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Abstract The Surface Ocean CO2 Atlas (SOCAT) of CO2 fugacity ( fCO2) observations is a key resource
supporting annual assessments of CO2 uptake by the ocean and its side effects on the marine ecosystem. SOCAT
data are usually released with a lag of up to 1.5 years which hampers timely quantification of recent variations of
carbon fluxes between the Earth System components, not only with the ocean. This study uses a statistical
ensemble approach to analyze fCO2 with a latency of one month only based on the previous SOCAT release and
a series of predictors. Results indicate a modest degradation in a retrospective prediction test for 2021–2022.
The generated fCO2 and fluxes for January–August 2023 show a progressive reduction in the Equatorial Pacific
source following the La Niña retreat. A breaking‐record decrease in the northeastern Atlantic CO2 sink has been
diagnosed on account of the marine heatwave event in June 2023.

Plain Language Summary There is a growing need to monitor carbon emissions and removals over
the globe in near real time in order to correctly interpret changes in CO2 concentrations as they unfold. For the
oceans, the best information comes from measurements of the surface ocean CO2 fugacity ( fCO2) by the
international marine carbon research community. So far, this data is mostly available 6 to 18 months behind real
time after collection, qualification, harmonization, and processing. Here, we show that a set of biological,
chemical, and physical predictors available in near real time, allows the information contained in the “old” fCO2
measurements to be transferred over time. Based on a statistical technique, we combine all these data sources to
estimate global monthly maps of fCO2 and of CO2 fluxes at the air‐sea interface within one month behind real
time and with good accuracy.

1. Introduction
The ocean is a sink taking up about 26% of atmospheric carbon dioxide (CO2) and 90% of the heat induced largely
by anthropogenic greenhouse gas emissions (Canadell et al., 2021; Friedlingstein et al., 2022). The global ocean
carbon sink is proportional to CO2 human emissions only at the decadal scale. On shorter time scales, it varies
with the climate (mostly temperature and winds), with a dependency that also varies from basin to basin given
their respective geographical, dynamic, and biological specificities (Gruber et al., 2023; Landschützer et al., 2016;
Rödenbeck et al., 2015).

Measurements of surface ocean CO2 fugacity ( fCO2) from ships, drifters, moorings, and autonomous surface
platforms are the main reference to document the actual variation of air‐sea fluxes (fgCO2) in space and time
(Friedlingstein et al., 2022) because the two are linearly related. Long‐term efforts in maintaining and expanding
international observing networks together with a coordinated data aggregation of the Surface Ocean CO2 Atlas
database ‐ SOCAT (Bakker et al., 2016, 2023) have provided millions of individual fCO2 observations since the
1950s and associated gridded products. However, fCO2 data are poorly sampled leaving out most areas for some
or all of the year. Statistical data‐based and machine‐learning‐based reconstructions of fCO2 (Chau et al., 2022b;
Gregor & Gruber, 2021; Landschützer et al., 2016; Rödenbeck et al., 2013) have emerged to gap‐fill the SOCAT
database using auxiliary data, resulting in reconstructions of fCO2 global monthly maps. They are still the topic of
active research to improve the reconstruction quality, but these maps lag behind real time by 0.5–1.5 years: the
update of the SOCAT archive follows an annual pace with a public release usually in June after measurement
collection, quality control, and processing. This lag is problematic for the documentation of the carbon cycle as it
evolves, while the main variables of the carbon cycle like atmospheric concentrations, emissions, and absorptions
from the terrestrial biosphere or fossil fuel emissions, are progressively integrated within operational programmes
with much faster data releases. A prominent example of operational programmes in need of a reduced time lag is
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the operational observation‐based anthropogenic CO2 emissions monitoring and verification support capacity
(CO2MVS) that the European Commission is building under its Copernicus Earth Observation program (e.g.,
Janssens‐Maenhout et al. (2020)). As its observational component relies heavily on satellite observations of CO2
in the atmosphere, which is affected by the ocean as well as terrestrial emissions and removals, better estimates of
fCO2 would result in efficient estimates of air‐sea fluxes and thence benefit air‐land flux accuracy, in addition to
being directly interesting to users. The CO2MVS fits within the Global Greenhouse Gas Watch, an even larger
greenhouse gas monitoring infrastructure that the World Meteorological Organization (WMO) is setting up
(https://wmo.int/news/media‐centre/world‐meteorological‐congress‐approves‐global‐greenhouse‐gas‐watch,
last access: 12/12/2023).

Here, we demonstrate the capability to retrieve global monthly maps of fCO2 from SOCAT data and then to
generate the corresponding fields of air‐sea fluxes with a lag reduced to one month. To do that, we extend the
work of Chau et al. (2022b) who have been gap‐filling SOCAT gridded data within the framework of the
Copernicus Marine Environment Monitoring Service (CMEMS) based on an ensemble of feed‐forward neural
network models (also referred to as CMEMS‐LSCE‐FFNN) and a set of biological, chemical, and physical
predictors (see Section 2). While Chau et al. (2022b) made the dates of the predictors and the date of the gridded
SOCAT data coincide, we turn to a prediction mode in which the relationship found between the predictors and
the SOCAT data more than 6 months before is kept. Section 2 below describes the method. We test the
approach in the years 2021–2022 by examining the retrospective prediction skill based on the available SOCAT
data. Then we expand model prediction of fCO2 and generate fgCO2 up to present with a latency of 1 month:
data access via the LSCE data center, https://dods.lsce.ipsl.fr/invsat/FFNN_low‐latency/. The results include the
finding of anomalous variations in CO2 uptake and release by the Equatorial Pacific and the North Atlantic
Ocean predicted in January to August 2023, as described in Section 3. Section 4 draws the main conclusions of
the study.

2. Materials and Methods
CMEMS‐LSCE‐FFNN (Chau et al., 2022b) is built on machine‐learning techniques. It consists of an ensemble of
feed‐forward neural network (FFNN) models. This ensemble approach was developed at LSCE in order to
reconstruct surface ocean carbonate system variables and to support the operational distribution of such data sets
by CMEMS since 2019 (Product identity: MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008,
Chau et al., 2022a). The original CMEMS‐LSCE‐FFNN fields cover the global ocean at a resolution of 1° × 1°
and for the period since the year 1985 at monthly resolution.

Under the hood, these FFNN models represent nonlinear mappings of fCO2 against a set of predictors. Monthly
gridded observation‐based products of fCO2 from SOCAT (Bakker et al., 2016) are used as the target data in
model fitting. fCO2 predictors are environmental variables: sea surface temperature (SST), sea surface salinity
(SSS), sea surface height (SSH), chlorophyll‐a (Chl‐a), mix‐layer‐depth (MLD), CO2 surface mole fractions
(xCO2), climatological fCO2 (fCOclim2 ), and geographical coordinates (latitude and longitude). Product re-
sources of input data sets are detailed in Table S1 in Supporting Information S1. CMEMS‐LSCE‐FFNN
comprises monthly adaptive FFNN models for which the fCO2 and predictor data sets available within a
time span of 3 months for all the years since 1985 (the reconstruction month excepted) are used in the fitting
phase. SOCAT fCO2 in the reconstruction month is only used in model evaluation. The ensemble of multi‐
FFNN models was designed by randomly splitting two thirds of the 3‐month sliding data sets for training
and the rest for model test (Chau et al., 2022b). From the ensemble reconstructions, the model best estimate
(ensemble mean) and 1σ—model uncertainty (ensemble standard deviation) of fCO2 are derived at the desired
resolution.

Here we revisit the two versions of CMEMS‐LSCE‐FFNN referred to as FFNNv2021 and FFNNv2022. These
two models respectively used SOCATv2021 and SOCATv2022 data sets (Bakker et al., 2021, 2022) as the target
input data of fCO2. Note that SOCAT has been annually published in mid‐June. Due to the delay mode for data
collection, reprocessing, and qualify control, SOCAT provides gridded data up to the year before the publication
date (see Bakker et al. (2016, 2023) for instance). For the period 1985–2021, SOCATv2022 offers an amount of
roughly 311,700 monthly 1‐degree gridded data, 5,000 more than SOCATv2021 (Table S3a in Supporting In-
formation S1). The data increase in SOCATv2022 is mostly distributed within the last three years due to the late
availability of some data sources (Figure 1). However, SOCATv2021 has more data before 2018, up to at least
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1000 more in some years (e.g., 2011 and 2012) due to an erroneous flagging of some data (Bakker et al., 2021).
Despite this feature, the two corresponding FFNN reconstructions do not exhibit large systematic offsets in their
fCO2 estimates (Chau et al., 2022a).

For all experiments in this study, the ensemble size (i.e., number of FFNNmodel runs) is set to 50. FFNN with 50
ensemble members has less computational complexity than with the usual size of 100 but it shows similar
reconstruction skill (Chau et al., 2022b). The same input data of predictors is fed to the two FFNN model runs
(Table S1 in Supporting Information S1). The FFNNv2021 (respectively FFNNv2022) model relies on
SOCATv2021 (respectively SOCATv2022) and predictor data sets in 1985–2020 (respectively 1985–2021). This
allows deriving the ensemble global reconstructions of fCO2 over the 36‐year and 37‐year periods, accordingly.
The ensemble of FFNN models is then applied to predict fCO2 given the set of predictors in the years 2021–2022
for version 2021 and in the year 2022 for the latter. The quality assessments are made for (a) the two global
reconstructions in the period 1985–2020, (b) FFNNv2021 one‐year prediction against FFNNv2022 one‐year
reconstruction in 2021, and (c) FFNNv2021 two‐year prediction against FFNNv2022 one‐year prediction in
2022. Model performances will be qualified with the latest SOCAT data, that is, SOCATv2023 (Bakker
et al., 2023). The number of evaluation data for prediction in the years 2021 and 2022 over the global ocean is
10,908 and 8,602, respectively (Table S3a in Supporting Information S1), which is statistically sufficient for
significant validation.

Model skills are examined from global to sub‐basin scale. Here we consider the sub‐basins defined by the
Gregor (2022). Due to a lack of evaluation data in several RECCAP2 biomes, we aggregate some of them,
yielding 14 provinces in total (see Table S2 and Figure S1 in Supporting Information S1): Arctic (1. ARC),
North Atlantic seasonally stratified (2. NA‐SS), North Atlantic permanently stratified (3. NA‐PS), Atlantic
equatorial (4. AEQU), South Atlantic (5. SA), North Pacific seasonally stratified (6. NP‐SS), North Pacific
permanently stratified (7.NP‐PS), Pacific western equatorial (8. PEQU‐W), Pacific eastern equatorial (9. PEQU‐
E), South Pacific (10. SP), Northern Indian Ocean (11. NIO), Southern Indian Ocean (12. SIO), Southern Ocean
seasonally stratified (13. SO‐SS), Southern Ocean ice (14. SO‐ICE). These ocean provinces, therefore, differ
from the original biomes proposed by Fay and McKinley (2014). Apart from the NIO, the number of data for
prediction evaluation ranges from 133 (12. SIO) to 2350 (2. NA‐SS) in the year 2021 and from 73 to 2265 in the
year 2022.

Figure 1. (a) Number of data per year in SOCATv2021 and SOCATv2022, (b) RMSD of FFNNv2021 and FFNNv2022 against SOCATv2023 fCO2, (c) yearly global
mean uncertainty (1σ). Differences between the two versions are shown with a gray solid curve with values on the right y‐axis whereas the gray solid curve below 0 (gray
dashed horizontal line). The blue and red vertical lines mark the start of the prediction mode for FFNNv2021 and FFNNv2022, respectively.
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For the actual prediction in 2022 and 2023, the latest model (FFNNv2022) has been run given monthly data of
predictors (Table S1 in Supporting Information S1) in the year 2022 to present. We choose to release the maps of
fCO2 and fgCO2 for the previous month on the 15th of each month.

3. Evaluation and Discussions
3.1. Reconstruction and Prediction of CO2 Fugacity in 1985–2022

3.1.1. Global Qualification

FFNNv2021 and FFNNv2022 share consistent global RMSD and determination coefficient r2 (Figure 1 and Table
S3 in Supporting Information S1). Between 1985 and 2020, the two reconstructions inherit the same RMSD of
19.1 μatm and r2 of 0.78 (Table S3b in Supporting Information S1). Improvement in the global reconstruction
skill of FFNNv2022 in recent years (Figure 1b) is moderate despite 5,000 additional fCO2 data in the model
training (Figure 1a). In detail, these 1.7% additional data in SOCATv2022 (311,694 in total) in 1985–2021
correspond to 9,615 data added in 2021 and 4,278 data removed from SOCATv2021 in 1985–2020 (see the
spatial distribution of removal data in Figure S2c in Supporting Information S1).

The RMSD variability before 2018 (Figure 1b) is likely linked to changes in the data sampling in regions with
high spatiotemporal variability of fCO2 (see Gregor et al. (2019); Chau et al. (2022b) for further analysis).
However, the difference between the RMSD of the two reconstructions is negligible then, as it fluctuates within
[− 0.1, 0.1] μatm. During the last four years, a monotonous increase in RMSD (Figure 1b) coexists with a decrease
in the number of SOCAT data (Figure 1a), and the FFNNv2021 reconstruction slightly, but increasingly,
underperforms compared to FFNNv2022. In 2021 and 2022, the FFNNv2021 prediction RMSD is 24.3 and
23.1 μatm, respectively, roughly 0.5–1 μatm higher than that of the FFNNv2022 reconstruction and prediction
(Table S3 in Supporting Information S1). Likewise, the variation of SOCAT fCO2 is reproduced with high r2

values (0.74 and 0.75), close to the one‐year reconstruction and prediction of FFNNv2022 (0.76) for the years
2021–2022.

The yearly‐mean uncertainty over the global ocean (Figure 1c) is computed by weighting the model estimated
uncertainty (ensemble spread) per grid cell (σ) with the geographical area. The two reconstructions before the year
2015 are rather stable with an uncertainty about 8.5 μatm. The increase in FFNNv2021 [v2022] model uncertainty
from 8.7 μatm [8.5 μatm] to 10.8 μatm [10.4 μatm] between 2015 and 2020 follows a decrease in observation‐
based data from 14,877 [14,533] to 8,482 [11,217] (Figure 1a). In the year 2021, the FFNNv2021 uncertainty
of predicted fCO2 (11.4 μatm) is slightly higher than that of the FFNNv2022 reconstruction but the offset between
the two values is as small as 0.5 μatm (Figure 1c). The prediction uncertainty in 2022 increases by 0.4–0.8 μatm
for the two models (FFNNv2021: 12.2 μatm, FFNNv2022: 11.3 μatm).

3.1.2. Regional Assessment

Model reconstruction and prediction skills are assessed over 14 ocean provinces (Figures S1 and S2 in Supporting
Information S1) in the years 1985–2020 and 2021–2022 (1985–2021 and 2022) for FFNNv2021 (FFNNv2022).
Results of the regional evaluation are summarized in Figure 2 and Table S4 in Supporting Information S1. The
two FFNN models perform with a similar skill in reconstruction mode (1985–2020) over all ocean provinces.
Evidently, their reconstructions share consistent patterns in regional‐mean fCO2 (Figure 2b) and in the spatial and
temporal variations (Figures S4a–S4c and S7 in Supporting Information S1) with systematic biases below 1 μatm
for most of the basins (Table S4 in Supporting Information S1). Differences in uncertainty estimates and RMSD
do not exceed 0.5 μatm while those in r2 are nearly the same (Figures 2c–2e and Table S4 in Supporting
Information S1).

In the years 2021–2022, RMSD (r2) of the FFNN prediction does not change from the full‐period reconstruction
by more than about 5 μatm (0.1) over many sub‐basins (e.g., 2.NA‐SS, 7.NP‐PS, 8.PEQU‐W, 10.SP, 12.SIO, and
13.SO‐SS). As expected, FFNNv2022 (one‐year prediction) performs slightly better than FFNNv2021 (two‐year
prediction) in the 2022 prediction for many regions (Figures 2d and 2e and Table S4 in Supporting Informa-
tion S1). However, the differences in regional skill scores of the two models are substantially small, that is, below
3 μatm for RMSD and 0.05 for r2. These results suggest a high confidence level in FFNN prediction for a few
years ahead. The analysis of the spatial distribution and of the time series (Figure 2, Figures S4, and S7 in
Supporting Information S1) also reveals consistent features (horizontal gradients of fCO2 and seasonality to long‐
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term variations) from the reconstruction years to the prediction years. fCO2 increases over time (see f.i., 7.NP‐PS,
8.PEQU‐W, 12.SIO) following the trend in atmospheric CO2 concentration. Among the fCO2 predictors, xCO2
stands out with its large increasing trend that brings some xCO2 data used in the prediction above the range of
those used in the training. The growth of atmospheric CO2 is the primary factor driving the increase in sea surface
fCO2 (Bates et al., 2014; Friedlingstein et al., 2022; Gruber et al., 2019; Landschützer et al., 2019). The prediction
skill, however, does not degrade compared to the reconstruction as the annual increment of fCO2 is typically
smaller than its intra‐annual variability (Figure S6 in Supporting Information S1). The latter is dominantly driven
by temperature‐dependent CO2 solubility and biological processes (Gallego et al., 2018; Rustogi et al., 2023;
Takahashi et al., 2002). The range of the pre‐2021 [pre‐2022] training data sets of physical and biological pre-
dictors (e.g., SST, Chl‐a) remains similar to that including input data in the next year. Seasonality and multi‐
month variations of fCO2 in the years 2021–2022 can be, therefore, propagated with these covariates overall. The
majority of SOCAT fCO2 data for 2021 [2022] stays within the full range of training data which also supports
FFNNs to achieve a skillful prediction (Figure S3 in Supporting Information S1). Further analysis of FFNN
prediction skills over ocean basins is presented in Supporting Information S1.

3.2. Prediction of Air‐Sea CO2 Fluxes in 2022–2023

The previous results emphasize the skill and reliability of FFNN models in both reconstruction and prediction of
CO2 fugacity ( fCO2). In this section, we will use the FFNNv2022 predicted fCO2 field to generate corresponding
air‐sea fluxes (fgCO2) and analyze preliminary results for 20 months, from January 2022 to August 2023. fgCO2 is
given in molC.m− 2.yr− 1 for a flux density and in PgC.yr− 1 for integration over ocean basins (see Section S1.2 in
Supporting Information S1 for details of flux calculation and analysis). FFNNv2022 predicts a reduction in the
global ocean uptake of CO2 for 2022 (2.25 ± 0.5 PgC.yr

− 1) compared to the previous year (2.36 ± 0.43 PgC.
yr− 1). When adjusting the estimated global net fluxes with the riverine outgassing of CO2 of 0.65 PgC.yr

− 1

(Regnier et al., 2022) and the total ocean surface area (FFNNv2022 data covers 95% of the global ocean), one
obtains the estimates of anthropogenic ocean carbon uptake consistent with the 2022 projection proposed by
Friedlingstein et al. (2022): the anthropogenic ocean sink in 2021 was 2.9 ± 0.4 PgC.yr− 1 remains unchanged for
the year 2022. This evidence supports their hypothesis that the persistence of cooling climate patterns (La Niña
conditions) weakened CO2 ocean uptake in 2021–2022 (high peaks appeared mid‐2022, Figure S9 in Supporting
Information S1). FFNNv2022 predicts a global net flux of 2.45 ± 0.56 PgC.yr− 1 for January to August 2023, the
enhancement of global ocean uptake compared to that in 2022 (2.17 ± 0.50 PgC.yr− 1) is synchronous with the
retreat of La Niña.

Figure 2. Regional comparisons of the two FFNN reconstructions in 1985–2020 (bars) and of the FFNNv2021 prediction versus the FFNNv2022 reconstruction
[prediction] in 2021 [2022] (objects) in terms of (a) N‐ number of SOCAT monthly gridded data used in model fitting, (b) μ‐mean fCO2, (c) σ‐mean uncertainty,
(d) RMSD model‐data deviation, and (e) r2 model‐data correlation.

Geophysical Research Letters 10.1029/2023GL106670

CHAU ET AL. 5 of 9

 19448007, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106670 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [07/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The model prediction retains the seasonal to interannual variations of fCO2 and fgCO2 in the pre‐2022 recon-
struction over many ocean basins (Figures S6 and S8 in Supporting Information S1). One of the remarkable
changes is observed at the equatorial Atlantic (4.AEQU), where the regional mean fCO2 increases by 4.2 μatm
from the year 2021–2022 (Figure S6 in Supporting Information S1). However, such a high increment in the
AEQU fCO2 is negligible in terms of its contribution to the global net ocean sink variations between the two years
(Figure S8 and Table S5 in Supporting Information S1). In Rödenbeck et al. (2015, Figures A2 and A4), it is also
illustrated that pCOsea2 ranges from 350 to 400 μatm over an 18‐year period while the AEQU net flux has per-
formed with nearly constant magnitude. Its low interannual variability is in contrast with the eastern equatorial
Pacific (9.PEQU‐E) showing the strong impact on temporal variations of the global net sink (Figure S8 in
Supporting Information S1). The signature of fCO2 dampening (− 9.4 μatm) over PEQU‐E in Jan to August of
2022–2023 is opposed to its increasing (1.8 μatm) with respect to 2021–2022 (Figure S6 in Supporting Infor-
mation S1). As illustrated in Figures S8 and S9 in Supporting Information S1, FFNNv2022 prediction marks an
anomalous decline of CO2 source in the first eight months of 2023 (− 0.30 ± 0.04 PgC.yr

− 1) compared to that of
2022 (− 0.37 ± 0.04 PgC.yr− 1). This reduced source of 0.07 PgC.yr− 1 in PEQU‐E contributes to 25% of the
increase in the global ocean sink mentioned above. The reduction in the PEQU‐E CO2 source marks the transition
from La Niña to El Niño announced by for example, WMO (https://wmo.int/news/media‐centre/world‐meteo-
rological‐organization‐declares‐onset‐of‐el‐nino‐conditions, last access: 22/02/2024).

While the onset of El Niño over the tropical Pacific (Figure S9a in Supporting Information S1) had been driving
the reduction of ocean CO2 emission La Niña anomalies (Figure S8 in Supporting Information S1), an
exceptional warming event occurred and spread over the north Atlantic since May‐June 2023 (Copernicus
Climate Change Service: https://climate.copernicus.eu/copernicus‐record‐north‐atlantic‐warmth‐hottest‐june‐
record‐globally, last access: 20/09/2023). It substantially lessened the ocean CO2 uptake (Figure 3). Based on
the CMEMS SST analyses (Table S1 in Supporting Information S1), June 2023 corresponds to the first marine
extreme heatwave in the northeastern Atlantic (40°W–12°E, 5°N–65°N) with an average SST anomaly about
1.1°C (Figures 3a and 3e in Supporting Information S1). As a comparison, the June anomaly had been typically
in a range of − 0.5°C to 0.5°C for the past three decades. In 2023, SST anomalies even exceeded 1.5°C over the
NA‐SS province (36°N northward). FFNNv2022 predicts an enhancement in fCO2 (Figure 3c) following the
anomalous warmth in the northeastern Atlantic which is not seen in June 2022 (Figure 3a). As other envi-
ronmental factors (e.g., salinity and chlorophyll‐a) have no remarkable anomalies over this ocean basin (Figure
S10 in Supporting Information S1), warming primarily reduces CO2 solubility and that leads to substantially
high surface partial pressure of CO2 (Figure 3c). fCO2 anomalies were mostly between 4 and 12 μatm in the
subtropics and increased eastward. FFNNv2022 records the largest fCO2 anomalies in the southeast of NA‐SS
toward the European coast with values above 16 μatm. Consequently, the predicted air‐sea fluxes in June 2023
(Figure 3d) suggest lower‐than‐average CO2 uptake capability. While fgCO2 slightly decreased throughout the
NA‐PS, an anomalous drawdown is found in the NA‐SS exceeding − 0.6 molC.m− 2.yr− 1 (equivalent to roughly
a reduction in ocean CO2 uptake of 0.11 PgC.yr

− 1). It is noteworthy that a decline in ocean CO2 uptake is
strengthened if surface wind speeds (U) are lowering and fCO2 increases. Accompanied by the largest positive
SST anomaly in June 2023, there is an unusual reduction in wind intensity, that is, U anomalies potentially
below − 1.2 m.s− 1 as illustrated in Figure 3b. Overall, regional seasonal cycles plotted for each year show the
2023 SST mostly greater than past values (Figure 3e). The most striking warmth recorded in June 2023 was at
1.24°C above that in June 2022. July and August 2023 followed up with SST increasing but the SST values are
less different from 2022 then (1.06°C and 0.59°C respectively). Also in June 2023, wind speed dropped out of
the lower bound of all seasonal cycles and the difference from the previous year was about − 1.26 m.s− 1

(Figure 3f). The combined anomalies in June 2023 marine extreme heat waves set the northeastern Atlantic
ocean sink from an enhanced sink in 2022 (0.29 PgC.yr− 1) back to its magnitude in the 2000s (0.18 PgC.yr− 1)
(Figure 3g).

4. Conclusions and Perspectives
This study first examined the skill of CMEMS‐LSCE‐FFNN, an ensemble approach of feed‐forward neural
networks (FFNN) developed by Chau et al. (2022b), in a retrospective prediction of CO2 fugacity ( fCO2) over the
global ocean. The assessment was done for two FFNN models. While the latest version (FFNNv2022) trained on
SOCATv2022 data for the period 1985–2021 was used to predict fCO2 in 2022, FFNNv2021 trained on
SOCATv2021 in 1985–2020 was used to predict fCO2 in 2021–2022 allowing the qualification of the two‐year

Geophysical Research Letters 10.1029/2023GL106670

CHAU ET AL. 6 of 9

 19448007, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106670 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [07/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://wmo.int/news/media-centre/world-meteorological-organization-declares-onset-of-el-nino-conditions
https://wmo.int/news/media-centre/world-meteorological-organization-declares-onset-of-el-nino-conditions
https://climate.copernicus.eu/copernicus-record-north-atlantic-warmth-hottest-june-record-globally
https://climate.copernicus.eu/copernicus-record-north-atlantic-warmth-hottest-june-record-globally


model prediction. SOCATv2023 with data available in the prediction years was used for the prediction assess-
ment. Our evaluation confirms a robust performance of the FFNN prediction in comparison to independent
observation‐based data and to the FFNN reconstruction. The retrospective prediction for the years 2021–2022
retained intra‐seasonal to interannual variations of fCO2 as those in the reconstruction time series and no large
systematic bias has been observed between the two across all ocean provinces. The closeness between the pre-
dicted and reconstructed global net ocean budget implies that, when used as input to an atmospheric transport
model, the prediction removes an appropriate mass of carbon from the simulated atmosphere: this is an important
asset for greenhouse gas monitoring.

The latest model version, FFNNv2022, was ultimately used to predict fCO2 from January 2022 to August 2023,
that is, up to 20 months beyond the coverage of its training data set. This study also exemplified the assessment of
air‐sea CO2 fluxes (fgCO2) generated from the predicted fCO2 in the years 2022–2023 over the eastern tropical
Pacific, where regional CO2 gas exchanges greatly vary with El Niño‐Southern Oscillation (ENSO) conditions
and thus substantially affect interannual variability of the global net sink. The year 2022 has been predicted with
persistently high fCO2 (strong CO2 outgassing to the atmosphere) in response to the maintenance of La Niña since
summer 2020. A remarkable reduction in the tropical Pacific CO2 source in August 2023 relative to the year
before coincides with the weakening of the cooling phase. Recent discussions about the interaction between the
ocean and climate have dominantly focused on returning El Nino events, their high possibility in triggering more
extreme heat worldwide, and further impacts on the marine carbon cycle by the end of 2023 onwards. However,
already in June 2023, exceptional surface ocean warming and extraordinarily low wind intensity appeared with

Figure 3. Top panels (a–d): anomalies observed in FFNNv2022 prediction of fCO2 and fgCO2 (c, d) follow an extrememarine heatwave event (a, b) over the northeastern
Atlantic in June 2023 relative to June 2022 (top panels). Anomalies of surface temperature (SST), wind speed (U), fCO2, and fgCO2 are computed by subtracting long‐
term trends and seasonal climatologies relative to the years 1985–2022. Gray curve represents a regional division (Figure S1 in Supporting Information S1). Bottom
panels (e–g): regional seasonal cycles of SST, U, and integrated air‐sea fluxes since 2000s.
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values falling out of historical records over the northeastern Atlantic ocean. Correspondingly, we have found an
anomalous reduction in CO2 uptake setting this regional sink back to its magnitude in the 2000s. These results
emphasize critical needs and open the possibility to derive monthly predictions for global surface ocean maps of
numerous variables driven by fCO2, including air‐sea fluxes, seawater pH, and dissolved inorganic carbon, as the
reconstruction quality of fCO2 drives that of the other variables (Chau et al., 2022a, 2022b). The new data sets for
the year 2022 (January) to 2023 (August) are available via the LSCE data center (see Section Data availability)
and are updated each month. This demonstration of an operational service will be extended at an increased
horizontal resolution, following the current development of the reference CMEMS‐LSCE‐FFNN reconstructions
(Chau et al., 2024).

Data Availability Statement
Data provided in this research are available for use with open access granted by the French LSCE Data Center
(https://dods.lsce.ipsl.fr/invsat/FFNN_low‐latency/).
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