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Abstract The absorption of atmospheric carbon dioxide (CO2) in the Southern Ocean represents a
critical component of the global oceanic carbon budget. Previous assessments of air‐sea carbon flux
variations and long‐term trends in polar regions during winter have faced limitations due to scarce field data
and the lack of ocean color satellite imagery, causing uncertainties in estimating CO2 flux estimation. This
study utilized the Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite to construct a
continuous 16‐year (2006–2021) time series of sea surface partial pressure of CO2 (pCO2) in the Southern
Ocean. Our findings revealed that the polar region in South Ocean acts as a carbon sink in winter, with CO2

flux of ∼30 TgC in high‐latitude areas (South of 50°S). This work highlights the efficacy of active remote
sensing for monitoring sea surface pCO2 and contributes insights into the dynamic carbonate systems of the
Southern Ocean.

Plain Language Summary Climate change data from recent decades have consistently shown an
increase in atmospheric CO2 concentration. The Southern Ocean, a major carbon sink, is critical in this regard.
However, limitations in ocean color remote sensing and infrequent sampling hinder a complete understanding of
carbon uptake in high‐latitude regions during winter. Previous reconstructions inadequately considered the
biological effect on the air‐sea CO2 exchange process in winter. This study used observations from an active
remote sensing satellite to represent the biological effects of CO2 and construct a long‐term time series of sea
surface CO2 level for the Southern Ocean. Additionally, the study reassessed the CO2 uptake capacity of the
Southern Ocean in winter. These findings suggest that previous estimates may underestimate the CO2 uptake
capacity in the high‐latitude regions during winter, potentially due to underestimations of biological effects.
This research underscores the value of active remote sensing for obtaining critical biogeochemical parameters in
high‐latitude oceans, providing an essential tool for monitoring carbonate systems.

1. Introduction
The Southern Ocean, constituting a quarter of the global ocean surface area, absorbs 40% of anthropogenic carbon
emissions (Friedlingstein et al., 2022; Khatiwala et al., 2013). The region functions as a crucial carbon sink within
the global ocean, playing a significant role in the exchange of carbon between the ocean and the atmosphere.
Therefore, understanding the Southern Ocean carbon sink and its variability is critical for climate assessments and
the global carbon budget. However, achieving precise quantification of air‐sea CO2 fluxes remains challenging
due to historical undersampling in these harsh and remote regions. Traditionally, estimation of air‐sea CO2 fluxes
in the Southern Ocean heavily relies on ship‐based measurements of surface pCO2. This method suffers from
limited spatial coverage and seasonal bias due to poor sampling during stormy autumn and winter periods (Bakker
et al., 2016; Ritter et al., 2017; Rödenbeck et al., 2015; Sutton et al., 2021). These limitations hinder a
comprehensive understanding of air‐sea CO2 exchange in the Southern Ocean. To address this issue, numerous
studies have attempted to fill the gap in pCO2 data using different approaches, including observation‐based
interpolation (Gray et al., 2018; Mackay & Watson, 2021), biogeochemical process‐based modeling (Lenton
et al., 2013; Mongwe et al., 2016; Takao et al., 2020), and satellite‐based derivation (Bennington et al., 2022;
Landschützer et al., 2016) in the Southern Ocean. However, significant discrepancies persist in the CO2 flux
estimates derived from models, observation‐based data products, and direct observations in the Southern Ocean,
particularly in high‐latitude regions with extremely low observation frequencies (Mackay &Watson, 2021; Prend
et al., 2022; Wu & Qi, 2023).
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Among these approaches, the satellite observation‐based method involves integrating ship‐based measured pCO2

data with satellite‐observed oceanic physical and biological variables, offering advantages in estimating sea
surface pCO2 in the global ocean. Various global sea surface pCO2 products, including CSIR‐ML6 (Gregor
et al., 2019), LSCE‐FFNN (Denvil‐Sommer et al., 2019), MPI‐SOMFFN (Landschützer et al., 2014, 2020) and
JMA‐MLR (Iida et al., 2021), have been generated from satellite‐based observations. These products utilize
satellite‐observed chlorophyll‐a (Chl‐a) in conjunction with other physical parameters, such as sea surface
temperature (SST), mixed layer depth (MLD), sea surface salinity (SSS), and atmospheric CO2 (xCO2), to
reconstruct global sea surface pCO2. These satellite‐based products have provided valuable insights into varia-
tions in global carbon reserves. However, one assumption made in these reconstruction of sea surface pCO2 in
winter creates a substantial uncertainty. Satellite Chl‐a measurements are extremely limited in the Southern
Ocean during winter due to high solar zenith angles, cloud cover, and thick aerosols. To address this limitation,
these products either assume a low Chl‐a value (e.g., Chl‐a = 0.1 mg m− 3) (Denvil‐Sommer et al., 2019; Gregor
et al., 2019) or rely solely on physical variables (Iida et al., 2021; Landschützer et al., 2014) to estimate winter
pCO2. This assumption neglects the influence of biological processes on pCO2 during winter and may lead to an
overestimation of sea surface pCO2, consequently underestimating the air‐sea CO2 flux in the Southern Ocean.

The Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite can observe the Earth's surface
under challenging lighting conditions, such as aerosols, thin clouds, and low solar angles (Lu et al., 2014; Winker
et al., 2009). This capability enables the observation of the ocean surface at high latitudes during winter. The
particulate backscatter coefficient (bbp) derived from CALIPSO can serve as a proxy for phytoplankton biomass
in high‐latitude oceans when satellite color observations are unavailable (Behrenfeld et al., 2017, 2022). This
enhances its ability to observe winter pCO2 and carbon flux in high‐latitude oceans (Zhang et al., 2022). Utilizing
the strengths of the CALIPSO satellite in the Southern Ocean, we combined this information with other variables,
including MLD, SST, SSS, wind and xCO2, to develop a machine learning‐based approach. This approach
allowed us to generate a 16‐year (2006–2021) time series of regional sea surface pCO2 products in the Southern
Ocean. Furthermore, we investigated the distribution and variation in air‐sea CO2 fluxes during winter. Our
findings revealed that the high‐latitude Southern Ocean acts as an CO2 sink during winter, which differs from
previous findings that suggested it is a CO2 source.

2. Materials and Methods
2.1. Study Area

This study centers its attention on the Southern Ocean, specifically the region located south of 35°S. Based on Fay
& McKinley, 2014, the Southern Ocean can be broadly categorized into four distinct biomes: the subtropical
permanently stratified biome (STPS), the subtropical seasonally stratified biome (STSS), the subpolar seasonally
stratified biome (SPSS), and the ice biome (ICE; Figure 1a). The STPS and the STSS regions possess relatively
extensive coverage of remote sensing data, enabling a more detailed representation of carbon sequestration and
carbon exchange trends. Conversely, the SPSS and ICE regions that constitute nearly one‐third of the Southern
Ocean play a significant role in the uptake of anthropogenic carbon (Khatiwala et al., 2009). However, this region
experiences seasonal ice coverage and high solar zenith angles, resulting in the unavailability of Chl‐a products
from satellite observations (Figure 1c). This limitation introduces uncertainty when assessing carbon seques-
tration trends using a satellite‐based observational approach. In this study during the analysis of the spatial and
temporal distribution of pCO2 and carbon flux in the subsequent sections, we categorize the STPS and STSS as
low‐latitude Southern Oceans and designate the SPSS and ICE as high‐latitude Southern Oceans.

2.2. Data Sets

Ship‐based measurements of pCO2 were retrieved from the Surface Ocean CO2 Atlas data base (SOCAT V2023)
(Bakker et al., 2016). The SOCAT V2023 data set includes data from a total of 860 cruises conducted in the
Southern Ocean from June 2006 to December 2021, resulting in an extensive data set comprising 5,602,672 data
points. Note that only the data quality level classified as A to D was used in this study (QC_Flag = A∼D)
(Figure 1b).

The monthly CALIPSO‐derived bbp data from June 2006 to December 2021 were obtained from Lu et al. (2021).
We mapped the monthly daytime and nighttime bbp onto a 0.25° × 0.25° grid using a 2D linear interpolation
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method. This approach, in contrast to the Chl‐a product observed by the Moderate Resolution Imaging Spec-
troradiometer (Figure 1c), effectively covered the subpolar region during winter (Figure 1d).

Various environmental variables were acquired from different sources to estimate the Southern Ocean pCO2.
Monthly 9 km MW_IR OI SST are produced by Remote Sensing Systems (RSS, 2022). Monthly MLD
(0.083° × 0.083°) were sourced from HYCOM (Behrenfeld et al., 2016). SSS (0.083° × 0.083°) were extracted
from the GLORYS12V1 product of Copernicus Marine Global Reanalysis Product (Lellouche et al., 2018).
Monthly wind data were sourced from the high‐resolution Cross‐Calibrated Multi‐Platform data set (Mears
et al., 2022). xCO2 data were retrieved from the NOAA Marine Boundary Layer dry air mixing ratio of atmo-
spheric CO2 (Lan et al., 2023). Ice data were obtained from the AVHRR Pathfinder version 5.3 level 3 product
(Saha et al., 2018).

Figure 1. (a) Map of biomes defined by Fay andMcKinley (2014). (b) Measured pCO2 distributions in SOCAT v2023 (Bakker et al., 2016) for 2006–2021. (c) The mean
winter (May, June, and July) Chl‐a concentration from Moderate Resolution Imaging Spectroradiometer (2006–2021) (OBPG, 2018). (d) The mean winter (May, June,
and July) bbp derived through linear interpolation (2006–2021).
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2.3. pCO2 Retrieval and Evaluation

The machine learning‐based Random Forest (RF) algorithm was used to predict pCO2 via bbp and other envi-
ronmental factors in the Southern Ocean followed the approach proposed in Tu et al. (2021). It establishes a
nonlinear function between the target variable pCO2 and the input variables bbp, SST, SSS, MLD, Wind, and
xCO2:

pCO2 = f (bbp, SST, SSS, MLD, Wind, xCO2) (1)

To ensure compatibility with the CALIPSO‐derived bbp data, the input environmental variables were resampled to
a 0.25° × 0.25°. Monthly environmental variables were employed for matching field measurements, thereby
increasing the likelihood of obtaining cloud‐free satellite pixels and increasing the number of matches. Prior to the
matching process, the ship‐based measured pCO2 data were averaged at approximately 25 km (0.25° × 0.25°) to
align with the spatial resolutions of the predicted variables. The specific matching process adhered to the
methodology of Le et al. (2019). Finally, a total of 140,787 matched pairs involving field‐measured sea surface
pCO2 and predicted variables from 860 cruises conducted between 2006 and 2021 were determined for the
development of the pCO2 model.

To better assess the performance and robustness of the RF model in predicting pCO2, the satellite‐field match up
data set were divided into training data set and independent validation data set. Randomly selected field measured
pCO2 from 80 cruises, amounting to approximately 12,362 data records, were used as independent validation data
set and excluded from model calibration. The remaining portion was used to calibrate the RF model and further
divided into two parts, with 70% for model training and 30% for crossing validation following previous studies
(Chen et al., 2019; Tu et al., 2021). Various statistical metrics, including the correlation coefficient (R2), root
mean square error (RMSE), mean absolute error (MAE), and mean bias (MB) were utilized to evaluate the
model's performance (Le et al., 2019; Tu et al., 2021). The error (±means standard deviation) is used when
analyzing interannual variation (Le et al., 2019).

2.4. Candidate pCO2 Products for Comparison

Four globally applied sea surface pCO2 products, each generated through distinct methodologies, were selected
for comparative analysis of CO2 flux variations in the Southern Ocean. These products include LSCE‐FFNN
(Denvil‐Sommer et al., 2019), MPI‐SOMFFN (Landschützer et al., 2014, 2020), CSIR‐ML6 (Gregor et al., 2019),
and JMA‐MLR (Iida et al., 2021). All these products are derived from SOCAT pCO2 data and satellite‐based
observations utilizing machine learning approaches (Table S1 in Supporting Information S1). Among these
four products, the CSIR‐ML6 and LSCE‐FFNN products employed low‐concentration values (log(Chl‐
a)= 0 mg m− 3) to fill in missing Chl‐a data in high‐latitude regions during winter. In contrast, the MPI‐SOMFFN
and JMA‐MLR products did not include the Chl‐a variable during the calculation of the global sea surface pCO2

in winter. Due to variations in the data used and diverse strategies for handling ice concentration in different
products, the updated pCO2 data provided in Fay et al. (2021) was used to calculate air‐sea CO2 flux to ensure
comparability of the final results. The bulk sea‐air CO2 flux is commonly calculated according to Garbe
et al. (2014). Note that the field measured pCO2 in STPS regions is extremely scarceness (Figure 1b), which may
cause high uncertainty in pCO2 retrieval product, this region was excluded during calculating the monthly and
annual regional mean pCO2 and sea‐air CO2 flux for the low latitude region.

3. Result
3.1. Model Performance

The performance of the RF model in estimating sea surface pCO2 in the Southern Ocean utilizing CALIPSO‐
based bbp data closely aligned with the observed values (Figure 2). Throughout the model training process, the
RF model exhibited exceptional performance, indicating that the model has a high level of robustness. The RF
model yielded a RMSE of 6.2 μatm, a MAE of 3.4 μatm, a MB of 0.07 μatm and a R2 value of 0.99 for the training
data set, and yielded a RMSE of 16.3 μatm, a MAE of 9.0 μatm, a MB of 0.09 μatm and a R2 value of 0.83 for the
cross‐validation data set. Although the performance of the model degraded for the independent validation data set,
yielding a RMSE of 17.3 μatm, a MAE of 12.9 μatm, a MB of 0.15 μatm and a R2 value of 0.56, it successfully
replicated variation of field measured pCO2 (Figure 2d). Since other products did not provide specific
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performance data within the Southern Ocean, their accuracy was also evaluated using the same data set of 80
randomly selected cruise pCO2 measurements in this study. The results indicated that the pCO2 values derived
from CALIPSO‐based observations exhibited comparable performance to those of the four products (Figure S1
and Table S2 in Supporting Information S1), with RMSE values of approximately 18.0 μatm, MAE values of
approximately 13.0 μatm, MB values of ±1.0 μatm and R2 values of ∼0.55. Given the large variation range of
pCO2 in the South Ocean (∼200–450 μatm), these findings suggest that the pCO2 data derived from CALIPSO‐
based observations can be effectively utilized to investigate the spatial and temporal variations in CO2 uptake in
the Southern Ocean.

3.2. Variations in Sea Surface pCO2

All five pCO2 products consistently revealed similar spatial distributions and temporal fluctuations (Figure S2 in
Supporting Information S1 and Figure 3a). In broad terms, the low‐latitude region, situated between 35°S and
50°S, exhibited lower pCO2 values than the high‐latitude regions, primarily attributed to the presence of greater
phytoplankton biomass (Figure S2 in Supporting Information S1). Seasonal variations were evident, with pCO2

values being lower in the summer months and higher in winter (Figure 3a). Notably, the CALIPSO‐based product
exhibited a discernible increasing trend characterized by an annual increase rate of 1.63 (R2 = 0.92, P < 0.001)
μatm year− 1, which closely aligns with the trends observed in the other four products (Table S3 in Supporting
Information S1). Importantly, this increase rate was found to be lower than that of atmospheric CO2,
(2.23 μatm year− 1), implying a growing annual carbon uptake in the Southern Ocean from 2006 to 2021.
However, a notable distinction emerged in the magnitude of sea surface pCO2 among the five pCO2 products, and
this difference exhibited regional variation. In the low‐latitude region (Figure 3b), the disparity primarily man-
ifested during summer, with CALIPSO‐derived pCO2 values being lower than those of the other four products. In

Figure 2. The performance of the Random Forest (RF) model in estimating sea surface pCO2 during (a) model training and (b) cross‐validation phase. (c) Distribution of
pCO2 residual refers to the discrepancy between predicted and measured values for the independent randomly selected 80 cruises. (d) Comparison between in‐situ pCO2
and pCO2 predicted by the RF model for the 80 randomly selected cruises.
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contrast, within the high‐latitude region, the difference was more prominent during winter (Figure 3c). During
winter and early spring, the pCO2 data derived from CALIPSO consistently displayed lower values than those
derived from the other four products and remained consistently below atmospheric CO2 levels. This suggests that
these regions function as a carbon sink during winter. Conversely, the other products had pCO2 levels higher than
the atmospheric CO2 level, indicating carbon sources during the winter months.

3.3. Sea–Air CO2 Flux Variability

The assessment of the Southern Ocean's CO2 uptake capacity was analyzed by calculating the air‐sea CO2 flux
using the CALIPSO‐based pCO2 product. The results demonstrated that the CALIPSO‐based air‐sea CO2 fluxes
exhibited spatial and temporal distributions comparable to those estimated from the other four products (Figure
S3 in Supporting Information S1 and Figure 3d). Across all products, it was evident that the Southern Ocean acted
as a robust carbon sink from 2006 to 2021 (Figure 3d and Table S3 in Supporting Information S1). The
CALIPSO‐based product yielded the highest annual mean air‐sea CO2 flux, with a value of − 1.12 ± 0.12 Pg
C year− 1 in the Southern Ocean. However, it also exhibited the lower rate of increase, with an estimated increase
rate of 0.018 Pg C year− 1 (R2 = 0.43, p < 0.001) in the Southern Ocean. The low‐latitude region consistently
demonstrated a strong and stable carbon uptake capacity throughout the year, absorbing ∼0.86 ± 0.08 Pg
C year− 1. This value significantly exceeded the carbon uptake of approximately 0.25 ± 0.08 Pg C year− 1 esti-
mated for the high‐latitude regions based on the CALIPSO‐based product.

Among the five products, the air‐sea CO2 fluxes exhibited minor differences in the low‐latitude region
(Figure 3e). However, noticeable disparities were observed in the high‐latitude region during the winter months
(Figure 3f). The CALIPSO‐based product consistently indicated a greater carbon flux than did the other four
products during winter, revealing a previously unrecognized overall carbon sink. Figure 4 provides a summary of

Figure 3. The time series of regional pCO2 (a–c) and sea–air CO2 flux (d–f) for the period 2006–2021. (a, d) For the entire Southern Ocean and (b, e), (c, f) for the low‐
and high‐latitude areas, respectively. Note that the regional mean for low‐latitude was only calculated from the subtropical seasonally stratified biome region.
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the climatological air‐sea CO2 flux budget in the Southern Ocean, estimated from different pCO2 products for the
winter season. Due to missing Chl‐a data occurring primarily in May, June, and July (Figure S4 in Supporting
Information S1), the carbon fluxes in these 3 months were averaged to establish the austral winter climatology for
comparison. All five products yielded comparable climatological winter air‐sea CO2 flux values for the low‐
latitude region (Figure 4a), however, the CALIPSO‐based product revealed a significantly greater CO2 uptake
capacity in the high‐latitude region during winter (Figure 4b), with a climatological winter air‐sea CO2 flux of
− 28.2 ± 26.3 Tg C. In contrast, the CSIR‐ML6, MPI‐SOMFFN, LSCE‐FFNN, and JMA‐MLR products all
portrayed this area as a CO2 source, with climatological winter air‐sea CO2 flux values of 30.1 ± 17.64,
5.6 ± 33.4, 12.1 ± 18.6 and 21.2 ± 11.1 TgC, respectively. As a result, the CALIPSO‐based product yielded
higher CO2 uptake value than the other four products for the entire South Ocean (Figure 4c), with value higher
than 250 TgC in winter. These results suggest that the CO2 uptake might be underestimated by pervious esti-
mations in winter.

4. Discussion
Precisely assessing the carbon uptake capacity in the Southern Ocean presents notable challenges due to the vast
expanse of this area and the scarcity of field measurements, particularly during winter when observational data are
limited and ocean color products unavailable. Although various methodologies, such as model simulation
(Kessler & Tjiputra, 2016; Mongwe et al., 2016, 2018), interpolation of measured data (Bushinsky et al., 2019;
Landschützer et al., 2015; Rödenbeck et al., 2015), and inversion of remote sensing products (Gregor et al., 2017;
Hauck et al., 2023), have been developed to acquire spatially and temporally continuous global pCO2 data,
applying these methods in the Southern Ocean during winter is challenging. Field measurements for high‐latitude
regions during winter are lacking due to severe environmental conditions, rendering interpolation methods
inapplicable to these regions. Model simulation methods, although capable of identifying large‐scale trends in the
oceanic carbon cycle, are constrained in their ability to analyze complex variable relationships in specific regions,
leading to discrepancies between simulations and measurements. Remote sensing data inversion methods aim to
partially address these limitations; however, ocean color products are unavailable during winter, introducing
uncertainties in pCO2 products.

We used a novel approach based on CALIPSO observations to reconstruct pCO2 levels, resulting in a long‐term
time series of pCO2 data for the Southern Ocean. Different from other pCO2 products reconstructed from ocean
color observations (e.g., Chl‐a), this approach utilized bbp derived from CALIPSO as a proxy for phytoplankton
biomass during winter. The viability of this approach was substantiated that established CALIPSO‐derived bbp as
an optimal proxy for phytoplankton biomass when ocean color is unavailable (Behrenfeld et al., 2013). Addi-
tionally, a recent study demonstrated a strong relationship between CALIPSO bbp and Chl‐a in high‐latitude
oceans (Zhang et al., 2022). Independent evaluation of the CALIPSO‐based pCO2 product confirmed its abil-
ity to capture spatial and temporal variations in sea surface pCO2 in the Southern Ocean (Figures 2c and 2d).
Crucially, the bbp‐based approach exhibited comparable accuracy to that of other products based on ocean color
observations when Chl‐a data were available (Table S2 and Figure S1 in Supporting Information S1). In addition,

Figure 4. Comparison of regional mean winter (May, June, and July) air‐sea CO2 flux of different products in the low‐latitude region (a), and the high latitude region (b),
and the Southern Ocean.
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we further evaluated the effect from the change of machine learning models on the constructed pCO2 level, and
found that the switch of construction approach does not significantly affect the pCO2 time series in this study (data
not shown). These indicate that differences between the pCO2 concentration and air‐sea carbon flux estimates
derived from the CALIPSO‐based product and ocean color satellite‐based products are not attributable to un-
certainties in the reconstruction approach.

Using the CALIPSO‐derived pCO2 products, we revisited the carbon uptake capacity in the Southern Ocean by
calculating the air‐sea CO2 flux. Our results showed that the high latitude region in South Ocean acts as carbon
sink during winter, which is contrast to the results from the other four products, revealing as a carbon source
(Figure 4b). This divergence from most previous ocean color satellite observation‐based products suggested that
these earlier products may have neglected or underestimated initiate biological effects while overestimating pCO2

in winter. Notably, phytoplankton blooms often in early winter (Arteaga et al., 2020; Uchida et al., 2019),
contributing to this difference. The Southern Ocean Carbon and Climate Observations and Modeling project float
data, for instance, identify the region south of the Antarctic Circumpolar Current (ACC) as a significant carbon
source due to the influence of carbon‐rich deep water (Bushinsky et al., 2019; Gray et al., 2018). Regional
measurements by 9 aircraft projects suggested that the Southern Ocean is a relatively neutral carbon sink during
winter (Long et al., 2021). Our findings differ primarily due to the regions considered for carbon flux calculations
in our study, which focused on areas lacking the ocean color Chl‐a product; these regions are considerably larger
than the regions south of the ACC. The CALIPSO‐based pCO2 product indeed revealed a near‐neutral or weak
carbon source south of the ACC during winter.

In summary, our study highlights the advantages of utilizing active remote sensing satellites for observing sea
surface pCO2 and obtaining a better understanding of the carbon cycle in high‐latitude oceans. However, we
acknowledge the limitations of our study. Like many other approaches, the machine learning‐based pCO2

retrieval model is inherently empirical, and its performance relies heavily on the calibration data set. Given the
limited field measurements in winter, significant uncertainty may exist during this season, emphasizing the need
for additional winter field measurements in high‐latitude regions to assess the accuracy of these reconstructed
pCO2 products. Moreover, the distribution of bbp data exhibited distinctive features.While it serves as an effective
means of addressing data gaps in high‐latitude regions to some extent, the sampling of surface ocean properties is
sparse compared to ocean color observations. Interpolation fills data gaps between adjacent trajectories, which
may introduce uncertainty in the distribution of sea surface bbp. Therefore, future research efforts should prioritize
the development of more comprehensive data sources to increase the precision of monitoring CO2 flux trends.
Nonetheless, this study provides an alternative approach to deriving pCO2 in high‐latitude oceans during winter
and offers valuable insights into the dynamics of CO2 fluxes in the Southern Ocean. We recommend merging
active remote sensing (e.g., Lidar) data with passive satellite observation data (e.g., ocean color) to improve the
accuracy of quantifying regional and global ocean carbon fluxes in future studies.

Data Availability Statement
The SOCAT V2023 (Bakker et al., 2016) are available at https://www.ncei.noaa.gov/data/oceans/ncei/ocads/
data/0278913/SOCATv2023_SouthernOceans.tsv, the CALIPSO‐derived bbp data (Lu et al., 2021) is from http://
orca.science.oregonstate.edu/lidar.data.php. The sources of environmental variables are as follows: SST
(RSS, 2022) via https://www.remss.com/measurements/sea‐surface‐temperature/oisst‐description/, MLD (Beh-
renfeld et al., 2016) via http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.mld125.hycom.php, SSS
(Lellouche et al., 2018) via https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_
030/description, wind (Mears et al., 2022) via https://data.remss.com/ccmp/, ice (Saha et al., 2018) via https://
www.ncei.noaa.gov/access/metadata/landing‐page/bin/iso?id=gov.noaa.nodc:AVHRR_Pathfinder‐NCEI‐L3C‐
v5.3, xCO2 (Lan et al., 2023) via https://www.esrl.noaa.gov/gmd/ccgg/mbl/ and the sea level pressure (Kana-
mitsu et al., 2002) via https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. The source of the compari-
son products (Fay et al., 2021) is https://zenodo.org/records/8280457.
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