, such as moorings and 
Uncrewed Surface Vehicles  (USVs7). These platforms can obtain high-quality direct  pCO2 observations with 
uncertainties equivalent to the highest-quality shipboard measurements contained in SOCAT (flag A and B; ± 2 
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μatm3,7,8). Indirect  pCO2 estimates obtained from biogeochemical floats are however not included in SOCAT. The 
reason for this is that indirect  pCO2 estimates from floats have potentially high uncertainties (± 11.4 μatm) and 
may be positively biased by as much as ~ 4 μatm9–14. The large uncertainties arise as  pCO2 is not measured directly, 
but is rather estimated using measurements of pH combined with a regression-derived alkalinity  estimate9. 
The global mean air–sea disequilibrium is only in the order of 5–8 μatm4, so the biases and uncertainties of the 
magnitudes associated with the float estimates could potentially have significant impacts on reconstructed surface 
ocean  pCO2 and air–sea  CO2 flux estimates.

Biogeochemical floats of the Argo array have collected ocean data since 2000, and projects such as the Southern 
Ocean Carbon and Climate Observations and Modeling (SOCCOM) and the Global Ocean Biogeochemistry 
Array (GO-BGC) have been implemented more recently and will continue into the future. Combining these 
autonomous observations with those from SOCAT should significantly increase the global coverage of surface 
ocean  pCO2, especially in regions inaccessible by ships, such as the Southern Ocean. The Southern Ocean is a 
critical region for carbon removal from the atmosphere, being responsible for ~ 40% of the global ocean uptake 
of anthropogenic  CO2 (Ref.15). However, its remoteness and harsh conditions, especially during winter months, 
have led to large data gaps. Floats can however sample in these conditions, and these additional observations 
have the potential to substantially improve global and regional  pCO2  reconstructions5–7,11,12. However, before 
float-derived  pCO2 can be confidently used together with direct  pCO2 from SOCAT in reconstructions, impacts 
of uncertainty and bias must be quantified and appropriately addressed.

Here, we use a Large Ensemble Testbed (LET)5 of Earth System Models and the  pCO2-Residual reconstruction 
 method16 to assess how bias and uncertainty in float observations impact global reconstructions of surface 
ocean  pCO2 and the air–sea  CO2 flux. Instead of using real-world observations, we sample the target variable 
(i.e., surface ocean  pCO2) and driver variables (i.e., atmospheric  CO2 mole fraction  (xCO2), SST, SSS, MLD and 
Chl-a) from the LET, based on SOCAT coverage, and historical or potential Argo float coverage. By using the 
LET, surface ocean  pCO2 is known at all times and model 1° × 1° points. Therefore, the reconstructed  pCO2 can 
be robustly evaluated in space and time against the ‘model truth’. We present two experiments. First, to account 
for observational bias, 4 μatm is systematically added to each  pCO2 value sampled from the LET that represent 
float sampling. In a second experiment, a random value between − 11 μatm and + 11 μatm is added to each float 
 pCO2 value from the LET to account for measurement uncertainty. Two different float sampling schemes are 
compared (‘historical’ and potential ‘optimized’ sampling).

By using a model testbed, it is not our intent to predict real-world surface ocean  pCO2 and air–sea  CO2 fluxes. 
Instead, our goal is to assess the accuracy with which a machine learning algorithm reconstructs the ‘model 
truth’ given inputs consistent with SOCAT and float data coverage. By comparing the different experimental 
runs, the goal is to assess how float measurement bias and uncertainty may impact the global surface ocean  pCO2 
reconstruction and estimated air–sea flux.

Methods
Surface ocean variables (SST, SSS,  xCO2, MLD, Chl-a,  pCO2) were sampled from the Large Ensemble Testbed 
 (LET5) based on SOCAT and two different Argo sampling schemes (historical vs. potential optimized float 
coverage; see Sect. Overview of sampling scenarios and experimental runs). The  pCO2-Residual  method16 was 
used to reconstruct surface ocean  pCO2 in space and time. A brief description is provided below, but for further 
details see Ref.6.

The  pCO2-residual approach using the Large Ensemble Testbed (LET)
The LET includes 25 randomly selected members from three independent initial-condition ensemble of Earth 
System Models (ESMs). These models are CESM-LENS17, GFDL-ESM2M18 and  CanESM219. This 75-member 
testbed includes model output from 1982–2016 (Ref.5). For each ensemble member, surface ocean  pCO2 and 
co-located driver variables (i.e., SST, SSS, Chl-a, MLD,  xCO2) were sampled monthly at a 1° × 1° resolution, at 
times and locations equivalent to SOCAT observations and additional floats (see  Sect. Overview of sampling 
scenarios and experimental runs).

Prior to algorithm processing, the direct effect of temperature on  pCO2 was  removed16. This temperature-
driven component  (pCO2-T) was calculated using the equation of Refs.20,21:

where  pCO2
mean and  SSTmean is the long-term mean of surface ocean  pCO2 and temperature, respectively, using all 

1° × 1° grid cells from the testbed (i.e., not only where SOCAT coverage exists).  pCO2-Residual is the difference 
between  pCO2 and the calculated  pCO2-T.

The eXtreme Gradient Boosting method  (XGB22) was then used to develop an algorithm that allows the driver 
variables (SST, SSS, Chl-a, MLD,  xCO2) to predict the target variable  (pCO2-Residual). The XGB algorithm for 
this study used a learning rate of 0.3, 4,000 decision trees with a maximum depth of 6 levels, and this was fixed 
for all  experiments6. For the final reconstruction of surface ocean  pCO2 across all space and time points, the 
previously calculated  pCO2-T values were added back to the reconstructed  pCO2-Residual values.

The full XGB process was repeated individually for each of the 75 LET members, providing a total of 75 
reconstruction vs. ‘model truth’ pairs, which was statistically compared. Bias was calculated as ‘mean prediction 
– mean truth’, and the root-mean-squared error (RMSE) as:

pCO2 − T = pCOmean
2 ∗ exp

[

0.0423 ∗
(

SST− SSTmean
)]

√

[(prediction− truth)2]
mean
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where, unless otherwise specified, the ‘mean’ represents all 1° × 1° grid cells globally and all months over the 
period of 2000–2016. Statistical comparisons between the test set and the reconstructions are equivalent to what 
would be derived using real-world data. Since we are using a testbed, we calculate error statistics by comparing 
the  pCO2 reconstruction to the ‘full’ LET model  pCO2 field, and not only the test set (i.e., all 1° × 1° grid cells, 
but excluding those used for training).

Air–sea  CO2 flux
Air–sea  CO2 exchange was calculated as in Ref.6, using the bulk formulation with Python package Seaflux.1.3.1 
(https:// github. com/ lukeg re/ SeaFl ux; Refs.23,24). The air–sea flux was calculated in the same manner for both 
the ML reconstructions and the ‘model truth’, to allow for flux comparisons that reveal the influence of bias and 
uncertainty on the  pCO2 reconstruction. Since we are using a model testbed, the flux estimates presented here are 
only to quantify how bias and uncertainty in float measurements propagate through the  pCO2 reconstruction to 
impact fluxes; however, they do not represent real-world fluxes. Here, the sign convention used is positive fluxes 
to the atmosphere and negative fluxes to the ocean.

Overview of sampling scenarios and experimental runs
Sampling scenarios
We sampled target and driver variables from the LET based on (1) SOCAT sampling distributions, (2) 
SOCAT + 500 ‘Optimized’ potential  floats25, and (3) SOCAT + 500 randomly selected ‘Historical’ Argo floats. 
The number of 500 floats was selected as it represents a realistic number for a sampling array; the active and 
currently funded GO-BGC sampling project aims to deploy 500 floats. The ‘Historical’ float scenario includes 
random sampling distributions of floats deployed in the years between 2004 and 2020 (https:// fleet monit oring. 
euro- argo. eu/ dashb oard) (Fig. 1a). The available LET output ends in year 2016 (Ref.5). To match the 17 years 
of ‘Historical’ Argo coverage (2004–2020), float observations were sampled from the LET starting in year 2000 
until 2016, i.e., the final year of the testbed. The ‘Optimized’ float scenario includes potential float locations 
following Ref.25, with each float sampling every month in the selected location (Fig. 1b). The ‘Optimized’ float 
observations were sampled from the LET covering the years 2000 through 2016 to match the ‘Historical’ scenario. 
The ‘Historical’ and ‘Optimized’ float coverage includes a total of 21,659 and 102,000 monthly 1ºx1º observations, 
respectively (Fig. 1c). These float scenarios represent an increase in global surface ocean  pCO2 coverage by 0.1% 
and 0.6%, respectively, compared to using SOCAT alone that has about 1.5% coverage (considering all 1° × 1° 
grid points in the LET for 1982–2016).

C

A BHistorical Optimized

Fig. 1.  Map showing the spatial extent of the ‘Historical’ (A) and ‘Optimized’ (B) floats, and the number of 
1° × 1° monthly observations additional to SOCAT (C) for each float sampling scheme.

https://github.com/lukegre/SeaFlux
https://fleetmonitoring.euro-argo.eu/dashboard
https://fleetmonitoring.euro-argo.eu/dashboard
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Experimental runs
To account for potential bias, 4 μatm was added to each  pCO2 value (float locations only, not SOCAT) sampled 
from the testbed (‘biased’ experiment). The value of 4 μatm is based on previous studies comparing offsets 
between float-based  pCO2 estimates and direct ship-based  measurements9,12. In a second experiment, to account 
for measurement uncertainty, a random value between − 11 μatm and + 11 μatm was added to each  pCO2 value 
(‘error’ experiment; float locations only, not SOCAT). A unique random value was generated for each individual 
 pCO2 value sampled from the testbed using the NumPy package (NumPy.random.uniform). The value of ± 11 
μatm was selected based on results from an uncertainty analysis of biogeochemical Argo float measurements, 
incorporating various uncertainty contributions, such as the pH sensor, alkalinity estimate and carbonate system 
equilibrium  constants9. In addition, we present ‘baseline’ runs that include floats without any bias or random 
error. The ‘SOCAT’ scenario includes only SOCAT sampling locations and none from floats. In sum, there are 
seven experiments: ‘SOCAT’, ‘SOCAT + FLOAT_hist’, ‘SOCAT + FLOAT_opt’, ‘SOCAT + FLOAT_hist_biased’ 
‘SOCAT + FLOAT_opt_biased’, ‘SOCAT + FLOAT_hist_error’ and ‘SOCAT + FLOAT_opt_error’.

Results
We present results as mean 2000–2016 bias or RMSE for the 75-members of the LET with the interquartile range 
(IQR; Q3-Q1) in parentheses.

Performance metrics
Root‑mean‑squared error (RMSE)
The three different ‘Historical’ and ‘Optimized’ float experiments show similar global mean RMSE within its 
respective group (Fig. 2a). Both sampling schemes have consistently lower RMSEs compared to the ‘SOCAT’ run 
through the whole duration of the testbed period (1982–2016), even though float observations do not begin until 
2000 (Fig. 2b). This demonstrates that, even though the data have substantial uncertainty, their addition provides 
a valuable constraint that improves the ability of the ML model to generalize, also prior to sample addition.

The ‘baseline’ (green) for each of the sampling schemes demonstrate slightly lower global mean RMSEs 
compared to the ‘biased’ (blue) and ‘error’ (pink) runs (Fig. 2a,b). The ‘Optimized’ float experiments consistently 
demonstrate lower RMSE compared to the ‘Historical’ ones (Fig. 2a,b). The global mean RMSE for the period of 
float addition (i.e., 2000–2016) for the ‘SOCAT’ run is 11.6 μatm (IQR = 2.1 μatm), which decreases to 10.5–10.7 
μatm (2.2–2.3 μatm) when adding the ‘Historical’ floats, and to 9.6–9.8 (2.4–2.5 μatm) for the ‘Optimized’ floats 
(Fig. 2a; Table 1). While the ‘Optimized’ float experiments show improvement in RMSE on a global scale, the 
‘Historical’ experiments show improvement mainly in the Southern Ocean (Fig. S1). This is not surprising 
considering the greater concentration of floats in the Southern Ocean for the ‘Historical’ scenario (Fig. 1).

There is significant spread in RMSE across the 75 testbed ensemble members for all experiments, which occurs 
because the CanESM2 experiments lead to consistently higher RMSE than in the experiments with CESM and 
GFDL (Fig. 2a). When comparing the experiments across ensemble members of each individual Earth System 
Model in the LET, the spread is reduced significantly (Fig. 2a). The IQR decreases from > 2 μatm (full testbed) 
to 0.1–0.4 μatm for individual models (Table S1).

Bias
The ‘SOCAT’ run and all ‘Historical’ float experiments show positive mean bias (i.e., overestimation of  pCO2 
compared to the ‘model truth’) in the period of float addition (2000–2016), but there is significant discrepancy 
between the float experiments (Fig. 3a,b). Compared to the ‘SOCAT’ run with a mean bias of 0.6 μatm (0.5 μatm), 
bias improves (i.e., moves closer to zero) to 0.08 μatm (0.4 μatm) for the ‘SOCAT + FLOAT_hist’ and to 0.1 μatm 
(0.3 μatm) for the ‘SOCAT + FLOAT_hist_error’ runs (Fig. 3a; Table 1). However, when the float observations 
are biased high by 4 μatm, the global mean (2000–2016) bias increases dramatically in both the ‘Historical’ 
and ‘Optimized’ experiment, to 1.1 μatm (0.3 μatm) and 1.5 μatm (0.2 μatm), respectively (Fig. 3a; Table 1). 
Note also that the ‘SOCAT + FLOAT_hist_biased’ experiment starts to deviate from the ‘SOCAT’ run already 
at the initiation of sampling and bias increases with time (Fig. 3b). For both the ‘SOCAT + FLOAT_hist_biased’ 
and ‘SOCAT + FLOAT_opt_biased’ runs, overestimation of  pCO2 (positive bias) mainly occurs in the southern 
hemisphere (Fig. S2).

The ‘SOCAT + FLOAT_opt’ and ‘SOCAT + FLOAT_opt_error’ float experiments show near-zero global mean 
biases for the entire duration of sample additions (2000–2016; Fig. 3c), with negative global mean biases of − 0.04 
μatm (0.1 μatm) and − 0.05 μatm (0.2 μatm), respectively (Fig. 3a; Table 1).

For all float experiments, reduced (improved) bias compared to the ‘SOCAT’ run occurs generally in the 
Southern Ocean, and extends back in time prior to the addition of the floats (2000–2016) (Fig. S3). In the high 
southern latitudes, this is also the case for the ‘biased’ experiments (Fig. S3).

As found with RMSE, there is spread in the bias across the 75 testbed ensemble members of the LET, but 
there is less difference across the ESMs (Fig. 3a). The 75-member ensemble spread is larger for the ‘SOCAT’ run 
(IQR = 0.5 μatm) and the ‘Historical’ experiments (IQR = 0.3–0.4 μatm) compared to the ‘Optimized’ experiments 
(IQR = 0.1–0.2 μatm) (Fig. 3; Table 1). The ‘SOCAT’ run and the two ‘biased’ float experiments always demonstrate 
a positive mean bias, regardless of ESM (Fig. 3a; Table S1). Mean bias for the ‘SOCAT + FLOAT’ and ‘error’ 
experiments vary in sign depending on the ESM and type of sampling scheme (Fig. 3a; Table S1). For CanESM2, 
the ‘SOCAT + FLOAT’ and ‘error’ experiments for both float sampling schemes have negative mean bias, as do the 
‘SOCAT + FLOAT_opt’ and ‘SOCAT + FLOAT_opt_error’ experiments for CESM. The ‘SOCAT + FLOAT_hist’ 
and ‘SOCAT + FLOAT_hist_error’ experiments demonstrate positive bias for CESM and GFDL.
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Fig. 2.  Spread in RMSE globally for the duration of additional float sampling (2000–2016) for the full 
75-member Large Ensemble Testbed (large boxes) and the three individual ESMs that each contributed 25 
members (small boxes) (A). 2 = CanESM2. G = GFDL. C = CESM. The spread in RMSE for individual models 
includes outliers. Large colored boxes = interquartile range (IQR). Horizontal bars inside boxes = median. 
Horizontal bars outside boxes = minimum and maximum value. Crosses = mean. Annual global mean RMSE 
(for the 75 members) over the testbed period (1982–2016) for the six float experiments and the ‘SOCAT’ run 
(B).

Table 1.  Overview of global mean (2000–2016) bias and RMSE and the interquartile range (IQR) (in μatm) 
averaged over the full 75-member Large Ensemble Testbed.

2000–2016 global error metrics (in μatm) SOCAT 

Historical Optimized

Baseline Biased Error Baseline Biased Error

BIAS

 Testbed mean 0.6 0.08 1.1 0.1 − 0.04 1.5 − 0.05

  1 IQR 0.5 0.4 0.3 0.3 0.1 0.2 0.2

  Q1 0.9 0.3 1.3 0.3 0.05 1.6 0.03

  Q3 0.4 − 0.1 1.0 − 0.1 − 0.1 1.5 − 0.1

RMSE

 Testbed mean 11.6 10.5 10.7 10.6 9.6 9.8 9.8

  1 IQR 2.1 2.3 2.2 2.3 2.5 2.4 2.5
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Air–sea  CO2 flux
The global air–sea flux was calculated in the same manner for the reconstructions and the ‘model truth’. This 
allows for comparison of the differences in fluxes and attribution of flux differences solely to differences in the 
 pCO2 reconstructions due to biases and uncertainties in float observations. These are not estimates of real-world 
fluxes.

Compared to the ‘model truth’, the ‘biased’ experiments underestimate the mean annually averaged 2000–2016 
global ocean sink by 0.26 Pg C  year−1 (‘SOCAT + FLOAT_hist_biased’) and 0.32 Pg C  year−1 (‘SOCAT + FLOAT_
opt_biased’) (Fig. 4; Table S2). This is also reflected by the ensemble spread (Fig. S4). The ‘baseline’ and ‘error’ 
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Fig. 3.  Spread in bias globally for the duration of additional float sampling (2000–2016) for the full 75-member 
Large Ensemble Testbed (large boxes) and individual ESMs (small boxes) (A). 2 = CanESM2. G = GFDL. 
C = CESM. The spread in bias for individual models includes outliers. Large colored boxes = interquartile range 
(IQR). Horizontal bars inside boxes = median. Horizontal bars outside boxes = minimum and maximum value. 
Crosses = mean. Diamonds = outliers. Annual global mean bias (for the 75 members) over the testbed period 
(1982–2016) for the ‘historical’ (B) and ‘optimized’ (C) float experiments and the ‘SOCAT’ run, with shaded 
areas representing 1 IQR.
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float addition experiments for both sampling schemes have a stronger global ocean sink, which is much closer 
to the ‘model truth’ (Fig. 4). These experiments deviate from the ‘model truth’ by as little as 0.02 Pg C  year−1 
(‘Historical’) and 0.01 Pg C  year−1 (‘Optimized’) (Table S2), with a small spread across the ensembles (Fig. S4). The 
‘SOCAT + FLOAT_opt’ and ‘SOCAT + FLOAT_opt_error’ experiments closely match the ‘model truth’ from the 
initiation of sampling (i.e., 2000) until the end of the testbed period (Fig. 4b). The majority of ensemble members 
underestimate the global ocean sink for the duration of float additions (2000–2016), or are indistinguishable 
from the ‘model truth’ (Table S2). However, some members do overestimate the sink for the ‘baseline’ and 
‘error’ experiments, especially those of the CanESM2 model (Fig. S4). The CanESM2 model mean for the 
‘SOCAT + FLOAT_hist’ and ‘SOCAT + FLOAT_hist_error’ experiments underestimates the global ocean sink 
by 0.03 Pg C  year−1 compared to the model truth (Table S2). All float experiments (except when floats are biased) 
show a negative mean bias of − 0.1 μatm for this model (Fig. 3; Table S1).

Discussion
We have used the  pCO2-Residual reconstruction method sampling from the Large Ensemble Testbed  (LET5) 
to understand how bias and uncertainty in float-derived  pCO2 estimates may impact global reconstructions of 
surface ocean  pCO2 and the air–sea  CO2 flux. We find that a systematic bias in float observations significantly 
impacts the  pCO2 reconstruction globally (Fig. 3, Figs. S2, S3), leading to an underestimation of the mean 
2000–2016 global ocean carbon sink of up to 0.32 Pg C  year−1 (Fig. 4; Table S2). The  CO2 flux between the ocean 
and atmosphere can be described as: ∆pCO2 =  pCO2

ocean –  pCO2
atm. If  pCO2

ocean is higher, ∆pCO2 is positive, and 
this indicates outgassing as opposed to carbon uptake. The positive reconstruction bias shown by our ‘biased’ 
runs means that  pCO2

ocean is overestimated compared to the ‘model truth’. Since the reconstructed  pCO2
ocean 

is higher than the ‘truth’, this leads to underestimation of the carbon uptake. Even if a small number of biased 
observations are introduced,  pCO2 is overestimated; the ‘SOCAT + FLOAT_hist_biased’ experiment starts to 
deviate from the ‘SOCAT’ run from the initiation of sampling (Fig. 3b), when float observations are limited 
(Fig. 1c). With an increasing number of biased sample additions, reconstruction bias increases (Fig. 3b). In 
contrast, when introducing stochastic uncertainty, the global mean bias and RMSE still improve compared to 

SOCAT+FLOAT_hist
SOCAT+FLOAT_hist_biased
SOCAT+FLOAT_hist_error

G
lo
ba

lf
lu
x
(P

gC
)

-1.0

-0.8

-1.2

-1.4

-1.8

-1.6

-2.0

1985 1990 1995 2000 2005 2010 2015

Model truth
SOCAT

A

G
lo
ba

lf
lu
x
(P

gC
)

-1.0

-0.8

-1.2

-1.4

-1.8

-1.6

-2.0

1985 1990 1995 2000 2005 2010 2015

Model truth
SOCAT

B
SOCAT+FLOAT_opt
SOCAT+FLOAT_opt_biased
SOCAT+FLOAT_opt_error

Historical

Optimized
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the ‘SOCAT’ run (Figs. 2, 3). When accounting for measurement uncertainty of up to ± 11 μatm, the estimated 
2000–2016 global mean air–sea flux deviates from the ‘model truth’ by as little as 0.01–0.02 Pg C  year−1 (Table S2), 
which is comparable to the ‘baseline’ runs with no float bias or uncertainty (Fig. 4).

Despite the detrimental impacts to reconstruction bias, the ‘biased’ experiments show an improvement in 
RMSE compared to the ‘SOCAT’ run (Fig. 2). This improvement occurs mostly in the Southern Ocean (Figs. S1, 
S5a), which is the region with the sparsest coverage in SOCAT (Fig. S6). Regardless of sampling scheme, the float 
sampling significantly increases the total number of observations from the Southern Ocean (Fig. S6). Even if 
the float observations are biased, they still provide more information compared to the SOCAT database alone, 
resulting in the RMSE reduction. However, the bias in the float data strongly propagates into the reconstruction, 
resulting in a significant overestimation of  pCO2 (i.e., positive bias; Fig. 3, S2) and thus underestimation of the 
global and Southern Ocean sink (Fig. 4, Fig. S7). This suggests that improving reconstruction biases compared 
to RMSE is of greater importance in order to accurately estimate the air–sea flux.

Introducing biased samples from an already well covered region, such as the northern hemisphere, has less 
impact on the  pCO2 reconstruction in the same region. As shown by Fig. S5b, the ‘biased’ experiments show a 
significant reduction in bias over the northern hemisphere compared to the Southern Ocean and globally. The 
discrepancy between the ‘model truth’ and reconstructed fluxes shown globally, is mainly due to underestimation 
of the sink in the Southern Ocean (< 35° S; Fig. S7). Compared to the ‘model truth’, the ‘biased’ experiments 
underestimate the mean 2000–2016 northern hemisphere ocean sink by only 0.1 Pg C  year−1 (‘Optimized’) and 
0.03 Pg C  year−1 (‘Historical’) (Fig. S7; Table S2). Particularly, the ‘SOCAT + FLOAT_hist_biased’ run shows 
lower bias over the northern hemisphere compared to the global and Southern Ocean, especially during the last 
years of the testbed period (Fig. S5b). This is likely due to the very small percentage of additional biased samples 
given the large number of SOCAT observations (Fig. S6).

A recent study quantified the effect of introducing a ± 5 μatm measurement uncertainty or a 5 μatm bias in 
sailboat  observations26. They reconstructed surface ocean  pCO2 globally by using the SOM-FFN27 method. In 
agreement with our study, they found a negligible impact of random errors in the measurements, but demonstrate 
a significant global bias in the flux calculations when sailboat-based measurements are biased.

In the study presented here, and in the study by Ref.6 in which USV Saildrone observations are added to 
SOCAT in the LET, we find a stronger global and Southern Ocean sink during the period of sampling addition 
(Fig. 4; Table S2). Previous testbed studies using the CarboScope/Jena-MLS28 and/or SOM-FFN27 reconstruction 
methods found that additional float observations lead to a decreased (weakened) Southern Ocean carbon  sink11,29. 
In our study, only the ‘biased’ experiments predict a weaker sink compared to the ‘SOCAT’ run (Fig. 4).

The study by Ref.29 used a single ensemble of a hindcast model as a testbed. They show negative reconstruction 
biases and find the global ocean carbon sink to be overestimated for 2009–2018 in most experiments with realistic 
or enhanced sampling. This difference from our findings may be due to the reconstruction approaches or the 
different enhanced sampling patterns, but the models used as a testbed also play a role. Our ensemble average 
indicates that with SOCAT sampling, the  pCO2-Residual method underestimates the sink (Fig. 4), but some 
individual members do overestimate the sink, especially those from CanESM2 (Fig. 3a). Given the clustering of 
skill metrics based on ESM (Figs. 2a, 3a), it is clear that model structure plays a non-negligible role in the detailed 
results. Coordinated studies using identical testbeds will be required to directly compare different reconstruction 
approaches, and to understand why the different reconstruction methods show a different direction (over- vs. 
underestimation) of the bias and the estimated ocean sink.

The ‘SOCAT + FLOAT_opt’ performs better globally compared to the equivalent ‘SOCAT + FLOAT_hist’ run, 
with 17% vs. 9% improvement in global mean (2000–2016) RMSE (Fig. S1), lower mean bias and less spread 
(− 0.04 μatm; 1 IQR = 0.1 μatm vs. 0.08 μatm; 1 IQR = 0.4 μatm, respectively; Fig. 3, Table 1), and less deviation 
from the ‘model truth’ global ocean sink (Fig. 4, Fig. S4). However, it is important to note that the ‘Optimized’ 
sampling scheme includes almost five times as many observations as the ‘Historical’ (Fig. 1c). The ‘Optimized’ 
floats also do not change their location over time, and samples in the same place every month for 16 years, 
which is not operationally realistic. Despite the notable differences in these float scenarios, we do find some 
convergence as their sampling become more similar: For the last four years of the testbed, when the number 
of sampling additions from the Southern Ocean is comparable (Fig. S6), RMSE values here are more or less 
identical (Fig. S5a), and the ‘Historical’ runs are able to reproduce the global ocean sink ‘model truth’ (Fig. 4). 
The addition of year-round samples from this poorly sampled region appears to be more important than the 
exact sampling pattern of the floats.

The greatly expanded spatiotemporal coverage by float-based estimates provides valuable data from regions 
and seasons that are severely undersampled by shipboard observations, particularly the Southern Ocean and 
especially during winter  months6,30,31. Targeted sampling from autonomous platforms combined with ships, 
filling in the multi-dimensional state space of  pCO2 and its driver variables, represents a likely path forward 
to improve surface ocean  pCO2 reconstructions and air–sea  CO2 flux  estimates5–7,11,26,29–33. However, although 
current studies agree that random measurement uncertainty has negligible impact on  pCO2 reconstructions, 
they also demonstrate the likely severe impact of bias in indirect float-based  pCO2 observations. Bias must be 
addressed before incorporating indirect  pCO2 estimates into global reconstructions, especially in areas with 
low coverage.

Data availability
The Large Ensemble Testbed is publicly available at https:// figsh are. com/ colle ctions/ Large_ ensem ble_ pCO2_ testb 
ed/ 45685 55. Data analysis scripts and supporting files  are publicly available in a GitHub repository at https:// 
github. com/ hatle nheim dalth ea/ Sampl ing_ exper iments_ LET_ Argo. The float+SOCAT sampling masks are 
publicly available at https:// doi. org/ 10. 5281/ zenodo. 13367 537. Times and locations of floats of the ‘Historical’ 
sampling scenario are from https:// fleet monit oring. euro- argo. eu/ dashb oard.

https://figshare.com/collections/Large_ensemble_pCO2_testbed/4568555
https://figshare.com/collections/Large_ensemble_pCO2_testbed/4568555
https://github.com/hatlenheimdalthea/Sampling_experiments_LET_Argo
https://github.com/hatlenheimdalthea/Sampling_experiments_LET_Argo
https://doi.org/10.5281/zenodo.13367537
https://fleetmonitoring.euro-argo.eu/dashboard
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