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The Southern Ocean carbon sink has been
overestimated in the past three decades

M| Check for updates

Guorong Zhong ® **4, Xuegang Li ® ***[<, Jinming Song ® '?34[<, Fan Wang ® '**, Baoxiao Qu'**,
Yanjun Wang'#, Bin Zhang'*, Jun Ma'**, Huamao Yuan ® ***, Liqin Duan'?*#, Qidong Wang'**,
Jianwei Xing'** & Jiajia Dai'**

Employing machine learning methods for mapping surface ocean pCO, has reduced the uncertainty in
estimating sea-air CO, flux. However, a general discrepancy exists between the Southern Ocean
carbon sinks derived from pCO, products and those from biogeochemistry models. Here, by
performing a boosting ensemble learning feed-forward neural networks method, we have identified an
underestimation of the surface Southern Ocean pCO, due to notably uneven density of pCO,
measurements between summer and winter, which resulted in about 16% overestimating of Southern
Ocean carbon sink over the past three decades. In particular, the Southern Ocean carbon sink since
2010 was notably overestimated by approximately 29%. This overestimation can be mitigated by a
winter correction in algorithms, with the average Southern Ocean carbon sink during 1992-2021
corrected to —0.87 PgC yr~' from the original —1.01 PgC yr~'. Furthermore, the most notable
underestimation of surface ocean pCO, mainly occurred in regions south of 60°S and was hiding under
ice cover. As the surface ocean pCO, under sea ice coverage in the winter is much higher than the
atmosphere, if seaice melts completely, there could be a further reduction of about 0.14 PgC yr 'inthe

Southern Ocean carbon sink.

The increasing concentration of atmospheric CO, since the onset of the
industrial era has been affecting the natural climate due to the greenhouse
effect. This effect is partially mitigated by the global ocean CO, uptakes,
which account for about one-quarter of the anthropogenic CO, emissions'.
Natural climate variability and anthropogenic climate change also feedback
to influence the sea-air CO, exchange’. It is essential to quantify the global
ocean carbon sink and its temporal variability to understand further the
response of the carbon cycle to future global change. The surface ocean
partial pressure of CO, (pCO,) measurements from the SOCAT dataset
were widely used and mapped into continuous gridded data to estimate the
sea—air CO, flux’. Due to a lower spatial decorrelation length scale of
hundreds of kilometers in the surface ocean than that of thousands of
kilometers in the atmosphere®, surface ocean pCO, has more notable spatial
variability than atmospheric pCO,. Considerable variability and sparse
measurements of surface ocean pCO, indicate insufficient observations to
estimate CO, flux in most ocean areas directly. Great uncertainty in carbon
sink estimation arises from sparse and uneven pCO, measurements, the gas
transfer velocity, and the cool skin effect’”. Recent application of machine
learning algorithms in pCO, mapping methods increased data availability
and further reduced the uncertainty in pCO,-based carbon sink

estimates®™". The average net global ocean carbon sink during the last three
decades was documented as —1.40 to —2.45 PgC yr~'(see refs. 7,12-15). The
differences between results were caused by differences in algorithms, divi-
sion of global biogeochemical provinces, and selection of pCO, predictors.
The accuracy of pCO, mapping based on machine learning methods
remains to be improved, especially in polar regions with sparser pCO,
measurements.

The Southern Ocean south of 35°S was a strong carbon sink and has
contributed to about 40% of global ocean anthropogenic CO, uptakes from
1870 to 1995"'“"®, Changes in the Southern Ocean carbon sink strongly
affect the global ocean CO, uptake. However, the Southern Ocean carbon
sink estimated by pCO,-based machine learning methods was about
0.4 PgCyr' stronger than the result from global ocean biogeochemical
models since 2012'**". A notable seasonal variability of surface ocean pCO,
was reported in the Southern Ocean, mainly south of 50°S, with high pCO,
levels and carbon sources observed in winter'*”'. The strongly seasonally
uneven surface ocean pCO, measurements with missing winter observa-
tions may result in an overestimation of the Southern Ocean carbon sink
from pCO, products compared to the in situ observations™***’. Besides
supplying more measurements from sailboats or floats™, whether the
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overestimation in pCO,-based machine learning methods compared to the
in situ observations can be solved by improving algorithms is worth
investigating. Thus, we reestimated the Southern Ocean carbon sink using a
boosting ensemble learning feed-forward neural networks (BEL FFNNs)
method and investigated the influence of seasonally uneven SOCAT pCO,
measurements on the pCO, mapping and carbon sink estimate.

Results
Influence of uneven measurements on the Southern Ocean pCO,
mapping
Various machine learning methods were applied in the surface ocean pCO,
mapping and CO, flux estimating™'"'*'***, where a majority of methods are
based on non-linear relationship fitting between SOCAT fCO, measure-
ments, or converted pCO,, and environmental variables’. However, the
number of SOCAT measurements is uneven between different seasons in
the Southern Ocean. The SOCAT measurements in the Southern Ocean are
concentrated in summer with low surface ocean pCO, (Supplementary
Fig. 1a), with the number of high-pCO, winter measurements only about
one-fifth of that in summer. In most Southern Ocean areas, the SOCAT
measurements covered less than four unique months from 1992 to 2021
(Supplementary Fig. 1b). Meanwhile, high surface ocean pCO, was
observed during the winter in the Southern Ocean, according to the research
based on either pCO, measurements or gridded products. The lack of
measurements during high surface ocean pCO, seasons in most Southern
Ocean areas may notably influence the non-linear relationship fitting and
pCO, mapping, particularly in the months from June to September with the
sparsest measurements. The seasonally unbalanced distribution of mea-
surements may be a potential reason for the higher pCO, predicting error of
the Southern Ocean than the neighboring areas in previous research”"".
To evaluate the influence of seasonal-uneven SOCAT measurements
on pCO, mapping, the RMSE and bias from May to September were
compared between different validation groups, with the only difference in
training strategy (Table 1). The comparison of pCO, predicting error
between different training strategies reveals a substantial influence of
uneven measurements on the accuracy of machine learning pCO, pre-
dicting method. Training neural networks with SOCAT measurements only
from April to October instead of all months resulted in a notable decrease of
0.5-1.4 patm in RMSE. This decrease in RMSE caused by the change of
training strategies was even more effective than the decrease of less than 0.4
patm caused by the improvement of the FENN structure (BEL FFNNs in
Table 1). This is because the quantity of pCO, measurements is notably
imbalanced among different seasons, with data in winter much less than in
summer. T When training with such seasonal imbalanced data, the neural
network tends to perform better in data-rich summer, while the perfor-
mance is notably worse in data-sparse winter. This effect of imbalanced data
can be mitigated through re-balancing data distribution and using re-
balancing design in the loss function or learning algorithm of neural
networks™. Training the neural networks with partial winter measurements
is a data distribution re-balancing method, as the number of measurements
is less unbalanced after the data-rich summer was removed from the
training set. As a result, in the areas south of 50°S, the BEL FENNs and the
individual FFNN trained with sectional winter measurements suggested a
notably lower RMSE during winter than those trained with all-month
measurements. The bias during May-September between predicted pCO,
and SOCAT measurements of more than —3 patm was notably different
from the range of —1 to ~1 patm in other months, indicating a notable
underestimation of surface seawater pCO, in the areas south of 50°S. In
particular, the pCO, from May to September in the area south of 60°S, as
predicted by BEL FFNNs using measurements from all months, was
underestimated by an average of 5.77 patm. Meanwhile, the pCO, predicted
by the individual FENN in the Southern Ocean south of 60°S was also
notably lower than SOCAT data in winter due to missing winter mea-
surements. When training with measurements only from April to October,
the BEL FFNNs with uncorrected predictors reached the lowest winter
RMSE in south of 60°S, and the bias was only —1.38 patm. Similarly, the

predicted pCO, by the individual FFNN was only 1.47 patm lower than
measurements on average, indicating a notable improvement in the
underestimation of pCO, during winter. In the 50-60°S region, training BEL
FFNNs and the individual FENN with sectional winter measurements can
also reduce the predicting bias in winter. By training BEL FFNNs only with
measurements from April to September, the winter RMSE in the 50-60°S
area was the lowest of uncorrected predictors among different training
strategies, with a bias of only —0.36 patm.

In contrast, there is no notable underestimation of winter surface ocean
pCO; in the Southern Ocean between 35 and 50°S. The RMSE by training
BEL FFNNs with sectional winter measurements was larger than that by
training with all measurements, and the improvement of bias was also not
observed when using sectional winter measurements. On the other hand,
corrected pCO, predictors may better reflect the drivers of surface ocean
pCO; in the Southern Ocean during winter. By using the month as a pre-
dictor, the correction of pCO, predictors can also effectively mitigate the
underestimation of winter pCO, in the Southern Ocean. Simply changing
pCO, predictors without correcting the training period, the RMSE of BEL
FFNNs with weighted predictors during winter in the 50-60°S region
decreases to 11.49 patm, and the bias reduces to —1.08 patm compared to
BEL FFNN s with original predictors (see predictors listed in Supplementary
Table 1). The same decrease in RMSE was also observed in the areas south of
60°S. Using both correction methods simultaneously, the RMSE can be
minimized to 10.93 patm and 13.29 patm in the 50-60°S and regions south
of 60°S, respectively. The bias also fell within an acceptable range of —1to 1
patm, close to the bias level in other months without notable under-
estimation or overestimation. In addition, we also test the pCO, RMSE and
bias of traditional regression methods for comparison, including a multiple
linear regression (MLR) and a multiple non-linear regression (MNLR). As
expected, the traditional regression methods are more susceptible to
seasonal-uneven measurements, showing higher RMSE and more severe
underestimation of Southern Ocean pCO,. In particular, the MLR using
measurements from all months resulted in a winter RMSE of 34.02 patm in
the region south of 60°S, and output pCO, values lower than the real
measurements by an average of 17.29 patm. This result is barely acceptable,
and it also explains why traditional regression methods in previous research
were generally limited to specific seasons. Although the MNLR performs
better than the MLR, its RMSE was still much higher than that of the FFNN
methods, and the MNLR output pCO, during winter was also notably lower
than measurements in regions south of 50°S. Similar to the treatment of the
training period of the two FFNN methods, a lesser underestimation of
Southern Ocean pCO, in winter was found when using only partial winter
measurements for regression. In the 35-50°S region, the RMSE of tradi-
tional regression methods was still higher than the two FFNN methods, and
the influence of seasonal-uneven measurements was not remarkable.

The BEL FFNNs and individual FENN both showed an under-
estimated surface seawater pCO, in the Southern Ocean south of 50°S in
winter, indicating that the underestimation of surface seawater pCO, was
not caused by the structure of FENN but rather by the seasonally uneven
pCO, measurements. Training networks with sectional winter measure-
ments and correction of pCO, predictors can mitigate the underestimation
of surface Southern Ocean pCO, in winter. Considering that the BEL
FFNNs have a lower RMSE compared to the individual FFNN, the BEL
FFNNs using corrected pCO, predictors and training with measurements
only from April to October have better accuracy of the pCO, mapping in the
Southern Ocean during winter.

With the correction of the training period and pCO, predictors, the
bias of predicted pCO, from May to September was notably smaller than the
uncorrected result (Fig. 1a). In July, the pCO, predicted by the BEL FFNNs
was notably lower than SOCAT measurements, with a considerable bias of
6.6 patm. In contrast, the bias from October to April was generally within
the range of —1 to 1 patm, indicating not remarkable overestimation or
underestimation of surface seawater pCO, in the Southern Ocean. With the
winter correction, the bias from May to September decreased notably to near
zero. Even in the most biased July, the bias of corrected BEL FFNN:Gs fell to
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Table 1 | Comparison of pCO, predicting error in the Southern Ocean during May-September among different methods and

regression periods

Regression method Regression period 35-50°S 50-60°S S of 60°S
RMSE (patm) Bias (patm) RMSE (patm) Bias (patm) RMSE (patm) Bias (patm)
BEL FFNNs May-Sep 12.01 +0.61 11.97 +0.22 14.76 +0.33
Apr-Sep 10.70 +0.38 11.88 -0.36 14.87 —-0.90
May-Oct 11.39 —-0.36 12.07 —0.66 14.50 -0.07
Apr-Oct 11.10 —0.68 12.09 -1.16 14.20 -1.38
Mar—Nov 11.32 -1.26 12.51 -2.13 15.50 —4.47
All months 9.86 —-0.39 13.27 -3.13 16.09 -5.77
BEL FFNNs with corrected May-Sep 12.24 +0.74 11.93 +0.17 14.44 +1.17
predictors Apr-Sep 10.76 40.30 11.26 4£0.09 13.49 —0.06
May-Oct 12.81 —0.28 11.44 +0.04 14.27 —0.20
Apr-Oct 11.83 -0.79 10.93 -0.25 13.29 -0.74
Mar-Nov 11.69 —1.49 13.07 —0.46 14.07 +0.02
All months 9.88 -0.29 11.49 —1.08 14.61 —0.90
Individual FFNN May-Sep 12.05 +0.50 11.99 +0.07 15.15 0.36
Apr-Sep 10.58 +0.30 12.02 —-0.52 15.04 -1.14
May-Oct 11.43 —0.59 12.21 -0.75 14.92 -0.32
Apr-Oct 11.19 -0.83 12.29 —1.49 14.86 —1.47
Mar—Nov 11.64 —1.43 12.82 —2.56 15.76 -3.95
All months 9.95 -0.34 13.31 -3.33 17.14 -5.38
Individual FFNN with corrected May-Sep 12.57 +0.50 12.30 +0.37 14.54 +0.83
predictors Apr-Sep 10.72 1027 11.45 10.14 13.79 —027
May-Oct 13.09 —0.45 11.52 -0.07 14.46 -0.23
Apr-Oct 11.35 -0.92 11.06 —0.09 13.63 -0.27
Mar-Nov 12.02 —1.55 11.55 —0.09 17.86 +0.50
All months 9.95 —-0.28 12.06 —1.04 15.85 —0.05
MLR with corrected predictors May-Sep 16.34 —2.33 13.67 -1.71 21.12 +1.09
Apr-Sep 15.48 —0.67 14.51 —2.29 22.21 —3.00
May-Oct 16.98 —4.55 16.29 —4.83 23.46 -0.89
Apr—Oct 15.87 -2.93 16.39 —5.56 24.79 —6.69
Mar—Nov 16.09 -2.53 16.75 -6.22 29.21 -13.40
All months 17.70 —2.30 19.01 —6.11 34.02 -17.29
MNLR with corrected predictors May-Sep 14.37 —0.83 12.17 —0.62 17.04 +2.41
Apr-Sep 13.51 +0.67 11.20 —0.95 17.70 —2.86
May-Oct 14.55 —4.06 13.18 —3.47 17.70 +2.41
Apr-Oct 14.35 —3.45 13.53 -3.76 20.21 —6.64
Mar—Nov 14.21 -1.72 12.72 —4.70 18.81 —8.01
All months 15.02 +0.90 13.92 —5.35 25.68 —13.41

BEL FFNNs: boosting ensemble learning based on three FFNNs constructed in this work; Individual FFNN: one FFNN with the same structure used in the BEL; MLR multiple linear regression; MNLR multiple
non-linear regression, see Supplementary Note 3; Regression Period: a period of SOCAT samples used for training neural networks or performing classic regression to predict pCO, during May-September;
RMSE and bias: calculated from the difference between predicted pCO, and SOCAT measurements during May—-September based on the K-fold cross-validation method. Corrected predictors: pCO,

predictors selected by a stepwise BEL FFNNs algorithm based on increasing weightings of winter measurements, see Table 1. Bold numbers: the regression period and method with the lowest RMSE

adopted in the final pCO, product construction.

only —0.3 patm, substantially mitigating the underestimation of winter
surface ocean pCO, in the Southern Ocean. The bias at different latitudes
reveals that the underestimation of surface seawater pCO, in the Southern
Ocean due to seasonally uneven measurements becomes more remarkable
at higher latitudes (Fig. 1b). In the region south of 50°S, the uncorrected
average deviation is negative, reaching approximately —20.92 patm at
around 68.5°S. The difference in the effect of the winter correction may be
related to the density of measurements, as the decrease in bias was more
notable in sparsely sampled high-latitude areas.

Compared to the observation from the Southern Ocean Flux station
(SOFS, 142.0°E, 46.8°S)”"*, the pCO, values from May to September from

different methods were lower due to the lack of SOCAT winter data for
training (Fig. 2). During years that winter SOCAT data are available, such as
2012, 2013, and 2018, the pCO, values from different methods were close to
the observations from the SOFS time series station®”'*'***", The surface
ocean pCO, of BEL FFNN s product after correction in winter was about 10
patm higher than the uncorrected BEL FFNNs results. It was much closer to
the time series observation, suggesting a better accuracy of corrected BEL
FENNs pCO, than the uncorrected results. Both the validation based on the
SOCAT dataset and the validation based on time-series observations from
the SOFS station suggest that correction of the training period and pCO,
predictors can effectively mitigate the underestimation due to seasonally
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Fig. 1 | Distribution of bias between predicted a)

Monthly bias in the S.Ocean south of 50°S

b) Zonal bias during May-Sep

pCO, and SOCAT measurements in the Southern
Ocean south of 35°S. a Monthly bias in the South- 24
ern Ocean south of 50°S (predicted pCO, minus 1
SOCAT measurements). b Zonal bias during 0
May-Sep. Uncorrected BEL: based on training
sample of all seasons. Corrected BEL: based on
training sample only from April to October. BEL
boosting ensemble learning FFNNs used in

this study.
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Fig. 2 | Comparison between corrected and
uncorrected ensemble learning pCO, product in
the SOFS station at 142.0°E, 46.8°S. CMEMS: the
Copernicus Marine Environment Monitoring Ser-
vice product from refs. 9,29. MPI-SOM-FFNN: the
Self-Organizing Map-Feed-Forward Network pro-
duct from refs. 13,30. OS-ETHZ: the Satellite
Oceanographic Datasets for Acidification project
product from refs. 8,31. JMA: the Japan Meteor-
ological Agency product from ref. 14. Uncorrected
BEL: boosting ensemble learning FFNNs based on
training samples of all seasons. Corrected BEL:
pCO, during May-September were predicted based
on corrected predictors and training samples only
from April to October.
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uneven measurements. In addition, the evaluation based on the Southern
Ocean Carbon and Climate Observations and Modeling (SOCCOM)
dataset also suggested that winter-corrected BEL FFNNs pCO, was better
consistent with the in situ float data (Supplementary Fig. 2). Therefore, the
final pCO, product constructed in this study consists of pCO, data from
October to April based on all measurements and pCO, data from May to
September based on corrected pCO, predictors and measurements only
from April to October.

Overestimated Southern Ocean carbon sink due to biased pCO,
mapping

The validation based on SOCAT measurements and SOFS time series
observations reveals that the pCO, products constructed using FFNN with
the entire monthly pCO, measurements from the SOCAT dataset may
notably underestimate the winter surface ocean pCO, in the Southern
Ocean south of 50°S. Due to upwelling derived from the wind driving a
strong surface divergence through the Ekman transport™, the surface sea-
water pCO, in the winter of the Southern Ocean is notably higher than in the
summer, with strong carbon source regions in winter'**>”. The previous
studies may have underestimated the strength of carbon sources in the
winter of the Southern Ocean, leading to an overestimation of the overall
carbon sink intensity in the Southern Ocean. Our results demonstrate that
the variations in surface seawater pCO, before and after the winter cor-
rection notably impact the pCO, difference and CO, flux across the air-sea
interface (Fig. 3). The surface seawater pCO, in the Southern Ocean south of
50°S is higher than atmospheric pCO, from May to September, and the
pCO, difference after correction became larger, particularly in the region
south of 60°S. However, due to the influence of sea ice coverage, the pCO,
flux in the area south of 60°S is nearly zero from May to September, and the
difference in CO, flux between uncorrected and corrected BEL FFNN's was
not remarkable. In the 35-50°S area with relatively more measurements, the
seasonal variation pattern of pCO, differs from that south of 50°S, and there

is almost no change in the pCO, difference and CO, flux between uncor-
rected and corrected BEL FENNs. Overall, although the south of 60°S shows
the most considerable change in winter ApCO, before and after correction,
the underestimation of surface seawater pCO, in the 50-60°S area unaf-
fected by sea ice coverage is the main reason for the overestimation of the
carbon sink intensity in the Southern Ocean. The corrected average
Southern Ocean carbon sink from May to September is —0.58 PgCyr ",
decreasing by 0.34 PgC compared to the uncorrected results.

Over the past 30 years, the corrected average Southern Ocean carbon
sink was —0.87 + 0.16 PgC yr ', which is ~0.14 PgC yr " lower than before
the correction, suggesting an overestimation of about 16%. The over-
estimation of the carbon sink intensity in the Southern Ocean is mainly
observed after 2010, with a decrease in the decadal average carbon sink from
—120PgCyr ' to —0.93 PgCyr " after correction. This indicates that the
seasonally uneven measurements led to an overestimation of the Southern
Ocean carbon sink by ~29% compared to the corrected intensity during this
period (Fig. 4). Although the corrected Southern Ocean carbon sink was
lower than uncorrected results in the 1990s, the variability pattern was
similar before and after correction. Since 2001, the Southern Ocean carbon
sink has generally strengthened, but the strengthening rate is relatively
slower after the winter correction. The variability of the Southern Ocean
carbon sink from our corrected BEL product was highly consistent with
previous research based on models or observations, in which the Southern
Ocean carbon sink receded substantially in the 1990s, reaching a trough at
the beginning of the 21st century’**, and subsequently restrengthened to
full intensity'*****. Compared to previous products, our estimation of the
corrected Southern Ocean carbon sink shows a similar intensity in the 1990s
and the lowest intensity since 2003. However, research based on SOCCOM
buoy data also suggested a notably weaker Southern Ocean carbon sink,
challenging existing results from pCO, products’, although the float pCO,
data calculated indirectly from pH and alkalinity seems to be overestimated
in organic-rich freshwaters”. Notably, there was almost no difference
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between the uncorrected and corrected carbon sink from 1999 to 2001,
when the Southern Ocean carbon sink was at its weakest point in the past
three decades. The relatively denser measurements in the SH winter than in
other decades may be one important reason. Around 2000, the SOCAT
winter measurements were close to half of the measurements in summer.
Therefore, the influence of seasonally uneven measurements is rela-
tively minor.

a) Sea-air pCO, difference

L

Both carbon sinks before and after the winter correction consistently
show a rapid weakening of the Southern Ocean carbon sink during the
1990s. The corrected Southern Ocean carbon sink in this work weakened
from —0.99 + 0.15 Pg Cyr " in 1992 to —0.68 + 0.13 Pg Cyr ' in 2001, and
then strengthened back to —1.13 +0.14 Pg Cyr " until 2021. Such notable
interannual changes were also found in other research based on observa-
tions covering the past two decades*”*®”. The contribution of the

b) Sea-air CO, flux
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Fig. 5 | Global ocean carbon sink over the past
three decades after the Southern Ocean correc-
tion. GOBMs: average results of 10 global ocean
biogeochemical models (https://doi.org/10.18160/
GCP-2022, ref. 19). GCB average: average results of
10 global ocean biogeochemical models and 7 pCO,
products in the Global Carbon Budget 2022".
CMEMS: the Copernicus Marine Environment
Monitoring Service product from refs. 9,29. MPI-
SOM-FFNN: the Self-Organizing Map-Feed-
Forward Network product from refs. 13,30. OS-
ETHZ: the Satellite Oceanographic Datasets for
Acidification project product from refs. 8,31. JMA:
the Japan Meteorological Agency product from

ref. 14. Uncorrected BEL: boosting ensemble learn-

-1.5

0
o
|

&
o
1

Global ocean carbon sink (PgC yr'1)
& o
(9] (&)}
| |

-4.0

= = Uncorrected BEL —— OS-ETHZ
Corrected BEL JMA

—— CMEMS GOBMs r
MPI-SOM-FFNN ——— GCB average

ing FFNN’s based on training sample of all seasons.
Corrected BEL: Southern Ocean pCO, during
May-September were corrected for uneven
measurements.

T
1992 1995

T
2005
Year

T
2000

Southern Ocean south of 35% on the global ocean CO, uptakes decreased
from ~63% in 1992 to 45% in 2021. The weakening of the Southern Ocean
carbon sink in the 1990s was thought to be caused by the strengthening of
the upper-ocean overturning circulation and CO, release in source areas
and the weakening of CO, uptake in sink areas due to a southward shift of
westerlies'****"**, The upwelling of the Southern Ocean increased by ~40%
due to enhanced wind-driven circulation®. However, the weakening of the
upwelling since the beginning of the 21st century led to the reinvigoration of
carbon sink'®, Research based on an idealized upper ocean box model also
suggested that the slowed growth rate of atmospheric pCO, and the global
sea surface temperature response to the 1991 eruption of Mt Pinatubo
volcanic were two external forces to explain the global-scale reduction in the
ocean carbon sink, and the reinvigoration of carbon sink was driven by the
acceleration of atmospheric pCO, growth after 2001*.

After the winter correction for seasonally uneven measurements in the
Southern Ocean, the global ocean carbon sink estimated from the Stepwise
FFNN product and corrected Southern Ocean pCO, data was relatively
lower than other pCO, products (Fig. 5). However, our estimates are more
consistent with the average results from the Global Carbon Budget study,
based on 10 global ocean biogeochemistry models and 7 pCO, products”’.
The global ocean carbon sink estimated from previous pCO, products was
notably stronger than the result from biogeochemical models, and the
discrepancy mainly occurred in the Southern Ocean carbon'. The corrected
Southern Ocean carbon sink decreased the discrepancy with model results,
indicating that previous pCO, products using the SOCAT dataset may also
experience an overestimation of the Southern Ocean carbon sink due to
seasonally uneven measurements.

Influence of sea ice cover on the Southern Ocean carbon sink

The remarkable differences in the Southern Ocean carbon sink before and
after correction were only observed in the last decade. However, the pCO,
difference across the interface after the winter correction was much more
notable, particularly in the Southern Ocean south of 60°S, where the surface
seawater pCO, is much higher than atmospheric pCO, (Fig. 6). The vertical
mixing and biological activity were reported as primary controlling factors
of surface ocean pCO, in continent shelf areas, leading to more considerable
uncertainty in CO, flux estimate compared to the open ocean*"*. However,
CO, exchange between the seawater and the atmosphere in the Antarctic
shelf is impeded due to the extensive sea ice coverage in most areas south of
60°S. As a result, despite the high surface seawater pCO, in this region, the
CO, release to the atmosphere is limited, and the carbon source intensity is
close to zero. The sea ice coverage in the Southern Ocean south of 60°S also
eliminates the influence of seasonally uneven pCO, measurements.
Therefore, although the pCO, difference across the interface was more

remarkable after the winter correction in areas south of 60°S, the carbon
source intensity and its difference before and after correction remain close to
zero. Recent research has reported that the melting of sea ice in the Arctic
Ocean exposes more sea surface, serving as one of the essential factors of
rapid acidification in the Arctic Ocean®. Similarly, in the Amundsen and
Bellingshausen Seas of the Southern Ocean, which are characterized by
warm water intrusion from the open ocean, the highest basal ice shelf
melting rates have been observed”™". The Antarctic shelf ocean warming
accelerated by increasing El Nifio variability was hastening the ice shelf/
sheet melt™. Unlike the Arctic Ocean, the surface ocean PpCO, under sea ice
coverage in the winter Southern Ocean was much higher than in the
atmosphere. If the sea ice completely melts, a remarkable amount of CO,
will be directly released into the atmosphere through the exposed sea sur-
face. Furthermore, sea ice melting can indirectly impact the surface ocean
pCO, and carbon sink intensity in the Southern Ocean through various
pathways, such as reducing sea surface temperature and altering convective
overturning rates™.

Assuming complete sea ice melt and neglecting indirect factors based
on the recent sea—air pCO, difference, the changes in simulated carbon sink
intensity vary between summer and winter periods in the Southern Ocean
(Fig. 7). During the summer period in the Southern Ocean, when sea ice
coverage is limited, and the surface seawater pCO, in the covered areas is
lower than atmospheric pCO,, it is assumed that the complete melting of the
currently covered sea ice would have little impact on the summer carbon
sink intensity. However, during the winter, when sea ice coverage is
extensive, and the surface seawater pCO, in the covered areas is much higher
than atmospheric pCO,, the complete melting of the currently covered sea
ice would result in the release of CO, from the exposed surface Southern
Ocean at an average rate of 0.28 PgC yr ' during winter. This would weaken
the role of the Southern Ocean in the global ocean CO, uptakes and the role
of the global ocean in buffering the rise in atmospheric CO, concentration.
In addition, unlike the relatively stable increasing trend in carbon sink
intensity during summer over the past 20 years, the winter carbon sink
intensity in the Southern Ocean has shown notable fluctuations in the last
decade but with no remarkable long-term trend. Based on the current data,
considering the presence of sea ice-covered carbon sink areas in spring and
autumn, the complete disappearance of sea ice coverage would lead to an
average reduction of 0.14 PgC yr ' in the overall annual CO, absorption in
the Southern Ocean. The magnitude of this reduction depends on the pCO,
values of seawater covered by sea ice, and it is still uncertain how this will
change in the future. However, it can be anticipated that sea ice melting will
slow down the rate of carbon sink enhancement in the Southern Ocean for a
considerable period until the continuously rising atmospheric pCO, exceeds
the surface ocean pCO, beneath the winter sea ice.
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Fig. 6 | Distribution of average sea-air ApCO, and sea ice coverage during May-Sep in the Southern Ocean. a ApCO; calculated from uncorrected BEL product. b ApCO,
calculated from corrected BEL product. ¢ Sea ice coverage from ERA5 product”**. ApCO, surface ocean pCO, minus atmospheric pCO,.

Data and methods

pCO, mapping and winter correction

The surface ocean pCO, converted from the Surface Ocean CO, Atlas
version 2023 (SOCAT v2023) dataset**** was used for pCO, mapping by
fitting the non-linear relationship between pCO, and environmental vari-
ables in Table 2. The SOCAT dataset includes quality-controlled global
observations of in situ surface ocean fugacity of carbon dioxide (fCO,), sea
surface temperature, and salinity on ships, moorings, autonomous and
drifting surface platforms for the global oceans and coastal seas from 1957 to
2023. This dataset is provided as a synthesis version and a gridded version,
with an estimated fCO, accuracy of better than 5 patm. The gridded fCO,
was converted to pCO, using in situ sea surface temperature and atmo-
spheric pressure™, and then the converted pCO, was used in training neural
networks:

fB+2-5)1 M

- . paur
pCO, =fCO, exp( am R T

where P;‘tlg is the atmospheric pressure using ERA5 sea level pressure
product”™, B and § are viral coefficients calculated from sea surface

temperature”, R is the gas constant and T is the absolute temperature.

The relationship fitting was based on a boosting ensemble learning feed-
forward neural networks (BEL FFNNs) consisting of three FENNs. The first
FFNN (FFNN I in Fig. 8) outputs will be used as a pCO, predictor in the
second and the last FFNN (FENN II and FENN III in Fig. 8). Compared to
shallower neural networks, neural networks with more hidden layers require

far fewer neurons to achieve the same predicting error. Therefore, we used
multiple hidden layers for all FENNs with 10 neurons in each hidden layer,
and adjusted the number of hidden layers to achieve an optimal FFNN size
based on changes in predictor errors. The average of several FENN outputs
with changing initial states was taken as the final pCO, prediction value. The
pCO, predictors used in this work were selected by the updated stepwise
FFNN algorithm based on the variation of pCO, predicting error caused by
each predictor'', as described in the section “Selection and correction of pCO,
predictors”. A winter correction was carried out by changing pCO, predictors
and the temporal period of measurements used for training networks.

Toeliminate theinfluence of FFNN structure on correction validity,
the performances of the individual FFNN and BEL FFNNs were com-
pared under different training strategies: one based on SOCAT pCO,
measurements of all months and others based on sectional winter
measurements. The predicted pCO,, root mean square error (RMSE),
and bias with different training strategies and pCO, predictors were
compared to evaluate the influence of seasonally uneven pCO, mea-
surements and to determine which training strategy will be used. The
predictor error was calculated using a K-fold cross-validation method,
where the pCO, measurements were divided into four groups by year,
and each one was predicted by the other three groups'"®. Then, the
results were further compared to the observations from the SOFS station
(142.0°E, 46.8°S) time series stations for validation”**. The final pCO,
product includes two types of data: (1) the pCO, from October to April
based on SOCAT measurements of all seasons, and (2) the pCO, from
May to September based on sectional SOCAT winter measurements and
corrected predictors.
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Selection and correction of pCO, predictors

The pCO, predictors input into the FENN reflect the drivers of surface
ocean pCO, and its variability. When changing the input pCO, predictors,
both the FFNN predicted pCO, value and the predicting error notably
change, and these changes can be even greater than those caused by altering
the FENN structure. However, the environmental factors driving pCO, and
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Fig. 7 | Southern Ocean carbon sink on different scenarios of sea ice melt. a CO,
flux from December to February in each year. b CO, flux from June to August in each
year. ¢ Annual CO, flux. Current ice cover: ice coverage data from the ERA5
product™*. 50% ice cover removed: assuming that 50% of current ice cover melts. In
total, 100% ice cover removed: assuming that all ice cover melts.

its variability notably differ among different regions. The surface ocean
pCO, is largely affected by the upwelling and biological drawdown in the
Antarctic region, and is affected by meridional overturning circulation in the
subantarctic region’>"’. This means that using different predictors in dif-
ferent latitude regions can better reflect the regional influencing factors of
pCO, and its variability. To find the best combination of pCO, predictors in
different regions, we have proposed a Stepwise FFNN algorithm in previous
work, where the changes in predicting error are fed back to the selection of
input pCO, predictors'". This algorithm allows for the objective selection of
pCO, predictors in different regions that result in the lowest pCO, pre-
dicting error. The procedure of the Stepwise FENN algorithm is determining
pCO, predictors one by one until no further reduction in predicting error is
achieved by either adding or removing any predictors. Specifically, the first
pCO, predictor is selected by comparing predicting errors when individu-
ally using each collected environmental variable (listed in Supplementary
Table 1) as input of the FENN. The variable with the lowest error is
determined as the first pCO, predictor, which is also the predictor that has
the greatest impact on the distribution or variability of regional surface
ocean pCO,. Subsequently, leaving the first predictor unchanged, the pre-
dicting errors are compared when using each environmental variable as the
second input of the FENN. The environmental variable with the lowest error
is determined as the second pCO, predictor. In the same way, new pre-
dictors are continuously determined one after another, until the predicting
error no longer continues to decrease regardless of which one variable is
added as a pCO, predictor. Meanwhile, whenever a new predictor is
determined, the algorithm also tests if the predicting error will decrease
when sequentially removing each determined predictor, in order to elim-
inate co-correlation and prevent overfitting. For example, when the fourth
predictor is determined, the model tests the change in predicting error by
individually removing each one from the previously determined three
predictors. If the error decreases after removing a previously determined
predictor, this predictor is highly correlated with other determined pre-
dictors. By adding and removing variables in the input of the FFNN one by
one in this way, the algorithm ultimately identifies a set of pCO, predictors
that minimize the pCO, predicting error. In this work, the single FFNN
structure used in the previous Stepwise FFNN algorithm has been replaced
with a structure of ensemble learning FFNNs with stronger fitting cap-
abilities (see Fig. 8), referred to as the Stepwise BEL algorithm.

However, the Stepwise BEL algorithm relies on predicting errors for
determination of pCO, predictors, and the number of SOCAT pCO,
measurements in the Southern Ocean during the winter season is much

Table 2 | Winter correction of pCO, predictors

Area pCO, predictors

35-50°S Pacific sector

SST, sin(Longitude), xCO,, Latitude, SSS, Photosynthetically Available Radiation, Chlorophyll, Mixed layer depth, cos(Longitude), Mixed
layer depth ,nom, Remote sensing reflectance at 531 nm and 555 nm

Indian sector

SST, Total absorption at 645 nm, Number of months since January 1992, Mixed layer depth, SSS, W velocity of ocean currents at 105 m,
Surface pressure, Total absorption at 678 nm, W velocity of ocean currents at 195 m, Total backscattering at 667 nm, Nitrate, Total
absorption at 555 nm, Mixed layer depth 4nom, Particulate organic carbon, DIC, W velocity of ocean currents at 65 m, Remote sensing
reflectance at 488 nm, Total backscattering at 443 nm

Atlantic sector

Latitude, SSS, Dry air mixing ratio of atmospheric CO,, Particulate organic carbon, Total backscattering at 488 nm, Mixed layer depth,
Diffuse attenuation coefficient, Total backscattering at 412 nm, Sea surface height, cos(Longitude), SST, Remote sensing reflectance at
460 nm, Total backscattering at 547 nm, Bathymetry, Total absorption at 678 nm, Total backscattering at 469 nm, Remote sensing
reflectance at 678 nm

50-60°S Uncorrected

SSS.noms SST, Mixed layer depth, Dry air mixing ratio of atmospheric CO» 4n0m, Bathymetry, Sea surface height ,,0m, W velocity of ocean
currents at 105 m, DIC, Dissolved oxygen, Nitrate

50-60°S Corrected

Dry air mixing ratio of atmospheric CO,, Mixed layer depth, SST, DIC, month, SSS, Bathymetry, Latitude, W velocity of ocean currents at
105 m, Dissolved oxygen, W velocity of ocean currents at 5 m, Dry air mixing ratio of atmospheric CO2 anom, Mixed layer depth anom

Sof 60°S  Uncorrected

DIC, Bathymetry, SSS, Alkalinity, cos(Longitude), SST, Sea surface height anom, W velocity of ocean currents at 195 m, 5m, and 65 m,
SSSanom

Sof60°S  Corrected

Bathymetry, SSS, Alkalinity, SST, month, W velocity of ocean currents at 65 m, 105 m, and 195 m, Dissolved oxygen, cos (Longitude), Sea
surface height, Latitude, SSS,om

Uncorrected predictors were selected by a Stepwise BEL algorithm updated from ref. 11, corrected predictors were selected using the same algorithm but increasing the weighting of winter SOCAT
measurements; The sort order of pCO, predictors indicated a relative contribution on decreasing predicting errors. The predictors denoted by subscript “anom” represent the monthly anomaly obtained by
subtracting the monthly climatology. Data sources of used products are listed in Supplementary Table 1.
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Fig. 8 | FFNN I~III: feed-forward neural network.
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lower than in the summer, leading to a lower weighting on winter predicting
errors compared to summer in the determination. As a result, the selected
predictors are more reflective of factors influencing pCO, distribution in the
summer (such as biological drawdown) while neglecting those in the winter
(such as enhanced vertical mixing). Therefore, we increased the weighting of
winter data to be nearly equal to that of summer, to carry out a winter
correction of pCO, predictors in the Southern Ocean:

3% Z (APCOZMay—Sep)2 + Z (ApCC)ZOct—Apr)2
3% NMay—Sep + NOct—Apr

RMSE = ()

where the ApCO, was the difference between predicted pCO, and SOCAT
pCO, measurements, and N was the number of monthly SOCAT mea-
surements (3*Npiay-sep = Noci-apr)- Based on a self-organization map
method, the Southern Ocean was divided into different regions according to
the similarity of pCO, drivers, including two belt regions and three sectors
connecting to major basins''. Therefore, the selection of pCO, predictors
and reconstruction of pCO, in this work was based on three latitude areas:
35-50°S, 50-60°S, and south of 60°S (Table 2). Since there were no observed
effects of uneven seasonal distribution on the neural network training in the
35-50°S region connecting the major basins, the correction of pCO,
predictors is only conducted in the area south of 50°S.

CO; flux estimate
The sea—air CO, flux was estimated based on the pCO, difference across the
interface’:

F=k- (asubskin - pCOy — gy * pCOZatm) (3
where pCO,,, represents surface ocean pCO, and pCO, ., represents
atmospheric pCO,. The pCO,,m, was calculated from the xCO, of the
NOAA Greenhouse Gas Marine Boundary Layer Reference product® and
sea level pressure from the ERA5 monthly averaged data®*, with the water
vapor correction”. g, and dgypekin are the solubility of CO, at the skin and
subskin layers’, calculated from temperature and salinity”. k is the CO,
transfer velocity as a function of wind speed™:

k = I'(660/8¢)™ U? 4)
where Sc is the Schmid number of CO, in seawater, and U is the average
wind speed using the ERA5 product’”**. The transfer velocity was scaled by
the scale factor (I) 0.27 for ERA5 wind products to match the "“C
constraint®.

Uncertainty
The uncertainty of sea—air CO, flux estimate includes mainly three parts: the
uncertainty of transfer velocity k, the cool skin impact, and the uncertainty

in the surface ocean pCO, reconstruction. The uncertainty of transfer
velocity k was related to the wind product and considered about 5-30%**"%,
and here we used 10%. Recent research suggested an underestimate of
0.35PgCyr™" in the global ocean carbon sink caused by the cool skin
impact’. The uncertainty caused by the temperature and salinity gradient
was considered 3% and 1.7% after the subskin correction, respectively””. The
last uncertainty term came from the reconstruction of gridded surface ocean
pCO, data, including the uncertainty of the pCO, measurement, averaging
to 1° x 1° grids, and the pCO, interpolation. Thus, the total uncertainty in
the pCO, reconstruction was calculated on average“’, where the measure-
ment uncertainty o(meas) was about 2-5 patm4’°7, which was lower than the
others and can be neglected®. The uncertainty of averaging to 1° x 1° grids,
o(grid), used 5 patm from the previous research™. For the pCO, inter-
polation uncertainty o(map), we used the predicting error of 7-25 patm in
different regions''. The uncertainty in each area was calculated as the

following®:

o(grid)
N, eff (gr ld)

The o(<pCO,>) calculated from the pCO, interpolation uncer-
tainty ranges from 1.7 to 6.6 patm in each region. Based on the average
CO, transfer velocity of 0.07 mol Cm >yr™' in the Southern Ocean, the
uncertainty o(pCO,) caused by the pCO, interpolation errors in different
regions range from +0.05 to +0.10 PgCyr™". The total uncertainty of
pCO; interpolation estimated by the sum of squares of a(pCO,) in each
province was +0.13 PgCyr ', corresponding to roughly 15% of the
average Southern Ocean carbon sink estimated below. Thus, combining
the uncertainties stemming from transfer velocity, cool skin influences,
and pCO, interpolation, the final uncertainty was +18.4%

(= \/10%2 + 3% + 1.7% + 15%%), using the square root of the sum
squares propagation, corresponding to + 0.16 PgCyr™" (10).

o(map)?
N eff (map)

o(<pCO, >)* = (5)

Data availability

The dataset of 1° x 1° gridded surface ocean pCO, and sea-air CO, flux is
available from the Institute of Oceanology of the Chinese Academy of
Sciences Marine Science Data Center (https://doi.org/10.12157/iocas.2021.
0022). Source data for each figure is available from the Figshare repository
(https://doi.org/10.6084/m9.figshare.26066269).

Code availability

The MATLAB codes of the Stepwise BEL algorithm (version 2023.2) are
available from the GitHub repository (https://github.com/GuorongZhong/
Stepwise-BEL-FFNN-code-for-MATLAB.git).
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