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TheSouthernOcean carbon sink has been
overestimated in the past three decades
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Employingmachine learningmethods formapping surface oceanpCO2has reduced the uncertainty in
estimating sea-air CO2 flux. However, a general discrepancy exists between the Southern Ocean
carbon sinks derived from pCO2 products and those from biogeochemistry models. Here, by
performing a boosting ensemble learning feed-forward neural networksmethod,we have identified an
underestimation of the surface Southern Ocean pCO2 due to notably uneven density of pCO2

measurements between summer andwinter, which resulted in about 16%overestimating of Southern
Ocean carbon sink over the past three decades. In particular, the Southern Ocean carbon sink since
2010 was notably overestimated by approximately 29%. This overestimation can be mitigated by a
winter correction in algorithms, with the average Southern Ocean carbon sink during 1992-2021
corrected to −0.87 PgC yr−1 from the original −1.01 PgC yr−1. Furthermore, the most notable
underestimationof surfaceoceanpCO2mainlyoccurred in regions southof 60°Sandwashidingunder
ice cover. As the surface ocean pCO2 under sea ice coverage in the winter is much higher than the
atmosphere, if sea icemelts completely, there could be a further reductionof about 0.14PgCyr−1 in the
Southern Ocean carbon sink.

The increasing concentration of atmospheric CO2 since the onset of the
industrial era has been affecting the natural climate due to the greenhouse
effect. This effect is partially mitigated by the global ocean CO2 uptakes,
which account for about one-quarter of the anthropogenic CO2 emissions1.
Natural climate variability and anthropogenic climate change also feedback
to influence the sea–air CO2 exchange

2. It is essential to quantify the global
ocean carbon sink and its temporal variability to understand further the
response of the carbon cycle to future global change. The surface ocean
partial pressure of CO2 (pCO2) measurements from the SOCAT dataset
were widely used andmapped into continuous gridded data to estimate the
sea–air CO2 flux3. Due to a lower spatial decorrelation length scale of
hundreds of kilometers in the surface ocean than that of thousands of
kilometers in the atmosphere4, surface ocean pCO2 hasmore notable spatial
variability than atmospheric pCO2. Considerable variability and sparse
measurements of surface ocean pCO2 indicate insufficient observations to
estimate CO2 flux inmost ocean areas directly. Great uncertainty in carbon
sink estimation arises from sparse and uneven pCO2measurements, the gas
transfer velocity, and the cool skin effect5–7. Recent application of machine
learning algorithms in pCO2 mapping methods increased data availability
and further reduced the uncertainty in pCO2-based carbon sink

estimates8–11. The average net global ocean carbon sink during the last three
decadeswasdocumented as−1.40 to−2.45 PgC yr−1(see refs. 7,12–15).The
differences between results were caused by differences in algorithms, divi-
sion of global biogeochemical provinces, and selection of pCO2 predictors.
The accuracy of pCO2 mapping based on machine learning methods
remains to be improved, especially in polar regions with sparser pCO2

measurements.
The Southern Ocean south of 35°S was a strong carbon sink and has

contributed to about 40% of global ocean anthropogenic CO2 uptakes from
1870 to 19951,16–18. Changes in the Southern Ocean carbon sink strongly
affect the global ocean CO2 uptake. However, the Southern Ocean carbon
sink estimated by pCO2-based machine learning methods was about
0.4 PgC yr−1 stronger than the result from global ocean biogeochemical
models since 201219,20. A notable seasonal variability of surface ocean pCO2

was reported in the Southern Ocean, mainly south of 50°S, with high pCO2

levels and carbon sources observed in winter13,21. The strongly seasonally
uneven surface ocean pCO2 measurements with missing winter observa-
tions may result in an overestimation of the Southern Ocean carbon sink
from pCO2 products compared to the in situ observations2,19,22,23. Besides
supplying more measurements from sailboats or floats24, whether the
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overestimation in pCO2-based machine learning methods compared to the
in situ observations can be solved by improving algorithms is worth
investigating. Thus, we reestimated the SouthernOcean carbon sink using a
boosting ensemble learning feed-forward neural networks (BEL FFNNs)
method and investigated the influence of seasonally uneven SOCAT pCO2

measurements on the pCO2 mapping and carbon sink estimate.

Results
Influenceof unevenmeasurementson theSouthernOceanpCO2

mapping
Variousmachine learningmethods were applied in the surface ocean pCO2

mapping andCO2flux estimating8,9,11,13,14,25, where amajorityofmethods are
based on non-linear relationship fitting between SOCAT fCO2 measure-
ments, or converted pCO2, and environmental variables3. However, the
number of SOCAT measurements is uneven between different seasons in
the SouthernOcean. The SOCATmeasurements in the SouthernOcean are
concentrated in summer with low surface ocean pCO2 (Supplementary
Fig. 1a), with the number of high-pCO2 winter measurements only about
one-fifth of that in summer. In most Southern Ocean areas, the SOCAT
measurements covered less than four unique months from 1992 to 2021
(Supplementary Fig. 1b). Meanwhile, high surface ocean pCO2 was
observedduring thewinter in the SouthernOcean, according to the research
based on either pCO2 measurements or gridded products. The lack of
measurements during high surface ocean pCO2 seasons in most Southern
Ocean areas may notably influence the non-linear relationship fitting and
pCO2mapping, particularly in themonths from June to Septemberwith the
sparsest measurements. The seasonally unbalanced distribution of mea-
surementsmay be a potential reason for the higher pCO2 predicting error of
the Southern Ocean than the neighboring areas in previous research9,11,13.

To evaluate the influence of seasonal-uneven SOCAT measurements
on pCO2 mapping, the RMSE and bias from May to September were
compared between different validation groups, with the only difference in
training strategy (Table 1). The comparison of pCO2 predicting error
between different training strategies reveals a substantial influence of
uneven measurements on the accuracy of machine learning pCO2 pre-
dictingmethod.Trainingneural networkswith SOCATmeasurements only
fromApril toOctober instead of allmonths resulted in a notable decrease of
0.5–1.4 μatm in RMSE. This decrease in RMSE caused by the change of
training strategies was evenmore effective than the decrease of less than 0.4
μatm caused by the improvement of the FFNN structure (BEL FFNNs in
Table 1). This is because the quantity of pCO2 measurements is notably
imbalanced among different seasons, with data in winter much less than in
summer. T When training with such seasonal imbalanced data, the neural
network tends to perform better in data-rich summer, while the perfor-
mance is notablyworse in data-sparsewinter. This effect of imbalanceddata
can be mitigated through re-balancing data distribution and using re-
balancing design in the loss function or learning algorithm of neural
networks26. Training the neural networks with partial wintermeasurements
is a data distribution re-balancingmethod, as the number of measurements
is less unbalanced after the data-rich summer was removed from the
training set. As a result, in the areas south of 50°S, the BEL FFNNs and the
individual FFNN trained with sectional winter measurements suggested a
notably lower RMSE during winter than those trained with all-month
measurements. The bias during May–September between predicted pCO2

and SOCAT measurements of more than −3 μatm was notably different
from the range of −1 to ~1 μatm in other months, indicating a notable
underestimation of surface seawater pCO2 in the areas south of 50°S. In
particular, the pCO2 from May to September in the area south of 60°S, as
predicted by BEL FFNNs using measurements from all months, was
underestimated by an average of 5.77 μatm.Meanwhile, the pCO2 predicted
by the individual FFNN in the Southern Ocean south of 60°S was also
notably lower than SOCAT data in winter due to missing winter mea-
surements. When training with measurements only from April to October,
the BEL FFNNs with uncorrected predictors reached the lowest winter
RMSE in south of 60°S, and the bias was only −1.38 μatm. Similarly, the

predicted pCO2 by the individual FFNN was only 1.47 μatm lower than
measurements on average, indicating a notable improvement in the
underestimationofpCO2duringwinter. In the 50–60°S region, trainingBEL
FFNNs and the individual FFNN with sectional winter measurements can
also reduce the predicting bias in winter. By training BEL FFNNs only with
measurements from April to September, the winter RMSE in the 50–60°S
area was the lowest of uncorrected predictors among different training
strategies, with a bias of only−0.36 μatm.

In contrast, there is nonotable underestimationofwinter surface ocean
pCO2 in the Southern Ocean between 35 and 50°S. The RMSE by training
BEL FFNNs with sectional winter measurements was larger than that by
training with all measurements, and the improvement of bias was also not
observed when using sectional winter measurements. On the other hand,
corrected pCO2 predictors may better reflect the drivers of surface ocean
pCO2 in the Southern Ocean during winter. By using the month as a pre-
dictor, the correction of pCO2 predictors can also effectively mitigate the
underestimation of winter pCO2 in the Southern Ocean. Simply changing
pCO2 predictors without correcting the training period, the RMSE of BEL
FFNNs with weighted predictors during winter in the 50–60°S region
decreases to 11.49 μatm, and the bias reduces to −1.08 μatm compared to
BELFFNNswith original predictors (see predictors listed in Supplementary
Table 1). The samedecrease inRMSEwas also observed in the areas south of
60°S. Using both correction methods simultaneously, the RMSE can be
minimized to 10.93 μatm and 13.29 μatm in the 50–60°S and regions south
of 60°S, respectively. The bias also fell within an acceptable range of−1 to 1
μatm, close to the bias level in other months without notable under-
estimation or overestimation. In addition, we also test the pCO2 RMSE and
bias of traditional regressionmethods for comparison, including a multiple
linear regression (MLR) and a multiple non-linear regression (MNLR). As
expected, the traditional regression methods are more susceptible to
seasonal-uneven measurements, showing higher RMSE and more severe
underestimation of Southern Ocean pCO2. In particular, the MLR using
measurements from all months resulted in a winter RMSE of 34.02 μatm in
the region south of 60°S, and output pCO2 values lower than the real
measurements by an average of 17.29 μatm. This result is barely acceptable,
and it also explains why traditional regressionmethods in previous research
were generally limited to specific seasons. Although the MNLR performs
better than theMLR, its RMSEwas still much higher than that of the FFNN
methods, and theMNLRoutput pCO2duringwinterwas also notably lower
thanmeasurements in regions south of 50°S. Similar to the treatment of the
training period of the two FFNN methods, a lesser underestimation of
Southern Ocean pCO2 in winter was found when using only partial winter
measurements for regression. In the 35–50°S region, the RMSE of tradi-
tional regressionmethods was still higher than the two FFNNmethods, and
the influence of seasonal-uneven measurements was not remarkable.

The BEL FFNNs and individual FFNN both showed an under-
estimated surface seawater pCO2 in the Southern Ocean south of 50°S in
winter, indicating that the underestimation of surface seawater pCO2 was
not caused by the structure of FFNN but rather by the seasonally uneven
pCO2 measurements. Training networks with sectional winter measure-
ments and correction of pCO2 predictors can mitigate the underestimation
of surface Southern Ocean pCO2 in winter. Considering that the BEL
FFNNs have a lower RMSE compared to the individual FFNN, the BEL
FFNNs using corrected pCO2 predictors and training with measurements
only fromApril toOctober have better accuracy of the pCO2mapping in the
Southern Ocean during winter.

With the correction of the training period and pCO2 predictors, the
bias of predicted pCO2 fromMay to Septemberwas notably smaller than the
uncorrected result (Fig. 1a). In July, the pCO2 predicted by the BEL FFNNs
was notably lower than SOCATmeasurements, with a considerable bias of
6.6 μatm. In contrast, the bias from October to April was generally within
the range of −1 to 1 μatm, indicating not remarkable overestimation or
underestimation of surface seawater pCO2 in the SouthernOcean.With the
winter correction, thebias fromMay toSeptemberdecreasednotably tonear
zero. Even in the most biased July, the bias of corrected BEL FFNNs fell to
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only −0.3 μatm, substantially mitigating the underestimation of winter
surface ocean pCO2 in the Southern Ocean. The bias at different latitudes
reveals that the underestimation of surface seawater pCO2 in the Southern
Ocean due to seasonally uneven measurements becomes more remarkable
at higher latitudes (Fig. 1b). In the region south of 50°S, the uncorrected
average deviation is negative, reaching approximately −20.92 μatm at
around 68.5°S. The difference in the effect of the winter correction may be
related to the density of measurements, as the decrease in bias was more
notable in sparsely sampled high-latitude areas.

Compared to the observation from the Southern Ocean Flux station
(SOFS, 142.0°E, 46.8°S)27,28, the pCO2 values from May to September from

different methods were lower due to the lack of SOCAT winter data for
training (Fig. 2). During years that winter SOCATdata are available, such as
2012, 2013, and 2018, the pCO2 values fromdifferentmethods were close to
the observations from the SOFS time series station8,9,13,14,29–31. The surface
ocean pCO2 of BEL FFNNs product after correction in winter was about 10
µatmhigher than the uncorrected BELFFNNs results. It wasmuch closer to
the time series observation, suggesting a better accuracy of corrected BEL
FFNNs pCO2 than the uncorrected results. Both the validation based on the
SOCAT dataset and the validation based on time-series observations from
the SOFS station suggest that correction of the training period and pCO2

predictors can effectively mitigate the underestimation due to seasonally

Table 1 | Comparison of pCO2 predicting error in the Southern Ocean during May–September among different methods and
regression periods

Regression method Regression period 35–50°S 50–60°S S of 60°S

RMSE (μatm) Bias (μatm) RMSE (μatm) Bias (μatm) RMSE (μatm) Bias (μatm)

BEL FFNNs May–Sep 12.01 +0.61 11.97 +0.22 14.76 +0.33

Apr–Sep 10.70 +0.38 11.88 −0.36 14.87 −0.90

May–Oct 11.39 −0.36 12.07 −0.66 14.50 −0.07

Apr–Oct 11.10 −0.68 12.09 −1.16 14.20 −1.38

Mar–Nov 11.32 −1.26 12.51 −2.13 15.50 −4.47

All months 9.86 −0.39 13.27 −3.13 16.09 −5.77

BEL FFNNs with corrected
predictors

May–Sep 12.24 +0.74 11.93 +0.17 14.44 +1.17

Apr–Sep 10.76 +0.30 11.26 +0.09 13.49 −0.06

May–Oct 12.81 −0.28 11.44 +0.04 14.27 −0.20

Apr–Oct 11.83 −0.79 10.93 −0.25 13.29 −0.74

Mar–Nov 11.69 −1.49 13.07 −0.46 14.07 +0.02

All months 9.88 −0.29 11.49 −1.08 14.61 −0.90

Individual FFNN May–Sep 12.05 +0.50 11.99 +0.07 15.15 0.36

Apr–Sep 10.58 +0.30 12.02 −0.52 15.04 −1.14

May–Oct 11.43 −0.59 12.21 −0.75 14.92 −0.32

Apr–Oct 11.19 −0.83 12.29 −1.49 14.86 −1.47

Mar–Nov 11.64 −1.43 12.82 −2.56 15.76 −3.95

All months 9.95 −0.34 13.31 −3.33 17.14 −5.38

Individual FFNN with corrected
predictors

May–Sep 12.57 +0.50 12.30 +0.37 14.54 +0.83

Apr–Sep 10.72 +0.27 11.45 +0.14 13.79 −0.27

May–Oct 13.09 −0.45 11.52 −0.07 14.46 −0.23

Apr–Oct 11.35 −0.92 11.06 −0.09 13.63 −0.27

Mar–Nov 12.02 −1.55 11.55 −0.09 17.86 +0.50

All months 9.95 −0.28 12.06 −1.04 15.85 −0.05

MLR with corrected predictors May–Sep 16.34 −2.33 13.67 −1.71 21.12 +1.09

Apr–Sep 15.48 −0.67 14.51 −2.29 22.21 −3.00

May–Oct 16.98 −4.55 16.29 −4.83 23.46 −0.89

Apr–Oct 15.87 −2.93 16.39 −5.56 24.79 −6.69

Mar–Nov 16.09 −2.53 16.75 −6.22 29.21 −13.40

All months 17.70 −2.30 19.01 −6.11 34.02 −17.29

MNLR with corrected predictors May–Sep 14.37 −0.83 12.17 −0.62 17.04 +2.41

Apr–Sep 13.51 +0.67 11.20 −0.95 17.70 −2.86

May–Oct 14.55 −4.06 13.18 −3.47 17.70 +2.41

Apr–Oct 14.35 −3.45 13.53 −3.76 20.21 −6.64

Mar–Nov 14.21 −1.72 12.72 −4.70 18.81 −8.01

All months 15.02 +0.90 13.92 −5.35 25.68 −13.41

BELFFNNs: boosting ensemble learning basedon three FFNNsconstructed in thiswork; Individual FFNN: oneFFNNwith the samestructure used in theBEL;MLRmultiple linear regression;MNLRmultiple
non-linear regression, seeSupplementaryNote3;RegressionPeriod: aperiodofSOCATsamplesused for trainingneural networksorperformingclassic regression topredictpCO2duringMay–September;
RMSE and bias: calculated from the difference between predicted pCO2 and SOCAT measurements during May–September based on the K-fold cross-validation method. Corrected predictors: pCO2

predictors selected by a stepwise BEL FFNNs algorithm based on increasing weightings of winter measurements, see Table 1. Bold numbers: the regression period and method with the lowest RMSE
adopted in the final pCO2 product construction.
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uneven measurements. In addition, the evaluation based on the Southern
Ocean Carbon and Climate Observations and Modeling (SOCCOM)
dataset also suggested that winter-corrected BEL FFNNs pCO2 was better
consistent with the in situ float data (Supplementary Fig. 2). Therefore, the
final pCO2 product constructed in this study consists of pCO2 data from
October to April based on all measurements and pCO2 data from May to
September based on corrected pCO2 predictors and measurements only
from April to October.

Overestimated Southern Ocean carbon sink due to biased pCO2

mapping
The validation based on SOCAT measurements and SOFS time series
observations reveals that the pCO2 products constructed using FFNN with
the entire monthly pCO2 measurements from the SOCAT dataset may
notably underestimate the winter surface ocean pCO2 in the Southern
Ocean south of 50°S. Due to upwelling derived from the wind driving a
strong surface divergence through the Ekman transport32, the surface sea-
waterpCO2 in thewinter of the SouthernOcean isnotablyhigher than in the
summer, with strong carbon source regions in winter13,25,32. The previous
studies may have underestimated the strength of carbon sources in the
winter of the Southern Ocean, leading to an overestimation of the overall
carbon sink intensity in the Southern Ocean. Our results demonstrate that
the variations in surface seawater pCO2 before and after the winter cor-
rection notably impact the pCO2 difference and CO2 flux across the air-sea
interface (Fig. 3). The surface seawater pCO2 in the SouthernOcean south of
50°S is higher than atmospheric pCO2 from May to September, and the
pCO2 difference after correction became larger, particularly in the region
south of 60°S. However, due to the influence of sea ice coverage, the pCO2

flux in the area south of 60°S is nearly zero fromMay to September, and the
difference in CO2 flux between uncorrected and corrected BEL FFNNs was
not remarkable. In the 35–50°S areawith relativelymoremeasurements, the
seasonal variation pattern of pCO2 differs from that south of 50°S, and there

is almost no change in the pCO2 difference and CO2 flux between uncor-
rected and corrected BELFFNNs.Overall, although the south of 60°S shows
the most considerable change in winter ΔpCO2 before and after correction,
the underestimation of surface seawater pCO2 in the 50–60°S area unaf-
fected by sea ice coverage is the main reason for the overestimation of the
carbon sink intensity in the Southern Ocean. The corrected average
Southern Ocean carbon sink from May to September is −0.58 PgC yr−1,
decreasing by 0.34 PgC compared to the uncorrected results.

Over the past 30 years, the corrected average Southern Ocean carbon
sink was−0.87 ± 0.16 PgC yr−1, which is ~0.14 PgC yr−1 lower than before
the correction, suggesting an overestimation of about 16%. The over-
estimation of the carbon sink intensity in the Southern Ocean is mainly
observed after 2010, with a decrease in the decadal average carbon sink from
−1.20 PgC yr−1 to −0.93 PgC yr−1 after correction. This indicates that the
seasonally uneven measurements led to an overestimation of the Southern
Ocean carbon sink by ~29% compared to the corrected intensity during this
period (Fig. 4). Although the corrected Southern Ocean carbon sink was
lower than uncorrected results in the 1990s, the variability pattern was
similar before and after correction. Since 2001, the Southern Ocean carbon
sink has generally strengthened, but the strengthening rate is relatively
slower after the winter correction. The variability of the Southern Ocean
carbon sink from our corrected BEL product was highly consistent with
previous research based on models or observations, in which the Southern
Ocean carbon sink receded substantially in the 1990s, reaching a trough at
the beginning of the 21st century33,34, and subsequently restrengthened to
full intensity18,35,36. Compared to previous products, our estimation of the
corrected SouthernOcean carbon sink shows a similar intensity in the 1990s
and the lowest intensity since 2003. However, research based on SOCCOM
buoy data also suggested a notably weaker Southern Ocean carbon sink,
challenging existing results from pCO2 products

2, although the float pCO2

data calculated indirectly from pH and alkalinity seems to be overestimated
in organic-rich freshwaters37. Notably, there was almost no difference

Fig. 1 | Distribution of bias between predicted
pCO2 and SOCATmeasurements in the Southern
Ocean south of 35°S. aMonthly bias in the South-
ern Ocean south of 50°S (predicted pCO2 minus
SOCAT measurements). b Zonal bias during
May–Sep. Uncorrected BEL: based on training
sample of all seasons. Corrected BEL: based on
training sample only from April to October. BEL
boosting ensemble learning FFNNs used in
this study.

Fig. 2 | Comparison between corrected and
uncorrected ensemble learning pCO2 product in
the SOFS station at 142.0°E, 46.8°S. CMEMS: the
Copernicus Marine Environment Monitoring Ser-
vice product from refs. 9,29. MPI-SOM-FFNN: the
Self-Organizing Map-Feed-Forward Network pro-
duct from refs. 13,30. OS-ETHZ: the Satellite
Oceanographic Datasets for Acidification project
product from refs. 8,31. JMA: the Japan Meteor-
ological Agency product from ref. 14. Uncorrected
BEL: boosting ensemble learning FFNNs based on
training samples of all seasons. Corrected BEL:
pCO2 during May–September were predicted based
on corrected predictors and training samples only
from April to October.
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between the uncorrected and corrected carbon sink from 1999 to 2001,
when the Southern Ocean carbon sink was at its weakest point in the past
three decades. The relatively densermeasurements in the SHwinter than in
other decades may be one important reason. Around 2000, the SOCAT
winter measurements were close to half of the measurements in summer.
Therefore, the influence of seasonally uneven measurements is rela-
tively minor.

Both carbon sinks before and after the winter correction consistently
show a rapid weakening of the Southern Ocean carbon sink during the
1990s. The corrected Southern Ocean carbon sink in this work weakened
from−0.99 ± 0.15 PgC yr−1 in 1992 to−0.68 ± 0.13 Pg C yr−1 in 2001, and
then strengthened back to −1.13 ± 0.14 Pg C yr−1 until 2021. Such notable
interannual changes were also found in other research based on observa-
tions covering the past two decades8,9,13,38,39. The contribution of the

Fig. 3 |Distribution of average sea–air pCO2difference andCO2flux fromMay to
September during 1992–2021. a Sea–air ΔpCO2 in different regions: surface ocean
pCO2 minus atmospheric pCO2. b Sea–air CO2 flux in different regions.
c distribution of CO2 flux from uncorrected BEL FFNNs product. d distribution of

CO2 flux from corrected BEL FFNNs product. Uncorrected BEL FFNNs: con-
structed from SOCAT measurements of all months. Corrected BEL FFNNs: data
fromMay to September constructed based on corrected predictors and only SOCAT
measurements during Apr–Oct.

Fig. 4 | Interannual variability of the Southern
Ocean carbon sink from uncorrected and cor-
rected ensemble learning method and other pro-
ducts. CMEMS: the Copernicus Marine
Environment Monitoring Service product from
refs. 9,29. MPI-SOM-FFNN: the Self-Organizing
Map-Feed-Forward Network product from
refs. 13,30. OS-ETHZ: the Satellite Oceanographic
Datasets for Acidification project product from
refs. 8,31. JMA: the Japan Meteorological Agency
product from ref. 14. Uncorrected BEL: boosting
ensemble learning based on training samples of all
seasons. Corrected BEL: pCO2 during
May–September were predicted based on training
samples only from April to September.
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Southern Ocean south of 35% on the global ocean CO2 uptakes decreased
from ~63% in 1992 to 45% in 2021. The weakening of the Southern Ocean
carbon sink in the 1990s was thought to be caused by the strengthening of
the upper-ocean overturning circulation and CO2 release in source areas
and the weakening of CO2 uptake in sink areas due to a southward shift of
westerlies18,28,40–42. The upwelling of the Southern Ocean increased by ~40%
due to enhanced wind-driven circulation43. However, the weakening of the
upwelling since the beginning of the 21st century led to the reinvigoration of
carbon sink18. Research based on an idealized upper ocean box model also
suggested that the slowed growth rate of atmospheric pCO2 and the global
sea surface temperature response to the 1991 eruption of Mt Pinatubo
volcanicwere two external forces to explain the global-scale reduction in the
ocean carbon sink, and the reinvigoration of carbon sink was driven by the
acceleration of atmospheric pCO2 growth after 200144.

After the winter correction for seasonally unevenmeasurements in the
Southern Ocean, the global ocean carbon sink estimated from the Stepwise
FFNN product and corrected Southern Ocean pCO2 data was relatively
lower than other pCO2 products (Fig. 5). However, our estimates are more
consistent with the average results from the Global Carbon Budget study,
based on 10 global ocean biogeochemistry models and 7 pCO2 products

19.
The global ocean carbon sink estimated from previous pCO2 products was
notably stronger than the result from biogeochemical models, and the
discrepancymainly occurred in the SouthernOcean carbon19. The corrected
Southern Ocean carbon sink decreased the discrepancy with model results,
indicating that previous pCO2 products using the SOCAT dataset may also
experience an overestimation of the Southern Ocean carbon sink due to
seasonally uneven measurements.

Influence of sea ice cover on the Southern Ocean carbon sink
The remarkable differences in the Southern Ocean carbon sink before and
after correction were only observed in the last decade. However, the pCO2

difference across the interface after the winter correction was much more
notable, particularly in the SouthernOcean south of 60°S, where the surface
seawater pCO2 ismuch higher than atmospheric pCO2 (Fig. 6). The vertical
mixing and biological activity were reported as primary controlling factors
of surface ocean pCO2 in continent shelf areas, leading tomore considerable
uncertainty inCO2flux estimate compared to the open ocean45–47. However,
CO2 exchange between the seawater and the atmosphere in the Antarctic
shelf is impeded due to the extensive sea ice coverage inmost areas south of
60°S. As a result, despite the high surface seawater pCO2 in this region, the
CO2 release to the atmosphere is limited, and the carbon source intensity is
close to zero. The sea ice coverage in the Southern Ocean south of 60°S also
eliminates the influence of seasonally uneven pCO2 measurements.
Therefore, although the pCO2 difference across the interface was more

remarkable after the winter correction in areas south of 60°S, the carbon
source intensity and its difference before and after correction remain close to
zero. Recent research has reported that the melting of sea ice in the Arctic
Ocean exposes more sea surface, serving as one of the essential factors of
rapid acidification in the Arctic Ocean48. Similarly, in the Amundsen and
Bellingshausen Seas of the Southern Ocean, which are characterized by
warm water intrusion from the open ocean, the highest basal ice shelf
melting rates have been observed49–51. The Antarctic shelf ocean warming
accelerated by increasing El Niño variability was hastening the ice shelf/
sheetmelt52. Unlike the Arctic Ocean, the surface ocean pCO2 under sea ice
coverage in the winter Southern Ocean was much higher than in the
atmosphere. If the sea ice completely melts, a remarkable amount of CO2

will be directly released into the atmosphere through the exposed sea sur-
face. Furthermore, sea ice melting can indirectly impact the surface ocean
pCO2 and carbon sink intensity in the Southern Ocean through various
pathways, such as reducing sea surface temperature and altering convective
overturning rates53.

Assuming complete sea ice melt and neglecting indirect factors based
on the recent sea–air pCO2 difference, the changes in simulated carbon sink
intensity vary between summer and winter periods in the Southern Ocean
(Fig. 7). During the summer period in the Southern Ocean, when sea ice
coverage is limited, and the surface seawater pCO2 in the covered areas is
lower than atmospheric pCO2, it is assumed that the completemelting of the
currently covered sea ice would have little impact on the summer carbon
sink intensity. However, during the winter, when sea ice coverage is
extensive, and the surface seawaterpCO2 in the covered areas ismuchhigher
than atmospheric pCO2, the complete melting of the currently covered sea
ice would result in the release of CO2 from the exposed surface Southern
Ocean at an average rate of 0.28 PgC yr−1 duringwinter. This wouldweaken
the role of the SouthernOcean in the global oceanCO2 uptakes and the role
of the global ocean in buffering the rise in atmospheric CO2 concentration.
In addition, unlike the relatively stable increasing trend in carbon sink
intensity during summer over the past 20 years, the winter carbon sink
intensity in the Southern Ocean has shown notable fluctuations in the last
decade but with no remarkable long-term trend. Based on the current data,
considering the presence of sea ice-covered carbon sink areas in spring and
autumn, the complete disappearance of sea ice coverage would lead to an
average reduction of 0.14 PgC yr−1 in the overall annual CO2 absorption in
the SouthernOcean. Themagnitude of this reduction depends on the pCO2

values of seawater covered by sea ice, and it is still uncertain how this will
change in the future. However, it can be anticipated that sea ice melting will
slowdown the rate of carbon sink enhancement in the SouthernOcean for a
considerable perioduntil the continuously rising atmosphericpCO2exceeds
the surface ocean pCO2 beneath the winter sea ice.

Fig. 5 | Global ocean carbon sink over the past
three decades after the Southern Ocean correc-
tion. GOBMs: average results of 10 global ocean
biogeochemical models (https://doi.org/10.18160/
GCP-2022, ref. 19). GCB average: average results of
10 global ocean biogeochemical models and 7 pCO2

products in the Global Carbon Budget 202219.
CMEMS: the Copernicus Marine Environment
Monitoring Service product from refs. 9,29. MPI-
SOM-FFNN: the Self-Organizing Map-Feed-
Forward Network product from refs. 13,30. OS-
ETHZ: the Satellite Oceanographic Datasets for
Acidification project product from refs. 8,31. JMA:
the Japan Meteorological Agency product from
ref. 14. Uncorrected BEL: boosting ensemble learn-
ing FFNNs based on training sample of all seasons.
Corrected BEL: Southern Ocean pCO2 during
May–September were corrected for uneven
measurements.
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Data and methods
pCO2 mapping and winter correction
The surface ocean pCO2 converted from the Surface Ocean CO2 Atlas
version 2023 (SOCAT v2023) dataset3,54,55 was used for pCO2 mapping by
fitting the non-linear relationship between pCO2 and environmental vari-
ables in Table 2. The SOCAT dataset includes quality-controlled global
observations of in situ surface ocean fugacity of carbon dioxide (fCO2), sea
surface temperature, and salinity on ships, moorings, autonomous and
drifting surface platforms for the global oceans and coastal seas from1957 to
2023. This dataset is provided as a synthesis version and a gridded version,
with an estimated fCO2 accuracy of better than 5 μatm. The gridded fCO2

was converted to pCO2 using in situ sea surface temperature and atmo-
spheric pressure56, and then the converted pCO2was used in training neural
networks:

pCO2 ¼ fCO2 � exp Psurf
atm

Bþ 2 � δ
R � T

� ��1

ð1Þ

where Psurfatm is the atmospheric pressure using ERA5 sea level pressure
product57,58, B and δ are viral coefficients calculated from sea surface
temperature59, R is the gas constant and T is the absolute temperature.

The relationshipfittingwas based on a boosting ensemble learning feed-
forward neural networks (BEL FFNNs) consisting of three FFNNs. The first
FFNN (FFNN I in Fig. 8) outputs will be used as a pCO2 predictor in the
second and the last FFNN (FFNN II and FFNN III in Fig. 8). Compared to
shallower neural networks, neural networks withmore hidden layers require

far fewer neurons to achieve the same predicting error. Therefore, we used
multiple hidden layers for all FFNNs with 10 neurons in each hidden layer,
and adjusted the number of hidden layers to achieve an optimal FFNN size
based on changes in predictor errors. The average of several FFNN outputs
with changing initial states was taken as the final pCO2 prediction value. The
pCO2 predictors used in this work were selected by the updated stepwise
FFNN algorithm based on the variation of pCO2 predicting error caused by
eachpredictor11, as described in the section “Selection and correctionofpCO2

predictors”. Awinter correctionwas carriedout by changingpCO2predictors
and the temporal period of measurements used for training networks.

Toeliminate the influenceofFFNNstructureoncorrectionvalidity,
the performances of the individual FFNN and BEL FFNNs were com-
pared under different training strategies: one based on SOCAT pCO2

measurements of all months and others based on sectional winter
measurements. The predicted pCO2, root mean square error (RMSE),
and bias with different training strategies and pCO2 predictors were
compared to evaluate the influence of seasonally uneven pCO2 mea-
surements and to determine which training strategy will be used. The
predictor error was calculated using a K-fold cross-validation method,
where the pCO2 measurements were divided into four groups by year,
and each one was predicted by the other three groups11,60. Then, the
resultswere further compared to the observations from the SOFS station
(142.0°E, 46.8°S) time series stations for validation27,28. The final pCO2

product includes two types of data: (1) the pCO2 from October to April
based on SOCAT measurements of all seasons, and (2) the pCO2 from
May to September based on sectional SOCATwintermeasurements and
corrected predictors.

Fig. 6 |Distribution of average sea–airΔpCO2 and sea ice coverage duringMay–Sep in the SouthernOcean. aΔpCO2 calculated fromuncorrected BELproduct.bΔpCO2

calculated from corrected BEL product. c Sea ice coverage from ERA5 product57,58. ΔpCO2 surface ocean pCO2 minus atmospheric pCO2.
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Selection and correction of pCO2 predictors
The pCO2 predictors input into the FFNN reflect the drivers of surface
ocean pCO2 and its variability. When changing the input pCO2 predictors,
both the FFNN predicted pCO2 value and the predicting error notably
change, and these changes can be even greater than those caused by altering
the FFNN structure. However, the environmental factors driving pCO2 and

its variability notably differ among different regions. The surface ocean
pCO2 is largely affected by the upwelling and biological drawdown in the
Antarctic region, and is affectedbymeridional overturning circulation in the
subantarctic region32,43. This means that using different predictors in dif-
ferent latitude regions can better reflect the regional influencing factors of
pCO2 and its variability. To find the best combination of pCO2 predictors in
different regions, we have proposed a Stepwise FFNNalgorithm in previous
work, where the changes in predicting error are fed back to the selection of
input pCO2 predictors

11. This algorithm allows for the objective selection of
pCO2 predictors in different regions that result in the lowest pCO2 pre-
dicting error.Theprocedureof the StepwiseFFNNalgorithmisdetermining
pCO2 predictors one by one until no further reduction in predicting error is
achieved by either adding or removing any predictors. Specifically, the first
pCO2 predictor is selected by comparing predicting errors when individu-
ally using each collected environmental variable (listed in Supplementary
Table 1) as input of the FFNN. The variable with the lowest error is
determined as the first pCO2 predictor, which is also the predictor that has
the greatest impact on the distribution or variability of regional surface
ocean pCO2. Subsequently, leaving the first predictor unchanged, the pre-
dicting errors are compared when using each environmental variable as the
second input of theFFNN.The environmental variablewith the lowest error
is determined as the second pCO2 predictor. In the same way, new pre-
dictors are continuously determined one after another, until the predicting
error no longer continues to decrease regardless of which one variable is
added as a pCO2 predictor. Meanwhile, whenever a new predictor is
determined, the algorithm also tests if the predicting error will decrease
when sequentially removing each determined predictor, in order to elim-
inate co-correlation and prevent overfitting. For example, when the fourth
predictor is determined, the model tests the change in predicting error by
individually removing each one from the previously determined three
predictors. If the error decreases after removing a previously determined
predictor, this predictor is highly correlated with other determined pre-
dictors. By adding and removing variables in the input of the FFNN one by
one in this way, the algorithm ultimately identifies a set of pCO2 predictors
that minimize the pCO2 predicting error. In this work, the single FFNN
structure used in the previous Stepwise FFNN algorithm has been replaced
with a structure of ensemble learning FFNNs with stronger fitting cap-
abilities (see Fig. 8), referred to as the Stepwise BEL algorithm.

However, the Stepwise BEL algorithm relies on predicting errors for
determination of pCO2 predictors, and the number of SOCAT pCO2

measurements in the Southern Ocean during the winter season is much

Fig. 7 | Southern Ocean carbon sink on different scenarios of sea ice melt. a CO2

flux fromDecember to February in each year.bCO2flux from June toAugust in each
year. c Annual CO2 flux. Current ice cover: ice coverage data from the ERA5
product57,58. 50% ice cover removed: assuming that 50% of current ice covermelts. In
total, 100% ice cover removed: assuming that all ice cover melts.

Table 2 | Winter correction of pCO2 predictors

Area pCO2 predictors

35–50°S Pacific sector SST, sin(Longitude), xCO2, Latitude, SSS, Photosynthetically Available Radiation, Chlorophyll, Mixed layer depth, cos(Longitude), Mixed
layer depth anom, Remote sensing reflectance at 531 nm and 555 nm

Indian sector SST, Total absorption at 645 nm, Number of months since January 1992, Mixed layer depth, SSS, W velocity of ocean currents at 105m,
Surface pressure, Total absorption at 678 nm, W velocity of ocean currents at 195m, Total backscattering at 667 nm, Nitrate, Total
absorption at 555 nm, Mixed layer depth anom, Particulate organic carbon, DIC, W velocity of ocean currents at 65 m, Remote sensing
reflectance at 488 nm, Total backscattering at 443 nm

Atlantic sector Latitude, SSS, Dry air mixing ratio of atmospheric CO2, Particulate organic carbon, Total backscattering at 488 nm, Mixed layer depth,
Diffuse attenuation coefficient, Total backscattering at 412 nm, Sea surface height, cos(Longitude), SST, Remote sensing reflectance at
460 nm, Total backscattering at 547 nm, Bathymetry, Total absorption at 678 nm, Total backscattering at 469 nm, Remote sensing
reflectance at 678 nm

50–60°S Uncorrected SSSanom, SST, Mixed layer depth, Dry air mixing ratio of atmospheric CO2 anom, Bathymetry, Sea surface height anom, W velocity of ocean
currents at 105m, DIC, Dissolved oxygen, Nitrate

50–60°S Corrected Dry air mixing ratio of atmospheric CO2, Mixed layer depth, SST, DIC, month, SSS, Bathymetry, Latitude, W velocity of ocean currents at
105m, Dissolved oxygen, W velocity of ocean currents at 5m, Dry air mixing ratio of atmospheric CO2 anom, Mixed layer depth anom

S of 60°S Uncorrected DIC, Bathymetry, SSS, Alkalinity, cos(Longitude), SST, Sea surface height anom, W velocity of ocean currents at 195m, 5 m, and 65m,
SSSanom

S of 60°S Corrected Bathymetry, SSS, Alkalinity, SST, month, W velocity of ocean currents at 65 m, 105m, and 195m, Dissolved oxygen, cos (Longitude), Sea
surface height, Latitude, SSSanom

Uncorrected predictors were selected by a Stepwise BEL algorithm updated from ref. 11, corrected predictors were selected using the same algorithm but increasing the weighting of winter SOCAT
measurements; The sort order ofpCO2 predictors indicated a relative contribution on decreasing predicting errors. The predictors denoted by subscript “anom” represent themonthly anomaly obtainedby
subtracting the monthly climatology. Data sources of used products are listed in Supplementary Table 1.
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lower than in the summer, leading to a lowerweighting onwinter predicting
errors compared to summer in the determination. As a result, the selected
predictors aremore reflective of factors influencing pCO2distribution in the
summer (such as biological drawdown)while neglecting those in the winter
(such as enhanced verticalmixing). Therefore,we increased theweightingof
winter data to be nearly equal to that of summer, to carry out a winter
correction of pCO2 predictors in the Southern Ocean:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �P ðΔpCO2May�SepÞ2 þ

P ðΔpCO2Oct�AprÞ2
3 � NMay�Sep þ NOct�Apr

s
ð2Þ

where the ΔpCO2 was the difference between predicted pCO2 and SOCAT
pCO2 measurements, and N was the number of monthly SOCAT mea-
surements (3*NMay-Sep ≈ NOct-Apr). Based on a self-organization map
method, the SouthernOceanwas divided into different regions according to
the similarity of pCO2 drivers, including two belt regions and three sectors
connecting to major basins11. Therefore, the selection of pCO2 predictors
and reconstruction of pCO2 in this work was based on three latitude areas:
35–50°S, 50–60°S, and south of 60°S (Table 2). Since therewere no observed
effects of uneven seasonal distribution on the neural network training in the
35–50°S region connecting the major basins, the correction of pCO2

predictors is only conducted in the area south of 50°S.

CO2 flux estimate
The sea–air CO2fluxwas estimated based on the pCO2 difference across the
interface4,7:

F ¼ k � ðasubskin � pCO2w � askin � pCO2atmÞ ð3Þ

where pCO2w represents surface ocean pCO2 and pCO2 atm represents
atmospheric pCO2. The pCO2atm was calculated from the xCO2 of the
NOAA Greenhouse Gas Marine Boundary Layer Reference product61 and
sea level pressure from the ERA5monthly averaged data57,58, with the water
vapor correction62. askin and asubskin are the solubility of CO2 at the skin and
subskin layers5, calculated from temperature and salinity59. k is the CO2

transfer velocity as a function of wind speed63:

k ¼ Γð660=ScÞ0:5U2 ð4Þ

where Sc is the Schmid number of CO2 in seawater, and U is the average
wind speed using the ERA5 product57,58. The transfer velocity was scaled by
the scale factor (Γ) 0.27 for ERA5 wind products to match the 14C
constraint64.

Uncertainty
Theuncertaintyof sea–airCO2fluxestimate includesmainly three parts: the
uncertainty of transfer velocity k, the cool skin impact, and the uncertainty

in the surface ocean pCO2 reconstruction. The uncertainty of transfer
velocity kwas related to thewind product and considered about 5–30%6,21,65,
and here we used 10%. Recent research suggested an underestimate of
0.35 PgC yr−1 in the global ocean carbon sink caused by the cool skin
impact6. The uncertainty caused by the temperature and salinity gradient
was considered3%and1.7%after the subskin correction, respectively5,7. The
last uncertainty termcame from the reconstruction of gridded surface ocean
pCO2 data, including the uncertainty of the pCO2 measurement, averaging
to 1° × 1° grids, and the pCO2 interpolation. Thus, the total uncertainty in
the pCO2 reconstruction was calculated on average66, where the measure-
ment uncertainty σ(meas) was about 2–5 μatm4,67, whichwas lower than the
others and can be neglected68. The uncertainty of averaging to 1° × 1° grids,
σ(grid), used 5 μatm from the previous research54. For the pCO2 inter-
polation uncertainty σ(map), we used the predicting error of 7–25 μatm in
different regions11. The uncertainty in each area was calculated as the
following68:

σð< pCO2 >Þ2 ¼
σðgridÞ2
Neff ðgridÞ

þ σðmapÞ2
Neff ðmapÞ ð5Þ

The σ(<pCO2 > ) calculated from the pCO2 interpolation uncer-
tainty ranges from 1.7 to 6.6 μatm in each region. Based on the average
CO2 transfer velocity of 0.07mol Cm−2 yr−1 in the Southern Ocean, the
uncertainty σ(pCO2) caused by the pCO2 interpolation errors in different
regions range from ±0.05 to ±0.10 PgC yr−1. The total uncertainty of
pCO2 interpolation estimated by the sum of squares of σ(pCO2) in each
province was ±0.13 PgC yr−1, corresponding to roughly 15% of the
average Southern Ocean carbon sink estimated below. Thus, combining
the uncertainties stemming from transfer velocity, cool skin influences,
and pCO2 interpolation, the final uncertainty was ±18.4%

(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10%2 þ 3%2 þ 1:7%2 þ 15%2

p
), using the square root of the sum

squares propagation, corresponding to ± 0.16 PgC yr−1 (1σ).

Data availability
The dataset of 1° × 1° gridded surface ocean pCO2 and sea–air CO2 flux is
available from the Institute of Oceanology of the Chinese Academy of
Sciences Marine Science Data Center (https://doi.org/10.12157/iocas.2021.
0022). Source data for each figure is available from the Figshare repository
(https://doi.org/10.6084/m9.figshare.26066269).

Code availability
The MATLAB codes of the Stepwise BEL algorithm (version 2023.2) are
available from the GitHub repository (https://github.com/GuorongZhong/
Stepwise-BEL-FFNN-code-for-MATLAB.git).
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Fig. 8 | FFNN I~III: feed-forward neural network.
pCO2 predictors: selected environmental variables
in Table 2. Outputs: pCO2 values predicted by cor-
responding FFNN.
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