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Abstract: Employing machine learning methods for mapping surface ocean pCO2 has 11 

reduced the uncertainty in estimating sea-air CO2 flux. However, a general discrepancy 12 

exists between the Southern Ocean carbon sinks derived from pCO2 products and those 13 

from biogeochemistry models. By performing a boosting ensemble learning feed-14 

forward neural networks (BEL FFNNs) method, we have identified an underestimation 15 

of the surface Southern Ocean pCO2 due to notably uneven density of pCO2 16 

measurements between summer and winter, which resulted in about 16% 17 

overestimating of Southern Ocean carbon sink over the past three decades. In particular, 18 

the Southern Ocean carbon sink since 2010 was notably overestimated by 19 

approximately 29%. This overestimation can be mitigated by a winter correction in 20 

algorithms, with the average Southern Ocean carbon sink during 1992-2021 corrected 21 

to -0.87 PgC yr-1 from the original -1.01 PgC yr-1. Furthermore, the most notable 22 

underestimation of surface ocean pCO2 mainly occurred in regions south of 60°S and 23 

was hiding under ice cover. If sea ice melts completely, there could be a further 24 

reduction of about 0.14 PgC yr-1 in the Southern Ocean carbon sink due to exposure of 25 

high pCO2 seawater to the atmosphere in winter. 26 

Keywords: Carbon sink, Southern Ocean, CO2 flux, pCO2, machine learning 27 

1 Introduction 28 

The increasing concentration of atmospheric CO2 since the onset of the industrial 29 

era has been affecting the natural climate due to the greenhouse effect. This effect is 30 

partially mitigated by the global ocean CO2 uptakes, which account for about one-31 

quarter of the anthropogenic CO2 emissions (Sabine et al., 2004). Natural climate 32 
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variability and anthropogenic climate change also feedback to influence the sea-air CO2 33 

exchange (Rödenbeck et al., 2022). It is essential to quantify the global ocean carbon 34 

sink and its temporal variability to understand further the response of the carbon cycle 35 

to future global change. The surface ocean partial pressure of CO2 (pCO2) 36 

measurements from the SOCAT dataset were widely used and mapped into continuous 37 

gridded data to estimate the sea-air CO2 flux (Bakker et al., 2016).  Due to a lower 38 

spatial decorrelation length scale of hundreds of kilometers in the surface ocean than 39 

that of thousands of kilometers in the atmosphere (Wanninkhof et al., 2013), surface 40 

ocean pCO2 has more notable spatial variability than atmospheric pCO2. Considerable 41 

variability and sparse measurements of surface ocean pCO2 indicate insufficient 42 

observations to estimate CO2 flux in most ocean areas directly. Significant uncertainty 43 

in carbon sink estimation arises from sparse and uneven pCO2 measurements, the gas 44 

transition velocity, and the cool skin effect (Woolf et al., 2016; Woolf et al., 2019; 45 

Watson et al., 2020). Recent application of machine learning algorithms in pCO2 46 

mapping methods increased data availability and further reduced the uncertainty in 47 

pCO2-based carbon sink estimates (Gregor et al., 2021; Chau et al., 2022; Gloege et al., 48 

2022; Zhong et al., 2022). The average net global ocean carbon sink during the last 49 

three decades was documented as -1.40~-2.45 PgC yr-1 (Zeng et al., 2014; Landschützer 50 

et al., 2016; Watson et al., 2020; Iida et al., 2021; Rödenbeck et al., 2022). The 51 

differences between results were caused by differences in algorithms, division of global 52 

biogeochemical provinces, and selection of pCO2 predictors. The accuracy of pCO2 53 

mapping based on machine learning methods remains to be improved, especially in 54 

polar regions with sparser pCO2 measurements.  55 

The Southern Ocean south of 35°S was a strong carbon sink and has contributed 56 

to about 40% of global ocean anthropogenic CO2 uptakes (Sabine et al., 2004; Fletcher, 57 

S. E. M. et al., 2006; Frölicher et al., 2015; Landschützer et al., 2015). Changes in the 58 

Southern Ocean carbon sink strongly affect the global ocean CO2 uptake. However, the 59 

Southern Ocean carbon sink estimated by pCO2-based machine learning methods was 60 

about 0.4 PgC yr-1 stronger than the result from global ocean biogeochemical models 61 

since 2012 (Friedlingstein et al., 2022; Mayot et al., 2023). A notable seasonal 62 

variability of surface ocean pCO2 was reported in the Southern Ocean, mainly south of 63 

50°S, with high pCO2 levels and carbon sources observed in winter (Takahashi et al., 64 

2009; Landschützer et al., 2016). The strongly seasonally uneven surface ocean pCO2 65 

measurements with missing winter observations may result in an overestimation of the 66 

Southern Ocean carbon sink from pCO2 products (Bushinsky et al., 2019; Hauck et al., 67 

Riscado
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2020; Gloege et al., 2021; Friedlingstein et al., 2022). Besides supplying more 68 

measurements from sailboats or floats (Landschützer et al., 2023), whether this 69 

overestimation can be solved by improving algorithms is worth investigating. Thus, we 70 

reestimated the Southern Ocean carbon sink using a different machine learning method 71 

and investigated the influence of seasonally uneven SOCAT pCO2 measurements on 72 

the pCO2 mapping and carbon sink estimate. 73 

2 Data and methods 74 

2.1 pCO2 mapping and winter correction 75 

 The surface ocean pCO2 converted from the Surface Ocean CO2 Atlas version 76 

2023 (SOCAT v2023) dataset was used for pCO2 mapping by fitting the non-linear 77 

relationship between pCO2 and environmental variables (Bakker et al., 2016). The 78 

relationship fitting was based on a boosting ensemble learning feed-forward neural 79 

networks (BEL FFNNs) consisting of three FFNNs. The first FFNN (FFNN I in Figure 80 

1) outputs will be used as a pCO2 predictor in the second and the last FFNN (FFNN II 81 

and FFNN III in Figure 1). All FFNNs in this work used 10 neurons in each hidden 82 

layer, and the number of hidden layers was adjusted to achieve an optimal FFNN size 83 

based on a change in predictor errors. The average of several FFNN outputs with 84 

changing initial states was taken as the final pCO2 prediction value. The pCO2 85 

predictors used in this work were selected by the stepwise FFNN algorithm based on 86 

the variation of pCO2 predicting error caused by each predictor (Zhong et al., 2022). 87 

However, due to the lack of winter measurements, the pCO2 predictors in the Southern 88 

Ocean selected by the stepwise FFNN algorithm were more relevant to the drivers of 89 

pCO2 in summer than in winter. By increasing the weightings of winter measurements 90 

in calculating the predicting error (equation S1), the pCO2 predictors in the Southern 91 

Ocean were corrected for the winter period (Table S1). Furthermore, another winter 92 

correction was also carried out by changing the temporal period of measurements used 93 

for training networks.  94 
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 95 

Figure 1.  The procedure of the Boosting Ensemble Learning Method 96 

To eliminate the influence of FFNN structure on correction validity, the 97 

performances of the individual FFNN and BEL FFNNs were compared under different 98 

training strategies: one based on SOCAT pCO2 measurements of all months and others 99 

based on sectional winter measurements. The predicted pCO2, root mean square error 100 

(RMSE), and bias with different training strategies and pCO2 predictors were compared 101 

to evaluate the influence of seasonally uneven pCO2 measurements and to determine 102 

which training strategy will be used. The predictor error was calculated using a K-fold 103 

cross validation method, where the pCO2 measurements were divided into four groups 104 

by year, and each one was predicted by the other three groups (Gregor et al., 2019; 105 

Zhong et al., 2022). Then, the results were further compared to the observations from 106 

the Southern Ocean Flux station (SOFS) time series stations for validation (Sutton et 107 

al., 2019). The final pCO2 product includes two types of data: 1) the pCO2 from October 108 

to April based on SOCAT measurements of all seasons, and 2) the pCO2 from May to 109 

September based on sectional SOCAT winter measurements and corrected predictors. 110 

2.2 CO2 flux estimate 111 

The sea-air CO2 flux was estimated based on the pCO2 difference across the 112 

interface (Woolf et al., 2016; Watson et al., 2020): 113 

  𝐹 = 𝑘 ∙ (𝑎subskin ∙ 𝑝CO2w − 𝑎skin ∙ 𝑝CO2atm) (1) 114 

where pCO2w represents surface ocean pCO2 and pCO2atm represents atmospheric pCO2. 115 

The pCO2atm was calculated from the xCO2 of the NOAA Greenhouse Gas Marine 116 

Boundary Layer Reference product (Lan et al., 2023) and sea level pressure from the 117 

ERA5 monthly averaged data (Hersbach et al., 2019), with the water vapor correction 118 

(Dickson et al., 2007). askin and asubskin are the solubility of CO2 at the skin and subskin 119 

layers (Woolf et al., 2016), calculated from temperature and salinity (Weiss, 1974). k is 120 

the CO2 transfer velocity as a function of wind speed (Wanninkhof, 1992): 121 
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  𝐾 = Γ(660/𝑆𝑐)0.5𝑈2 (2) 122 

where Sc is the Schmid number of CO2 in seawater, and U is the average wind speed 123 

using the ERA5 product (Hersbach et al., 2020). The transfer velocity was scaled by 124 

the scale factor (Γ) 0.27 for ERA5 wind products to match the 14C constraint (Sweeney 125 

et al., 2007).  126 

2.3 uncertainty 127 

The uncertainty of sea-air CO2 flux estimate includes mainly three parts: the 128 

uncertainty of transfer velocity k, the cool skin impact, and the uncertainty in the 129 

surface ocean pCO2 reconstruction. The uncertainty of transfer velocity k was related 130 

to the wind product and considered about 5-30% (Takahashi et al., 2009; Ho et al., 2011; 131 

Woolf et al., 2019), and here we used 10%. Recent research suggested an underestimate 132 

of 0.35 PgC yr-1 in the global ocean carbon sink caused by the cool skin impact (Woolf 133 

et al., 2019). The uncertainty caused by the temperature and salinity gradient was 134 

considered 3% and 1.7% after the subskin correction, respectively (Woolf et al., 2016; 135 

Watson et al., 2020). The last uncertainty term came from the reconstruction of gridded 136 

surface ocean pCO2 data, including the uncertainty of the pCO2 measurement, 137 

averaging to 1°×1° grids, and the pCO2 interpolation. Thus, the total uncertainty in the 138 

pCO2 reconstruction was calculated on average (Wang et al., 2014): where the 139 

measurement uncertainty σ(meas) was about 2-5 μatm (Pfeil et al., 2013; Wanninkhof 140 

et al., 2013b), which was lower than the others and can be neglected (Landschützer et 141 

al., 2014). The uncertainty of averaging to 1°×1° grids, σ(grid), used 5 μatm from the 142 

previous research (Sabine et al., 2013). For the pCO2 interpolation uncertainty σ(map), 143 

we used the predicting error of 7-25 μatm in different regions (Zhong et al., 2022). The 144 

uncertainty in each area was calculated as the following (Landschützer et al., 2014): 145 

 𝜎(< 𝑝CO2 >)
2 =

𝜎(grid)2

𝑁eff(grid)
+

𝜎(map)2

𝑁eff(map)
 （3） 146 

The σ(<pCO2>) calculated from the pCO2 interpolation uncertainty ranges from 1.7 to 147 

6.6 μatm in each region. Based on the average CO2 transfer velocity of 0.07 mol C m-2 148 

yr-1 in the Southern Ocean, the uncertainty σ(pCO2) caused by the pCO2 interpolation 149 

errors in different regions range from ±0.05 to ±0.10 PgC yr-1. The total uncertainty of 150 

pCO2 interpolation estimated by the sum of squares of σ(pCO2) in each province was 151 

±0.13 PgC yr-1, corresponding to roughly 15% of the average Southern Ocean carbon 152 

sink estimated below. Thus, combining the uncertainties stemming from transfer 153 

velocity, cool skin influences, and pCO2 interpolation, the final uncertainty was ±18.4% 154 

(= √10%2 + 3%2 + 1.7%2 + 15%2 ), using the square root of the sum squares 155 
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propagation, corresponding to ± 0.16 PgC yr-1 (1σ). 156 

3 Result and Discussion 157 

3.1 Influence of uneven measurements on the Southern Ocean pCO2 mapping 158 

 Various machine learning methods were applied in the surface ocean pCO2 159 

mapping and CO2 flux estimating (Landschützer et al., 2016; Gregor et al., 2021; Iida 160 

et al., 2021; Wang et al., 2021; Chau et al., 2022; Zhong et al., 2022), where a majority 161 

of methods are based on non-linear relationship fitting between SOCAT fCO2 162 

measurements, or converted pCO2, and environmental variables (Bakker et al., 2016). 163 

However, the number of SOCAT measurements is uneven between different seasons in 164 

the Southern Ocean. The SOCAT measurements in the Southern Ocean are concentrated 165 

in summer with low surface ocean pCO2 (Figure 2a). While in winter, the number of 166 

measurements with high surface ocean pCO2 was only about one-fifth of that in summer. 167 

In most Southern Ocean areas, the SOCAT measurements covered less than four unique 168 

months from 1992 to 2021 (Figure 2b). Meanwhile, the high surface ocean pCO2 was 169 

observed during the winter in the Southern Ocean, according to the research based on 170 

either pCO2 measurements or gridded products. The lack of measurements during high 171 

surface ocean pCO2 seasons in most Southern Ocean areas may notably influence the 172 

non-linear relationship fitting and pCO2 mapping, particularly in the months from June 173 

to September with the sparsest measurements. The seasonally unbalanced distribution 174 

of measurements may be a potential reason for the higher pCO2 predicting error of the 175 

Southern Ocean than the neighboring areas in previous research (Landschützer et al., 176 

2016; Chau et al., 2022; Zhong et al., 2022). 177 

 178 

Figure 2. The number of a) SOCAT fCO2 measurements in each month and b) unique months 179 

covered by SOCAT measurements in the Southern Ocean south of 35°S from 1992 to 2021. SOCAT: 180 

the Surface Ocean CO2 Atlas dataset version 2023 (Bakker et al., 2016). 181 

To evaluate the influence of seasonal-uneven SOCAT measurements on pCO2 182 

mapping, the RMSE and bias from May to September were compared between different 183 

redacted
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validation groups, with the only difference in training strategy (Table 1). The 184 

comparison of pCO2 predicting error between different training strategies reveals a 185 

substantial influence of uneven measurements on the accuracy of machine learning 186 

pCO2 predicting method. Training neural networks with SOCAT measurements only 187 

from April to October instead of all months resulted in a notable decrease of 0.5~1.4 188 

μatm in RMSE. This decrease in RMSE caused by the change of training strategies was 189 

even more effective than the decrease of less than 0.4 μatm caused by the improvement 190 

of the FFNN structure (BEL FFNNs in Table 1).  In the areas south of 50°S, the BEL 191 

FFNNs and the individual FFNN trained with sectional winter measurements resulted 192 

in significantly lower RMSE during winter than those trained with all-month 193 

measurements. The bias during May-September between predicted pCO2 and SOCAT 194 

measurements of more than -3 μatm was notably different from the range of -1~1 μatm 195 

in other months, indicating a significant underestimation of surface seawater pCO2 in 196 

the areas south of 50°S. In particular, the pCO2 from May to September in the area 197 

south of 60°S, as predicted by BEL FFNNs using measurements from all months, was 198 

underestimated by an average of 5.77 μatm. Meanwhile, the pCO2 predicted by the 199 

individual FFNN in the Southern Ocean south of 60°S was also notably lower than 200 

SOCAT data in winter due to missing winter measurements. When training with 201 

measurements only from April to October, the BEL FFNNs reached the lowest RMSE 202 

in winter, and the bias was only -1.38 μatm. Similarly, the predicted pCO2 by the 203 

individual FFNN was only 1.47 μatm lower than measurements on average, indicating 204 

a significant improvement in the underestimation of pCO2 during winter. In the 50-60°S 205 

region, training BEL FFNNs and the individual FFNN with sectional winter 206 

measurements can also reduce the predicting bias. By training BEL FFNNs only with 207 

measurements from April to September, the winter RMSE in the 50-60°S area was the 208 

lowest among different training strategies, with a bias of only -0.36 μatm.   209 

 210 

Table 1. Comparison of pCO2 predicting error in the Southern Ocean during May-211 

September among different training strategies 212 

Validation 

group 

Training 

period 

35-50° S 50-60° S S of 60° S 

RMSE 

(μatm) 

bias 

(μatm) 

RMSE 

(μatm) 

bias 

(μatm) 

RMSE 

(μatm) 

bias 

(μatm) 

BEL FFNNs May-Sep 12.01 +0.61 11.97 +0.22 14.76 +0.33 

Apr-Sep 10.70 +0.38 11.88 -0.36 14.87 -0.90 

May-Oct 11.39 -0.36 12.07 -0.66 14.50 -0.07 

Apr-Oct 11.10 -0.68 12.09 -1.16 14.20 -1.38 
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Mar-Nov 11.32 -1.26 12.51 -2.13 15.50 -4.47 

All Months 9.86 -0.39 13.27 -3.13 16.09 -5.77 

BEL FFNNs 

with 

corrected 

predictors 

May-Sep 12.24 +0.74 11.93 +0.17 14.44 +1.17 

Apr-Sep 10.76 +0.30 11.26 +0.09 13.49 -0.06 

May-Oct 12.81 -0.28 11.44 +0.04 14.27 -0.20 

Apr-Oct 11.83 -0.79 10.93 -0.25 13.29 -0.74 

Mar-Nov 11.69 -1.49 13.07 -0.46 14.07 +0.02 

All Months 9.88 -0.29 11.49 -1.08 14.61 -0.90 

Individual 

FFNN 

May-Sep 12.05 +0.50 11.99 +0.07 15.15 0.36 

Apr-Sep 10.58 +0.30 12.02 -0.52 15.04 -1.14 

May-Oct 11.43 -0.59 12.21 -0.75 14.92 -0.32 

Apr-Oct 11.19 -0.83 12.29 -1.49 14.86 -1.47 

Mar-Nov 11.64 -1.43 12.82 -2.56 15.76 -3.95 

All Months 9.95 -0.34 13.31 -3.33 17.14 -5.38 

Individual 

FFNN with 

corrected 

predictors 

May-Sep 12.57 +0.50 12.30 +0.37 14.54 +0.83 

Apr-Sep 10.72 +0.27 11.45 +0.14 13.79 -0.27 

May-Oct 13.09 -0.45 11.52 -0.07 14.46 -0.23 

Apr-Oct 11.35 -0.92 11.06 -0.09 13.63 -0.27 

Mar-Nov 12.02 -1.55 11.55 -0.09 17.86 +0.50 

All Months 9.95 -0.28 12.06 -1.04 15.85 -0.05 

(BEL FFNNs: boosting ensemble learning based on three FFNNs constructed in this work; 213 

Individual FFNN: one FFNN with the same structure used in the BEL; Training Period: a period of 214 

SOCAT samples used for training neural networks to predict pCO2 during May-September; RMSE 215 

and bias: calculated from the difference between predicted pCO2 and SOCAT measurements during 216 

May-September based on the K-fold cross validation method. Corrected predictors: pCO2 predictors 217 

selected by a stepwise BEL FFNNs algorithm based on increasing weightings of winter 218 

measurements, see supplementary S1.) 219 

In contrast, there is no significant underestimation of winter surface ocean pCO2 in 220 

the Southern Ocean 35-50°S. The RMSE by training BEL FFNNs with sectional winter 221 

measurements was larger than that by training with all measurements, and the 222 

improvement of bias was also not observed when using sectional winter measurements. 223 

On the other hand, corrected pCO2 predictors may better reflect the drivers of surface 224 

ocean pCO2 in the Southern Ocean during winter. By using the month as a predictor, 225 

the correction of pCO2 predictors can also effectively mitigate the underestimation of 226 

winter pCO2 in the Southern Ocean. Simply changing pCO2 predictors without 227 

correcting the training period, the RMSE of BEL FFNNs with weighted predictors 228 

during winter in the 50-60°S region decreases to 11.49 μatm, and the bias reduces to -229 

redacted
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1.08 μatm compared to BEL FFNNs with original predictors (see predictors listed in 230 

Table S1). The same decrease in RMSE was also observed in the areas south of 60°S. 231 

Using both correction methods simultaneously, the RMSE can be minimized to 10.93 232 

μatm and 13.29 μatm in the 50-60°S and regions south of 60°S, respectively. The bias 233 

also fell within an acceptable range of -1 to 1 μatm, close to the bias level in other 234 

months without notable underestimation or overestimation. 235 

The BEL FFNNs and individual FFNN both showed an underestimated surface 236 

seawater pCO2 in the Southern Ocean south of 50°S in winter, indicating that the 237 

underestimation of surface seawater pCO2 was not caused by the structure of FFNN but 238 

rather by the seasonally uneven pCO2 measurements. Training networks with sectional 239 

winter measurements and correction of pCO2 predictors can mitigate the 240 

underestimation of surface Southern Ocean pCO2 in winter. Considering that the BEL 241 

FFNNs have a lower RMSE compared to the individual FFNN, the BEL FFNNs using 242 

corrected pCO2 predictors and training with measurements only from April to October 243 

have better accuracy of the pCO2 mapping in the Southern Ocean during winter. 244 

With the correction of the training period and pCO2 predictors, the bias of predicted 245 

pCO2 from May to September was notably smaller than the uncorrected result (Figure 246 

3a). In July, the pCO2 predicted by the BEL FFNNs was notably lower than SOCAT 247 

measurements, with a considerable bias of 6.6 μatm. In contrast, the bias from October 248 

to April was generally within the range of -1 to 1 μatm, indicating a non-significant 249 

overestimation or underestimation of surface seawater pCO2 in the Southern Ocean. 250 

With the winter correction, the bias from May to September decreased notably to near 251 

zero. Even in the most biased July, the bias of corrected BEL FFNNs fell to only -0.3 252 

μatm, significantly mitigating the underestimation of winter surface ocean pCO2 in the 253 

Southern Ocean. The bias at different latitudes reveals that the underestimation of 254 

surface seawater pCO2 in the Southern Ocean due to seasonally uneven measurements 255 

becomes more significant at higher latitudes (Figure 3b). In the region south of 50°S, 256 

the uncorrected average deviation is negative, reaching approximately -20.92 μatm at 257 

around 68.5°S. The difference in the effect of the winter correction may be related to 258 

the density of measurements, as the decrease in bias was more notable in sparsely 259 

sampled high-latitude areas. 260 
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 261 

Figure 3. Distribution of bias between predicted pCO2 and SOCAT measurements in the Southern 262 

Ocean south of 35°S. a): monthly bias in the Southern Ocean south of 50°S (predicted pCO2 minus 263 

SOCAT measurements); b): zonal bias during May-Sep; Uncorrected BEL: based on training sample 264 

of all seasons; Corrected BEL: based on training sample only from April to October. BEL: Boosting 265 

ensemble learning FFNNs used in this study. 266 

Compared to the observation from the SOFS time series station (Sutton et al., 2019), 267 

the pCO2 values from May to September from different methods were lower due to the 268 

lack of SOCAT winter data for training (Figure 4). During years that winter SOCAT 269 

data are available, such as 2012, 2013, and 2018, the pCO2 values from different 270 

methods were close to the observations from the SOFS time series station 271 

(Landschützer et al., 2016; Gregor et al., 2021; Iida et al., 2021; Chau et al., 2022;). The 272 

surface ocean pCO2 of BEL FFNNs product after correction in winter was about 10 273 

µatm higher than the uncorrected BEL FFNNs results. It was much closer to the time 274 

series observation, suggesting a better accuracy of corrected BEL FFNNs pCO2 than 275 

the uncorrected results. Both the validation based on the SOCAT dataset and the 276 

validation based on time-series observations from the SOFS station suggest that 277 

correction of the training period and pCO2 predictors can effectively mitigate the 278 

underestimation due to seasonally uneven measurements. Therefore, the final pCO2 279 

product constructed in this study consists of pCO2 data from October to April based on 280 

all measurements and pCO2 data from May to September based on corrected pCO2 281 

predictors and measurements only from April to October. 282 

redacted
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 283 

Figure 4. Comparison between corrected and uncorrected ensemble learning pCO2 product in the 284 

SOFS station. CMEMS: Chau et al., 2022; MPI-SOM-FFNN: Landschützer et al., 2016; OS-ETHZ: 285 

Gregor et al., 2021; JMA: Iida et al., 2021; Uncorrected BEL: boosting ensemble learning FFNNs 286 

based on training sample of all seasons; Corrected BEL: pCO2 during May-September were 287 

predicted based on corrected predictors and training samples only from April to October. 288 

3.2 Overestimated Southern Ocean carbon sink due to biased pCO2 289 

mapping 290 

The validation based on SOCAT measurements and SOFS time series observations 291 

reveals that the pCO2 products constructed using FFNN with the entire monthly pCO2 292 

measurements from the SOCAT dataset may significantly underestimate the winter 293 

surface ocean pCO2 in the Southern Ocean south of 50°S. Due to upwelling derived 294 

from the wind driving a strong surface divergence through the Ekman transport (Gruber 295 

et al., 2019)， the surface seawater pCO2 in the winter of the Southern Ocean is 296 

significantly higher than in the summer, with strong carbon source regions in winter 297 

(Landschützer et al., 2016; Gruber et al., 2019; Wang et al., 2021). The previous studies 298 

may have underestimated the strength of carbon sources in the winter of the Southern 299 

Ocean, leading to an overestimation of the overall carbon sink intensity in the Southern 300 

Ocean. Our results demonstrate that the variations in surface seawater pCO2 before and 301 

after the winter correction significantly impact the pCO2 difference and CO2 flux across 302 

the air-sea interface (Figure 5). The surface seawater pCO2 in the Southern Ocean south 303 

of 50°S is higher than atmospheric pCO2 from May to September, and the pCO2 304 

difference after correction became larger, particularly in the region south of 60°S. 305 

However, due to the influence of sea ice coverage, the pCO2 flux in the area south of 306 

60°S is nearly zero from May to September, and the difference in CO2 flux between 307 

uncorrected and corrected BEL FFNNs was not significant. In the 35-50S area with 308 

relatively more measurements, the seasonal variation pattern of pCO2 differs from that 309 
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south of 50S, and there is almost no change in the pCO2 difference and CO2 flux 310 

between uncorrected and corrected BEL FFNNs. Overall, although the south of 60S 311 

shows the most considerable change in winter ∆pCO2 before and after correction, the 312 

underestimation of surface seawater pCO2 in the 50-60 area unaffected by sea ice 313 

coverage is the main reason for the overestimation of the carbon sink intensity in the 314 

Southern Ocean. The corrected average Southern Ocean carbon sink from May to 315 

September is -0.58 PgC yr-1, decreasing by 0.34 PgC compared to the uncorrected 316 

results. 317 

 318 

 319 

Figure 5. Distribution of average sea-air pCO2 difference and CO2 flux from May to September 320 

during 1992-2021. a) sea-air ΔpCO2 in different regions: surface ocean pCO2 minus atmospheric 321 

pCO2; b) sea-air CO2 flux in different regions; c) distribution of CO2 flux from uncorrected BEL 322 

FFNNs product; d) distribution of CO2 flux from corrected BEL FFNNs product; uncorrected BEL 323 

FFNNs: constructed from SOCAT measurements of all month, corrected BEL FFNNs: data from 324 

May to September constructed based on corrected predictors and only SOCAT measurements during 325 

Apr-Oct. 326 

Over the past 30 years, the corrected average Southern Ocean carbon sink was -327 

0.87 ± 0.16 PgC yr-1, which is approximately 0.14 PgC yr-1 lower than before the 328 

correction, suggesting an overestimation of about 16%. The overestimation of the 329 

carbon sink intensity in the Southern Ocean is mainly observed after 2010, with a 330 
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decrease in the decadal average carbon sink from -1.20 PgC yr-1 to -0.93 PgC yr-1 after 331 

correction. This indicates that the seasonally uneven measurements led to an 332 

overestimation of the Southern Ocean carbon sink by approximately 29% compared to 333 

the corrected intensity during this period (Figure 6). Although the corrected Southern 334 

Ocean carbon sink was lower than uncorrected results in the 1990s, the variability 335 

pattern was similar before and after correction. Since 2001, the Southern Ocean carbon 336 

sink has generally strengthened, but the strengthening rate is relatively slower after the 337 

winter correction. The variability of the Southern Ocean carbon sink from our corrected 338 

BEL product was highly consistent with previous research based on models or 339 

observations, in which the Southern Ocean carbon sink receded significantly in the 340 

1990s, reaching a trough at the beginning of the 21st century (Le Quere et al., 2007; 341 

Lovenduski et al., 2008), and subsequently restrengthened to full intensity (Gregor et 342 

al., 2018; Landschützer et al., 2015; Munro et al., 2015). Compared to previous 343 

products, our estimation of the corrected Southern Ocean carbon sink shows a similar 344 

intensity in the 1990s and the lowest intensity since 2003. However, research based on 345 

SOCCOM buoy data also suggested a significantly weaker Southern Ocean carbon sink, 346 

challenging existing results from pCO2 products (Bushinsky et al., 2019), although the 347 

float pCO2 data calculated indirectly from pH and alkalinity seems to be overestimated 348 

in organic-rich freshwaters (Abril et al., 2015). Notably, there was almost no difference 349 

between the uncorrected and corrected carbon sink from 1999 to 2001, when the 350 

Southern Ocean carbon sink was at its weakest point in the past three decades. The 351 

relatively denser measurements in the SH winter than in other decades may be one 352 

important reason.  Around 2000, the SOCAT winter measurements were close to half 353 

of the measurements in summer. Therefore, the influence of seasonally uneven 354 

measurements is relatively minor.  355 

Both carbon sinks before and after the winter correction consistently show a rapid 356 

weakening of the Southern Ocean carbon sink during the 1990s. The corrected Southern 357 

Ocean carbon sink in this work weakened from -0.99±0.15 Pg C yr-1 in 1992 to -358 

0.68±0.13 Pg C yr-1 in 2001, and then strengthened back to -1.13±0.14 Pg C yr-1 until 359 

2021. Such notable interannual changes were also found in other research based on 360 

observations covering the past two decades (Landschützer et al., 2016; Rödenbeck et 361 

al., 2014; Ritter et al., 2017; Gregor et al., 2021; Chau et al., 2022). The contribution of 362 

the Southern Ocean south of 35% on the global ocean CO2 uptakes decreased from 363 

approximately 63% in 1992 to 45% in 2021. The weakening of the Southern Ocean 364 

carbon sink in the 1990s was thought to be caused by the strengthening of the upper-365 
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ocean overturning circulation and CO2 release in source areas and the weakening of 366 

CO2 uptake in sink areas due to a southward shift of westerlies (Gillett et al., 2003; 367 

Gruber et al., 2019; Landschützer et al., 2015; Miller et al., 2006; Rödenbeck et al., 368 

2015). The upwelling of the Southern Ocean increased by approximately 40% due to 369 

enhanced wind-driven circulation. (DeVries et al., 2017). However, the weakening of 370 

the upwelling since the beginning of the 21st century led to the reinvigoration of carbon 371 

sink (Landschützer et al., 2015). Research based on an idealized upper ocean box model 372 

also suggested that the slowed growth rate of atmospheric pCO2 and the global sea 373 

surface temperature response to the 1991 eruption of Mt Pinatubo volcanic were two 374 

external forces to explain the global-scale reduction in the ocean carbon sink, and the 375 

reinvigoration of carbon sink was droved by the acceleration of atmospheric pCO2 376 

growth after 2001 (McKinley et al., 2020). 377 

 378 

Figure 6. Interannual variability of the Southern Ocean carbon sink from uncorrected and corrected 379 

ensemble learning method and other products. CMEMS: Chau et al., 2022; MPI-SOM-FFNN: 380 

Landschützer et al., 2016; OS-ETHZ: Gregor et al., 2021; JMA: Iida et al., 2021; Uncorrected BEL: 381 

boosting ensemble learning based on training sample of all seasons; Corrected BEL: pCO2 during 382 

May-September were predicted based on training sample only from April to September. 383 

After the winter correction for seasonally uneven measurements in the Southern 384 

Ocean, the global ocean carbon sink estimated from the Stepwise FFNN product and 385 

corrected Southern Ocean pCO2 data was relatively lower than other pCO2 products 386 

(Figure 7). However, our estimates are more consistent with the average results from 387 

the Global Carbon Budget study, based on 10 global ocean biogeochemistry models 388 

and 7 pCO2 products (Friedlingstein et al. 2022). The global ocean carbon sink 389 

estimated from previous pCO2 products was notably stronger than the result from 390 

biogeochemical models, and the discrepancy mainly occurred in the Southern Ocean 391 

carbon sinks (Friedlingstein et al. 2022). The corrected Southern Ocean carbon sink 392 

redacted
Nota
driven?



15 

 

decreased the discrepancy with model results, indicating that previous pCO2 products 393 

using the SOCAT dataset may also experience an overestimation of the Southern Ocean 394 

carbon sink due to seasonally uneven measurements. 395 

 396 

Figure 7. Global ocean carbon sink over the past three decades after the Southern Ocean correction. 397 

GOBMs: average results of global ocean biogeochemical models (Friedlingstein et al. 2022); GCB 398 

average: average results of 10 global ocean biogeochemical models and 7 pCO2 products in the 399 

Global Carbon Budget 2022 (Friedlingstein et al. 2022); CMEMS: Chau et al., 2022; MPI-SOM-400 

FFNN: Landschützer et al., 2016; OS-ETHZ: Gregor et al., 2021; JMA: Iida et al., 2021; 401 

Uncorrected BEL: boosting ensemble learning FFNNs based on training sample of all seasons; 402 

Corrected BEL: Southern Ocean pCO2 during May-September were corrected for uneven 403 

measurements. 404 

 405 

3.3 Influence of sea ice cover on the Southern Ocean carbon sink 406 

The significant differences in the Southern Ocean carbon sink before and after 407 

correction were only observed in the last decade. However, the pCO2 difference across 408 

the interface after the winter correction was much more notable, particularly in the 409 

Southern Ocean south of 60°S, where the surface seawater pCO2 is much higher than 410 

atmospheric pCO2 (Figure 8). The vertical mixing and biological activity were reported 411 

as primary controlling factors of surface ocean pCO2 in continent shelf areas, leading 412 

to more considerable uncertainty in CO2 flux estimate compared to the open ocean (Qu 413 

et al., 2014; Laruelle et al., 2017; Song et al., 2018). However, CO2 exchange between 414 

the seawater and the atmosphere in the Antarctic shelf is impeded due to the extensive 415 

sea ice coverage in most areas south of 60°S. As a result, despite the high surface 416 

seawater pCO2 in this region, the CO2 release to the atmosphere is limited, and the 417 

redacted
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carbon source intensity is close to zero. The sea ice coverage in the Southern Ocean 418 

south of 60°S also eliminates the influence of seasonally uneven pCO2 measurements. 419 

Therefore, although the pCO2 difference across the interface was more significant after 420 

the winter correction in areas south of 60°S, the carbon source intensity and its 421 

difference before and after correction remain close to zero. Recent research has reported 422 

that the melting of sea ice in the Arctic Ocean exposes more sea surface, serving as one 423 

of the essential factors of rapid acidification in the Arctic Ocean (Qi et al., 2022). 424 

Similarly, in the Amundsen and Bellingshausen Seas of the Southern Ocean, which are 425 

characterized by warm water intrusion from the open ocean, the highest basal ice shelf 426 

melting rates have been observed (Jacobs et al. 2011; Nakayama et al. 2013; Hellmer 427 

et al., 2017). The Antarctic shelf ocean warming accelerated by increasing El Niño 428 

variability was hastening the ice shelf/sheet melt (Cai et al., 2023). Unlike the Arctic 429 

Ocean, the surface ocean pCO2 under sea ice coverage in the winter Southern Ocean 430 

was much higher than in the atmosphere. If the sea ice completely melts, a significant 431 

amount of CO2 will be directly released into the atmosphere through the exposed sea 432 

surface. Furthermore, sea ice melting can indirectly impact the surface ocean pCO2 and 433 

carbon sink intensity in the Southern Ocean through various pathways, such as reducing 434 

sea surface temperature and altering convective overturning rates (Merino et al., 2016). 435 

436 

 437 

Figure 8. Distribution of average sea-air ΔpCO2 and sea ice coverage during May-Sep in the 438 
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Southern Ocean. a) ΔpCO2 calculated from uncorrected BEL product, b) ΔpCO2 calculated from 439 

corrected BEL product, c) sea ice coverage from ERA5 product (Hersbach et al., 2020). ΔpCO2: 440 

surface ocean pCO2 minus atmospheric pCO2. 441 

Figure 9 shows the simulated carbon sink intensity in the Southern Ocean under 442 

different sea ice coverage without considering indirect factors based on the recent sea-443 

air pCO2 difference. During the summer period in the Southern Ocean, when sea ice 444 

coverage is limited, and the surface seawater pCO2 in the covered areas is lower than 445 

atmospheric pCO2, it is assumed that the complete melting of the currently covered sea 446 

ice would have little impact on the summer carbon sink intensity. However, during the 447 

winter, when sea ice coverage is extensive, and the surface seawater pCO2 in the 448 

covered areas is much higher than atmospheric pCO2, the complete melting of the 449 

currently covered sea ice would result in the release of CO2 from the exposed surface 450 

Southern Ocean at an average rate of 0.28 PgC yr-1 during winter. This would weaken 451 

the role of the Southern Ocean in the global ocean CO2 uptakes and the role of the 452 

global ocean in buffering the rise in atmospheric CO2 concentration. Additionally, 453 

unlike the relatively stable increasing trend in carbon sink intensity during summer over 454 

the past 20 years, the winter carbon sink intensity in the Southern Ocean has shown 455 

significant fluctuations in the last decade but with no significant long-term trend. Based 456 

on the current data, considering the presence of sea ice-covered carbon sink areas in 457 

spring and autumn, the complete disappearance of sea ice coverage would lead to an 458 

average reduction of 0.14 PgC yr-1 in the overall annual CO2 absorption in the Southern 459 

Ocean. The magnitude of this reduction depends on the pCO2 values of seawater 460 

covered by sea ice, and it is still uncertain how this will change in the future. However, 461 

it can be anticipated that sea ice melting will slow down the rate of carbon sink 462 

enhancement in the Southern Ocean for a considerable period until the continuously 463 

rising atmospheric pCO2 exceeds the surface ocean pCO2 beneath the winter sea ice. 464 
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 465 

Figure 9. Southern Ocean carbon sink on different scenarios of sea ice melt. a) CO2 flux from 466 

December to February in each year; b) CO2 flux from June to August in each year; c) annual CO2 467 

flux. Current ice cover: ice coverage data from the ERA5 product (Hersbach et al., 2020); 50% ice 468 

cover removed: assuming that 50% of current ice cover melts; 100% ice cover removed: assuming 469 

that all ice cover melts. 470 

4 Summary and conclusions 471 

As one of the most important carbon sink regions, the Southern Ocean experienced 472 

higher uncertainties of carbon sink estimation than other adjacent regions due to the 473 

sparse and seasonally uneven measurements. By comparing the performance of the 474 
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BEL FFNNs with different training strategies in the Southern Ocean from May to 475 

September, it was found that using data from all months for training the neural network 476 

resulted in higher RMSE and bias than using only sectional winter measurements for 477 

training. The predicted pCO2 from May to September was significantly lower than the 478 

observed values when measurements of all months were used due to missing winter 479 

data, which was less than a fifth of summer measurements. As a result, the neural 480 

network significantly underestimated the surface seawater pCO2 in the Southern Ocean 481 

during winter. However, training the neural network using sectional winter 482 

measurements and correcting the pCO2 predictors could effectively alleviate the 483 

underestimation of winter Southern Ocean pCO2. The underestimation of winter 484 

Southern Ocean pCO2 further led to an overestimation of the carbon sink intensity by 485 

about 16%. This may be a key factor contributing to the general discrepancy between 486 

carbon sink intensity estimated from pCO2 products and biogeochemical models. 487 

Especially in the last decade, the corrected average Southern Ocean carbon sink was 488 

only -0.93 PgC yr-1, significantly lower than the original intensity of -1.20 PgC yr-1, 489 

indicating an overestimation of the Southern Ocean carbon sink by about 29% in the 490 

last decade. The winter correction in the Southern Ocean carbon sink has reduced the 491 

discrepancy between pCO2 products and biogeochemical models and brought the 492 

estimated global ocean carbon sink intensity closer to the average results obtained from 493 

the Global Carbon Budget 2022. 494 

Furthermore, although the pCO2 difference after correction was more notable in 495 

the Southern Ocean south of 60°S, the extensive sea ice coverage almost eliminates the 496 

CO2 flux and mitigates the underestimation of winter surface ocean pCO2. Therefore, 497 

the difference in carbon sink intensity before and after correction in the Southern Ocean 498 

was mainly observed in the 50-60°S region. If sea ice melts and exposes all currently 499 

covered surface Southern Oceans, the high pCO2 seawater will release an additional 500 

0.28 PgC yr-1 of CO2 to the atmosphere in winter of each year, leading to an average 501 

reduction of 0.14 PgC yr-1 in the overall annual Southern Ocean carbon sink. Over a 502 

considerable period, sea ice melting will lead to CO2 release from the sea ice-covered 503 

regions, slowing down the enhancement rate of the Southern Ocean carbon sink until 504 

the continuously rising atmospheric pCO2 surpasses the surface ocean pCO2 in the 505 

winter sea ice areas. 506 
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This article describes the impact of melting sea ice on carbon sink. The paper addresses 

boosting ensemble learning feed-forward neural networks to underestimation of the 

surface Southern Ocean pCO2 . The main issue regards sparse measurements of surface 

ocean pCO2 . The sea-air CO2 flux was estimated based on the pCO2 difference across the 

interface. The major claim of the article regards the fact that when using all months for 

training the neural network resulted in higher RMSE and bias than using only sectional 

winter measurements for training. Also the winter correction in the Southern Ocean 

carbon sink has reduced the bias in the pCO2 estimation with notable difference South of 

60S. 

Even if promising the author should add additional analysis to the results and correct the 

following: 

-The github link to the code is missing, that is necessary 

-The author in the method should highlight more why they choose feedforward neural 

network with 10 layers. Can the author provide a plot of their loss function? 

-The paper is missing a comparison with a classic regression approach which would 

highlight why choosing the feedforward neural network can be a good choice. I highly 

recommend adding it. 

-In line 99 the author has used the SOCAT pCO2 measurements, the authors should talk 

more about the dataset including the time range of it.  

-In line 104 the author mentioned K-fold cross validation with a number of folds equal 4. 

Is the number 4 arbitrary? 

-In line 188 the authors train a neural network with SOCAT measurements only from 

April to October. The resulting RMS is lower in this case. The author should emphasize 

more why it should be the case. This section 188-200 needs further confirmation.  

The predictors used for the neural network have been put in supplemental materials. I would 

encourage to talk more in the text about these predictors and why they are important.  

In the conclusion part the authors should emphasize more about the broader impacts of 

their findings and how these methods can be beneficial to the scientific community. 

 

Given the interested topic covered by the article I would recommend major revision to the 

editor in order to address the changes written above. 

 



(Bold black: Reviewer comments; thick red: Response to comments; thick black: 

changes in manuscript) 

Reviewer #1: 

This article describes the impact of melting sea ice on carbon sink. The paper 

addresses boosting ensemble learning feed-forward neural networks to 

underestimation of the surface Southern Ocean pCO2. The main issue regards 

sparse measurements of surface ocean pCO2. The sea-air CO2 flux was estimated 

based on the pCO2 difference across the interface. The major claim of the article 

regards the fact that when using all months for training the neural network 

resulted in higher RMSE and bias than using only sectional winter measurements 

for training. Also the winter correction in the Southern Ocean carbon sink has 

reduced the bias in the pCO2 estimation with notable difference South of 60S.  

Even if promising the author should add additional analysis to the results and 

correct the following:  

1) The github link to the code is missing, that is necessary

Response: The MATLAB codes have been uploaded to the GitHub repository at

https://github.com/GuorongZhong/Stepwise-BEL-FFNN-code-for-MATLAB.git, and

the link has been added in a Data Availability section. 

2) The author in the method should highlight more why they choose feedforward

neural network with 10 layers. Can the author provide a plot of their loss function?

Response: We used a few hidden layers with 10 neurons in each layer, and the number

of hidden layers was adjusted based on pCO2 predicting errors to avoid underfitting

caused by too less neurons and overfitting caused by too many neurons. One another

way is using only one hidden layer and adjusting the number of inner neurons. These

two structures were commonly used in previous research. However, to achieve the same

predicting error, neural networks with more hidden layers require far fewer neurons

compared to shallower neural networks. Therefore, we used a deeper structure and

changed the number of hidden layers instead of directly changing the number of

neurons in each layer. We used the mean squared error as the loss function and

compared the performance of FFNNs with different numbers of hidden layers, to

determine how many layers should be used. Although we evaluated the performance

based on RMSE rather than the loss function, the RMSE and loss function both

suggested the best performance when we used a proper number of hidden layers. For

Author responses: first round



example, we used FFNNs with 4 hidden layers in the areas between 50-60°S based on 

changes in RMSE with the number of hidden layers. The loss function also suggested 

the best performance when using 4 hidden layers. Here is the loss function plot of the 

BEL FFNNs when using one hidden layer, 4 hidden layers, and 10 hidden layers. The 

FFNNs with one hidden layer are slightly underfitting, while the FFNNs with 10 hidden 

layers are overfitting, and both of them have a higher mean squared error and RMSE. 

In other regions, we also compared the RMSE when using different numbers of hidden 

layers to determine the structure. Since the loss functions are not used to validate the 

FFNNs performance in our work, the figure of loss functions is not put in the main text 

or supplemental materials. 

 

The loss function of the BEL FFNNs in region 50-60°S when using one hidden layer, 

4 hidden layers, and 10 hidden layers 

 

3) The paper is missing a comparison with a classic regression approach which 

would highlight why choosing the feedforward neural network can be a good 

choice. I highly recommend adding it.  

Response: The pCO2 predicting error from two classic approaches has been added for 

comparison, including a multiple linear regression (MLR) and a multiple non-linear 



regression (MNLR). The classic approaches suggested a higher RMSE and a more 

severe underestimation of Southern Ocean pCO2 than the FFNN methods (Table 2). 

The newly added contents are as follows: 

In addition, we also test the pCO2 RMSE and bias of traditional regression methods 

for comparison, including a multiple linear regression (MLR) and a multiple non-linear 

regression (MNLR). As expected, the traditional regression methods are more 

susceptible to seasonal uneven measurements, showing higher RMSE and more severe 

underestimation of Southern Ocean pCO2. In particular, the MLR using measurements 

from all months resulted in a winter RMSE of 34.02 μatm in the region south of 60°S, 

and output pCO2 values lower than the real measurements by an average of 17.29 μatm. 

This result is barely acceptable, and it also explains why traditional regression methods 

in previous research were generally limited to specific seasons. Although the MNLR 

performs better than the MLR, its RMSE was still much higher than that of the FFNN 

methods, and the MNLR output pCO2 during winter was also significantly lower than 

measurements in regions south of 50°S. Similar to the treatment of the training period 

of the two FFNN methods, a lesser underestimation of Southern Ocean pCO2 in winter 

was found when using only partial winter measurements for regression. In the 35-50°S 

region, the RMSE of traditional regression methods was still higher than the two FFNN 

methods, and the influence of seasonal uneven measurements was not significant. 

 

Table 2. Comparison of pCO2 predicting error in the Southern Ocean during May-

September among different methods and regression periods 

Regression 

Method 

Regression 

Period 

35-50° S 50-60° S S of 60° S 

RMSE 

(μatm) 

bias 

(μatm) 

RMSE 

(μatm) 

bias 

(μatm) 

RMSE 

(μatm) 

bias 

(μatm) 

BEL 

FFNNs 

May-Sep 12.01 +0.61 11.97 +0.22 14.76 +0.33 

Apr-Sep 10.70 +0.38 11.88 -0.36 14.87 -0.90 

May-Oct 11.39 -0.36 12.07 -0.66 14.50 -0.07 

Apr-Oct 11.10 -0.68 12.09 -1.16 14.20 -1.38 

Mar-Nov 11.32 -1.26 12.51 -2.13 15.50 -4.47 

All Months 9.86 -0.39 13.27 -3.13 16.09 -5.77 

BEL 

FFNNs 

with 

corrected 

May-Sep 12.24 +0.74 11.93 +0.17 14.44 +1.17 

Apr-Sep 10.76 +0.30 11.26 +0.09 13.49 -0.06 

May-Oct 12.81 -0.28 11.44 +0.04 14.27 -0.20 

Apr-Oct 11.83 -0.79 10.93 -0.25 13.29 -0.74 



predictors Mar-Nov 11.69 -1.49 13.07 -0.46 14.07 +0.02 

All Months 9.88 -0.29 11.49 -1.08 14.61 -0.90 

Individual 

FFNN 

May-Sep 12.05 +0.50 11.99 +0.07 15.15 0.36 

Apr-Sep 10.58 +0.30 12.02 -0.52 15.04 -1.14 

May-Oct 11.43 -0.59 12.21 -0.75 14.92 -0.32 

Apr-Oct 11.19 -0.83 12.29 -1.49 14.86 -1.47 

Mar-Nov 11.64 -1.43 12.82 -2.56 15.76 -3.95 

All Months 9.95 -0.34 13.31 -3.33 17.14 -5.38 

Individual 

FFNN 

with 

corrected 

predictors 

May-Sep 12.57 +0.50 12.30 +0.37 14.54 +0.83 

Apr-Sep 10.72 +0.27 11.45 +0.14 13.79 -0.27 

May-Oct 13.09 -0.45 11.52 -0.07 14.46 -0.23 

Apr-Oct 11.35 -0.92 11.06 -0.09 13.63 -0.27 

Mar-Nov 12.02 -1.55 11.55 -0.09 17.86 +0.50 

All Months 9.95 -0.28 12.06 -1.04 15.85 -0.05 

MLR with 

corrected 

predictors 

May-Sep 16.34  -2.33  13.67  -1.71  21.12  +1.09  

Apr-Sep 15.48  -0.67  14.51  -2.29  22.21  -3.00  

May-Oct 16.98  -4.55  16.29  -4.83  23.46  -0.89  

Apr-Oct 15.87  -2.93  16.39  -5.56  24.79  -6.69  

Mar-Nov 16.09  -2.53  16.75  -6.22  29.21  -13.40  

All Months 17.70  -2.30  19.01  -6.11  34.02  -17.29  

MNLR 

with 

corrected 

predictors 

May-Sep 14.37  -0.83  12.17  -0.62  17.04  +2.41  

Apr-Sep 13.51  +0.67  11.20  -0.95  17.70  -2.86  

May-Oct 14.55  -4.06  13.18  -3.47  17.70  +2.41  

Apr-Oct 14.35  -3.45  13.53  -3.76  20.21  -6.64  

Mar-Nov 14.21  -1.72  12.72  -4.70  18.81  -8.01  

All Months 15.02  +0.90  13.92  -5.35  25.68  -13.41  

(BEL FFNNs: boosting ensemble learning based on three FFNNs constructed in this 

work; Individual FFNN: one FFNN with the same structure used in the BEL; MLR: 

multiple linear regression; MNLR: multiple non-linear regression, see Supplementary 

Note 2; Regression period: a period of SOCAT samples used for training neural 

networks or performing classic regression to predict pCO2 during May-September; 

RMSE and bias: calculated from the difference between predicted pCO2 and SOCAT 

measurements during May-September based on the K-fold cross validation method. 

Corrected predictors: pCO2 predictors selected by a stepwise BEL FFNNs algorithm 

based on increasing weightings of winter measurements, see Table 1. Bold numbers: 



the regression period with the lowest RMSE adopted in the final pCO2 product 

construction.) 

 

4) In line 99 the author has used the SOCAT pCO2 measurements, the authors 

should talk more about the dataset including the time range of it. 

Response: Thanks for the suggestion. We have added a description of the SOCAT 

dataset in the method section as follows: 

The SOCAT dataset includes quality controlled global observations of in-situ 

surface ocean fugacity of carbon dioxide (fCO2), sea surface temperature, and salinity 

on ships, moorings, autonomous and drifting surface platforms for the global oceans 

and coastal seas from 1957 to 2023. This dataset is provided as a synthesis version and 

a gridded version, with an estimated fCO2 accuracy of better than 5 μatm. The gridded 

fCO2 was converted to pCO2 using in-situ sea surface temperature and atmospheric 

pressure (Landschützer et al., 2013), and then the converted pCO2 was used in training 

neural networks: 

 𝑝COଶ = 𝑓COଶ ∙ exp(𝑃௧
௦௨ ାଶ∙ఋ

ோ∙்
)ିଵ (1) 

where 𝑃௧
௦௨  is the atmospheric pressure using ERA5 sea level pressure product 

(Hersbach et al., 2020), B and δ are viral coefficients calculated from temperature 

(Weiss, 1974), R is the gas constant and T is the absolute temperature. 

 

5) In line 104 the author mentioned K-fold cross validation with a number of folds 

equal 4. Is the number 4 arbitrary? 

Response: Setting K equal to 4 is not arbitrary but reasonable to be consistent with 

previous research. We set the K value to 4 in order to retain 25% measurements as an 

independent validation set during the validation process. In previous research, it has 

been common practice to set aside 20-25% of the measurements for independent 

validation to assess the accuracy of the neural network outputs. The K-fold cross-

validation method used in this work is repeating this usual validation process for K 

times, to eliminate the influence of validation set selection. 

 

6) In line 188 the authors train a neural network with SOCAT measurements only 

from April to October. The resulting RMSE is lower in this case. The author should 

emphasize more why it should be the case. This section 188-200 needs further 

confirmation. 



Response: Thanks for the suggestion. This is mainly because of the effect of imbalanced 

data with data-rich summer and data-sparse winter. When training with imbalanced data, 

the neural network tends to perform better in data-rich seasons and significantly worse 

in data-sparse seasons. Recent studies suggested the effect of imbalanced data can be 

mitigated through data distribution re-balancing, control of loss function, and using 

transfer-learning based methods (Kang et al., 2020). Training a neural network with 

measurements only from April to October is a data distribution re-balancing method, 

which can effectively mitigate the influence of imbalanced data. The description of why 

RMSE is lower in the case using sectional winter measurements has been added in 

section 188-200 as follows: 

This is because the quantity of pCO2 measurements is significantly imbalanced 

among different seasons, with data in winter much less than in summer. T When training 

with such seasonal imbalanced data, the neural network tends to perform better in data-

rich summer, while the performance is significantly worse in data-sparse winter. This 

effect of imbalanced data can be mitigated through re-balancing data distribution and 

using re-balancing design in the loss function or learning algorithm of neural networks 

(Kang et al., 2020). Training the neural networks with partial winter measurements is a 

data distribution re-balancing method, as the number of measurements is less 

unbalanced after the data-rich summer was removed from the training set. As a result, 

in the areas south of 50°S, the BEL FFNNs and the individual FFNN trained with 

sectional winter measurements suggested a significantly lower RMSE during winter 

than those trained with all-month measurements. 

 

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., & Kalantidis, Y. (2020). 

Decoupling representation and classifier for long-tailed recognition. In 8th 

International Conference on Learning Representations, ICLR 2020. 

 

7) The predictors used for the neural network have been put in supplemental 

materials. I would encourage to talk more in the text about these predictors and 

why they are important. 

Response: Thanks for the suggestion. We have added a new section in the method part 

to interpret the importance of pCO2 predictors and how they are selected. The predictors 

reflect the drivers that affect pCO2 and its variability, and directly influence the pCO2 

predicting error of neural network methods. However, the factors driving pCO2 and its 

variability differ significantly among different regions. Therefore, it is important to 



select a combination of pCO2 predictors that are most relevant to the pCO2 drivers in 

different regions for improving neural network performance. We have moved the 

context in supplemental materials to the main text, and added a section describing the 

data source of used data products for pCO2 predictors in supplemental materials. The 

newly added section is as follows: 

2.2 Selection and correction of pCO2 predictors 

The pCO2 predictors input into the FFNN reflect the drivers of surface ocean pCO2 

and its variability. When changing the input pCO2 predictors, both the FFNN predicted 

pCO2 value and the predicting error significantly change, and these changes can be even 

greater than those caused by altering the FFNN structure. However, the environmental 

factors driving pCO2 and its variability differ significantly among different regions. The 

surface ocean pCO2 is largely affected by the upwelling and biological drawdown in 

the Antarctic region, and is affected by meridional overturning circulation in the 

subantarctic region (DeVries et al., 2017; Gruber et al., 2019). This means that using 

different predictors in different latitude regions can better reflect the regional 

influencing factors of pCO2 and its variability. To find the best combination of pCO2 

predictors in different regions, we have proposed a Stepwise FFNN algorithm in 

previous work, where the changes in predicting error are fed back to the selection of 

input pCO2 predictors (Zhong et al., 2022). This algorithm allows for the objective 

selection of pCO2 predictors in different regions that result in the lowest pCO2 

predicting error. The procedure of the Stepwise FFNN algorithm is determining pCO2 

predictors one by one until no further reduction in predicting error is achieved by either 

adding or removing any predictors. Specifically, the first pCO2 predictor is selected by 

comparing predicting errors when individually using each collected environmental 

variable (listed in Table S1) as input of the FFNN. The variable with the lowest error is 

determined as the first pCO2 predictor, which is also the predictor that has the greatest 

impact on the distribution or variability of regional surface ocean pCO2. Subsequently, 

leaving the first predictor unchanged, the predicting errors are compared when using 

each environmental variable as the second input of the FFNN. The environmental 

variable with the lowest error is determined as the second pCO2 predictor. In the same 

way, new predictors are continuously determined one after another, until the predicting 

error no longer continues to decrease regardless of which one variable is added as a 

pCO2 predictor. Meanwhile, whenever a new predictor is determined, the algorithm also 

tests if the predicting error will decrease when sequentially removing each determined 

predictor, in order to eliminate co-correlation and prevent overfitting. For example, 



when the fourth predictor is determined, the model tests the change in predicting error 

by individually removing each one from the previously determined three predictors. If 

the error decreases after removing a previously determined predictor, this predictor is 

highly correlated with other determined predictors. By adding and removing variables 

in the input of the FFNN one by one in this way, the algorithm ultimately identifies a 

set of pCO2 predictors that minimize the pCO2 predicting error. In this work, the single 

FFNN structure used in the previous Stepwise FFNN algorithm has been replaced with 

a structure of ensemble learning FFNNs with stronger fitting capabilities (see Figure 1), 

referred to as the Stepwise BEL algorithm. 

However, the Stepwise BEL algorithm relies on predicting errors for determination 

of pCO2 predictors, and the number of SOCAT pCO2 measurements in the Southern 

Ocean during the winter season is much lower than in the summer, leading to a lower 

weighting on winter predicting errors compared to summer in the determination. As a 

result, the selected predictors are more reflective of factors influencing pCO2 

distribution in the summer (such as biological drawdown) while neglecting those in the 

winter (such as enhanced vertical mixing). Therefore, we increased the weighting of 

winter data to be nearly equal to that of summer, to carry out a winter correction of 

pCO2 predictors in the Southern Ocean: 

 𝑅𝑀𝑆𝐸 = ට
ଷ∗∑(∆େమ ౯ష౦)మା∑(∆େమ ోౙ౪షఽ౦౨)మ

ଷ∗ே౯ష౦ାேోౙ౪షఽ౦౨
  (2) 

where the ∆pCO2 was the difference between predicted pCO2 and SOCAT pCO2 

measurements, and N was the number of monthly SOCAT measurements (3*NMay-Sep ≈ 

NOct-Apr). Based on a self-organization map method, the Southern Ocean was divided 

into different regions according to the similarity of pCO2 drivers, including two belt 

regions and three sectors connecting to major basins (Zhong et al., 2022). Therefore, 

the selection of pCO2 predictors and reconstruction of pCO2 in this work was based on 

three latitude areas: 35-50°S, 50-60°S, and south of 60°S (Table 1). Since there were 

no observed effects of uneven seasonal distribution on the neural network training in 

the 35-50°S region connecting the major basins, the correction of pCO2 predictors is 

only conducted in the area south of 50°S. 

Table 1 Winter correction of pCO2 predictors. 

Area pCO2 predictors 

35-

50°S 

Pacific sector SST, sin(Longitude), xCO2, Latitude, SSS, Photosynthetically 

Available Radiation, Chlorophyll, Mixed layer depth, 

cos(Longitude), Mixed layer depth anom, Remote sensing 

reflectance at 531nm and 555nm 



Indian sector SST, Total absorption at 645nm, Number of months since January 1992, 

Mixed layer depth, SSS, W velocity of ocean currents at 105m, 

Surface pressure, Total absorption at 678nm, W velocity of ocean 

currents at 195m, Total backscattering at 667nm, Nitrate, Total 

absorption at 555nm, Mixed layer depth anom, Particulate organic 

carbon, DIC, W velocity of ocean currents at 65m, Remote sensing 

reflectance at 488nm, Total backscattering at 443nm 

Atlantic sector Latitude, SSS, Dry air mixing ratio of atmospheric CO2, Particulate 

organic carbon, Total backscattering at 488nm, Mixed layer depth, 

Diffuse attenuation coefficient, Total backscattering at 412nm, Sea 

surface height, cos(Longitude), SST, Remote sensing reflectance 

at 460nm, Total backscattering at 547nm, Bathymetry, Total 

absorption at 678nm, Total backscattering at 469nm, Remote 

sensing reflectance at 678nm 

50-60°S uncorrected SSSanom, SST, Mixed layer depth, Dry air mixing ratio of atmospheric 

CO2 anom, Bathymetry, Sea surface height anom, W velocity of ocean 

currents at 105m, DIC, Dissolved oxygen, Nitrate 

50-60°S corrected Dry air mixing ratio of atmospheric CO2, Mixed layer depth, SST, DIC, 

month, SSS, Bathymetry, Latitude, W velocity of ocean currents 

at 105m, Dissolved oxygen, W velocity of ocean currents at 5m, 

Dry air mixing ratio of atmospheric CO2 anom, Mixed layer depth 

anom 

S of 60°S uncorrected DIC, Bathymetry, SSS, Alkalinity, cos(Longitude), SST, Sea surface 

height anom, W velocity of ocean currents at 195m, 5m, and 65m, 

SSSanom 

S of 60°S corrected Bathymetry, SSS, Alkalinity, SST, month, W velocity of ocean currents 

at 65m, 105m, and 195m, Dissolved oxygen, cos(Longitude), Sea 

surface height, Latitude, SSSanom 

(Uncorrected predictors were selected by a Stepwise BEL algorithm updated from Zhong et al., 

2022, corrected predictors were selected using the same algorithm but increasing the weighting of 

winter SOCAT measurements; The sort order of pCO2 predictors indicated a relative contribution 

on decreasing predicting errors. The predictors denoted by subscript "anom" represent the monthly 

anomaly obtained by subtracting the monthly climatology. Data sources of used products are listed 



in Supplementary Table 1.) 

 

Section added in the supplement: 

Note 1 Products of pCO2 predictors 

We have collected gridded products of different environmental variables as 

potential pCO2 predictors (Table S1), and the selection of these products was based on 

two reasons. The first reason was their potential association with physical, chemical, 

and biological ocean processes which may affect the surface ocean pCO2. Another 

reason was the sufficient availability in time and spatial coverage and their potential 

association with the unavailable interannual variability of some climatological products 

used.  

Most predictor products were obtained with a monthly and 1°×1° resolution, which 

can be directly used without any treatments. Differently, products with higher 

resolutions were integrated into the same monthly and 1°×1° resolution by averaging, 

before they can be used in the relationship fitting. For instance, the mixed layer depth 

product, originally obtained with a resolution of 0.25°×0.25°, was converted to a 1°×1° 

resolution by averaging 16 0.25° grids into one 1° grid. Similarly, predictor products 

obtained with daily or weekly resolutions were converted to the monthly resolution by 

directly averaging all values within the same month, such as the ocean currents product. 

Supplementary Table 1. Data products used as pCO2 predictors. 

Predictor Data product Reference  Resolution 

Sine of latitude  - - 

Sine of longitude  - - 

Cosine of longitude  - - 

Number of months 

since January 1992 

 - - 

Year  - - 

Month  - - 

SST and monthly 

anomaly 

ECCO2 cube92 Menemenlis et al., 

2008 

0.25°, 1992-

2022 

SSS and monthly 

anomaly 

ECCO2 cube92 Menemenlis et al., 

2008 

0.25°, 1992-

2022 

Climatological total 

alkalinity 

AT_NNGv2_climat

ology 

Broullón et al., 

2019 

1° 

Climatological TCO2_NNGv2LD Broullón et al., 1° 



dissolved inorganic 

carbon 

EO_climatology 2020 

Climatological 

dissolved oxygen 

WOA18 Garcia et al., 

2019a 

1° 

Climatological nitrate WOA18 Garcia et al., 

2019b 

1° 

Climatological 

phosphate 

WOA18 

Climatological silicate WOA18 

Mixed layer depth and 

monthly anomaly 

ECCO2 cube92 Menemenlis et al., 

2008 

0.25°, 1992-

2022 

Sea surface height and 

monthly anomaly 

ECCO2 cube92 

W velocity of ocean 

currents at 5 m, 65m, 

105m, 195m, and in-

situ depth 

ECCO2 cube92 

Sea level pressure ERA5 Hersbach et al., 

2020 

1°, 1979-2022 

Surface pressure ERA5 

dry air mixing ratio of 

atmospheric CO2 and 

monthly anomaly 

NOAA Greenhouse 

Gas Marine 

Boundary Layer 

Reference 

Lan et al., 2023 0.25°, 1979-

2022 

Oceanic Nino Index bi-monthly 

Multivariate El 

Niño/Southern 

Oscillation index  

Wolter et al., 2011 1979-2023 

Arctic Oscillation 

index 

Climate Prediction 

Center Daily Arctic 

Oscillation Index 

CPC, 2002 1950-2023 

Southern Oscillation 

Index 

Climate Prediction 

Center Southern 

Oscillation Index 

CPC, 2005 1951-2023 

Bathymetry GEBCO_2022 Grid GEBCO, 2022 15 arc-second 

10 m Wind speed and 

monthly anomaly 

ERA5 Hersbach et al., 

2020 

1°, 1979-2022 



Climatology of 

Surface Ocean pCO2 

MPI-ULB-

SOM_FFN_clim 

Landschützer et 

al., 2020 

0.25° 

Chlorophyll 

concentration and 

monthly anomaly* 

MODIS-Aqua 

Chlorophyll Data 

NASA, 2022 9km, 2002-2023 

Surface particulate 

organic carbon 

concentration 

MODIS-Aqua 

Particulate Organic 

Carbon Data 

Photosynthetically 

Available Radiation 

MODIS-Aqua 

Photosynthetically 

Available Radiation 

Data 

Diffuse attenuation 

coefficient at 490 nm 

MODIS-Aqua 

Downwelling 

Diffuse Attenuation 

Coefficient Data 

Remote sensing 

reflectance at 412-678 

nm 

MODIS-Aqua 

Remote-Sensing 

Reflectance Data 

Total absorption at 

412-678 nm 

MODIS-Aqua 

Inherent Optical 

Properties Data 

Total backscattering at 

412-678 nm 

MODIS-Aqua 

Inherent Optical 

Properties Data 

(*: products from Chlorophyll concentration to Total backscattering are satellite remote 

sensing products; Remote sensing reflectance, total absorption, and total backscattering 

both include 10 wavelengths: 412nm, 443nm, 469nm, 488nm, 531nm, 547nm, 555nm, 

645nm, 667nm, and 678nm, with each wavelength regarded as one individual predictor.) 

 

8) In the conclusion part the authors should emphasize more about the broader 

impacts of their findings and how these methods can be beneficial to the scientific 

community.  

Response: Thanks for the suggestion. We have modified the conclusion part as follows: 

Our method provides a feasible solution for handling the impact of uneven 



measurements on the performance of neural networks. It also helps to improve the high 

uncertainty in pCO2-based carbon sink estimates for special regions with limited and 

unevenly distributed data, such as polar regions. Furthermore, although the pCO2 

difference after correction was more notable in the Southern Ocean south of 60°S, the 

extensive sea ice coverage almost eliminates the CO2 flux and mitigates the 

underestimation of winter surface ocean pCO2. Therefore, the difference in carbon sink 

intensity before and after correction in the Southern Ocean was mainly observed in the 

50-60°S region. If sea ice melts and exposes all currently covered surface Southern 

Oceans, the high pCO2 seawater will release an additional 0.28 PgC yr-1 of CO2 to the 

atmosphere in winter of each year, leading to an average reduction of 0.14 PgC yr-1 in 

the overall annual Southern Ocean carbon sink. This means that in the future, as global 

warming causes the melting of sea ice in the Southern Ocean, a portion of CO2 trapped 

under the sea ice may be released into the atmosphere. Additionally, as the seawater 

warms, it can lead to an increase in surface ocean pCO2 levels. The combined effects 

of global warming would limit the ocean's capacity to absorb atmospheric CO2, which 

in turn could exacerbate global warming, potentially accelerating the pace of global 

climate change. 

 

Given the interested topic covered by the article I would recommend major 

revision to the editor in order to address the changes written above. 

  



Reviewer #2: 

 

The manuscript describes an approach to reduce the uncertainty/discrepancy 

in data products and model outputs for surface ocean pCO2 in the Southern Ocean. 

The authors state that this is mainly due to the lack of in situ observations 

during winter (compared to summer). 

They have applied the boosting ensemble learning feed forward neural 

networks (BEL FFNNs) method using a gridded version of SOCAT data, and data 

from the Southern Ocean flux station (SOFS, 142.0°E, 46.8°S), south of Tasmania 

(Australia) for validation. 

Question:  

1) Aren't there any other pCO2 observing time series in other sector of the S. Ocean? 

Or only for summer periods? 
Response: There are a few other pCO2 observing time series stations in the Southern 

Ocean, such as the Drake time series across the Drake Passage and the KERFIX time 

series in the Indian sector. The Drake time series station consists primarily of 15 stations 

across the Drake Passage in the Southern Ocean from 2002 to 2018. However, the 

mooring measurements are ship-based and moving across the Drake Passage between 

55-70°W and 55-65°S, and the winter period was less sampled. It is difficult to validate 

the winter pCO2 from our method using these data, so the Drake time series was not 

used. In addition, there is a KERFIX station located in the Indian sector of the Southern 

Ocean (50.6°S, 68.4°E), but it is only from 1990 to 1995. The measurements of DIC 

and Alkalinity are only available from 1992 to 1993, and the calculated winter pCO2 in 

the KERFIX station was only available in 1993, with calculated values lower than all 

existing machine learning pCO2 products. In addition, there are a few other time series 

stations, but both of them lack winter measurements or lack pCO2 measurements. 

Therefore, we only used the SOFS time series station, as this station has many winter 

measurements with good continuity. 

 

2) My main question for the methods section concerns the following (l. 76-78): 

"The surface ocean pCO2 converted from the Surface Ocean CO2 Atlas version 

2023 (SOCAT v2023) dataset was used for pCO2 mapping by fitting the non-linear 

relationship between pCO2 and environmental variables" 

To which environmental variables? 

Response: The conversion was carried out using in-situ sea surface temperature and 

atmospheric pressure. The description of conversion between pCO2 and fCO2 has been 

added in the method section as follows: 



The gridded fCO2 was converted to pCO2 using in-situ sea surface temperature and 

atmospheric pressure (Landschützer et al., 2013), and then the converted pCO2 was 

used in training neural networks: 

 𝑝COଶ = 𝑓COଶ ∙ exp(𝑃௧
௦௨ ାଶ∙ఋ

ோ∙்
)ିଵ (1) 

where 𝑃௧
௦௨  is the atmospheric pressure using ERA5 sea level pressure product 

(Hersbach et al., 2020), B and δ are viral coefficients calculated from sea surface 

temperature (Weiss, 1974), R is the gas constant and T is the absolute temperature. 

 

3) Additionally, the list of predictors appears in the supplementary material only, 

and it is hard for the reader to understand why the winter predictors were chosen 

for each latitude area. 
Response: Thanks for the suggestion. A new section about the use of predictors has 

been added in the method section, and the context in supplementary material has been 

also moved to this new section. The predictors were chosen for each latitude area 

because of the latitude differences in pCO2 drivers. The surface ocean pCO2 is largely 

affected by the upwelling and biological drawdown in the high latitude Antarctic region, 

and is affected by meridional overturning circulation in the subantarctic region. While 

in the 35-50°S region, the variability of surface ocean pCO2 was mainly driven by the 

notable seasonal change in SST. The dividing of biogeochemical provinces using a self-

organizing map method based on the similarity of environmental variables also presents 

a belt province south of 60°S and a belt province covering nearly 50-60°S in our 

previous work. Therefore, we chose pCO2 predictors for different latitude areas. The 

new section was as follows: 

2.2 Selection and correction of pCO2 predictors 

The pCO2 predictors input into the FFNN reflect the drivers of surface ocean pCO2 

and its variability. When changing the input pCO2 predictors, both the FFNN predicted 

pCO2 value and the predicting error significantly change, and these changes can be even 

greater than those caused by altering the FFNN structure. However, the environmental 

factors driving pCO2 and its variability differ significantly among different regions. The 

surface ocean pCO2 is largely affected by the upwelling and biological drawdown in 

the Antarctic region, and is affected by meridional overturning circulation in the 

subantarctic region (DeVries et al., 2017; Gruber et al., 2019). This means that using 

different predictors in different latitude regions can better reflect the regional 

influencing factors of pCO2 and its variability. To find the best combination of pCO2 

predictors in different regions, we have proposed a Stepwise FFNN algorithm in 



previous work, where the changes in predicting error are fed back to the selection of 

input pCO2 predictors (Zhong et al., 2022). This algorithm allows for the objective 

selection of pCO2 predictors in different regions that result in the lowest pCO2 

predicting error. The procedure of the Stepwise FFNN algorithm is determining pCO2 

predictors one by one until no further reduction in predicting error is achieved by either 

adding or removing any predictors. Specifically, the first pCO2 predictor is selected by 

comparing predicting errors when individually using each collected environmental 

variable (listed in Table S1) as input of the FFNN. The variable with the lowest error is 

determined as the first pCO2 predictor, which is also the predictor that has the greatest 

impact on the distribution or variability of regional surface ocean pCO2. Subsequently, 

leaving the first predictor unchanged, the predicting errors are compared when using 

each environmental variable as the second input of the FFNN. The environmental 

variable with the lowest error is determined as the second pCO2 predictor. In the same 

way, new predictors are continuously determined one after another, until the predicting 

error no longer continues to decrease regardless of which one variable is added as a 

pCO2 predictor. Meanwhile, whenever a new predictor is determined, the algorithm also 

tests if the predicting error will decrease when sequentially removing each determined 

predictor, in order to eliminate co-correlation and prevent overfitting. For example, 

when the fourth predictor is determined, the model tests the change in predicting error 

by individually removing each one from the previously determined three predictors. If 

the error decreases after removing a previously determined predictor, this predictor is 

highly correlated with other determined predictors. By adding and removing variables 

in the input of the FFNN one by one in this way, the algorithm ultimately identifies a 

set of pCO2 predictors that minimize the pCO2 predicting error. In this work, the single 

FFNN structure used in the previous Stepwise FFNN algorithm has been replaced with 

a structure of ensemble learning FFNNs with stronger fitting capabilities (see Figure 1), 

referred to as the Stepwise BEL algorithm. 

However, the Stepwise BEL algorithm relies on predicting errors for determination 

of pCO2 predictors, and the number of SOCAT pCO2 measurements in the Southern 

Ocean during the winter season is much lower than in the summer, leading to a lower 

weighting on winter predicting errors compared to summer in the determination. As a 

result, the selected predictors are more reflective of factors influencing pCO2 

distribution in the summer (such as biological drawdown) while neglecting those in the 

winter (such as enhanced vertical mixing). Therefore, we increased the weighting of 

winter data to be nearly equal to that of summer, to carry out a winter correction of 



pCO2 predictors in the Southern Ocean: 

 𝑅𝑀𝑆𝐸 = ට
ଷ∗∑(∆େమ ౯ష )మା∑(∆େమ ోౙ౪షఽ౦౨)మ

ଷ∗ே౯ష ାேోౙ౪షఽ౦౨
  (2) 

where the ∆pCO2 was the difference between predicted pCO2 and SOCAT pCO2 

measurements, and N was the number of monthly SOCAT measurements (3*NMay-Sep ≈ 

NOct-Apr). Based on a self-organization map method, the Southern Ocean was divided 

into different regions according to the similarity of pCO2 drivers, including two belt 

regions and three sectors connecting to major basins (Zhong et al., 2022). Therefore, 

the selection of pCO2 predictors and reconstruction of pCO2 in this work was based on 

three latitude areas: 35-50°S, 50-60°S, and South of 60°S (Table 1). Since there were 

no observed effects of uneven seasonal distribution on the neural network training in 

the 35-50°S region connecting the major basins, the correction of pCO2 predictors is 

only conducted in the area south of 50°S. 

Table 1 Winter correction of pCO2 predictors. 

Area pCO2 predictors 

35-

50°S 

Pacific sector SST, sin(Longitude), xCO2, Latitude, SSS, Photosynthetically 

Available Radiation, Chlorophyll, Mixed layer depth, 

cos(Longitude), Mixed layer depth anom, Remote sensing 

reflectance at 531nm and 555nm 

Indian sector SST, Total absorption at 645nm, Number of months since January 1992, 

Mixed layer depth, SSS, W velocity of ocean currents at 105m, 

Surface pressure, Total absorption at 678nm, W velocity of ocean 

currents at 195m, Total backscattering at 667nm, Nitrate, Total 

absorption at 555nm, Mixed layer depth anom, Particulate organic 

carbon, DIC, W velocity of ocean currents at 65m, Remote sensing 

reflectance at 488nm, Total backscattering at 443nm 

Atlantic sector Latitude, SSS, Dry air mixing ratio of atmospheric CO2, Particulate 

organic carbon, Total backscattering at 488nm, Mixed layer depth, 

Diffuse attenuation coefficient, Total backscattering at 412nm, Sea 

surface height, cos(Longitude), SST, Remote sensing reflectance 

at 460nm, Total backscattering at 547nm, Bathymetry, Total 

absorption at 678nm, Total backscattering at 469nm, Remote 

sensing reflectance at 678nm 

50-60°S uncorrected SSSanom, SST, Mixed layer depth, Dry air mixing ratio of atmospheric 



CO2 anom, Bathymetry, Sea surface height anom, W velocity of ocean 

currents at 105m, DIC, Dissolved oxygen, Nitrate 

50-60°S corrected Dry air mixing ratio of atmospheric CO2, Mixed layer depth, SST, DIC, 

month, SSS, Bathymetry, Latitude, W velocity of ocean currents 

at 105m, Dissolved oxygen, W velocity of ocean currents at 5m, 

Dry air mixing ratio of atmospheric CO2 anom, Mixed layer depth 

anom 

S of 60°S uncorrected DIC, Bathymetry, SSS, Alkalinity, cos(Longitude), SST, Sea surface 

height anom, W velocity of ocean currents at 195m, 5m, and 65m, 

SSSanom 

S of 60°S corrected Bathymetry, SSS, Alkalinity, SST, month, W velocity of ocean currents 

at 65m, 105m, and 195m, Dissolved oxygen, cos(Longitude), Sea 

surface height, Latitude, SSSanom 

(Uncorrected predictors were selected by a Stepwise BEL algorithm updated from Zhong et al., 

2022, corrected predictors were selected using the same algorithm but increasing the weighting of 

winter SOCAT measurements; The sort order of pCO2 predictors indicated a relative contribution 

on decreasing predicting errors. The predictors denoted by subscript "anom" represent the monthly 

anomaly obtained by subtracting the monthly climatology. Data sources of used products are listed 

in Supplementary Table 1.) 

 

4) In the conclusion section, my concern is about the statement on lines 502-506: 

Is there an estimate for this in the future? In figure 9 we see the decrease in the S. 

Ocean carbon sink in the scenarios where 50% or 100% of the sea ice melts - but 

within the period ~1992-2022 considered in this study. What are the modelled 

predictions (please cite the models, like in figure 7, for instance), despite the 

discrepancy in the ocean carbon sink? 

Response: We did not estimate the specific carbon sink intensity in the future. 

Predicting the future variability is not what machine learning pCO2 mapping is skilled 

in.  But based on current estimate that the atmospheric pCO2 increases at an average 

rate of 1.90 μatm yr-1 in the Southern Ocean areas with sea ice, compared to the 1.53 

μatm yr-1 of surface ocean pCO2, we can suppose that the high latitude Antarctic 

seawaters would be still a carbon source but inhibited by sea ice in the future. 

The modeled predictions similarly suggested a winter CO2 release inhibited by sea 

ice in the Southern Ocean. The recent research based on a 2‐D channel model and an 



analytical model indicated that sea ice coverage affects the air-sea CO2 flux by physical 

barrier and limiting biological photosynthesis, and CO2 emissions to the atmosphere 

will increase significantly in the area around 65°S if the sea ice completely melts (Gupta 

et al., 2020). Also, research based on mooring observations in the West Antarctic 

Peninsula continental shelf suggested that a reduction in sea ice may be expected to 

weaken the Southern Ocean oceanic CO2 sink, by allowing additional outgassing in 

autumn and winter (Shadwick et al., 2021). 

 

The figure cited from Gupta et al., 2020. They compared CO2 flux that the seasonal ice 

cover affects physical CO2 exchange only (Capping in orange), biological 

photosynthesis only (light attenuation in green), both together (solid black), and no ice 

cover (dotted black). If there is no ice cover, the no-ice carbon source (dotted black) 

around 65°S would be stronger than the result with the current ice cover fraction (solid 

black), which is consistent with our results. 

 

Gupta, M., Follows, M. J., & Lauderdale, J. M. (2020). The effect of Antarctic sea ice 

on Southern Ocean carbon outgassing: Capping versus light attenuation. Global 

Biogeochemical Cycles, 34(8), e2019GB006489. 

Shadwick, E. H., De Meo, O. A., Schroeter, S., Arroyo, M. C., Martinson, D. G., & 

Ducklow, H. (2021). Sea ice suppression of CO2 outgassing in the West Antarctic 

Peninsula: Implications for the evolving Southern Ocean carbon sink. Geophysical 

Research Letters, 48, e2020GL091835. 

 

5) How does the calculated uncertainty in sea-air CO2 fluxes (section 

"uncertainty") affect the estimates of the decreasing C sink from this manuscript? 



Response: The uncertainty did not affect the result that the seawater under sea ice 

coverage acts as a carbon source and the additional CO2 release caused by sea ice 

melting will decrease the Southern Ocean carbon sink intensity. The uncertainty 

represents the potential difference between estimated carbon sinks and the true values 

caused by the bias in pCO2 mapping and gas transfer velocity. This difference only 

affects the intensity of carbon sources covered by sea ice and is not big enough to turn 

carbon sources into carbon sinks. Therefore, the uncertainty may make the estimated 

additional CO2 release (or decrease in the total Southern Ocean carbon sink) caused by 

sea ice melting differ from the real situation to some extent.   



Annotation: 

 

1) Line 45: gas transfer? 

Response: The word has been corrected into “gas transfer velocity”. 

 

2) Line 56: Is this relative to the last 3 decades, as in the paragraph above? 

Response: The 40% was estimated for the historical period since the Industrial 

Revolution. Specifically, the contribution of the Southern Ocean on global ocean 

anthropogenic CO2 uptakes was estimated to be 43% from 1870 to 1995 by Frölicher 

et al., 2015. The original text has been modified as: 

The Southern Ocean south of 35°S was a strong carbon sink and has contributed to 

about 40% of global ocean anthropogenic CO2 uptakes from 1870 to 1995 (Sabine et 

al., 2004; Fletcher, S. E. M. et al., 2006; Frölicher et al., 2015; Landschützer et al., 

2015). 

 

3) Line 70: overestimation in comparison to the in situ observations? Or to model 

outputs? 

Response: The overestimation refers to the stronger carbon sink of machine learning 

methods compared to the in-situ observations. The original text has been modified as: 

The strongly seasonally uneven surface ocean pCO2 measurements with missing winter 

observations may result in an overestimation of the Southern Ocean carbon sink from 

pCO2 products compared to the in-situ observations (Bushinsky et al., 2019; Hauck et 

al., 2020; Gloege et al., 2021; Friedlingstein et al., 2022). Besides supplying more 

measurements from sailboats or floats (Landschützer et al., 2023), whether the 

overestimation in pCO2-based machine learning methods compared to the in-situ 

observations can be solved by improving algorithms is worth investigating. 

 

4) Line 78: which ones? 

Response: A new section about the selection of pCO2 predictors has been added in the 

method section, and the used pCO2 predictors are listed in Table 1 now. 

 

5) Line 90: which drivers were more relevant in winter and summer? 

Response: In the areas between 50-60°S, the pCO2 distribution was more relevant to 

the enhanced vertical mixing in summer and to the biological drawdown in winter. The 

original text has been modified as follows: 



 However, the Stepwise BEL algorithm relies on predicting errors for determination 

of pCO2 predictors, and the number of SOCAT pCO2 measurements in the Southern 

Ocean during the winter season is much lower than in the summer, leading to a lower 

weighting on winter predicting errors compared to summer in the determination. As a 

result, the selected predictors are more reflective of factors influencing pCO2 

distribution in the summer (such as biological drawdown) while neglecting those in the 

winter (such as enhanced vertical mixing). 

 

6) Line 129: please check the format o "k" along the text - you stated using it in 

italic font 

Response: Thanks for the suggestion. The velocity k has been all corrected to the italic 

font. 

 

7) Line 154: how this affects the numbers for the correction of the size of the 

Southern Ocean carbon sink at section 3 in this manuscript? 

Response: The uncertainty did not affect the difference between uncorrected and 

corrected carbon sinks. As it was calculated from the pCO2 RMSE of corrected neural 

networks, the uncertainty only affects the size of the corrected Southern Ocean carbon 

sink. The numbers for the correction of the size of the Southern Ocean carbon sink were 

mainly related to the decrease in mean pCO2 bias from -3.13~-5.77 μatm to -0.25~-0.74 

μatm after the winter correction. The RMSE decrease after correction also makes the 

carbon sink uncertainty smaller than the uncorrected result, but the corrected 

uncertainty and the correction size of carbon sinks are not directly related. 

 

8) Strikeout in Line 166 

Response: The sentence has been modified as follows: 

Original: The SOCAT measurements in the Southern Ocean are concentrated in summer 

with low surface ocean pCO2 (Figure 2a). While in winter, the number of measurements 

with high surface ocean pCO2 was only about one-fifth of that in summer. 

Modified: The SOCAT measurements in the Southern Ocean are concentrated in 

summer with low surface ocean pCO2 (Figure 2a), with the number of high-pCO2 

winter measurements only about one-fifth of that in summer. 

 

9) Strikeout in Line 166 

Response: The unnecessary title “the” has been removed. 



 

10) Table 1: what is the meaning of the bold numbers? 

Response: The bold numbers are the lowest RMSE, which is also the adopted training 

period in the final pCO2 product construction. The description has been added in the 

table annotation. 

 

11) Line 221: add “between” 

Response: the sentence has been modified as follows: 

In contrast, there is no significant underestimation of winter surface ocean pCO2 in 

the Southern Ocean between 35-50°S. 

 

12) Line 240: would be good to have a list of the predictors, in a table or in the 

main text, not only in the supplementary file. In the discussion, you should also 

name the predictors. 

Response: A new section about predictors has been added in the method section, and 

the predictor list has been moved to Table 1 of this section now. The predictors have 

been listed in the full name, and the data source of used products has been listed in the 

supplementary Table S1. 

 

13) Line 267: Where is the SOFS station located (latitude area - between 35-50S, 

or between 50-60S, or further south of 60S?) I have found it, but the reader may 

not be familiar to it. 

Response: The location of the SOFS station (142.0°E, 46.8°S) has been added in the 

method section where the SOFS station is first referred. 

 

14) Line 376: driven? 

Response: The text has been corrected as follows: 

Research based on an idealized upper ocean box model also suggested that the 

slowed growth rate of atmospheric pCO2 and the global sea surface temperature 

response to the 1991 eruption of Mt Pinatubo volcanic were two external forces to 

explain the global-scale reduction in the ocean carbon sink, and the reinvigoration of 

carbon sink was driven by the acceleration of atmospheric pCO2 growth after 2001 

(McKinley et al., 2020). 

 

15) Line 398: how many models? where is the data available? directly from 



Friedlingstein et al. 2022? 

Response: The GOBMs are an average of 10 global ocean biogeochemical models. The 

data is available at https://doi.org/10.18160/GCP-2022, this link can be found in 

Friedlingstein et al. 2022. The description in Figure 7 annotation has been modified as 

follows: 

Figure 7. Global ocean carbon sink over the past three decades after the Southern 

Ocean correction. GOBMs: average results of 10 global ocean biogeochemical models 

(https://doi.org/10.18160/GCP-2022, Friedlingstein et al., 2022);  

 

16) Line 442: One should avoid writing that "figure X shows" - it is better if you 

describe and discuss your result, then direct the reader to the figure. 

Response: Thanks for the suggestion. The sentence has been modified as follows: 

If sea ice melted completely, the changes in simulated carbon sink intensity without 

considering indirect factors based on the recent sea-air pCO2 difference were different 

between summer and winter periods in the Southern Ocean (Figure 9). 

 

17) Line 503: Is there an estimate for this in the future? In figure 9 we see the 

derease in the sink in the scenarios where 50% or 100% of the sea ice melts - but 

within the period ~1992-2022. 

Response: We did not perform a quantitative future estimate, but only speculated the 

theoretical future change based on current data. Predicting future changes is not what 

the used machine learning is good at. In addition, the released CO2 from areas with 

melting sea ice may further affect the sea ice melting speed, and predicting the sea ice 

melting speed is not in our expertise area. The quantitative prediction may be carried 

out in future works through model simulations. 

 



Decision letter and referee reports: second  round 
 
15th May 24 
Dear Professor Li, 

 

 

Your manuscript titled "Melting sea ice will weaken carbon sinks in the Southern Ocean" has now been 

seen by 2 reviewers, and we include their comments at the end of this message. They find your work 

of interest, but some important points are still raised. We are interested in the possibility of publishing 

your study in Communications Earth & Environment, but would like to consider your responses to 

these concerns and assess a revised manuscript before we make a final decision on publication. 

 

We therefore invite you to revise and resubmit your manuscript, addressing the remaining concerns of 

both reviewers, along with a point-by-point response that takes into account the points raised. Please 

highlight all changes in the manuscript text file. 

 

We are committed to providing a fair and constructive peer-review process. Please don't hesitate to 

contact us if you wish to discuss the revision in more detail. 

 

Please use the following link to submit your revised manuscript, point-by-point response to the 

referees’ comments (which should be in a separate document to any cover letter), a tracked-changes 

version of the manuscript (as a PDF file) and the completed checklist: 

[redacted] 

** This url links to your confidential home page and associated information about manuscripts you 

may have submitted or be reviewing for us. If you wish to forward this email to co-authors, please 

delete the link to your homepage first ** 

 

We hope to receive your revised paper within six weeks; please let us know if you aren’t able to 

submit it within this time so that we can discuss how best to proceed. If we don’t hear from you, and 

the revision process takes significantly longer, we may close your file. In this event, we will still be 

happy to reconsider your paper at a later date, as long as nothing similar has been accepted for 

publication at Communications Earth & Environment or published elsewhere in the meantime. 

 

Please do not hesitate to contact us if you have any questions or would like to discuss these revisions 

further. We look forward to seeing the revised manuscript and thank you for the opportunity to review 

your work. 

 

Best regards, 

 

Jose Luis Iriarte Machuca, PhD 

Editorial Board Member 

Communications Earth & Environment 

 

Alireza Bahadori, PhD 

Associate Editor 

Communications Earth & Environment 

 

EDITORIAL POLICIES AND FORMATTING 

 

We ask that you ensure your manuscript complies with our editorial policies. Please ensure that the 

following formatting requirements are met, and any checklist relevant to your research is completed 

and uploaded as a Related Manuscript file type with the revised article. 

 

Editorial Policy: Policy requirements (Download the link to your computer as a PDF.) 

 

https://www.nature.com/documents/nr-editorial-policy-checklist.pdf


For Manuscripts that fall into the following fields: 

• Behavioural and social science 

• Ecological, evolutionary & environmental sciences 

• Life sciences 

An updated and completed version of our Reporting Summary must be uploaded with the revised 

manuscript 

You can download the form here: 

https://www.nature.com/documents/nr-reporting-summary.zip 

 

Furthermore, please align your manuscript with our format requirements, which are summarized on 

the following checklist: 

Communications Earth & Environment formatting checklist 

 

and also in our style and formatting guide Communications Earth & Environment formatting guide . 

 

*** DATA: Communications Earth & Environment endorses the principles of the Enabling FAIR data 

project (http://www.copdess.org/enabling-fair-data-project/ ). We ask authors to make the data that 

support their conclusions available in permanent, publically accessible data repositories. (Please 

contact the editor if you are unable to make your data available). 

 

All Communications Earth & Environment manuscripts must include a section titled "Data Availability" 

at the end of the Methods section or main text (if no Methods). More information on this policy, is 

available at http://www.nature.com/authors/policies/data/data-availability-statements-data-

citations.pdf. 

 

In particular, the Data availability statement should include: 

- Unique identifiers (such as DOIs and hyperlinks for datasets in public repositories) 

- Accession codes where appropriate 

- If applicable, a statement regarding data available with restrictions 

- If a dataset has a Digital Object Identifier (DOI) as its unique identifier, we strongly encourage 

including this in the Reference list and citing the dataset in the Data Availability Statement. 

 

DATA SOURCES: All new data associated with the paper should be placed in a persistent repository 

where they can be freely and enduringly accessed. We recommend submitting the data to discipline-

specific, community-recognized repositories, where possible and a list of recommended repositories is 

provided at http://www.nature.com/sdata/policies/repositories. 

 

If a community resource is unavailable, data can be submitted to generalist repositories such 

as figshare or Dryad Digital Repository. Please provide a unique identifier for the data (for example a 

DOI or a permanent URL) in the data availability statement, if possible. If the repository does not 

provide identifiers, we encourage authors to supply the search terms that will return the data. For 

data that have been obtained from publically available sources, please provide a URL and the specific 

data product name in the data availability statement. Data with a DOI should be further cited in the 

methods reference section. 

 

Please refer to our data policies at http://www.nature.com/authors/policies/availability.html. 

 

 

REVIEWER COMMENTS: 

 

Reviewer #3 (Remarks to the Author): 

 

Dear Drs. Li and Song, 

 

https://www.nature.com/documents/commsj-phys-style-formatting-checklist-article.pdf
https://www.nature.com/documents/commsj-phys-style-formatting-guide-accept.pdf
http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf
http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf
http://www.nature.com/sdata/policies/repositories
https://figshare.com/
http://datadryad.org/
http://www.nature.com/authors/policies/availability.html


Thank you for addressing the comments in your comprehensive rebuttal letter, to both reviewers. The 

revised manuscript is much clearer now, especially now listing the chosen pCO2 predictors. 

 

The abstract could be a little clearer, as the following: 

 

"This overestimation can be mitigated by a winter correction in 

algorithms, with the average Southern Ocean carbon sink during 1992-2021 corrected to -0.87 PgC 

yr-1 from the original -1.01 PgC yr-1. Furthermore, the most notable underestimation of surface 

ocean pCO2 mainly occurred in regions south of 60°S and 

was hiding under ice cover. If sea ice melts completely, there could be a further reduction of about 

0.14 PgC yr-1 in the Southern Ocean carbon sink due to exposure of high pCO2 seawater to the 

atmosphere in winter." 

 

I understand that the authors have improved/corrected the prediction of the S. Ocean C sink for 1992-

2021 to -0.87 PgC/yr but the assumption of total melting of sea ice isn't something of a future 

scenario? Maybe you should add a sentence from the text (page 20) in the abstract (suggestion): 

 

"This overestimation can be mitigated by a winter correction in 

algorithms, with the average Southern Ocean carbon sink during 1992-2021 corrected to -0.87 PgC 

yr-1 from the original -1.01 PgC yr-1. Furthermore, the most notable underestimation of surface 

ocean pCO2 mainly occurred in regions south of 60°S and 

was hiding under ice cover. As the surface ocean pCO2 under sea ice coverage in the winter is much 

higher than the atmosphere, if sea ice melts completely, there could be a further reduction of about 

0.14 PgC yr-1 in the Southern Ocean carbon sink." 

 

In page 21 there is still a sentence beginning with "Figure 9 shows the simulated carbon sink intensity 

in the Southern Ocean under different sea ice coverage without considering indirect factors based on 

the recent sea-air pCO2 difference..." - I suggest rewriting and starting with the main information first 

and then cite the figure (fig. 9). 

 

I have noticed that there were a change in the authors' list, is there a reason why Dr. Fan Wang no 

longer is a co-author? 

 

 

Reviewer #4 (Remarks to the Author): 

 

Thanks for your answer, the article has shown good improvements. 

This article offers a promising approach for dealing with PCO2 bias measurements, it is definitely 

worth publishing. However, I notice some issues that needs to be resolved: 

-The label format is not consistent across the article (fig. 9 as label in bold format while fig.8 has not 

for example). I would recommend the authors put a title to all figures (one for each subfigure) and 

use the same format for all of them. 

-Fig.5 has a) and b) label figure in bold and c) and d) labels not in bold. Be consistent. 

-The references need to be in a different color compared to the rest of the text. 

-Also to make the result more robust I would encourage to try the same methodology with another 

data set so to compare with SOCCAT results. The authors can add this second dataset results in 

supplemental material. 

 

Ones this is done I will endorse the publication of it. 



Reviewer #3: 

Thank you for addressing the comments in your comprehensive rebuttal letter, to both 

reviewers. The revised manuscript is much clearer now, especially now listing the 

chosen pCO2 predictors. 

1) The abstract could be a little clearer, as the following:

"This overestimation can be mitigated by a winter correction in algorithms, with the

average Southern Ocean carbon sink during 1992-2021 corrected to -0.87 PgC yr-1 from

the original -1.01 PgC yr-1. Furthermore, the most notable underestimation of surface

ocean pCO2 mainly occurred in regions south of 60°S and was hiding under ice cover.

If sea ice melts completely, there could be a further reduction of about 0.14 PgC yr-1 in

the Southern Ocean carbon sink due to exposure of high pCO2 seawater to the

atmosphere in winter."

I understand that the authors have improved/corrected the prediction of the S. Ocean C

sink for 1992-2021 to -0.87 PgC/yr but the assumption of total melting of sea ice isn't

something of a future scenario? Maybe you should add a sentence from the text (page

20) in the abstract (suggestion):

"This overestimation can be mitigated by a winter correction in algorithms, with the

average Southern Ocean carbon sink during 1992-2021 corrected to -0.87 PgC yr-1 from

the original -1.01 PgC yr-1. Furthermore, the most notable underestimation of surface

ocean pCO2 mainly occurred in regions south of 60°S and was hiding under ice cover.

As the surface ocean pCO2 under sea ice coverage in the winter is much higher than the

atmosphere, if sea ice melts completely, there could be a further reduction of about 0.14

PgC yr-1 in the Southern Ocean carbon sink."

Response: Thanks for the suggestion. The abstract has been modified as the suggestion.

2) In page 21 there is still a sentence beginning with "Figure 9 shows the simulated

carbon sink intensity in the Southern Ocean under different sea ice coverage without

considering indirect factors based on the recent sea-air pCO2 difference..." - I suggest

rewriting and starting with the main information first and then cite the figure (fig. 9).

Response: Thanks for the suggestion. The beginning of the paragraph has been

modified as the following:

"Assuming complete sea ice melt and neglecting indirect factors based on the 

recent sea-air pCO2 difference, the changes in simulated carbon sink intensity vary 

between summer and winter periods in the Southern Ocean (Figure 9)." 

Author responses: second round



3) I have noticed that there were a change in the authors' list, is there a reason why Dr. 

Fan Wang no longer is a co-author? 

Response: Thanks for the notification. Wang Fan made an important contribution to this 

article, but we mistakenly deleted in the re-submission when we wanted to put Wang 

Fan in a more forward position. The mistake has been corrected and the co-author Fan 

Wang has been put in fourth place now. 

 

Reviewer #4: 

Thanks for your answer, the article has shown good improvements. 

This article offers a promising approach for dealing with PCO2 bias measurements, it 

is definitely worth publishing. However, I notice some issues that needs to be resolved: 

1) The label format is not consistent across the article (fig. 9 as label in bold format 

while fig.8 has not for example). I would recommend the authors put a title to all figures 

(one for each subfigure) and use the same format for all of them. 

Response: Thanks for the suggestion. We have corrected all labels to in bold format as 

the following: 

 
Figure 2. The number of a) SOCAT fCO2 measurements in each month and b) unique 

months covered by SOCAT measurements in the Southern Ocean south of 35°S from 

1992 to 2021. 



 
Figure 3. Distribution of bias between predicted pCO2 and SOCAT measurements in 

the Southern Ocean south of 35°S. 

 

Figure 5. Distribution of average sea-air pCO2 difference and CO2 flux from May to 

September during 1992-2021. 

 



 

Figure 8. Distribution of average sea-air ΔpCO2 and sea ice coverage during May-Sep 

in the Southern Ocean. 

2) Fig.5 has a) and b) label figure in bold and c) and d) labels not in bold. Be consistent. 

Response: The label of Figure 5 has been corrected in bold. 



 

Figure 5. Distribution of average sea-air pCO2 difference and CO2 flux from May to 

September during 1992-2021. 

 

3) The references need to be in a different color compared to the rest of the text. 

Response: Thanks for the suggestion. The references have been changed to blue color. 

 

4) Also to make the result more robust I would encourage to try the same methodology 

with another data set so to compare with SOCAT results. The authors can add this 

second dataset results in supplemental material. 

Response: Thanks for the suggestion. The Southern Ocean Carbon and Climate 

Observations and Modeling (SOCCOM) float pCO2 data have been added for further 

evaluation (Figure S1). The description of the SOCCOM dataset and the results has 

been placed in supplemental material. 

The SOCCOM dataset contains observations from biogeochemical profiling floats, 

processed with delayed-mode quality control method at the Monterey Bay Aquarium 

Research Institute (MBARI). The SOCCOM pCO2 data were derived from estimated 

total alkalinity and pH sampled every two meters in the upper 1000 meters using LIAR 

or CANYON algorithms (Johnson et al., 2017). 



By averaging the SOCCOM data at depths of 2.77-5.00 m in each month and 1° 

grid into 230 samples, we estimated the bias between the float pCO2 data and our BEL 

FFNNs pCO2 product during June-September from 2014 to 2019. Although a great 

discrepancy exists between the BEL FFNNs mapped pCO2 and SOCCOM float pCO2, 

the winter correction in the BEL algorithm still mitigated the underestimation of pCO2 

by FFNNs. The uncorrected BEL FFNNs pCO2 is about 30 μatm lower than float data 

along the 60°S areas during the winter period, while the corrected pCO2 show biases 

less than -20 μatm in the Indian sector and Pacific sector (Figures S1a and S1b). In the 

Atlantic sector and the Drake Passage, after the winter correction, the BEL FFNNs 

pCO2 underestimated 10-20 μatm compared to float data changed to be less biased. 

These changes in biases suggested that the regional average pCO2 of BEL FFNNs 

product will be closer to the float data. The average bias reduced from -16.8 μatm to -

6.5 μatm and was better distributed along the y=x line after the winter correction (Figure 

S1c). However, a great discrepancy exists between BEL FFNNs pCO2 and the 

SOCCOM float data when float pCO2 is lower than 350 μatm or higher than 450 μatm. 

Notably, this discrepancy was not a shame in bad machine learning performance, but a 

difference exists between the SOCAT dataset and the SOCCOM dataset. Previous 

research also suggested a much weaker Southern Ocean carbon sink derived from the 

SOCCOM dataset than that from the SOCAT dataset (Bushinsky et al., 2019). Therefore, 

the evaluation based on SOCCOM float data can also prove the benefits of the winter 

correction in the estimate of the Southern Ocean carbon sink. 

Figure S1. Comparison between BEL FFNNs pCO2 trained on SOCAT data and the 

independent SOCCOM float pCO2 observation during June-September since 2014. a): 

bias between uncorrected BEL FFNNs pCO2 and SOCCOM float data; b): bias between 

corrected BEL FFNNs pCO2 and SOCCOM float data; larger bubbles represent that the 

BEL FFNNs pCO2 is more biased, and blue bubbles represent lower BEL pCO2 than 

the float data; c) statical comparison between BEL FFNNs pCO2 and SOCCOM float 



pCO2. Uncorrected BEL pCO2: trained on SOCAT dataset using boosting ensemble 

learning FFNNs; Corrected BEL pCO2: result after applying a winter correction by 

training BEL FFNNs on only winter SOCAT samples. SOCCOM float pCO2: monthly 

and 1° averaged results from SOCCOM data at depths of 2.77-5.00 m from 2014 to 

2019 (Johnson et al., 2017). 

 

Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R., Baker, D., Mazloff, M. 

R., ... & Sarmiento, J. L. (2019). Reassessing Southern Ocean air‐sea CO2 flux 

estimates with the addition of biogeochemical float observations. Global 

Biogeochemical Cycles, 33(11), 1370-1388. 

Johnson, Kenneth S.; Riser, Stephen C.; Boss, Emmanuel S.; Talley, Lynne D.; 

Sarmiento, Jorge L.; Swift, Dana D.; Plant, Josh N.; Maurer, Tanya L.; Key, Robert 

M.; Williams, Nancy L.; Wanninkhof, Richard H.; Dickson, Andrew G.; Feely, 

Richard A.; Russell, Joellen L. (2017). Southern Ocean Carbon and Climate 

Observations and Modeling (SOCCOM) Float Data Archive. UC San Diego 

Library Digital Collections. https://doi.org/10.6075/J0TX3C9X. 

 



Decision letter and referee reports: third  round 
 
15th May 24 
Dear Professor Li, 

 

Your manuscript titled "Melting sea ice will weaken carbon sinks in the Southern Ocean" has now been 

seen by our reviewers, whose comments appear below. In light of their advice we are delighted to say 

that we are happy, in principle, to publish a suitably revised version in Communications Earth & 

Environment under the open access CC BY license (Creative Commons Attribution v4.0 International 

License). 

 

We therefore invite you to revise your paper one last time to address the remaining concerns of our 

reviewers. At the same time we ask that you edit your manuscript to comply with our format 

requirements and to maximise the accessibility and therefore the impact of your work. 

 

EDITORIAL REQUESTS: 

 

Please review our specific editorial comments and requests regarding your manuscript in the attached 

"Editorial Requests Table". 

 

*****Please take care to match our formatting and policy requirements. We will check revised 

manuscript and return manuscripts that do not comply. Such requests will lead to delays. ***** 

 

Please outline your response to each request in the right hand column. Please upload the completed 

table with your manuscript files as a Related Manuscript file. 

 

If you have any questions or concerns about any of our requests, please do not hesitate to contact 

me. 

 

SUBMISSION INFORMATION: 

 

In order to accept your paper, we require the files listed at the end of the Editorial Requests Table; the 

list of required files is also available at https://www.nature.com/documents/commsj-file-checklist.pdf . 

 

OPEN ACCESS: 

 

Communications Earth & Environment is a fully open access journal. Articles are made freely 

accessible on publication under a CC BY license (Creative Commons Attribution 4.0 International 

License). This license allows maximum dissemination and re-use of open access materials and is 

preferred by many research funding bodies. 

 

For further information about article processing charges, open access funding, and advice and support 

from Nature Research, please visit https://www.nature.com/commsenv/article-processing-charges 

 

At acceptance, you will be provided with instructions for completing this CC BY license on behalf of all 

authors. This grants us the necessary permissions to publish your paper. Additionally, you will be 

asked to declare that all required third party permissions have been obtained, and to provide billing 

information in order to pay the article-processing charge (APC). 

 

Please use the following link to submit the above items: 

[redacted] 

** This url links to your confidential home page and associated information about manuscripts you 

may have submitted or be reviewing for us. If you wish to forward this email to co-authors, please 

delete the link to your homepage first ** 

 

http://creativecommons.org/licenses/by/4.0
https://www.nature.com/commsenv/article-processing-charges


 

We hope to hear from you within two weeks; please let us know if you need more time. 

 

 

Best regards, 

 

Dr Alireza Bahadori 

Associate Editor 

Communications Earth & Environment 

 

 

REVIEWERS' COMMENTS: 

 

Reviewer #4 (Remarks to the Author): 

 

Dear Authors, 

The revised manuscript looks much better for me, I endorse the publication of it with some additional 

changes to be added: 

 

-all the equations have to be rewritten using latex form. 

 

-the line number needs to be added in the articles 

 

-Also the references need to be numbered as well. 



Reviewer #4: 

Dear Authors, 

The revised manuscript looks much better for me, I endorse the publication of it with 

some additional changes to be added: 

-all the equations have to be rewritten using latex form.

Response: All equations in the manuscript have been rewritten using latex form. 

-the line number needs to be added in the articles

Response: Thanks for the suggestion, we have added the line number. 

-Also the references need to be numbered as well.

Response: The reference have been numbered in the order of appearance. 

Author responses: third round
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