nature climate change

Article

https://doi.org/10.1038/s41558-024-01956-w

Enhanced CO_2 uptake of the coastal ocean is dominated by biological carbon fixation

In the format provided by the authors and unedited

Supplementary Tables and Figures

Table S1: Simulated net CO_2 uptake in Pg C yr⁻¹, integrated over the coastal, the open and the global ocean areas. The averaging period is 1991-2010 for experiments *ctrl*, *woriv* and *hist*, and the last 20 years for experiments *woriv*_{ext} and *hist*_{ext}.

Experiment	Coastal ocean	Open ocean	Global ocean
	$PgCyr^{-1}$	$PgCyr^{-1}$	$PgCyr^{-1}$
ctrl	0.10	0.58	0.68
woriv	0.21	1.86	2.07
hist	0.24	1.90	2.14
woriv _{ext}	0.15	1.01	1.16
histext	0.19	1.04	1.23

Table S2: Comparison of NPP decadal trends of 11 satellite products and the ICON-Coast simulation *hist*. Satellite trends are calculated over the available data periods of 10-20 yr, statistical significance at the 95% level is assessed with a 2-sided t-test. Model trends are calculated over the simulation period 1900-2010.

Region		ICON-Coast		
	trend range (g C m ⁻² 10 yr ⁻¹)	number of sign. trends	mean, median trend $(g C m^{-2} 10 yr^{-1})$	simulated trend $(g C m^{-2} 10 yr^{-1})$
Global open ocean	-8 to +7	2	+1, +1	+0.6 (p<0.01)
Global coastal ocean	+1 to +34	5	+10, +5	+2.5 (p<0.01)
EBUS coastal ocean	-21 to +82	3	+19, +3	+8.9 (p<0.01)
Arctic coastal ocean	+15 to +41	11	+27, +29	+0.3 (p<0.01)

Figure S1: Ocean surface wind stress according to ERA-20C reanalysis data (Poli et al. [44,45]). In panel (a), black and red vectors show means over 1901-1910 and 2001-2010, respectively. Panel (b) shows the difference between these two periods.

Figure S2: Simulated time series in annual NPP averaged over the coastal areas of the four eastern boundary upwelling systems: the California (20-43°N), Humboldth (8-40°S), Canary (18-43°N), and Benguela (15-32°S) current systems. Dark blue: Hindcast simulation *hist*; light blue: control simulation *ctrl*.

Figure S3: Prescribed nitrogen inputs from land to the ocean. Atmospheric N deposition (blue) follows Mauritsen et al. [40] and is shown for the global ocean as well as the fraction entering the coastal ocean. Riverine DIN loads (red) are derived by Lacroix et al. [11].

Figure S4: Global distribution of (a) depth-integrated net primary production, (b) ocean-atmosphere CO_2 flux (positive means oceanic outgassing), and (c) bias of surface phosphate concentration with respect to World Ocean Atlas 2013 (Garcia et al. [52]), all simulated by ICON-Coast for the period 2001-2010 (hindcast *hist*).

Figure S5: Comparison of climatological surface pCO_2 in the coastal ocean as (a) reconstructed from SOCAT data of the period 1998-2015 by Landschützer et al. [53], (b) simulated by ICON-Coast for the period 2001-2010 (hindcast *hist*), and (c) the bias of ICON-Coast.

Figure S6: Comparison of simulated global ocean CO_2 surface flux from the hindcast *hist* with best estimates from the Global Carbon Budget (Friedlingstein et al. [32]) and associated uncertainty (shaded grey area). A negative CO_2 flux corresponds to oceanic uptake.

Figure S7: Difference between the coastal ocean FCO₂ signals of experiments *hist* and *woriv* over both, the hindcast period 1900-2010 and the subsequent 100-yr extension with constant atmospheric pCO₂ (*hist_{ext}* and *woriv_{ext}*). Time series show annual values as well as a 20-yr running mean.

Figure S8: Simulated trends in marine NPP are reinforced by satellite-derived NPP estimates. Time series show 11 satellite products provided by the Ocean Productivity project as well as from ICON-Coast model output. All data are standardized over their individual periods to account for the high uncertainty between different imaging sensors and NPP algorithms.