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Abstract :   
 
Nitrate is one of the essential variables in the ocean that is a primary control of the upper ocean pelagic 
ecosystem. Its three-dimensional (3D) structure is vital for understanding the dynamic and ecosystem. 
Although several gridded nitrate products exist, the possibility of reconstructing the 3D structure of nitrate 
from surface data has never been exploited. In this study, we employed two advanced artificial intelligence 
(AI) networks, Unet and Earthformer, to reconstruct nitrate concentration in the Indian Ocean from surface 
data. Simulation from an ecosystem model was utilized as the labeling data to train and test the AI 
networks, with wind vectors, wind stress, sea surface temperature, sea surface chlorophyll-a, solar 
radiation, and precipitation as the input. We compared the performance of two networks and different pre-
processing methods. With the input features decomposed into climatology and anomaly components, the 
Earthformer achieved optimal reconstruction results with a lower normalized mean square error (NRMSE 
= 0.1591), spatially and temporally, outperforming U-net (NRMSE = 0.2007) and the climatology prediction 
(NRMSE = 0.2089). Furthermore, Earthformer was more capable of identifying interannual nitrate 
anomalies. With a network interpretation technique, we quantified the spatio-temporal importance of every 
input feature in the best case (Earthformer with decomposed inputs). The influence of different input 
features on nitrate concentration in the adjacent Java Sea exhibited seasonal variation, stronger than the 
interannual one. The feature importance highlighted the role of dynamic factors, particularly the wind, 
matching our understanding of the dynamic controls of the ecosystem. Our reconstruction and network 
interpretation technique can be extended to other ecosystem variables, providing new possibilities in 
studies of marine environment and ecology from an AI perspective. 
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Highlights 

► Two advanced AI networks were applied in reconstructing 3D structure of nitrate from surface data ► 
A deep learning interpretation technique was used to explain the spatio-temporal influence of each input 
feature ► Networks can achieve high accuracy and capture interannual nitrate anomalies, reflecting its 
dynamic control 
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1. Introduction 

Nitrate is one of the essential climate variables, plays a crucial role in characterizing 

the ecosystem and climate system (https://gcos.wmo.int/en/essential-climate-variables). 

Nitrogen limitation often links to phytoplankton productivity and carbon fixation via 

photosynthesis (Bristow, Mohr, Ahmerkamp, & Kuypers, 2017), particularly for our 

region of interest, the Indian Ocean (Y. Dai, Cao, & Wang, 2020). As a fundamental 

component of the nitrogen cycle, nitrate is regulated by both oceanic biogeochemical and 

physical processes, including its responses and feedback to climate changes (Voss et al., 

2013). Specially, the biogeochemical processes such as biological uptake and 

remineralization, as well as nitrate reduction to ammonium or nitrification transfer 

different species of nitrogen (Hutchins & Capone, 2022). In general, nitrate concentration 

is lower in the euphoric layer due to the high efficiency of phytoplankton, while higher 

concentration is in the deep layer since the regeneration in subsurface oceanic regions 

through the activity of remineralization. Physically, such vertical gradients imply that 

vertical processes that can move nutrient beneath the nutricline to the euphotic zone are 

the key physical regulators of productivity. These processes range from wind-driven 

coastal upwelling in the ocean boundary (Bakun, 1973; W. Lu et al., 2018) to mixing 

processes (Behrenfeld, 2010) that are ubiquitous in the surface ocean.  

The ocean nutrients were widely measured (Talley et al., 2016); however, due to the 

labor-intensive and costly nature of in-situ observation, they remain largely undersampled 

Du et al. (2021). Synthesis efforts mapping from discrete profiling data yielded gridded 

data products (Are Olsen et al., 2020), which was applied in many studies (M. Dai et al., 

2023). These gridded products can support model simulating and understanding the 

biogeochemical system in many oceans, including the Indian Ocean (Raddatz et al., 

2023). With the support of gridded nutrient products as the initial and/or boundary 

condition for configuring a physical-biogeochemical coupled model (W. Lu et al., 2018; 

Z. Lu, Gan, Dai, Zhao, & Hui, 2020), a variety of biogeochemical reanalysis products 

were enabled, such those on the Copernicus Marine Service data center. Yet, reanalysis 

models are expensive to run or complex to configurate, and hence are also very limited. 

At present, gridded nutrient products, such as the World Ocean Atlas (Garcia, Boyer, 

Locarnini, Baranova, & Zweng, 2018) or the Global Ocean Data Analysis Project 

(GLODAP, Are Olsen et al., 2020), can only achieve a 1-degree climatology resolution. 

Thus, using diverse techniques to reconstruct the three-dimensional structure of nutrient 

concentration is of great scientific interest and relevance. AI might be the solution, as it 

demonstrates significant potential in numerical simulation and forecasting oceanic 

phenomena (Dong et al., 2022; Sonnewald et al., 2021). 

For nutrient reconstruction, most existing studies are limited to indirect empirical 

estimates, as no special electromagnetic or optic signatures could be used for direct 

remote sensing. A first endeavor in estimating nitrate through satellite imagery was made 

as early as 1999 (Goes, Saino, Oaku, & Jiang, 1999), which reconstructed the global 

surface nitrate in discrete months. In 2014, attempts were made to reconstruct time series 
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of surface nitrate concentrations (Arteaga, Pahlow, & Oschlies, 2015). Recently, as a 

pioneer study for interior nutrient reconstruction, Du et al. (2021) applied an empirical 

relationship between in-situ temperature and salinity to reconstruct the 3D nutrient 

concentration in the South China Sea. L. Wang et al. (2023) trained a deep network to 

reconstruct the nitrite field using 3D temperature and salinity in the open Pacific, showing 

a good performance. Their studies, however, merely prove the feasibility of climatology 

monthly nutrient structure, leaving the multiyear monthly reconstruction problem open to 

be answered.  

Ocean remote sensing can observe the large-scale surface of the ocean. However, due 

to the limitation of remote sensing techniques, it is unable to directly observe the interior 

of the ocean. Since the 2010s, the subsurface and Deep Ocean Remote Sensing (DORS) 

technique (Klemas & Yan, 2014) has become a hot field of ocean remote sensing, which 

is defined as the indirect reconstruction of the ocean interior through surface remote 

sensing data. The DORS technique was broadly applied in ocean big-data reconstruction 

problems of ocean physics, e.g., ocean heat content (W. Lu & Su, 2023), subsurface 

temperature anomalies (W. Lu, Su, Yang, & Yan, 2019; Su, Zhang, Lin, Lu, & Yan, 2021; 

K. Zhang, Geng, & Yan, 2020), and temperature-salinity structures (Guinehut, Dhomps, 

Larnicol, & Le Traon, 2012). In recent years, Artificial intelligence (AI) has emerged as a 

remarkable method (Dong et al., 2022), providing revolutionized solutions for various 

non-linear regression problems (Ding, Chen, Lu, & Wang, 2021; Su, Lu, et al., 2021; 

Zhou, Lu, Chen, & Li, 2023), as well as the DORS reconstruction problems, e.g., Su, 

Jiang, Wang, Zhuang, and Yan (2022) utilized ConvLSTM for subsurface temperature 

reconstruction. In addition, the DORS reconstruction was also boosted by the availability 

of big ocean data. To date, little attention has been paid to reconstructing the 

biogeochemical variables, such as the nutrients, in particular, nitrate concentration, from 

the perspective of DORS. Our main purpose of this study is to bridge this gap. 

The Indian Ocean (See Figure 1) is an ideal region for conducting comprehensive 

investigations, characterized by its complex dynamics and interactions with large-scale 

climate drivers, including monsoons, the Indian Ocean Dipole (IOD), and the El Niño-

Southern Oscillation (ENSO). During summer monsoon, the high temperatures cause an 

increase in warm and moisture-laden air over the ocean, resulting in abundant rainfall. In 

contrast, the cold winter monsoon causes a decrease in humidity over the ocean, leading 

to reduced precipitation (Schott & McCreary, 2001). The monsoonal variations play a 

crucial role in regulating ecosystem processes, through the modulation of physical 

nutrient supply mechanisms, such as upwelling, vertical mixing, precipitation and river 

discharges (Koné, Aumont, Lévy, & Resplandy, 2009; Rixen, Gaye, & Emeis, 2019). On 

the other hand, climate drivers such as IOD and ENSO modulate these processes. During 

positive IOD and ENSO events, atmospheric convection over the Indian Ocean is 

suppressed, resulting in increased solar radiation and subsequent warming of the ocean 

(Neelin et al., 1998; Su, Wei, Lu, Yan, & Zhang, 2023). Furthermore, the strengthening of 

southeast trade winds in the eastern Indian Ocean during these events enhances surface 

evaporation, oceanic vertical mixing, and coastal upwelling (Tokinaga & Tanimoto, 
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2004), leading to the redistribution of nutrients throughout the region. Other dynamic 

mechanisms also have an impact on the ecological environment and nutrient distribution 

in the Indian Ocean. For instance, during the upwelling period in the Arabian Sea, 

physical driving factors contribute to the enrichment of surface nutrients, leading to 

anomalous changes in nutrient concentrations (Seelanki, Nigam, & Pant, 2022; Shafeeque 

et al., 2019). 

In summary, to prove the concept that 3D nitrate structure can be reconstructed from 

surface data, we chose two different AI algorithms, U-net and Earthformer. U-net is a 

modified convolutional neural network that incorporates residual connections. Initially, it 

was used for biomedical image segmentation (Ronneberger, Fischer, & Brox, 2015). 

Given its excellent feature extraction capability, U-net has been widely applied in AI 

oceanography studies (X. Li et al., 2020, and reference therein). For example, it has been 

used for eddy identification based on satellite remote sensing images (Saida & Ari, 2022; 

Zhao, Huang, Yang, Radenkovic, & Chen, 2023), sea surface salinity prediction (Huarong 

Xie, Xu, Cheng, Yin, & Fan, 2023; Xuewei Zhang, Zhao, & Han, 2023), and sea surface 

temperature forecasting (Sun, Zhou, Li, & Zhou, 2022; Taylor & Feng, 2022; H. Xie, Xu, 

Cheng, Yin, & Jia, 2022). On the other hand, Earthformer is an advanced artificial neural 

network based on Transformer in the field of Earth sciences, recently proposed for 

spatiotemporal prediction problems (Gao et al., 2022). 

In this study, we aim to prove the concept of DORS for nitrate concentration with AI. 

In Section 2, we first introduce the data and methodology employed in this study. In 

Section 3, we evaluate the performance of the networks using statistical metrics and 

showcase the response of networks to anomalous climatic conditions. We also use a 

statistical method to interpret the trained network and to discover the underlying controls 

of nitrate structure in a representative sea. We discuss the limitations and potential of our 

reconstruction in Section 4. In Section 5, conclusions are provided.  

 

Figure 1. Bathymetry of the Indian Ocean and its adjacent regions. Markers and lines are 
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selected locations for illustrating the vertical distribution of nitrate concentration in 

section 3. Showing are Site a: Bay of Bengal (85°E, 15°N), Site b: Arabian Sea (61°E, 

17°N), Site c: South Indian Ocean (75°E, 30°S), Site d: central basin (80°E, 5°S), 

Transection A (at 7°S), and Transection B (at 64°E). Blue markers in diamond shape 

represent the observed values obtained during the cruise selected in section 4. 

2. Data and methods 

2.1 Data 

Since the long-term spatiotemporal product of nitrate is currently unavailable, we 

instead use a well-optimized biogeochemical model data as the training, validation, and 

testing data. This modeling system adopted the Nucleus European Modeling of the Ocean 

(NEMO, Madec, 2008) forced with the European Center for Medium Weather Forecast 

(ECMWF) atmospheric forcing, while the biogeochemical model was from Pelagic 

Interaction Scheme for Carbon and Ecosystem Studies (PISCES, Aumont, C., Tagliabue, 

Bopp, & Gehlen, 2015). The NEMO-PISCES system has high-quality data and was applied 

in various biogeochemical studies (Guieu et al., 2014; Keerthi et al., 2017; Person et al., 

2019; T. Wang et al., 2021), justifying its application as the training data. The data were 

0.25°×0.25° grided data obtained from the Copernicus Marine Services website at 

https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029. The 

nitrate data contains 75 vertical levels, while the upper 42 levels (0-680 m) were used.  

For the input features, various environmental factors can influence the distribution of 

nitrate. Singh and Ramesh (2015) identified sea surface temperature and solar radiation as 

important factors for explaining nitrate changes associated with primary production (F. Li 

et al., 2023). Singh, Gandhi, and Ramesh (2012) estimated the annual nitrate flux of 1.095 

mmol m-2 yr-1 due to rainfall in the central Arabian Sea, indicating precipitation is an 

important feature. Additionally, the process of seawater convection driven by surface wind 

stress also has a notable impact on nitrate distribution (Lahiri & Vissa, 2022). Surface 

chlorophyll-a (CHL) is also chosen, as it reflects the biogeochemistry and is ample in terms 

of data sources (Das, Chakrabarty, Goswami, Basu, & Chaudhuri, 2019). Unlike prior 

studies that used 3D thermohaline data as major inputs (L. Wang et al., 2023), only using 

surface data can lead to better availability to reconstruct the historical nitrate structure, 

since historical 3D thermohaline data are also limited while surface data can be observed 

from remote sensing. 

Based on these previous studies, the surface data we used in our research includes 10m 

u-component of wind (UW), 10m v-component of wind (VW), sea surface temperature 

(SST), mean eastward turbulent surface stress (ETSS), mean northward turbulent surface 

stress (NTSS), mean total precipitation rate (PR), surface net solar radiation (SSR), and 

surface CHL. The UW, VW, SST, ETSS, NTSS, PR, and SSR data were acquired from the 

fifth-generation ECMWF reanalysis for the global climate and weather (ERA5, Hersbach 

et al., 2020). The surface CHL is from NEMO-PISCES. All are monthly averaged data on 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Manuscript submitted to Science of the Total Environment 

single levels at 0.25° resolution.  

For pre-processing, we standardized the resolution of all 0.25°×0.25° data to 1°×1° by 

consistently calculating the mean within each 2×2 grid. We selected a total of 312 months 

from January 1993 to December 2018 as the training set, and 24 months from January 2019 

to December 2020 as the testing set for testing the temporal extrapolation capability of the 

network. During training, to prevent overfitting of the model, we implemented the early-

stopping technique (Prechelt, 2012) and selected 24 months from our training set (312 

months) as a validation subset. The selection of the training validation and training sets was 

random, with a fixed random seed to ensure reproducibility. Before inputting the variables 

into the networks, all missing values in the variables were replaced by 0 to ensure the 

completeness of data after applying z-score normalization to them. 

To better examine the performance of network prediction, as well as the PISCES model, 

GLODAPv2.2023 was adopted. It includes in situ data from 724 cruises conducted by 

various international research projects, among which 530 received successful quality 

control (A. Olsen et al., 2016). After filtering these data based on our research scope in 

terms of depth (0-680 m depth), region (30°S-30°N, 30°E-120°E), and years (1993-2020), 
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a total of 22,184 nitrate measurements were selected to be utilized in Section 4. 

 

Figure 2. Flowchart for the reconstruction of nitrate levels in the Indian Ocean based on 

U-net and Earthformer respectively. 

2.2 U-net 

As shown in Figure 2(c), U-net consists of an encoder and a decoder that form a U-

shaped diagram. The encoder down-samples the input features while increasing the number 

of channels in the hidden information, compressing complex information from input 

features (e.g., sea surface temperature field and wind field as shown in Figure 2(a) and 

reducing the spatial dimension of the fields. Pre-experiment showed that deepening the 

down-sampling processes can slightly improve (for <5%) our reconstructions but cause 

much more computational consumption. Therefore, in our implementation, the encoder 
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consists of five down-sampling layers, each including two 3x3 convolution layers, two 

batch norm layers, and a 3x3 with 2 strides convolution layer for down-sampling, yielding 

32, 64, 128, 256, and 512 hidden features. Through each layer, the spatial dimension was 

reduced by a factor of 2. Each hidden feature can be treated as a spatial map that includes 

abstract deep information. The decoder restores the resolution of the fields using bilinear 

interpolation, it consists of four up-sampling layers containing an interpolation function, 

followed by two 3x3 convolution layers, two dropout layers (with a rate of 40%), and two 

nonlinear activation layers, to sequentially generate 256, 128, 64, and 32 hidden features 

back. Residual connections link the encoder and the decoder as a 'bridge', to help the 

decoder utilize the information of compressed feature fields from the encoder, enabling 

better capture of higher-level processed features. Finally, the final output layer (FFN in 

Figure 2c) adjusts output channels through a linear layer to produce 42 levels nitrate. More 

rationale and interpretation of U-net can be found in X. Li et al. (2020).  

2.3 Earthformer 

Earthformer is a deep-learning neural network based on Attention and Cuboid 

decomposition. Given that we have applied this network in our recent work (Liu et al., 

2024), only brief information on this network is provided here. Readers are referred to the 

network architecture in Liu et al. (2024) The structure of Earthformer used in our research 

is depicted in Figure 2(d).  

For our input feature fields, which are high-dimensional, nonlinear, and non-uniform, 

it is challenging to analyze each feature. Therefore, selecting relevant key points in the 

input features as the most important and representative parts is needed, to obtain the most 

valuable information for nitrate prediction. This is the core idea of the Attention mechanism, 

which can be considered as a trainable weight mask that gives large weights to the more 

important grid points. To reduce the computation burden, Cuboid Attention is a modified 

version of Attention. It first decomposes our feature fields into smaller feature cuboids 

using different types of decomposition, such as dividing them based on longitude or latitude. 

Then, Attention is applied to extract key elements for predicting nitrate. Earthformer also 

has a similar encoder-decoder structure to U-net. Cuboid self-attention refers to applying 

Cuboid Attention to the information passed within the encoder or decoder. Cuboid cross-

attention, on the other hand, only happens in the decoder, applying Cuboid Attention to the 

combination of information passed from the encoder and the information from the decoder 

itself. After passing through these blocks in the encoder-decoder, a final FFN layer is 

applied to adjust the output channels, resulting in 42 levels of nitrate. 

2.4 Experiment design 

To test the sensitivity of different network and input data schemes, we design 

experiments as presented in Table S1 in Supplementary Material. The input has 11 features 

in Case 1. For Case 2, the input features are preprocessed by removing the climatology 
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component from 1993 to 2018. The anomaly component of the original features and 

climatology components are combined as the new 19 input features. The input data have 

global coverage, but we only utilize data from the Indian Ocean region to calculate the loss. 

Pre-experiments that incorporating time lag did not improve the reconstruction, so we only 

used the inputs of the same month with the nitrate in the reconstruction. For each 

experiment, we stop training when either a maximum iteration of 1200 is reached, or no 

improvement is observed for the validation subset for 120 consecutive iterations. 

2.5 Statistical metric 

We use the normalized root-mean-square error (NRMSE) to quantify the reconstruction 

error. NRMSE was proposed to avoid the scale dependency (Shcherbakov et al., 2013). In 

our research, RMSE is calculated between the given predicted values and the corresponding 

labeling values, while NRMSE is RMSE divided by the mean of the corresponding labeling 

values. Similar calculation of NRMSE has previously been applied to evaluate the 

reconstruction performance of neural networks for surface chlorophyll time series 

(Martinez et al., 2020). It is important to note that NRMSE serves as a relative measure, 

and does not possess significant numerical meaning on its own. But it enables effective 

comparisons of network performance across various depths or regions. 

Moreover, to facilitate the comparison of the four-dimensional spatiotemporal field of 

nitrate, we define two new metrics, namely the relative climatology superiority vertical 

spatial ratio (RCVSR) and the relative climatology superiority horizontal spatial ratio 

(RCHSR). Both indexes compare the network prediction with the climatology prediction, 

i.e., use the climatological value as the ‘prediction’, given that the nitrate concentration 

in the ocean interior largely follows the climatological values. 

Once network results and the climatology values are given, RCVSR is a function of 

x and y. The RCVSR is the proportion of months in which neural network prediction 

outperforms climatology prediction. This comparison is based on a statistical metric 

(here, NRMSE) used to evaluate the performance of reconstruction for a specific month. 

If the metric shows that the network is better than the climatology prediction in that 

month, that month would be recorded and contribute to the calculation of the overall 

proportion within the comparison time interval. Similarly, RCHSR is a function of time. 

The RCHSR at that time t is the proportion of levels where a neural network outperforms 

(also using NRMSE) climatology prediction, calculated across all levels.  

2.6 Interpretability analysis 

To better explain the prediction of the neural network, the Integrated Gradients (IG) 

method was adopted from Sundararajan, Taly, and Yan (2017), which has been used to 

assess the sensitivity of a mixed layer depth prediction network (Foster, Gagne II, & Whitt, 

2021) and analyze the activation in the last convolutional layer of an SST prediction model 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Manuscript submitted to Science of the Total Environment 

(Feng et al., 2022). The IG sensitivity 𝑆𝑖,𝑗,𝑘 can be represented by the following formula: 

𝑆𝑖,𝑗,𝑘 = (𝑥 − 𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) ∫
𝑑𝑓(𝛼𝑥 − (1 − 𝛼)𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒))

𝑑𝑥𝑖,𝑗,𝑘

𝑑𝛼 
1

𝛼=0

 

In our study, 𝑓 represents the network prediction, and 𝑋(𝐻,𝑊,𝐾) represents a batch 

(month) of our normalized input, with 𝐻 and 𝑊 are the spatial grid points of the input 

field, and 𝐾 as the number of features (11 or 19 in total). Subscript 𝑖, 𝑗, 𝑘 belongs to 

𝐻, 𝑊, and 𝐾, respectively. In the equation, 
𝑑𝑓(.)

𝑑𝑥
 refers to the gradient with respect to a 

particular input. We set 𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0. Then the equation can be re-written as: 

𝑆𝑖,𝑗,𝑘 = 𝑥 ∫
𝑑𝑓(𝛼𝑥)

𝑑𝑥𝑖,𝑗,𝑘

𝑑𝛼 
1

𝛼=0

 

The 𝑆𝑖,𝑗,𝑘 refers to the integration of gradients across all the layers of the network 

and can be calculated using the chain rule.  

For the nitrate at a specific location (𝑥𝑡,𝑦𝑡,𝑧𝑡, 𝑡) , 𝑆𝑖,𝑗,𝑘  measures the contributing 

strength of every input feature, each as a two-dimensional map. To better visualize such a 

high-dimensional matrix as a function of (𝑥, 𝑦, 𝑘, 𝑥𝑡, 𝑦𝑡 , 𝑧𝑡, 𝑡), a target region (𝑥𝑡,𝑦𝑡,𝑧𝑡) 

must be chosen. We choose the upper 100 m of the adjacent Java area as the target region 

and integrate all 𝑆𝑖,𝑗,𝑘 within. This integrated quantity will be represented by 𝜔, which is 

one two-dimensional feature importance map for each feature in each month. Statistically, 

𝜔 can be an analog to the slope of multivariate linear regression, which will be shown in 
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Section 3.4. 

3. Results 

3.1 Spatial Comparison 

 

Figure 3. Vertical distribution of nitrate concentration at selected sites (see Figure 1 for 

their locations) for December 2019. (a) Bay of Bengal, (b) Arabian Sea, (c) South Indian 

Ocean, and (d) Central Basin. The x-axis is at a logged scale. 

Using December 2019 as an example, we selected eight representative locations to 

check the vertical profiles of nitrate (in Figure 3). Significant biases are observed in the 

near surface predictions, especially in the central basin (Figure 3d), where the predictions 

even failed to accurately predict the mixed layer depth, overestimating it by approximately 

30m compared to the model value; but under the 100m, the difference between the BGC 

model and the reconstruction (also the climatology prediction) is relatively smaller, 

implying a dynamic source for such discrepancy, instead of a biology source, since most of 

the biological activities influencing nitrate occur near surface. At two sites located in 

marginal seas (Figure 3a-b), U-net also fails to predict the subsurface nitrate structure of 

this month, with the reconstructed profile close to the climatology prediction, the 
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overestimation of nitrate reaches its maximum at ~200m (nearly 10 mmol m-3, i.e., ~100 % 

deviation); The Earthformer largely corrects this bias, with its vertical distribution close to 

the model in the subsurface area. Results of all methods have clear deviation in the upper 

50m, which is related to the strong biological processes occurring in the surface layer that 

affect nitrogen cycling. 

 

Figure 4. (a) Spatial NRMSE for each month (b) RCHSR summarizing spatial NRMSE 

from Jan 2019 to Dec 2020 for U-net Case 1, U-net Case 2, Earthformer Case 1, and 

Earthformer Case 2. (c) Time-depth distribution of the optimal method based on the 

RCHSR calculation process. Each grid represents the method with the minimum 

horizontal NRMSE at that month and that level. 

In Figure 4(a), we can observe that regardless of the month, all reconstruction results 

exhibit an NRMSE below 0.3 in spatial distribution, higher in Dec, Jan, and Feb. Among 

them, U-net and the climatology prediction show similar performance, with a maximum 

NRMSE of ~0.26 in January 2020, indicates 26% error with respect to the monthly average 

nitrate in this month. On the other hand, Earthformer stands out with consistently lower 

NRMSE below 0.2, generally better than all other methods, while the difference in the input 

features (Case 1 vs Case 2) is small. We presented one of our new-defined metrics, RCHSR 

in Figure 4(b), for a more thorough statistical comparison of the spatial performance of AI 

networks and the climatology prediction. The Earthformer consistently achieves RCHSR > 

0.5, i.e., more than half of the levels perform better in the horizontal dimension. From 

January to June 2019 and from December 2019 to March 2020, the RCHSR of U-net Case 

1 consistently remains lower than that of U-net Case 2. U-net Case 1 even has RCHSR = 0 

in January 2019. This reinforces the finding that the methods using U-net did not 

outperform the climatology prediction in most cases, suggesting the inadequacy of CNN-
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based networks for the complex nitrate reconstruction task. 

We also examined the time-depth distribution of the performance (Figure 4c). It is 

evident that although the network methods, especially Earthformer, outperform the 

climatology prediction significantly in the RCHSR comparison (Figure 4b), their ability to 

predict nitrate in the top 15 levels (about 0-16m depth) is notably weaker. Specifically, from 

Jan through Jun, the climatology prediction emerges as the optimal method for nitrate 

prediction in the top levels. In other months or layers, networks still demonstrate their 

advantage, among them, Earthformer consistently outperforms U-net. 

3.2 Temporal Comparison 

 

Figure 5. (a) Temporal NRMSE for each layer. Horizontal dotted lines represent the 

corresponding depths (5 m, 36 m, 180 m, and 510 m) for each row of subplots at the right 

side. (b) Horizontal distribution of Temporal NRMSE at the depths of 5 m, 36 m, 180 m, 

and 510 m based on the reconstruction results over 24 months in the testing set.  

In Figure 5a and b, all methods perform poorly at the surface in temporal 

reconstruction, especially in the central basin region, which is consistent with the trend 

shown in Figure 3. For 50m and deeper, the NRMSE of all methods gradually decreases, 

and the reconstruction results in different regions are better compared to the surface. For 

the upper 100m, the NRMSE is >0.4 (Figure 5a), meaning a more than 40% error with 

respect to the horizontal-temporal average nitrate in corresponding level. Earthformer Case 

2 has systematically low NRMSE for ~0.3 relative to climatology prediction, which is a 

significant improvement. In Figure 5b, although the reconstruction performance is better in 

the deeper layers compared to the upper layers, there are significant regional differences. 

The NRMSE at 180m in the Bay of Bengal and at 510m in the nearshore areas of the 

Arabian Sea are notably higher than other regions, with maximum values exceeding 0.5. In 

contrast, the reconstruction performance in most regions at 510m does not exceed 10%, as 

the NRMSE in these areas is less than 0.1. These general performance patterns or 
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differences can be explained by environmental controls.  

 

Figure 6. Vertical distribution of temporal NRMSE along (a) Transection A and (b) 

Transection B (see Figure 1 for their locations) derived from different reconstruction 

results of methods. The blank areas present in the subplots are due to data gaps caused by 

topographical reasons. 

To provide a more comprehensive assessment of the performance of each method, two 

sections were chosen, i.e., meridional Transection A (at 7°S) and zonal Transection B (at 

64°E), to analyze the basin-scale reconstruction in different networks. In the zonal direction 

(Figure 6a), all methods demonstrate strong temporal reconstruction capability under 

approximately 150 meters, with NRMSE values below 0.1, indicating errors regarding the 

2019-2020 temporal average model values in corresponding grids less than 10%, consistent 

with the vertical profile of NRMSE in Figure 5. Both U-net and the climatology approach 

exhibit similar NRMSE values and show lower performance compared to Earthformer in 

the western Indian Ocean. In the meridional direction (Figure 6b), notable differences are 

observed in the performance of all methods. Earthformer exhibits the lowest NRMSE, 

followed by U-net, both outperforming the climatology prediction. Generally, Case 2 for 

each network outperforms its corresponding Case 1, with lower NRMSE values observed 

in the Northern Indian Ocean. It is important to highlight that all methods exhibit poor 

temporal reconstruction performance in the near-surface ocean (<150m), particularly in the 
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central basin and the Northern Indian Ocean (from 20°S to 3°S and from 59°E to 94°E), 

where NRMSE in most of these grids exceed 5. For the central basin, the existence of 

subtropical gyre and relatively low biogeochemical activities lead to high reconstruction 

uncertainties therein. For the water column in the Arabian Sea or 15°S (Figure 6b), the poor 

performance can even penetrate down to 600 m. This could be attributed to the complex 

biogeochemical processes in these regions, such as the wind-driven upwelling. Indeed, the 

water with lower performance collocates with the upwelling-driven high productivity, 

subsequent carbon export (F. Li et al., 2023), and remineralization (in the deep layer) in the 

Arabian Sea (Sarma, Bhaskar, Kumar, & Chakraborty, 2020). Interestingly, the deep 

equatorial Indian Ocean seems to perform better, which is dominated by slow physical 

nutrient transports so that persistent to changes. These slow physical dynamics can be better 

predicted by surface dynamic factors such as SST or SSH.  

 

Figure 7. RCVSR summarizing temporal NRMSE among different levels for U-net and 

Earthformer in Case 1 and Case 2 respectively. The regions with RCVSR < 0.5 are shown 

in yellow. 

When looking into the pattern of RCVSR based on NRMSE (Figure 7), both U-net and 

Earthformer methods show similarity. In the nearshore region of the northern Indian Ocean 

or in the southern Indian Ocean, Earthformer achieves the highest RCVSR at ~0.9, 

indicating more than 90% vertical levels in these regions perform better than their 
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corresponding climatological value, compared to that of U-net at ~0.7. The networks have 

large RCVSR regions exceeding 0.5, these regions are located in the northern and southern 

areas of the Indian Ocean, with Earthformer averaging around 0.9 and only a few areas 

above 0.9 in U-net. 

3.3 Overall Comparison 

By calculating their overall NRMSE, it is evident that Earthformer Case 2 achieves the 

best performance with a value of 0.1591 (Table 1), meaning 16% error in terms of overall 

average nitrate, surpassing all other methods. The performance of U-net is comparable to 

that of the climatology prediction. Consistent with the previous discussion, all methods 

exhibit larger errors in the surface layer. Among the two different neural network 

architectures, Case 2 consistently outperforms Case 1, indicating that the decomposition of 

input features improves the reconstruction capability of the models. 

Table 1. The overall, pattern, and profile NRMSE of different methods. Only the 

maximum and minimum values are shown in pattern metric and profile metric, along with 

the corresponding depths or time points. Each value of the pattern NRMSE was 

calculated from the 3D nitrate field of (x, y, t) and is a function of depth. Profile NRMSE 

is from 3D nitrate field of (x, y, z) and is a function of time.  

Methods 
Overall 

NRMSE 

Pattern NRMSE Profile NRMSE 

Maximum Minimum Maximum Minimum 

U-net Case 1 
0.2068 1.4985(1m-

level) 

0.0596(628m

-level) 

0.2555(202

0.01) 

0.1668(201

9.07) 

U-net Case 2 
0.2007 1.5029(1m-

level) 

0.0565(628m

-level) 

0.2372(201

9.10) 

0.1722(201

9.01) 

Earthformer 

Case 1 

0.1688 1.4067(1m-

level) 

0.0424(628m

-level) 

0.2116(202

0.12) 

0.1359(201

9.07) 

Earthformer 

Case 2 

0.1591 1.4099(1m-

level) 

0.0338(628m

-level) 

0.1868(202

0.03) 

0.1325(201

9.03) 

Climatology 
0.2089 1.2727(2m-

level) 

0.0586(628m

-level) 

0.2510(201

9.12) 

0.1785(201

9.01) 

We then choose the adjacent Java Sea (AJS) as the zoom-in area to further look into 

the nitrate reconstruction, and focus on the interannual variabilities. Here we define the AJS 

as 98°E-117°E and 12°S-3°S. During El Niño years, specifically in 2011, 2015, and 2019, 

anomalous increased nitrate concentration was observed therein (Wahyudi et al., 2023). 

Following their study, we compare the climatology with the reconstructed nitrate in 2019 

to assess the discrepancies. 

Driven by the strong El Niño and Indian Ocean Dipole events, the year 2019 was 

significantly abnormal in terms of biogeochemistry. As shown in Figure 8(a), the nitrate 

concentration was significantly positive > 0.8 mmol m-3, much larger than the climatology 

values of ~0.2 in October. We present Figure S1 (Supplementary Material) to compare near-
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surface (5 m) nitrate concentration variations in the AJS. The western AJS exhibited a 

nitrate anomaly, peaking in October 2019, consistent with the study of Wahyudi et al. 

(2023). The high nitrate concentration appeared to be coastally trapped and gradually 

decreased away from the coastline. In terms of temporal variation, the elevated nitrate 

concentration could be observed early in June, where nitrate concentration near 117°E in 

June 2019 was significantly higher compared to that of June 2020, and this phenomenon is 

well reflected by the reconstruction of Earthformer Case 2. In contrast, the climatology has 

limited capability in capturing these anomalies. 

In terms of driving factors (Figure 8b) for such anomalies, variables such as PR, CHL, 

SST, and SSR all exhibited considerable anomalies this year. Specifically, CHL and SSR 

were higher than the values in the same period of 2020, while SST and PR were lower. This 

indicates that the network successfully captured these anomalies and performed the 

reconstruction of nitrate on a physical basis. 

Surprisingly, the wind speed and wind stress, which are the main drivers of upwelling 

in this region (Susanto, Gordon, & Zheng, 2001), did not exhibit significant differences 

between the two years, despite being influenced by positive ENSO and IOD events that 

resulted in the strengthening of southeast winds in the eastern Indian Ocean. This can be 

explained by the fact that the monsoon effects in the tropical Indian Ocean tended to be 

remote forcing, especially interannually, driving the AJS in the form of Kelvin waves (Chen, 

Han, Li, & Wang, 2016), instead of direct forcing. 

 

Figure 8. The near-surface (5 m) nitrate concentration and its driving factors averaged in 
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the AJS. (a) Nitrate in 2019-2020, with the model value of nitrate (black lines) and its 

climatology (green lines), results of U-net Case 1 (red lines), U-net Case 2 (red lines with 

asterisks), Earthformer Case 1 (blue lines) and Earthformer Case 2 (blue lines with 

asterisks). (b) Driving factors in 2019-2020. In each subplot, the solid line represents one 

or two input features corresponding to the subplot and the dashed line represents its 

climatology. Both in (a) and (b), the blue and orange shadings highlight the periods of 

further investigation. 

3.4 Network interpretation 

To better understand the reconstruction of black-box neural networks, we use the IG 

method to compute the feature sensitivity in the best-performance case, Earthformer Case 

2. As depicted in the time series in Figure 9(a), the seasonal variation of the domain-

averaged sensitivity ω is much stronger than its interannual variabilities, indicating the 

nitrate in AJS is dominant by seasonal variation of wind, with secondary influences from 

the interannual variation (e.g., ENSO or IOD). The ω time series of various features 

exhibits seasonal contrasts between the DJF and JJA, meriting further investigation. Note 

that JJA is chosen to investigate the precursor of the Oct peak. In Figure 9(d-f), most 

features show higher ω during DJF compared to JJA, while PR is the opposite. The CHL 

contribution reflects the influence of biogeochemical factors, but its contribution seems 

unexpectedly low, in turn implying the importance of physical factors. Among physical 

factors, the SST and SSR appear to be weakly contributing, while the wind and its stress 

tend to be more important, suggesting the dominant role of dynamic factors outcompeting 

thermal factors in regulating nitrate. Among all factors, UW, VW, and PR have the 

largest ω and exhibit the most pronounced seasonal variations, we focus on these features 
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to investigate the underlying reasons for these seasonal variations in the subsequent 

analysis. 

 

Figure 9. Feature contribution to nitrate in the AJS in Earthformer Case 2. (a) The 

temporal variation of the spatial-average ω over the whole domain of each input feature. 

The blue shading represents DJF (Dec-Jan-Feb), while the yellow shading represents JJA 

(Jun-Jul-Aug). (b) Wind direction (vectors) and wind speed (color shading, in m·s-1) in 
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DJF and JJA. (c) PR in DJF and JJA (in kg·m-2·s-1). (d-f) Feature contribution (ω) for 

UW, VW, and PR in DJF and JJA. In each panel, ωIJ represents the AJS-average value, 

while ωOJ means the average outside the AJS. The white dashed box delineates the area of 

the AJS. 

Interestingly, the most important three factors (UW, VW, and PR) present distinct 

seasonal differences in feature contributions (Figure 9d-f). Within the AJS, the wind has a 

higher impact on AJS nitrate in DJF than in JJA, while PR has less impact. Outside the 

AJS, the opposite is true, as higher wind impacts in JJA and lower PR impacts in DJF. 

The feature contribution appears to be more scattered for the DJF wind, particularly with 

meridional linkage to the South China Sea and Australian coasts. This pattern is strongly 

contrasted with that in JJA, in which only small portions outside AJS have impacts and 

the impacts have remote impacts from the western tropical Indian Ocean.  

These seasonal contrasts can be explained with corresponding wind and PR patterns 

(Figure 9b-c). In JJA, the winds exhibit a homogenous basin-wide clockwise pattern, with 

southeastern winds covering the AJS and broader Southern Indian Ocean. On the other 

hand, during DJF, the wind distribution is more chaotic, with the wind speed being 

especially weak over the AJS. In the case of DJF, limited information from the wind 

would be required for the network to generate nitrate responses, while chaotic forcing 

generates a more sensitive response in the network. This reflects the Earthformer network 

based on attention that can extract important spatial information automatically, paying 

more weight to these important locations. Dynamically, these differences between JJA 

and DJF are in line with the seasonal variations in the Walker circulation and Hadley 

circulation (Schwendike et al., 2015). In JJA, the tropical wind can also trigger ocean 

circulation jet and Kelvin waves (Wyrtki, 1973) to remotely influence AJS.  

The above interpretation also can apply to the opposite patterns observed in PR. As 

shown in Figure 9(c), PR during DJF exhibits a more regular pattern with the only hotspot 

in the tropics. During JJA, there is minimal rainfall in the south Indian Ocean, while there 

are several regional high PR hotspots in the Arabian Sea, the Bay of Bengal, and the 

South China Sea. Therefore, in JJA, the network requires more information to reflect the 

impact of PR on nitrate concentration, leading to a scatter importance map. In contrast 

with the wind, the PR effects tend to be local effects, with the exception of the cross-basin 

influence from the South China Sea in JJA. Dynamically, this might reflect the negative 

correlation between weak PR in AJS and strong PR in the South China Sea, which is due 

to water and heat exports from tropical AJS to the South China Sea (Xu et al., 2021) 

during JJA. Specifically, the Australian Southeast Monsoon brings cool and dry air 

currents reducing rainfall in AJS (Siswanto & Suratno, 2008). In contrast, at the same 
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time in the South China Sea (SCS), the Southwest Monsoon from the eastern Indian 

Ocean transports heat and water, leading to increased rainfall in the SCS. 

 

4. Discussion 

Reconstruction of gridded nitrate data presents a significant challenge due to the 

inherent difficulty in obtaining large scale nutrient data. Satellite observations lack 

sensors that can directly sense nutrient concentrations. While indirect estimation of 

surface ocean nitrate (Arteaga et al., 2015) has achieved high precision using a series of 

sea surface remote sensing data, it lacks the capability to reconstruct the ocean interior 

(Klemas & Yan, 2014). Direct observation with Biogeochemical-Argo or other automatic 

platform (Chai et al., 2020) could provide inexpensive and timely 3D nutrient 

observations, but their numbers for now are far from enough to achieve global and near-

real-time coverage. Therefore, currently using AI to indirectly reconstruct nutrient 

structure, particularly from full-coverage surface data, is a promising way. However, such 

reconstructing the 3D structure of ocean nitrate is a more complicated task as it requires 

consideration of various physical and biogeochemical factors. Cautions should also be 

taken in choosing the training data, since the model data used here is merely a simplified 

representation of the real ocean that could be more complex and noisy (Tagliabue, 2023). 

At least, with carefully designed such data-driven methods, the reconstructed results only 

showed little difference from the PISCES when compared to the observation data. This 

indicated that data-driven reconstruction based on model data would be not significantly 

affected by error propagation resulting from discrepancies between the model data and 

the observation. 
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Figure 10. Density plot and fitted curve comparing nitrate concentrations between 

PISCES model and GLODAP in situ measurements among 1993-2018 (a) and 2019-

2020(b), similarly, between Earthformer Case 2 and GLODAP in situ measurements 

among 1993-2018 (c) and 2019-2020(d). In situ data from GLODAP has been matched 

with gridded monthly data from PISCES or the network reconstruction. 

On the other hand, deep learning methods are generally considered black-box (Fan, 

Xiong, Li, & Wang, 2021; Holm, 2019; Portillo Juan, Matutano, & Negro Valdecantos, 

2023) inhibits their further applications (Reichstein et al., 2019). Despite their usefulness 

in various environmental tasks including oceanic reconstruction (Konya & Nematzadeh, 

2024), critiques of lacking network interpretability often limited the further generalization 

of these data-driven models. To tackle this issue, network interpretation is a feasible 

strategy that possesses fundamental importance (Ham, Kim, & Luo, 2019; Park et al., 

2022; Samek, Montavon, Lapuschkin, Anders, & Müller, 2021). In our study, we 

attempted to understand the neural network prediction using the IG method. We argue 
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this method is universal that can be further applied to many problems in oceanic, 

environmental, and climate sciences.  

Moreover, to tackle the interpretability issue of AI models, we can also consider 

physics-constrains. This is an emerging paradigm that is expected to further improve 

data-driven forecasting, by incorporating the advantages of numerical models and data-

driven forecasting tools while simultaneously avoiding the disadvantages of either 

methods (Dong et al., 2022; Karniadakis et al., 2021). There exist methods that can 

incorporate ecological processes into AI, such as the Physics-Informed Neural Networks 

(Raissi, Perdikaris, & Karniadakis, 2019), and can enable AI to learn complex ecological 

processes (Holder & Gnanadesikan, 2021; Lek & Guégan, 1999). 

 

5. Conclusions 

In this study, two AI networks, U-net and Earthformer, were applied to prove the 

availability of reconstructing the 3D structure of nitrate concentration in the Indian Ocean 

only from surface data (UW, VW, ETSS, NTSS, PR, SST, SSR, CHL) and spatiotemporal 

information (LON, LAT, TIME). As a first step of concept proofing, we adopted a 

physical-biological model forced by climate reanalysis (ERA5) as the input, training, and 

testing sets. The results show that the Earthformer can outperform the U-net network, 

with the input features decomposed into climatology components and anomaly 

components. The Earthformer exhibits superior reconstruction with the lowest overall 

NRMSE (0.1591), surpassing the performance of U-net and climatology prediction. 

Further comparison with observed profiles suggests that our nutrient reconstruction, 

trained from PISCES, reaches a lower RMSE (0.2922 umol/kg) in 2019-2020, and 

performs comparably or even better than PISCES itself (0.5933 umol/kg). 

We used the AJS region to see if the network could capture the interannual variation 

of nitrate. Indeed, the nitrate structure in AJS in Oct 2019 presented an anomalous high, 

which was well captured by the Earthformer reconstruction. We further applied a deep 

learning interpretation technique named the Integrated Gradients (IG) to compute the 

spatio-temporal contribution/importance of every input feature to upper-layer nitrate in 

the AJS. The seasonal variations of wind and precipitation contribution presented distinct 

contrasts. These distinctions can be explained by the understanding of dynamic controls 

on the ecosystem.  

Reconstructing gridded nitrate data is a significant challenge as satellite observations 

cannot directly sense nutrient concentrations, on the other hand, existing indirect 

estimation methods are unable to capture the internal structure of the ocean. Unlike 

previous studies using 3D temperature and salinity as the input, our proof-of-concept 

study utilizes only surface information, and highlights the potential to reconstruct long-
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term and large-scale nitrate (as well as other ecosystem variables) structures with AI. For 

example, these methods can be applied to reconstruct the historical nitrate structure to 

study the impacts of marine heat waves (Zhan, Zhang, He, & Zhan, 2023) and the long-

term trends of the ecosystem (Sauzède et al., 2017). For ecosystem modeling, our method 

can also provide timely and considerably accurate multiyear initial conditions and 

boundary constraints for nitrate, better simulating key biogeochemical processes such as 

nitrogen cycling, productivity, and biodiversity in the ecosystem (Gruber & Galloway, 

2008; Xinning Zhang, Ward, & Sigman, 2020). These further applications can be 

exploited in future studies. 
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Highlights:  

⚫ Two advanced AI networks were applied in reconstructing 3D structure of 

nitrate from surface data 

⚫ A deep learning interpretation technique was used to explain the spatio-

temporal influence of each input feature 

⚫ Networks can achieve high accuracy and capture interannual nitrate 

anomalies, reflecting its dynamic control 


