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Introduction

To make our work clearer and to help the reader better understand the main contents, we
provide some supporting information below.

Text S1. Data for global ocean CO; flux estimates

We use the same input data as described in Landschiitzer et al. (2014) for the neural network
training process, which are sea surface temperature (SST), sea surface salinity, chlorophyl, and
mixed layer depth. The following datasets are used for estimating other variables in equation
1 of the main text. The CCI SST v2.1 (Merchant et al,, 2019) is used to estimate the Schmidt
number and solubility for the global ocean. The global atmospheric CO, fugacity (fCO,.) data is
calculated from the NOAA ESRL marine boundary layer CO, mole fraction (Dlugokencky and
Tans, 2023). The quadratic wind speed (Uio)-dependent formulation ( Keso = alUio%; Ho et al.,
2006; Wanninkhof, 2014) is used to calculate gas transfer velocity Kso. The 1° X 1°, monthly
ERA5 wind speed data (Hersbach et al., 2020) from 1982 to 2020 is utilized to scale the transfer
coefficient to match to a global mean Kgs, from the *C inventory method (Naegler, 2009).
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Figure S1. Seasonal distribution of the fCO, datasets in SOCATv2023 (Bakker et al., 2023) in the
Northern, Tropical and Southern Oceans. The winter in the Northern Ocean is defined as
December, January, and February, while the winter in the Southern Ocean is defined as the
June, July, and August. The season in the Tropical Ocean is defined as the same in the
Southern Ocean.
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Figure S2. Global distribution of all surface water fCO, values (uatm) with a flag of E in
SOCATv2023 (Bakker et al., 2023).
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Figure S3. Global air-sea CO, flux estimates for 1990 to 2020 based on SOCATv2023 (solid
lines) and on the four experimental datasets (dashed lines). A neural network-based method
has been used to interpolate SOCAT fCO, to the global ocean. The blue, red, green, and yellow
lines represent the flux in the global, Northern, Tropical, and Southern Oceans, respectively.
Dashed lines are experimental fluxes based on SOCAT with A: the number of datasets reduced
to a similar number as in 2020 to simulate the recent decline in the data availability; B: the
number of datasets reduced to a similar number as in 2000 to test long-term trends; C: some
summertime datasets removed to minimize the seasonal skew in the data; D: additional lower-
accuracy datasets (flag of E). The unshaded and shaded area represent the phase I and phase
II, respectively.



A B
— Run_2 - Run_1 Run_3 - Run_1
0.2 |
| .
>
(&)
o 0.1 |
o
‘G-J’ ~
5 00 i -1 . -
g ' P o = ~— R Lt
e
T —0.1 1 |
§ = Global ocean
= — = Northern Qcean
~ —0.2 4 . |
o == Tropical Ocean
“ Southern Ocean
-0.3

1990 1995 2000 2005 2010 2015 2020 1990 1995 2000 2005 2010 2015 2020
56 Year Year

57  Figure S4. Differences in air-sea CO; flux estimates for 1990 to 2020 based on SOCATv2023
58  between repeat runs. The unshaded and shaded area represent the phase I and phase II,
59  respectively.
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Figure S5. Differences in global air-sea CO, flux estimates for 1990 to 2020 between those
based on the datasets in experiment 2 and those SOCATv2023 (i.e., experimental flux minus
the original SOCAT-based flux). See section 2 for details. The same as experiment 2 shown in
Figure 3B, but with different datasets randomly removed. The unshaded and shaded area
represent the phase I and phase II, respectively.
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70 Figure S$6. Air-sea CO, fluxes in the Northern Ocean (red) and the Southern Ocean (yellow) in
71 each month. The fluxes shown by the solid lines are based on the gridded SOCATv2023, while
72  the dashed lines represent the fluxes based on the seasonally adjusted SOCATv2023.
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Table S1. Mean (£ standard deviation, std) and trend of the global ocean air-sea CO, flux
difference (AF, experimental flux minus the original SOCAT-based flux). The percentage values
in the trend columns represent the trend in AF relative to the trend in the original SOCAT-

based flux estimate (i.e., trend in AF/trend in F).

Mean + std of AF (Pg Cyr")

Trend of AF (Pg C dec™)

Phase I Phase II Phase I Phase I1

Exp. | Global -0.018 £ 0.050 -0.092 + 0.072 -0.097 (-16%) -0.11 (18%)

1 Northern | -0.030 + 0.0078 | -0.018 + 0.0078 -0.0064 (-49%) | -0.0016 (1.2%)
Tropical | -0.0013 +0.027 | -0.011 £ 0.029 0.023 (17%) -0.027 (20.6%)
Southern | 0.0134 £ 0.048 | -0.062 + 0.060 -0.11 (-25%) -0.081 (25%)

Exp. | Global 0.028 + 0.053 -0.029+0.18 0.10 (17%) -0.32 (55%)

2 Northern | -0.034 +0.018 0.0087 £ 0.037 0.041 (314%) -0.044 (33%)
Tropical | 0.051 +0.046 -0.013+0.12 0.082 (61%) -0.20 (150%)
Southern | 0.011 £ 0.021 -0.025 + 0.057 -0.023 (-5.2%) -0.084 (26%)

Exp. | Global -0.027 £ 0.083 -0.029 £ 0.031 -0.21 (-35%) 0.022 (-3.8%)

3 Northern | -0.039 +£0.0087 | -0.011+0.013 0.013 (100%) -0.0045 (3.3%)
Tropical -0.0038 +£0.023 | -0.0012 £ 0.0074 | -0.036 (-27%) 0.0075 (-5.8%)
Southern | 0.016 £ 0.077 -0.017 £ 0.027 -0.19 (-42%) 0.019 (-5.9%)

Exp. | Global -0.030 £ 0.041 0.021 + 0.046 -0.097 (-18%) 0.027 (-4.4%)

4 Northern | 0.0068 +0.012 | 0.0064 +0.010 -0.026 (-69%) 0.0075 (-5.1%)
Tropical | 0.020 +£0.0057 | 0.017 £0.023 -0.0014 (-1.3%) | -0.014 (11%)
Southern | -0.043 £ 0.030 -0.0026 + 0.031 -0.070 (-18%) 0.033 (-9.8%)
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