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Section S1 Data and model evaluation 

The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction 
(RAMA) is downloaded from the Pacific Marine Environmental Laboratory NOAA (McPhaden 
et al. 2009; Sutton et al. 2014). We use data from the RAMA moorings at 90°E, 15°N, 57°E, 4°S, 
and 95°E, 5°S. Other datasets used for model evaluation and analysis can be found in the Section 
S1 of supporting information. 

Model and observation climatological fields are computed for the period spanning from January 
1982 to December 2020, except when observations are covered by a shorter period; that is, satellite 
chlorophyll climatology is computed for 1997–2020. The anomaly is defined as the 
deseasonalized-interannual anomaly, which is computed by first removing the quadratic trend for 
the period from 1982 to 2020, then subtracting the 1982–2020 climatological monthly value, and 
finally filtered by a 3-month moving average filter. The Indian Ocean is defined as the region 
situated between 30°N-30°S, extending from the African coastline (30°E) to the Maritime 
coastline (120°E). The year an El Niño event begins is defined as the El Niño year. For instance, 
the El Niño event that commenced in the summer of 1997 and peaked between December 1997 
and February 1998 is identified as El Niño 1997. This definition applies uniformly to other El Niño 
and La Niña events. 

For model evaluation, chlorophyll, nitrate (NO3), phosphate (PO4), dissolved inorganic carbon 
(DIC), sea surface temperature (SST), sea surface salinity (SSS), and mixing layer depth (MLD) 
are selected to compare with observational data. The chlorophyll data is obtained from Ocean 
Colour Climate Change Initiative (OC-CCI) version 5.0 (Sathyendranath et al. 2019). The NO3 
and PO4 are sourced from World Ocean Atlas version 2013, while the DIC data is from Global 
Ocean Data Analysis Project (GLODAP) v2 (Olsen et al. 2016). The SST data is acquired from 
the Optimum Interpolation SST (OISST) v2 (Banzon et al. 2016) and sea surface salinity (SSS) is 
from the Multi-Mission Optimum Interpolated Sea Surface Salinity Global Dataset (OISSS) 
(Melnichenko et al. 2021). The MLD data, based on a density criteria of 0.03 kg/m3, is sourced 
from de Boyer Montégut et al. (2004), while the thermocline depth (20°C depth) is computed from 
Argo gridded temperature data (Roemmich and Gilson 2009). The observed IOD indexes are 
computed using OISST. The SST anomaly for IOD computation is based on the mean in 1981-
2010, following the methodology of the physical sciences laboratory from National Oceanic and 
Atmospheric Administration (NOAA, https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/). 

Wind speed is obtained from Cross-Calibrated Multi-Platform (CCMP) v3.0 monthly wind 
product (Mears et al. 2022). The Indonesian throughflow volume transport is computed from 
global reanalysis ensemble product (GREP) (Storto et al. 2019) and ocean reanalysis system 5 
(ORAS5) ocean products (Zuo et al. 2019). 

https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/


Fig. S3 evaluates the climatological mean status of various oceanographic parameters, including 
SST, SSS, MLD, and Chlorophyll. The model underestimates the MLD in the southern Indian 
Ocean, which might be due to the weak JRA 55-do wind product or potentially inaccurate mixing 
computation scheme in the model. The model also underestimates the chlorophyll in the open 
ocean of Arabian Sea and Bay of Bengal which is potentially due to the less simulated nitrate and 
phosphate. Fig. S4 assesses the biogeochemical module (COBALT) by comparing observed and 
simulated DIC, alkalinity (Alk), NO3, and PO4. The model slightly overestimates the DIC and 
Alk in the southern Indian Ocean, while weakly underestimates the NO3 and PO4 in the Indian 
Ocean basin scale. In Fig. S5, the climatological mean air-sea CO2 flux and ocean pCO2 are 
evaluated using the OS-ETHZ-GRaCER and SOM-FFN products. Overall, the model 
demonstrates good agreement of the spatial distribution of ocean carbon-related tracers, including 
DIC, Alk, CO2 flux, and ocean pCO2. 

We assess the interannual anomaly of SST, SSS, and thermocline depth (depth of 20 °C) at two 
RAMA stations in the equatorial Indian Ocean (57°E-4°S and 95°E-5°S, Fig. S6) and ocean pCO2 
and ∆pCO2 at one RAMA station in the Bay of Bengal (90°E-15°N, Fig. S7). The model accurately 
captures the anomalous timing and magnitude of these fields related to the IOD. Furthermore, we 
have compared all observed ocean pCO2 from Surface Ocean CO2 Atlas (SOCAT v2022) product 
(Bakker et al. 2016) in the Indian Ocean with model output through scatter plot (Fig. S1) and box 
plot (Fig. S8). In the SOCAT comparison, the simulated pCO2 is adjusted to ocean CO2 fugacity 
(fCO2) using a conversion coefficient. This coefficient is derived from Wanninkhof et al., (2020) 
and Weiss (1974) and the computation code is based on model the ocean carbonate system (mocsy) 
model (Orr and Epitalon 2015).  

These evaluations indicate the model is capable of reproducing the spatial and temporal variability 
of ocean carbon cycle in the Indian Ocean. As a result, the model is considered trustworthy and 
reliable for studying the extreme air-sea CO2 flux anomaly that occurred in 2015. 

 

Section S2 Model setup 

The global ocean/sea ice model coupled with a biogeochemical module from the Geophysical 
Fluid Dynamics Laboratory (GFDL) is employed in this study. The physical model includes 
Modular Ocean Model version 6 (MOM6) and Sea Ice Simulator version 2 (SIS2). The version of 
the physical model adopted here is OM4P5 with a horizontal resolution of 0.5 ° and eddy 
parameterization (see the detailed configuration in Adcroft et al. (2019)). The coupled 
biogeochemical module is Carbon Ocean Biogeochemistry and Lower Trophics version 2 
(COBALT v2), which encompasses 33 state variables: nutrients (nitrate, phosphate, silicate, and 
iron), oxygen, carbonate system, three phytoplankton groups, three zooplankton groups, three 
dissolved organic carbon pools, and one particulate detritus pool (Stock et al. 2020). Details about 



planktonic food web dynamics within COBALT and global assessments of large-scale carbon 

fluxes through the food web can refer to Stock et al. (2020).  

The ocean model is forced by the Japanese 55-year atmospheric reanalysis dataset (JRA55-do) 

version 1.5 (Tsujino et al. 2018) and atmospheric deposition data (iron, lithogenic material, PO4, 
wet and dry NO3 and NH4) from GFDL-ESM4 models. The hindcast simulation is then performed 
from 1959 to 2020. The model performance is thoroughly assessed, and it reproduces well-
observed physical and biogeochemical features in the Indian Ocean, including both climatological 
mean state and interannual variability. The accurately replicated climatological features include 
the east-west gradient of sea surface salinity, mixed-layer depth (MLD), dissolved inorganic 
carbon (DIC), alkalinity (Alk), and nutrients between the Arabian Sea and Bay of Bengal, as well 
as the north-south gradient of SST, chlorophyll, nutrients, ocean pCO2, and CO2 flux between 
northern and southern Indian Ocean (Fig. S3-S5). The model demonstrates strong capability in 
capturing the interannual variability of SST, SSS, thermocline depth, and ocean pCO2 at RAMA 
stations and SOCAT observational sites (Fig. S1, S6-S8). In addition, a simulation with a similar 
setup, driven by JRA55-do v1.3, was well evaluated and applied to examine the air-sea CO2 flux 
variability in the Pacific Ocean. For more detailed configurations and evaluations of the model, 
readers can refer to Liao et al. (2020).  

The model was spun up from rest for a period of 81 years by repeating the JRA55-do v1.5 forcing 
in the year of 1959. The atmospheric xCO2 global average driving MOM6-COBALT2 is from 
global carbon budget project (Friedlingstein et al. 2022). The xCO2 is a global average derived 
from monthly Mauna Loa Observatory (MLO) and South Pole Observatory (SPO) station data. 
For model initialization, temperature, salinity, nutrients (nitrate, phosphate, and silicate), and 
oxygen are sourced from World Ocean Atlas version 2013 (Garcia et al. 2013a; Garcia et al. 2013b; 
Locarnini et al. 2013; Zweng et al. 2013). The initial dissolved inorganic carbon (DIC) and 
alkalinity (Alk) are obtained from the GLODAP v2 (Olsen et al. 2016). The initial DIC is corrected 
for the accumulation of anthropogenic carbon to match the level expected in 1959 using the data-

based estimate of ocean anthropogenic carbon content (Khatiwala et al. 2013). Other COBALT 
tracer initial conditions (e.g., ammonium, calcium carbonate) are taken from a preindustrial 
GFDL-ESM2M-COBALT simulation (Stock et al. 2014). 

Note that the two data products in the Fig. 2a and 2b have slight differences in the years 1982-
1984 and 1998, which might be due to data sparsity and variations in machine learning methods. 
The model simulates a larger CO2 flux anomaly than the two data products in 1997-1998, which 
might be related to an overestimation of SST. However, the two data products might not entirely 
reflect true values due to limited data availability during that early period (1997-1998). Despite 
these slight discrepancies, the model still performs well in capturing the timing and magnitude of 
CO2 flux interannual variability, as shown by the two data products in the Indian Ocean. 



 

Section S3 Ocean CO2 flux decomposition 

The air-sea CO2 flux (FCO2) is computed using the following bulk formula: 

𝐹𝐶𝑂! = 𝑘"𝛼(𝑝𝐶𝑂!" − 𝑝𝐶𝑂!#)                                             (S1) 

where pCO2a is the atmospheric partial pressure of CO2, pCO2w is the sea surface partial pressure 
of CO2, 𝛼  denotes CO2 solubility, computed using the temperature and salinity dependent 
formulation of Weiss and Price (1980), and kw is the CO2 gas transfer coefficient computed by a 
quadratic wind-speed formulation (Wanninkhof 2014). The two coefficients computation follows 
Najjar and Orr (1998). The positive FCO2 denotes an oceanic outgassing of CO2. 

Assuming ∆pCO2= pCO2w - pCO2a and 𝑘"𝛼 = 𝐾, the Equation S1 becomes: 

𝐹𝐶𝑂! = 𝐾∆pCO!                                                           (S2) 

 When the seasonality and quadratic trend are removed, 𝐹𝐶𝑂!, K, and ∆pCO! can be decomposed 
into a component from interannual anomaly (𝐹𝐶𝑂′!, 𝐾′, and ∆pCO′!) and a component from long-
term mean (𝐹𝐶𝑂!1111111, 𝐾2, and ∆𝑝𝐶𝑂!111111111). The relationship between them is shown as: 𝐹𝐶𝑂! = 𝐹𝐶𝑂′! +
𝐹𝐶𝑂!1111111, 𝐾 =	𝐾$ + 𝐾2, and ∆pCO! = ∆pCO′! + ∆𝑝𝐶𝑂!111111111. The effect of K and ∆pCO!on air-sea CO2 
flux interannual variations (𝐹𝐶𝑂′!) is able to be isolated by a linear Taylor expansion following a 
similar method to a previous study (Doney et al. 2009): 

𝐹𝐶𝑂! = 𝐾∆𝑝𝐶𝑂! = (𝐾′ + 𝐾2)(∆𝑝𝐶𝑂!$ + ∆𝑝𝐶𝑂!111111111) 

                                   𝐹𝐶𝑂! = 𝐾$∆𝑝𝐶𝑂!$ + 𝐾2∆𝑝𝐶𝑂!$ + 𝐾$∆𝑝𝐶𝑂!111111111 + 𝐾2∆𝑝𝐶𝑂!111111111                             

The long-term mean 𝐹𝐶𝑂!1111111 can be expressed as: 

𝐹𝐶𝑂!1111111 = 〈𝐹𝐶𝑂!〉 = 〈𝐾$∆𝑝𝐶𝑂!$ + 𝐾2∆𝑝𝐶𝑂!$ + 𝐾$∆𝑝𝐶𝑂!111111111 + 𝐾2∆𝑝𝐶𝑂!111111111〉            (S3) 

where we use angle brackets to denote the average. Using Equations S2- S3 yields: 

𝐹𝐶𝑂′! = 𝐹𝐶𝑂! − 𝐹𝐶𝑂!1111111 

𝐹𝐶𝑂′! = 𝐾$∆𝑝𝐶𝑂!$ + 𝐾2∆𝑝𝐶𝑂!$ + 𝐾$∆𝑝𝐶𝑂!111111111 + 𝐾2∆𝑝𝐶𝑂!111111111

− 〈𝐾$∆𝑝𝐶𝑂!$ + 𝐾2∆𝑝𝐶𝑂!$ + 𝐾$∆𝑝𝐶𝑂!111111111 + 𝐾2∆𝑝𝐶𝑂!111111111〉 

𝐹𝐶𝑂′! = 𝐾2∆𝑝𝐶𝑂!111111111 − 〈𝐾2∆𝑝𝐶𝑂!111111111〉 + 𝐾2∆𝑝𝐶𝑂!$ − 〈𝐾2∆𝑝𝐶𝑂!$ 〉 + 𝐾$∆𝑝𝐶𝑂!111111111 − 〈𝐾$∆𝑝𝐶𝑂!111111111〉
+ 𝐾$∆𝑝𝐶𝑂!$ − 〈𝐾$∆𝑝𝐶𝑂!$ 〉 

Assuming the interannual anomaly is randomly distributed and we have: 

〈𝐾2∆𝑝𝐶𝑂!111111111〉 = 𝐾2∆𝑝𝐶𝑂!111111111 

〈𝐾2∆𝑝𝐶𝑂!$ 〉 = 𝐾2〈∆𝑝𝐶𝑂!$ 〉 = 𝐾2 ∙ 0 = 0 



〈𝐾$∆𝑝𝐶𝑂!111111111〉 = 〈𝐾$〉∆𝑝𝐶𝑂!111111111 = 0 ∙ ∆𝑝𝐶𝑂!111111111 = 0 

〈𝐾$∆𝑝𝐶𝑂!$ 〉 = 〈𝐾$∆𝑝𝐶𝑂!$ 〉 

This yields: 

𝐹𝐶𝑂′! = 𝐾2∆𝑝𝐶𝑂!$ + 𝐾$∆𝑝𝐶𝑂!111111111 + (𝐾$∆𝑝𝐶𝑂!$ − 〈𝐾$∆𝑝𝐶𝑂!$ 〉)                            (S4) 

𝐹𝐶𝑂′! = 𝐾2∆𝑝𝐶𝑂!$ + 𝐾$∆𝑝𝐶𝑂!111111111 + 𝑅𝐸𝑆                                                     (S5) 

where RES is the small residual of the cross terms (𝐾$∆𝑝𝐶𝑂!$ − 〈𝐾$∆𝑝𝐶𝑂!$ 〉). 

Equation S5 illustrates that the CO2 flux anomaly (𝐹𝐶𝑂′!) is affected by three components: ∆pCO! 
anomaly (𝐾2∆𝑝𝐶𝑂!$ ), gas transfer coefficient anomaly (𝐾$∆𝑝𝐶𝑂!111111111), and a small residual term (RES) 
which results from the cross terms (𝐾$∆𝑝𝐶𝑂!$ − 𝐾$∆𝑝𝐶𝑂!$111111111111). 

This framework has been widely used in various prior studies, focusing on the global ocean and 
tropical Pacific Ocean and coastal ocean (Doney et al. 2009; McKinley et al. 2004; Obata and 
Kitamura 2003). In our study, based on our model results, we found interannual variations in the 
air-sea CO2 partial pressure difference (∆pCO!) explain 76.6% of the FCO2 interannual variance 
in the Indian Ocean (Equation S5). The temporal changes in wind-solubility coefficient explain 
28.1% of the FCO2 interannual variance. Furthermore, we reveal that variations in pCO2w 
accounted for 92.5% of the ∆pCO2 variance in the tropical Pacific Ocean, while pCO2a only 
accounted for less than 1%. This is consistent with the fact that the ocean surface pCO2 variability 
on interannual time-scale can be up to 50 times larger than the atmospheric CO2 variability. 

 

Section S4 Ocean pCO2 decomposition 

We quantify the driving processes of ocean pCO2 (pCO2w) by expanding a traditional ocean pCO2 
decomposition framework to include all contributions from physical (advection, mixing, 
freshwater and thermal fluxes) and biological (photosynthesis and remineralization) processes. 
The traditional decomposition framework links variations in ocean pCO2 to changes in DIC, Alk, 
temperature and salinity using the following linear decomposition (Le Quéré et al. 2000; Takahashi 
et al. 1993): 

∆𝑝𝐶𝑂!" ≈
%&'(!"
%)*'

∆𝐷𝐼𝐶 + %&'(!"
%+,-

∆𝐴𝑙𝑘 + %&'(!"
%.

∆𝑆𝑆𝑇 + %&'(!"
%/

∆𝑆𝑆𝑆               (S6) 

where ∆ is defined as temporal change of tracer (𝑝𝐶𝑂!", DIC, Alk, T, and S) in this section. The 
tracer is defined as the mean value in the mixed-layer depth (depth where the water density is 0.01 
kg/m3 denser than the surface water). T and S denote the sea surface temperature and salinity 
respectively. Note that ∆𝑝𝐶𝑂!" is the temporal change of ocean pCO2 and the ∆𝑝𝐶𝑂! in section 
S3 is defined as ocean-atmospheric pCO2 difference. The Equation S6 is separated into the thermal 
component (𝑝𝐶𝑂!"0.) and non-thermal component (𝑝𝐶𝑂!"01(1.):  



∆𝑝𝐶𝑂!"0. =
%&'(!"
%.

∆𝑇                                                                (S7) 

∆𝑝𝐶𝑂!"01(1. =
%&'(!"
%)*'

∆𝐷𝐼𝐶 + %&'(!"
%+,-

∆𝐴𝑙𝑘 + %&'(!"
%/

∆𝑆               (S8) 

The temporal change in ∆𝑝𝐶𝑂!"01(1. can be expressed as a function of temporal changes in DIC, 
Alk, and salinity. 

∂2𝑝𝐶𝑂!"01(1. =
%&'(!"
%)*'

∂2𝐷𝐼𝐶 +
%&'(!"
%+,-

∂2𝐴𝑙𝑘 +
%&'(!"
%/

∂2𝑆              (S9) 

Temporal changes in DIC, Alk, and S are controlled by ocean physical transport, biological 
processes and air-sea fluxes as follows: 

∂2𝐷𝐼𝐶 = 𝐷𝐼𝐶3 + 𝐷𝐼𝐶4 + 𝐷𝐼𝐶5'(! + 𝐷𝐼𝐶678 + 𝐷𝐼𝐶59                                (S10) 

∂2𝐴𝑙𝑘 = 𝐴𝑙𝑘3 + 𝐴𝑙𝑘4 + 𝐴𝑙𝑘678 + 𝐴𝑙𝑘59                                                   (S11) 

∂2𝑆 = 𝑆3 + 𝑆4 + 𝑆59                                                                               (S12) 

where the subscript H denotes the contribution from horizontal transport (advection and diffusivity 
in the meridional and zonal directions), V denotes the contribution from vertical transport (vertical 
advection and diffusivity), Bio denotes the DIC and Alk changes induced by biological processes 
(photosynthesis, respiration, calcium carbonate dissolution/precipitation, denitrification and 
nitrification), Q denotes the effect of surface heat flux, FW denotes the effect of freshwater fluxes 
(i.e., precipitation, evaporation, river and sea-ice melt), and 𝐷𝐼𝐶5'(!  denotes the DIC change 
induced by air-sea CO2 flux. 

Combining Equations S9-S12 yields: 

              ∂2𝑝𝐶𝑂!"01(1. ≈
%&'(!"
%)*'

C𝐷𝐼𝐶3 + 𝐷𝐼𝐶4 + 𝐷𝐼𝐶5'(! + 𝐷𝐼𝐶678 + 𝐷𝐼𝐶59D 

                                         + %&'(!"
%+,-

(𝐴𝑙𝑘3 + 𝐴𝑙𝑘4 + 𝐴𝑙𝑘678 + 𝐴𝑙𝑘59)  

             + %&'(!"
%/

(𝑆3 + 𝑆4 + 𝑆59)                                                        (S13) 

We rearrange the terms of Equation S13 to isolate the temporal changes in 𝑝𝐶𝑂!"0:8:2  (time 
tendency referred to as the pCO2 response) on the left hand side (LHS), and the five terms that 
control the time tendency of 𝑝𝐶𝑂!"0:8:2 on the right-hand side (RHS):  

(∂2𝑝𝐶𝑂!"0:8:2)EFFFFGFFFFH
&'(!	<=>&8:>=

≈ I
𝜕𝑝𝐶𝑂!"
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𝜕𝑆 𝑆3KEFFFFFFFFFFFFFFGFFFFFFFFFFFFFFH

3#$%&
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𝑆4MEFFFFFFFFFFFFGFFFFFFFFFFFFH
4#$%&
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                     (S14) 

The five terms (units: uatm/s) on the RHS are the horizontal and vertical transport of dissolved 
species, i.e., DIC, Alk and salinity (HCirc and VCirc), the dilution/concentration effect induced by 
freshwater fluxes and evaporation (FW), the biological effect due to photosynthesis, respiration, 
calcium carbonate dissolution/precipitation, denitrification and nitrification (Bio), the CO2 flux 
driven by the atmosphere-ocean pCO2 difference. By considering these five terms, Equation S14 
provides a comprehensive understanding of how various physical and biogeochemical processes 
influence the temporal changes in the ocean pCO2 non-thermal component. This helps in 
deciphering the complex interactions and feedback mechanisms between different processes. 

Following the same method, the temporal change in ∆𝑝𝐶𝑂!"0. can be expressed as a function of 
temporal changes in T and is further expressed as a function of three driving processes. 

∂2𝑇 = 𝑇3 + 𝑇4 + 𝑇A                                                          (S15) 

∂2𝑝𝐶𝑂!"0. ≈ %&'(!"
%.

C𝑇3 + 𝑇4 + 𝑇AD                                       (S16) 

∂2𝑝𝐶𝑂!"0. ≈  L%&'(!"
%.

𝑇3MEFFGFFH
.'&$%&

+ L%&'(!"
%.

𝑇4MEFFGFFH
.(&$%&

+ L%&'(!"
%.

𝑇AMEFFGFFH
.)*+,

               (S17) 

The Equation S17 provides a comprehensive understanding of how temperature variations are 
influenced by different processes (i.e., horizontal and vertical transports and surface heat flux), 
allowing us to better interpret the changes in the thermal component of ocean pCO2 over time. A 
temporal change of ocean pCO2 thermal component (pCO2-T tendency) is driven by three 
processes: horizontal and vertical transport of temperature (THcirc and TVcirc) and surface heat flux 
(Tflux).  

The coefficients used for the pCO2w dependence on DIC, Alkalinity, temperature, and salinity are 
approximated by the following equations (Lovenduski et al. 2007; Sarmiento and Gruber 2006): 

%&'(!"
%)*'

≈ &'(!"BBBBBBBBBB

)*'BBBBB
C×+,-BBBBB×)*'BBBBB0!×)*'BBBBB!

(!×)*'BBBBB0+,-BBBBB)(+,-BBBBB0)*'BBBBB)
                                                (S18) 

%&'(!"
%+,-

≈ − &'(!"BBBBBBBBBB

+,-BBBBB
+,-BBBBB!

(!×)*'BBBBB0+,-BBBBB)(+,-BBBBB0)*'BBBBB)
                                             (S19) 

%&'(!"
%.

≈ 𝑝𝐶𝑂!"111111111 × 0.0423                                                              (S20) 

%&'(!"
%/

≈ &'(!"BBBBBBBBBB

/̅
                                                                                 (S21) 



where overbar denotes 1982-2020 annual means. The coefficients are time invariant. Coefficients 
for DIC and salinity (Equations S18 and S21) are positive, i.e., pCO2w increases with DIC and 
salinity, while the coefficient for alkalinity (Equation S19) is negative, i.e., pCO2w decreases with 
increasing alkalinity. The effects of DIC and Alk are often competing in changing pCO2w, but the 
DIC effect generally dominates because the absolute value of the DIC coefficient is larger than the 
alkalinity coefficient in most regions of the ocean including the Indian Ocean (Takahashi et al. 
1993).  

The terms in Equations 2-4 are computed in the mixed layer depth, which is defined as depth where 
the water density is 0.01 kg/m3 denser than the surface water.  

 

Section S5 Ocean pCO2 responses to IOD and ENSO 

The impact of the IOD and El Niño on the ocean pCO2 are examined in the type of pure positive 
IOD (2019), pure El Niño (1991), combined positive IOD and El Niño (1997, 2015) in the Fig. 
S10. The classification refers to Nino3.4 and IOD index in the Fig. 2 and references from Aparna 
et al., (2012) and Guo et al., (2015). The year an El Niño event begins is defined as the El Niño 
year. As shown in Fig. S11, the ocean pCO2 in pure IOD (2019) is characterized as a high anomaly 
in the eastern Indian Ocean and a low anomaly in the western and central Indian Ocean. Under the 
influence of a pure El Niño, the ocean pCO2 is featured as high anomalies in both eastern and 
western Indian Oceans. The ocean pCO2 pattern during the combined IOD and El Niño in 1997 
resembles the pattern in pure IOD (2019). The ocean pCO2 during combined IOD and El Niño in 
2015 looks like the pattern in pure El Nino (1991), with high anomalies in both the eastern and 
western Indian Oceans. A significant distinction in 2015 is the larger amplitude of ocean pCO2 
anomaly compared to that in 1991. Temperature effect (pCO2-T) in 2015 covers a much broader 
area of positive value than that in 1991 and other events. Non-temperature effect in 2015 extends 
further southward compared to other events. 

Note that the classification of above event is based on ENSO and IOD occurrence (pure IOD, pure 
El Nino, combined IOD and El Nino). The classification can also be based on the peak time and 
duration of sea surface temperature (SST) anomaly: Normal IOD (develop and mature in Sep, Oct, 
and Nov), prolonged IOD (peak time is later), Unseasonable IOD (develop and mature in other 
months). Another classification is based on the spatial pattern of SST anomaly: Symmetrical 
(similar amplitude of warming and cooling anomaly between east and west Indian Ocean) and 
Asymmetrical (uneven amplitude of warming and cooling anomaly between east and west Indian 
Ocean).  

 

Section S6 Influence of Indonesian Throughflow on the ocean carbon cycle 



In the climatological mean state, the Indonesian Throughflow (ITF) brings relatively fresh water 
from the Pacific Warm Pool to the Indian Ocean, leading to a dilution of DIC, Alk, and salinity 
and subsequently reducing the ocean pCO2 in the southeastern Indian Ocean (Feng et al. 2018; Hu 
et al. 2019). However, the dilution effect is reversed through a weakened volume transport of ITF 
(Fig. S16) and an increased ocean pCO2 in the Warm Pool region (west equatorial Pacific Ocean, 
Fig. S17) during 2015. This reversal is linked to the co-occurrence of positive IOD and 
extraordinary El Niño in 2015. As indicated by Fritz et al., (2023), the ITF volume transport in 
2015 is the weakest since 1993. The extraordinary ITF volume transport might be the reason for 
the unique ocean pCO2 response in the southeastern Indian Ocean. The critical effect of ITF on 
the southeastern Indian Ocean carbon cycle in 2015 is consistent with findings from previous 
research that examined ITF pathway interannual variability (Valsala and Maksyutov 2010; Valsala 
et al. 2010).  

The weakened ITF volume transport is induced by a reduced sea level difference between the 
Pacific and Indian Oceans, resulting from the eastward movement of the Warm Pool in the 2015 
El Niño (Mayer et al. 2018). The departure of Warm Pool and related reduced rainfall increases 
surface DIC, alkalinity, and salinity, leading to a rise in ocean pCO2 in the Warm Pool region (Fig. 
S17). A further investigation reveals that the reversed dilution effect is largely driven by ocean 
pCO2 anomaly rather than the volume transport anomaly (Fig. S18). This suggests the ITF 
transports anomalous high ocean pCO2 water to the Indian Ocean, leading to an anomalous ocean 
carbon outgassing in 2015. It is noteworthy that the ocean carbon response to the ITF is consistent 
with previous findings related to salinity, which also suggests the significance of ITF horizontal 
transport in determining the high salinity anomaly in the southeastern Indian Ocean during a 
positive IOD (Kido and Tozuka 2017; Zhang et al. 2016). The influence of changed ITF on the 
carbon cycle in the Indian Ocean further reflects a remote effect of El Niño from the Pacific Ocean. 

 

Section S7 Figs. S1-S18 

 



 

Fig. S1. Comparison of observed and simulated surface ocean CO2 fugacity (fCO2) in the Indian 
Ocean during 1982-2020 (a), spatial distribution of number of SOCAT observation points in 

1982-2020 (b) and 2015-2016 (c). The observed ocean CO2 fugacity is collected from SOCAT 
monthly database. The simulated ocean pCO2 is adjusted to fCO2 and interpolated to match the 
SOCAT observation locations and times. a, the black line is the 1-to-1 line and the red line is 

regression line between data and model. The yellow dot in panel a indicates the point observed in 
August 2015 - August 2016 when IOD occurred. Shading in panel b and c indicates the number 

of SOCAT observation points. In panel c, the SOCAT cruise lines are observed in April and May 
2016. 
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Fig. S2. The relation between CO2 flux anomaly integrated in the Indian Ocean and index of IOD 
and Niño3.4 in two data products and model results. The two data products are from SOM-FFN 
and OS-ETHZ-GRaCER. As shown in this figure, the CO2 flux anomaly in 2015 exhibits unique 
dynamics that are not fully captured by the conventional relationship between CO2 flux anomaly 

and the IOD and Niño3.4 index. 
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Fig. S3. Comparison of observed and simulated climatological annual mean of SST (°C), SSS 
(psu), mixing-layer depth (MLD, m), and surface chlorophyll (ug/kg). Observed SST is from 

OISST v2, SSS from OISSS, MLD from de Boyer Montégut et al. (2004), chlorophyll from OC-
CCI. 



 

Fig. S4. Comparison of observed and simulated climatological annual mean of surface DIC 
(umol/kg), Alk (umol/kg), NO3 (umol/kg), and PO4 (umol/kg). Observed DIC and Alk are from 
GLODAP and NO3 and PO4 are from WOA 2013. The DIC in GLODAP is based on the year 
2002. Under the consideration of anthropogenic carbon influence, the DIC annual mean is a 

mean between 1984 and 2020 where 2002 is the midpoint of 1984-2020. Therefore, the mean 
DIC in 1984-2020 and GLODAP DIC is comparable. 



 

Fig. S5. Comparison of observed and simulated climatological annual mean of air-sea CO2 flux 
(mol/m2/yr) and ocean pCO2 (uatm). Observed CO2 flux and ocean pCO2 are from OS-ETHZ-

GRaCER and SOM-FFN products. A positive flux denotes an outgassing from the ocean to 
atmosphere. 

  



 

Fig. S6. Comparison of temporal evolution for SST (°C), SSS (psu), and thermocline depth (m) 
observed by RAMA station and simulated by model at two RAMA stations: 57°E, 4°S and 95°E, 

5°S. The thermocline depth is defined as the depth at which the temperature reaches 20°C. 
Additional observations from the gridded satellite OISST, OISSS, and Argo float databases 
interpolated at the mooring location are also shown for evaluation. The yellow shading color 

highlights the specific period of interest (2015-2016) when the focused IOD occurs. 
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Fig. S7. Comparison of temporal evolution of anomalous ocean pCO2 and ∆pCO2 (ocean-
atmosphere pCO2 difference) observed by RAMA station and simulated by model at RAMA 
station (90°E, 15°N, Sutton et al., 2014). Due to the limited duration of observed data (2014-
2019), the quadratically trend and climatological month value for anomaly computation are 

adopted from SOM-FFN data products. The yellow shading color highlights the specific period 
of interest (2015-2016) when the focused IOD occurs. 
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Fig. S8. The year-by-year box plot comparison of observed and simulated ocean CO2 fugacity 
(fCO2) in the Indian Ocean during 1982-2020. The observed ocean CO2 fugacity is collected 

from SOCAT monthly database. The simulated ocean pCO2 is adjusted to fCO2 and interpolated 
to match the SOCAT observational locations and times. The yellow shading color highlights the 

specific period of interest (2015-2016) when the focused IOD occurs. 

  

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

years(yyyy)

-100

0

100

oc
ea

n 
pC

O
2 

an
om

al
y 

(u
at

m
)

Model-MOM6
Data-SOCAT



 
Fig. S9. The CO2 flux integrated in the Indian Ocean and sub-regions computed as long-term 
annual mean (1982-2020), annual mean in 2015, and interannual anomaly in 2015. The sub-

regions are defined in the map in the right-bottom bar plot. A positive flux denotes an outgassing 
from the ocean to atmosphere. As shown in this figure, the ocean CO2 flux anomaly in 2015 is 

largely contributed by the region-others and NONT region. 
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Fig. S10. Temporal evolution of anomalous ocean pCO2, atmosphere pCO2, and ∆pCO2 (Ocean 
pCO2 minus atmosphere pCO2) averaged in the Indian Ocean (a), Arabian Sea (b), Bay of 

Bengal (c), NONT region (Southeastern Indian Ocean, d), and other regions (e). The atmospheric 
pCO2 is converted from xCO2 (GCB) with consideration of sea level pressure and water vapor in 
the MOM6-COBALT2. The ocean pCO2 and ∆pCO2 are simulated by MOM6-COBALT2 forced 
by xCO2 (GCB). The yellow shading color highlights the specific period of interest (2015-2016) 

when the focused IOD occurs. See region definition in Fig. S9. As shown in this figure, the 
majority of ∆pCO2 variability is controlled by the ocean pCO2. 
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Fig. S11. Composited ocean pCO2 anomaly and its two components: pCO2-T and pCO2-NONT 

averaged from August to January in the following year during different events: pure positive 
IOD (a-c), pure El Niño (d-f), combined positive IOD and El Niño in 1997 (g-i), and combined 

positive IOD and El Niño in 2015 (j-l). The ocean pCO2 anomaly is decomposed into two 
components: pCO2-T and pCO2-NONT following Equation 2. As shown in this figure, the ocean 

pCO2 anomaly and its two components exhibit a dipole anomaly pattern in the western and 
eastern Indian Ocean during the pure positive IOD and combined positive IOD and El Niño in 

1997. There is a monopolar high ocean pCO2 anomaly in the pure El Niño and combined 
positive IOD and El Niño in 2015.  

 

 



 

Fig. S12. Anomalous SST (°C), DIC (umol/kg), Alk (umol/kg), and SSS (psu) averaged from 
August 2015 to February 2016. As shown in this figure, there is an extensive warming in the 

western and central Indian Ocean and weakened cooling in the southeastern Indian Ocean. The 
DIC, Alk, and SSS increase anomalously in the southeastern Indian Ocean which is closely 

related to the Indonesian throughflow (ITF) anomaly. 



 

Fig. S13. The temporal evolution of pCO2-T and diagnostic budget during the 2015 IOD. The 
panel is averaged every three months. The diagnostic budget is derived in Section S4. 



 

Fig. S14. Temporal evolution of pCO2-NONT and diagnostic budget during the 2015 IOD. The 
panel is averaged every three months. The diagnostic budget is derived in Section S4. Black box 

indicates the pCO2-NONT region. 



 

Fig. S15. Temporal evolution of anomalous chlorophyll between OC-CCI data and model in the 
Indian Ocean (a), Arabian Sea (b), Bay of Bengal (c), NONT region (southeastern Indian Ocean, 

d), other region (e). The yellow shading color highlights the specific period of interest (2015-
2016) when the focused IOD occurs. See region definition in Fig. S9. As shown in this figure, 

the chlorophyll interannual variability in the southeastern Indian Ocean is lower than the 
variability in the Arabian Sea and Bay of Bengal. This indicates a weak influence of biology on 

the ocean pCO2 in the southeastern Indian Ocean. 
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Fig. S16. Temporal evolution of anomalous wind speed, SST, and ITF volume transport in the 
Indian Ocean. The wind speed and SST are averaged in the Indian Ocean and ITF volume 

transport is computed at the Lombok Strait, Sunda Strait, and Timor passage connected to the 
Indian Ocean. The wind speed data is sourced from the CCMP product and JRA 55-do reanalysis 

product, SST is from OISST, and ITF volume transport is computed using GREP and ORAS5 
ocean reanalysis product. The yellow shading color highlights the specific period of interest 

(2015-2016) when the focused IOD occurs. As shown in this figure, there is an extreme SST and 
ITF volume transport anomaly in 2015.  
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Fig. S17. Anomalous surface DIC, Alk, and salinity averaged in August 2015 and January 2016. 
The black box indicates the pCO2-NONT region, which is influenced by the ITF water of high 

ocean pCO2 anomaly. As shown in this figure, the DIC, Alk, and SSS increase anomalously due 
to the departure of warm pool and reduced rainfall around the maritime continent.  

  

  



 

Fig. S18. Temporal evolution of DIC, Alk, and Salinity advection anomaly, along with its two 
components: advection anomaly due to concentration anomaly and advection anomaly due to 
velocity anomaly. The advection anomaly is weighted averaged at the Lombok Strait, Sunda 
Strait, and Timor passage by the volume transport. The yellow shading color highlights the 

specific period of interest (2015-2016) when the focused IOD occurs. As shown in this figure 
(panel a-c), most of advection anomaly is contributed by concentration anomaly during 2015 

IOD.  
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