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Abstract The ocean is a major carbon sink and takes up 25%–30% of the anthropogenically emitted
CO2. A state‐of‐the‐art method to quantify this sink are global ocean biogeochemistry models (GOBMs),
but their simulated CO2 uptake differs between models and is systematically lower than estimates based
on statistical methods using surface ocean pCO2 and interior ocean measurements. Here, we provide an
in‐depth evaluation of ocean carbon sink estimates from 1980 to 2018 from a GOBM ensemble. As
sources of inter‐model differences and ensemble‐mean biases our study identifies (a) the model setup,
such as the length of the spin‐up, the starting date of the simulation, and carbon fluxes from rivers and
into sediments, (b) the simulated ocean circulation, such as Atlantic Meridional Overturning Circulation
and Southern Ocean mode and intermediate water formation, and (c) the simulated oceanic buffer
capacity. Our analysis suggests that a late starting date and biases in the ocean circulation cause a too low
anthropogenic CO2 uptake across the GOBM ensemble. Surface ocean biogeochemistry biases might also
cause simulated anthropogenic fluxes to be too low, but the current setup prevents a robust assessment.
For simulations of the ocean carbon sink, we recommend in the short‐term to (a) start simulations at a
common date before the industrialization and the associated atmospheric CO2 increase, (b) conduct a
sufficiently long spin‐up such that the GOBMs reach steady‐state, and (c) provide key metrics for
circulation, biogeochemistry, and the land‐ocean interface. In the long‐term, we recommend improving the
representation of these metrics in the GOBMs.

Plain Language Summary In this study, we evaluate the performance of state‐of‐art global ocean
biogeochemistry models (GOBMs) in simulating CO2 fluxes across the air‐sea interface from 1980 to 2018 for
the Global Carbon Budget. Across these GOBMs, the simulated CO2 uptake is systematically lower than that of
observation‐based estimates and the estimates differ also substantially between GOBMs. As reasons for the too
low carbon sink of the GOBMs, we find that the simulations of several GOBMs were initialized after the start of
the industrial revolution and that the majority of the considered GOBMs underestimate the large‐scale ocean
circulation in the Atlantic. The different initialization times of the simulations as well as different strengths of
the simulated ocean circulation across the global ocean also partly explain the inter‐model differences for the
ocean carbon sink. Our analysis of the influence of GOBM dynamics on their simulated carbon sink was
impeded by the fact that not all GOBMs had the same initial stability and that the riverine component of the
ocean carbon sink is highly uncertain in both observations and GOBMs. Based on our evaluation, we give
recommendations for follow up studies.

1. Introduction
Currently, the global ocean takes up 25%–30% of all human‐made CO2 emissions (DeVries, 2014; Friedlingstein
et al., 2022; Gruber, Clement, et al., 2019; Gruber et al., 2023; Khatiwala et al., 2009; Müller et al., 2023; Terhaar
et al., 2022), thereby reducing the growth of atmospheric CO2 and slowing down global warming (IPCC, 2021).
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However, the additional carbon in the ocean causes ocean acidification (Haugan &Drange, 1996) and reduces the
efficiency of the ocean carbon sink (Broecker et al., 1979; Revelle & Suess, 1957).

The main driver of the evolution of the global ocean carbon sink from preindustrial times to present is the
increasing atmospheric CO2 due to human activity (Sarmiento et al., 1992). The additional dissolved inorganic
carbon (DIC) in the ocean due to rising atmospheric CO2 concentrations is known as anthropogenic carbon (Cant;
Sarmiento et al., 1992), while the DIC that existed prior to the start of the industrial revolution is called natural
carbon (Cnat). Second order terms in the historical evolution of the ocean carbon sink are climate‐change and
climate‐variability driven changes in the anthropogenic and natural air‐sea CO2 fluxes (Joos et al., 1999; Le Quéré
et al., 2000; McNeil & Matear, 2013), as well as anthropogenic changes in the riverine carbon fluxes (Regnier
et al., 2013; Terhaar et al., 2022). At the global scale, the air‐sea Cant flux is controlled by the rate of Cant transport
from the surface ocean to the deep ocean, which depends on the concentration of Cant in the surface ocean
(Broecker et al., 1979) and the surface‐to‐deep water volume transport (Caldeira & Duffy, 2000; Mikaloff
Fletcher et al., 2006; Orr et al., 2001; Sarmiento et al., 1992). In contrast, the air‐sea flux of Cnat is primarily
controlled by the interaction of surface heating or cooling affecting the solubility of CO2 in seawater and transport
and mixing, and biological processes of photosynthesis, respiration, and CaCO3 production (Sarmiento &
Gruber, 2006). While there is agreement on these drivers for Cant and Cnat fluxes and their relative importance, an
accurate quantification of the carbon sink and its processes is still challenging.

More than 100 scientists around the globe have worked on providing an updated quantification of the carbon
fluxes between the atmosphere, land, and ocean during Phase 2 of the REgional Carbon Cycle Assessment and
Processes project (RECCAP2) (Poulter et al., 2022). The ocean part of RECCAP2 assesses the most up‐to‐date
air‐sea carbon flux estimates based on statistical methods applied to observations of surface ocean partial pressure
of CO2 (pCO2 products) and hindcast simulations from global and regional ocean biogeochemistry models
(ROCMs and GOBMs) to better understand the global and regional ocean carbon sink over the last three decades,
its decadal and inter‐annual variability and seasonal cycle, and the contribution of the biological pump. Although
they contain data from similar GOBMs and pCO2 products, the compiled database of RECCAP2 (Müller, 2023)
goes well beyond that used in the framework of the Global Carbon Budget (Friedlingstein et al., 2022). Spe-
cifically, the RECCAP2 database contains simulation results from a broader set of numerical simulations, and it
includes much more spatially and temporally refined data and many more variables. This database permits us to
analyze the spatially and temporally resolved air‐sea CO2 fluxes and the processes controlling the ocean carbon
sink. With this study here, we provide an evaluation of the GOBM hindcast simulations to better contextualize the
model results in the different studies of the AGU special issue “REgional Carbon Cycle Assessment and
Processes—2 (RECCAP2)” and in the 2020 and 2022 edition of the Global Carbon Budget (Friedlingstein
et al., 2020, 2022) and to make recommendations for future assessments of the ocean carbon sink using GOBMs.

TheRECCAP2 project is a continuation of the large efforts that have been undertaken in the last decades to quantify
the past and present ocean carbon sink with pCO2 products (Chau et al., 2022; Gregor & Gruber, 2021; Gregor
et al., 2019; Iida et al., 2021; Landschützer et al., 2014; Rödenbeck et al., 2013; Watson et al., 2020; Zeng
et al., 2014) and GOBMs forced with historic atmospheric reanalysis data (Hauck et al., 2020; Orr et al., 2001;
Sarmiento et al., 1992; Sarmiento & Sundquist, 1992). The global ocean carbon sink estimates differ across the
different methods and models. In the multi‐model mean, the simulated change in the air‐sea CO2 flux since pre‐
industrial times as reported by the Global Carbon Budget is consistently less negative (lower uptake) than the
mean estimate of the pCO2‐products (1990s: − 1.91 ± 0.25 Pg C year− 1 in models vs. − 2.14 ± 0.34 Pg C year− 1

for pCO2 products, 2000s: − 2.05 ± 0.27 Pg C year− 1 vs. − 2.34 ± 0.21 Pg C year− 1, and 2010s: − 2.42 ±
0.29 PgCyear− 1 vs. − 3.02± 0.22 PgCyear− 1; Friedlingstein et al., 2022). This difference between themodels and
pCO2 products in the 2010s is around half as large as the annual CO2 emissions in theUnited States ofAmerica over
the same period (Friedlingstein et al., 2022). This highlights the need for amore rigorous quantification of the ocean
carbon sink to fully close the global carbon budget (Hauck et al., 2020). A better understanding of the fidelity of
GOBMs is also needed if such models are to be used for monitoring, reporting, and verification of ocean‐based
carbon dioxide removal techniques (Gattuso et al., 2018).

Prior GOBM intercomparison studies (Khatiwala et al., 2013; Orr et al., 2001; Wanninkhof et al., 2013) and
studies with related Earth System Models (ESMs) suggest several reasons for the differences mentioned above.
Among them are biases in model dynamics such as the mode, intermediate, and deep‐water formation in the North
Atlantic (Goris et al., 2018, 2023; Terhaar et al., 2022) and Southern Ocean (Bourgeois et al., 2022; Fu
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et al., 2022; Terhaar, Frölicher, & Joos, 2021; Terhaar et al., 2022), both causing a bias in the amount of carbon
that is transported from the surface to the deep ocean. Also biases in the model ocean carbonate chemistry affect
the anthropogenic CO2 uptake (Terhaar et al., 2022; Vaittinada Ayar et al., 2022). Other reasons for the above‐
mentioned differences are related to the setup of the model simulations. For example, the starting date of model
simulations is often several decades delayed relative to the onset of the anthropogenic CO2 increase in the at-
mosphere due to changes in land‐use and the start of the industrial revolution in the second half of the eighteenth
century (Bronselaer et al., 2017; Terhaar, Orr, Gehlen, et al., 2019), leading to a too low ocean carbon uptake and
storage. Associated with the setup of model simulations is also the spin‐up procedure (Séférian et al., 2016),
where a too short spin‐up can lead to model drift and adds a significant source of uncertainty to the multi‐model
spread. Based on these findings, the here presented study identifies inter‐model differences between GOBM
simulations of the natural and anthropogenic components of the ocean carbon sink as well as differences between
the ocean carbon sink estimates of GOBMs and pCO2 products at a global and regional level. We also investigate
the underlying reasons for these differences and provide recommendations for future assessments of the ocean
carbon sink using GOBMs.

2. Materials and Methods
2.1. Ocean Biogeochemistry Models

The GOBMs analyzed in this study are general ocean circulation models with coupled sea ice and ocean
biogeochemistry model components. They simulate the transport of biogeochemical tracers through advection
and mixing and their cycling through biogeochemical processes (primary production, grazing, remineralization,
etc., see Fennel et al., 2022). The air‐sea CO2 flux in these models is based on the simulated ocean carbon dy-
namics and the prescribed atmospheric CO2 mixing ratio. In this study, we analyzed the following eight GOBMs
in full: CESM‐ETHZ (Yang & Gruber, 2016), CNRM‐ESM2‐1 (Séférian et al., 2019), EC‐Earth3 (Döscher
et al., 2022), FESOM‐ RecoM‐LR (Hauck et al., 2020), MRI‐ESM2‐1 (Urakawa et al., 2020), NorESM‐OC1.2
(Schwinger et al., 2016), ORCA025‐GEOMAR (Physics are described in Madec et al. (2017), and biogeo-
chemistry in Chien et al. (2022)) and ORCA1‐LIM3‐PISCES (Aumont et al., 2015). Three GOBMs that sub-
mitted data to RECCAP2 were not or only partially included in our analyses: The MPI‐OM‐HAMOCC model
(Mauritsen et al., 2019) was not used here as the separation into all individual flux components (see Section 2.2.3)
was not possible because its different simulations were forced with different atmospheric forcing data sets.
Similarly, MOM6‐Princeton (Stock et al., 2020) did not perform two of the RECCAP2‐simulations, preventing us
from diagnosing the individual CO2 flux components. Therefore, we do not consider MOM6‐Princeton when
presenting values or plots for the GOBM‐ensemble to conserve consistency between the different flux compo-
nents. But we present its results separately when possible. Lastly, PlankTOM12 (Wright et al., 2021) has strong
salinity biases in all basins. These biases and associated biases in circulation lead to an anthropogenic carbon
storage pattern that does not resemble any of the observation‐based estimates. While we plot its results in the
supplementary Figures of Section 3.3.1 (Interior Ocean anthropogenic carbon storage) and explain the reasons for
its exclusion there, we exclude it from all GOBM results in terms of multi‐model mean and standard deviation.
The exclusion of these three GOBMs in GOBM‐ensemble values can lead to this study presenting slightly
different regional estimates than other RECCAP2‐studies (DeVries et al., 2023; Hauck, Gregor, et al., 2023;
Hauck, Nissen, et al., 2023; Pérez et al., 2023; Yasunaka et al., 2023).

The here‐considered GOBMs were forced with atmospheric fields, such as atmospheric temperature and wind
speeds, from different versions of either the Japanese Reanalysis JRA‐55‐do (Tsujino et al., 2018) or of the
reanalysis from NCEP/NCAR (Large & Yeager, 2009). Details of the respective model resolutions, forcings, and
references are listed in Supplementary Table 1 in DeVries et al. (2023). As our study analyzed the influence of the
simulated Atlantic Meridional Overturning Circulation (AMOC) on the simulated sea‐air carbon fluxes, we
additionally considered a second realization of the RECCAP2‐simulations by the model CESM‐ETHZ with a
different sea surface salinity restoring. In the standard realization of the CESM‐ETHZ simulations, the salinity
restoring timescale was 2 years everywhere at the ocean surface, whereas the second realization used a timescale
of 300 days north of 45°S and of 60 days south of 45°S. The shortened restoring timescale in the Southern Ocean
better captures seasonal freshwater fluxes due to sea ice formation and melting. This change in the salinity
restoring led to an improvement of the overturning circulation simulated by CESM‐ETHZ, not only in the
Southern Ocean, but also in the North Atlantic. Here, the previously very weak AMOC at 26°N increased from 3.5
to 14.4 Sv (averaged over years 2005–2018).

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003840

TERHAAR ET AL. 3 of 32

 19422466, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003840 by Ifrem
er C

entre B
retagne B

lp, W
iley O

nline L
ibrary on [07/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.2. Sea‐Air CO2 Flux

2.2.1. Sign Convention

Throughout this study, the CO2 flux between the atmosphere and ocean is defined as a sea‐to‐air flux, thus with a
negative flux indicating an uptake of CO2 by the ocean and a positive flux indicating an outgassing. Positive land‐
to‐sea riverine fluxes indicate a flux into the ocean and positive sea‐to‐sediment burial fluxes indicate a flux from
the ocean into the sediments.

2.2.2. Components of the Sea‐Air CO2 Flux

In this study, we aim at quantifying the net sea‐air CO2 flux (F
net), that is, the contemporary air‐sea CO2 flux and

not the anthropogenic‐perturbation of the pre‐industrial air‐sea CO2 fluxes as quantified in the Global Carbon
Budget (Friedlingstein et al., 2022). Fnet can be divided into five components. The first two components are part of
the anthropogenic sea‐air CO2 flux from increasing atmospheric CO2 in the atmosphere (Fant), which was further
divided into a steady‐state component Fant

ss representing the anthropogenic sea‐air CO2 flux in the absence of
climate change and climate variability, and into a non‐steady state component Fant

ns reflecting the effect of climate
change and climate variability on Fant. The next two components are part of the natural sea‐air flux of CO2 under
pre‐industrial atmospheric CO2 (Fnat), which was also divided into Fnat under a constant climate (steady‐state Fnat
or short Fnat

ss), and the modulation of the Fnat due to climate variability and climate change (non‐steady state Fnat
or short Fnat

ns). The fifth flux component is the sea‐air CO2 flux due to the carbon, alkalinity, and nutrient fluxes
from rivers and coastal erosion and their respective burial in sediments (Fnat

riv‐bur) (Lacroix et al., 2020). While
previous literature has often called this a riverine‐induced flux, we decided to call it riverine‐burial induced flux to
emphasize that the flux depends on both, the carbon flux from rivers into the ocean and the carbon flux into the
sediments. Some of the other papers of the AGU special issue “Regional Carbon Cycle Assessment and Processes
—2 (RECCAP2)” consider Fnat

riv‐bur to be an integral part of Fnat
ss. We kept them separated to the degree that this

is possible in order to analyze all flux components individually.

The net flux across the sea‐air interface (Fnet) can thus be written as:

Fnet = Fantss + Fantns + Fnatss + Fnatns + Fnatriv‐bur. (1)

Throughout this paper, carbon inventories are referred to as “C” in analogy to the fluxes that are abbreviated with
“F.” The same indices as for the fluxes were used to distinguish the respective components of carbon inventories
and their change over time. While RECCAP2 mainly aimed at quantifying Fnet, the annually released Global
Carbon Budget aims at quantifying the anthropogenic perturbation of the preindustrial air‐sea CO2 flux. This
change in Fnet is called SOCEAN in the Global Carbon Budget.

2.2.3. RECCAP2 Simulations and Their Relation to CO2 Flux Components

The RECCAP2 database (Müller, 2023) provides model output from 1980 to 2018 from four simulations (called
simulations A, B, C and D) that aim to quantify the different components of the oceanic CO2 flux.

• Simulation A is forced with historical atmospheric reanalysis data and historically increasing CO2, yielding:

FSimA = Fantss + Fantns + Fnatss + Fnatns + Fnatriv‐bur + Fdrift+bias, (2)

where Fdrift+bias is the bias in the simulated sea‐air CO2 flux due to insufficient spin up and its drift over time
(more details on this can be found at the end of this section).

• Simulation B is forced with the same repeated annual atmospheric forcing and constant pre‐industrial CO2

levels, yielding:

FSimB = Fnatss + Fnatriv‐bur + Fdrift+bias. (3)

• Simulation C is forced with a constant atmospheric forcing and historically increasing CO2, yielding:
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FSimC = Fantss + Fnatss + Fnatriv‐bur + Fdrift+bias. (4)

• Simulation D is forced with historical atmospheric reanalysis data and constant pre‐industrial CO2 levels,
yielding:

FSimD = Fnatss + Fnatns + Fnatriv‐bur + Fdrift+bias. (5)

Simulations with a constant atmospheric climate (B, C) represent steady‐state processes, while simulations with a
variable climate (A, D) represent both steady‐state and non‐steady state processes. Similarly, simulations with
rising CO2 (A, C) represent both natural and anthropogenic CO2 fluxes, while simulations with pre‐industrial CO2

(B, D) represent only natural CO2 fluxes. For each GOBM, fluxes across the land‐sea and sediment interface are
the same in simulations A, B, C, and D, so that we assume Fnat

riv‐bur also to be the same in each simulation. Across
the here considered GOBMs, two GOBMs have no riverine input at all whereas the remaining GOBMs prescribe
monthly climatological riverine input of carbon (see Section 3.1.1).

Although RECCAP2 focuses on the time from 1980 to 2018, the four simulations all start in preindustrial times.
However, different definitions of “preindustrial” were used such that simulation start years varied between 1765
and 1870, and the corresponding assumed pre‐industrial CO2 mixing ratios between 278 and 286 ppm, depending
on the associated GOBM. Furthermore, all four simulations were forced with a repeated (normal year) atmo-
spheric forcing until historical atmospheric reanalysis fields became available in 1948 or 1958 (depending on the
atmospheric reanalysis that was used to force the GOBM).

Four of the 10 GOBMs considered here (FESOM‐REcoM‐LR, MOM6‐Princeton, ORCA1‐LIM3‐PISCES,
PlankTOM12) ran the four simulations without a pre‐industrial spin‐up. The remaining six GOBMs (CESM‐
ETHZ, CNRM‐ESM2‐1, EC‐Earth3, MRI‐ESM2‐1, NorESM‐OC1.2, and ORCA025‐GEOMAR) performed a
pre‐industrial spin‐up that lasted between 137 and 1,586 years (overview in Supplementary Table 1 in DeVries
et al. (2023)) with the goal to reach a steady‐state where all multi‐annual mean fluxes are time‐invariant at the
local scale and globally integrated zero. Few of the six models with spin‐up reach this objective, largely because
of the spin‐up being too short compared to the century time‐scale of global ocean overturning. This too short spin‐
up (or the complete lack thereof) leads to a model not reaching steady‐state and can cause a substantial spin‐up
related bias in the simulated air‐sea CO2 fluxes (Griffies et al., 2016; Orr et al., 2017; Séférian et al., 2016). The
models analyzed here have global CO2 flux biases ranging between − 0.35 and 0.17 Pg C year− 1, with a relatively
small drift over time (Hauck et al., 2020). However, regionally, this effect can be more important. This Fdrift+bias

does not include other biases in the sea‐air CO2‐flux stemming from errors in ocean circulation or
biogeochemistry.

2.2.4. Estimating the Sea‐Air CO2 Flux and Its Components From RECCAP2 Simulations

Three components of the sea‐air CO2 flux can be estimated globally and regionally by subtracting the sea‐air CO2

flux in one RECCAP2 simulation from the sea‐air CO2 flux in another RECCAP2 simulation, assuming that
Fnat

riv‐bur and Fdrift+bias are not affected by increasing atmospheric CO2 or changing atmospheric forcing across the
varying simulations and that the different flux components add up without substantial non‐linearities:

Fantss = FSimC − FSimB, (6)

Fantns = FSimA − FSimC + FSimB − FSimD, (7)

Fnatns = FSimD − FSimB. (8)

Within the setup of RECCAP2 and the here considered GOBMs, there is no combination of simulations that
allows to isolate Fnat

ss. When inserting Equations 6–8 into Equation 1, the global net air‐sea CO2 flux (Fglobal
net)

can be estimated as follows:
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Fglobalnet = FSimA − FSimB + Fnatss + Fnatriv‐bur. (9)

As Fnat
ss is globally by definition zero, only Fnat

riv‐bur has to be known for a GOBM‐based estimate of Fglobal
net.

Unfortunately, Fnat
riv‐bur cannot be quantified from the here‐used GOBM simulations because these have an

inadequate (seven GOBMs) or no (two GOBMs) representation of carbon riverine input and carbon sediment
burial resulting in small to inexistent Fnat

riv‐bur (see Section 3.1.1.). To allow for a reasonable comparison between
observation‐based and GOBM‐based estimates of Fglobal

net, we hence replace the simulated Fnat
riv‐bur with an

observation‐based estimate Fobs
riv‐bur of 0.65± 0.15 Pg C year− 1 (based on Regnier et al. (2022) but we utilize the

1‐sigma uncertainty instead of the 2‐sigma uncertainty). For comparisons between observation‐based and
modeled estimates of air‐sea CO2 fluxes, river adjustments have been frequently used. For example, in the Global
Carbon Budget (Friedlingstein et al., 2022), Fobs

riv‐bur is subtracted from the pCO2 products to estimate SOCEAN.
As we do not estimate SOCEAN but Fnet, we do subtract Fobs

riv‐bur from the pCO2 products but also use Fobs
riv‐bur as

an adjustment for the global GOBM‐estimate. As Fnat
riv‐bur is the same across all simulations in each GOBM, this

approximation affects solely the comparison of Fnet between GOBMs and pCO2 products and not the model
evaluation of each individual flux component (Equations 6–8). However, this approximation disregards that land‐
sea riverine and burial fluxes change over time (Regnier et al., 2013; Séférian et al., 2019; Terhaar et al., 2022)
and that these changes affect the sea‐air CO2 flux regionally (Gomez et al., 2021; Terhaar, Orr, Ethé, et al., 2019)
and globally (Regnier et al., 2013; Terhaar et al., 2022). As there is no observation‐based estimate of the
temporally resolved riverine‐burial‐induced fluxes yet, we cannot quantify the effect of this approximation.

Regionally, estimating Fnet from the RECCAP2 simulations is more difficult, because the regional Fnat
ss is not

zero as the ocean takes up and releases natural carbon regionally. Therefore, regional Fnet (Fregional
net) cannot be

estimated with Equation 9. Hence, we estimate Fregional
net from simulation A plus an added observation‐based

estimate of the regional Fnat
riv‐bur (Fobs

riv‐bur) and accept the simulated regional Fnat
drift+bias and Fnat

riv‐bur as
inherent uncertainties:

Fregionalnet = FSimA + Fobsriv‐bur = Fantss + Fantns + Fnatss + Fnatns + Fnatriv‐bur + Fdrift+bias + Fobsriv‐bur (10)

This Fregional
net estimate hence includes both Fnat

riv‐bur from the GOBMs as well as the observational estimate
Fobs

riv‐bur, based on the assumption that the Fnat
riv‐bur from the GOBMs is inadequately low. According to

RECCAP2 glossary, the regional observation‐based estimate of Fobs
riv‐bur should be derived from the estimated

regional pattern of Fnat
riv‐bur (Lacroix et al., 2020), which is scaled with a constant factor (2.83) for all grid cells

such that the global integral matches the postulated global value of Fobs
riv‐bur of 0.65 Pg C year− 1. Overall, the

impossibility to disentangle the regional values of Fnat
ss, Fdrift+bias, and Fnat

riv‐bur in the models and the un-
certainties of the regional observation‐based Fobs

riv‐bur hence add additional uncertainty to the regional estimates
of Fnet.

2.3. Observation‐Based Estimates, Their Uncertainties, and Their Usage for Comparison With GOBMs

To compare the net sea‐air CO2 fluxes from the GOBMs with observation‐based estimates, we utilize the
RECCAP2 data set of pCO2 products (Müller, 2023), including AOML_EXTRAT, CMEMS‐LSCE‐FFNN,
CSIR‐ML6, JenaMLS, JMA‐MLR, MPI‐SOMFFN, OceanSODA‐ETHZ, UOEX_Wat20, and NIES‐MLR3 (see
Supplementary Table 2 in DeVries et al. (2023) for references and further details). These pCO2 products are a
product of statistical models and sparse observations of surface ocean partial pressure of CO2. We calculate long‐
term averages and trends over these products for the period 1985 through 2018 for all products except AOM-
L_EXTRAT, who did not provide estimates before 1997, and UOEX_Wat20, who did not provide estimates
before 1989 and uses a conceptually different surface ocean pCO2 data set. In addition, the simulated regional
Fnat

ss was compared to ocean inversion‐based estimates (Mikaloff Fletcher et al., 2007).

As observation‐based estimates for the Cant‐storage, we used three mapped products which we name after the
method that was used to produce them. Hence, we refer to the mapped anthropogenic carbon storage between the
years 1800 and 2002 from the GLODAPv2.2016b‐product (Lauvset et al., 2016) as TTD‐estimate; the mapped
Cant

ns+ss‐storage from the year 1800–1994 (Sabine et al., 2004) as ΔC*‐estimate and the mappedCant
ns+ss‐storage

between years 1994 and 2007 (Gruber, Clement, et al., 2019) as eMLR(C*)‐estimate, respectively. Uncertainties
of the globally integrated ΔC*‐ and eMLR(C*)‐estimates were provided with the respective estimates. For the
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TTD‐estimate, a comprehensive error estimate is lacking, and we utilized the error‐estimate of±29% for the Cant‐
storage of the North Atlantic (Steinfeldt et al., 2009), which is a rather conservative error estimate (Khatiwala
et al., 2013; Terhaar, Tanhua, et al., 2020). When referring to a comparison between TTD‐, ΔC*‐ and eMLR(C*)‐
estimates and GOBM‐estimates of interior ocean Cant‐storage, only regions where all estimates provide data were
included, which means that depths under 3,000 m as well as the Arctic Ocean and the marginal Seas were
excluded.

The RAPID‐Meridional Overturning Circulation and Heatflux Array‐Western Boundary Time Series array was
used (Frajka‐Williams et al., 2021) to calculate an observation‐based estimate of the mean AMOC (here defined
as maximum of the Atlantic meridional overturning streamfunction at 26°N) strength from 2005 to 2018 as
16.93 Sv. The measurement uncertainty of this value is estimated to be ±0.57 Sv based on the rules of error
propagation, where we assume the initial error of the first 10‐day measurement to be 1.5 Sv (https://rapid.ac.uk/
rapidmoc/rapid_data/README_ERROR.pdf, accessed in October 2022) and each year to be independent as the
moorings of the observational array are exchanged every year.

Mean estimates and uncertainties of the interfrontal sea surface salinity and the associated ventilated water
volume in the Southern Ocean (as defined in Terhaar, Frölicher, and Joos (2021)) were here calculated for each
GOBM and as observation‐based estimate using gridded monthly climatologies of salinity and temperature from
the World Ocean Atlas 2018 (Locarnini et al., 2018; Zweng et al., 2018).

For comparisons of surface DIC and alkalinity between observation‐based estimates and GOBMs, monthly and
spatially resolved gridded estimates of DIC and alkalinity provided by OceanSODA‐ETHZ (Gregor &
Gruber, 2021), CMEMS‐LSCE‐FFNN (Chau et al., 2022), and JMA‐MLR (Iida et al., 2021) based on obser-
vations of surface ocean pCO2 and alkalinity (henceforth called pCO2/alkalinity products) were used. Further-
more, gridded GLODAPv2 estimates of the same variables were also used (Lauvset et al., 2016), where DIC is
normalized to the atmospheric pCO2 of 2002. For comparison, output from the pCO2/alkalinity products and
GOBMs were averaged over the years 1986–2018, the longest time period available with the year 2002 in its
center.

Additionally, we compared the simulated and observation‐based estimates of the Revelle factor (Revelle &
Suess, 1957), carbonate ion (CO3

2− ) concentrations, and the chemical surface ocean uptake capacity. The Revelle
factor describes the overall uptake capacity of the ocean:

Revelle = (∂[pCO2]/[pCO2])/(∂DIC/DIC). (11)

We re‐arranged this equation to quantify the amount of additional carbon that the surface ocean can take up for a
given increase in pCO2 (∂DIC/∂[pCO2]) and defined this to be the chemical uptake capacity:

∂DIC/∂[pCO2] = DIC/(Revelle × [pCO2]). (12)

For consistency, the Revelle factor, CO3
2− , and the chemical uptake capacity were calculated based on the

provided temperature, salinity, DIC, and alkalinity in GLODAPv2, the three pCO2/alkalinity products, and all
GOBMs using mocsy2.0 (Orr & Epitalon, 2015) and the equilibrium constants recommended for best practice by
Dickson et al. (2007) based on Lueker et al. (2000), Mehrbach et al. (1973), Millero (1995), and Weiss (1974), as
well as the borate‐salinity relationship from Uppström (1974).

Several of the observation‐based estimates described above have been used to constrain the GOBM ensemble
within an emergent constraint framework (Boé et al., 2009; Eyring et al., 2019; Hall et al., 2019). To obtain the
constrained variables and their uncertainties, we here followed the approach from Cox et al. (2013) that has been
frequently used over the recent years in ocean biogeochemistry (Bourgeois et al., 2022; Goris et al., 2018, 2023;
Kwiatkowski et al., 2017; Terhaar, Frölicher, & Joos, 2021; Terhaar, Kwiatkowski, & Bopp, 2020; Terhaar
et al., 2022; Terhaar, Torres, et al., 2021).

2.4. Uncertainties and Ensemble Spread

We utilized the 1‐sigma standard‐deviation either across the ensemble of GOBMs or pCO2 products to describe
the uncertainty related to varying methods, modules and parametrizations within the GOBMs or pCO2 products.
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When globally comparing the simulated Fnet of the GOBMs to that of the pCO2 products, Fobs
riv‐bur was added to

the GOBM estimate (see Section 2.2.4). The 1‐sigma uncertainty of Fobs
riv‐bur (±0.15 Pg C year− 1) increases the

uncertainty of the GOBM‐derived estimate. For the global Fnet estimates from GOBMs, we will therefore provide
both a combined uncertainty (standard deviation of GOBM ensemble and of Fobs

riv‐bur) and a pure standard de-
viation that does not include the uncertainty of Fobs

riv‐bur and hence is a measure of model‐based differences only.
Excluding the uncertainty of Fobs

riv‐bur allows comparing the ensemble spread of estimates of GOBMs to that of
the pCO2 products. Regionally, the uncertainty of Fnet is only provided as the standard deviation across the
GOBM ensemble, because regional uncertainties of Fobs

riv‐bur are not quantified so far.

2.5. Definition of Ocean Basins and Sub‐Basin Biomes

For our analysis, we applied the RECCAP2 biome‐mask and the associated definition of ocean basins (Figure S1
in Supporting Information S1). The RECCAP2 biome‐mask is a slightly modified version of the oceanic biomes
of Fay and McKinley (2014), designed to capture large‐scale biogeochemical functioning. In comparison to the
original biomes, the RECCAP2 biome mask newly introduces the biomes of the Barents Sea as part of the Arctic
and the Mediterranean Sea as part of the Atlantic.

2.6. Quantifying the Underestimation of the Ocean Carbon Sink Due To Different Starting Dates

To quantify the difference in the simulated anthropogenic carbon uptake from 1980 to 2018 due to different
starting dates (see Section 3.3.2), it would be ideal to re‐run all simulations that started after the anthropogenically
caused increase in atmospheric CO2 from a common pre‐industrial starting time. However, spinning‐up several
GOBMs with another pre‐industrial pCO2 and re‐running the historical simulations from an earlier start date is
computationally too expensive to be achieved within the framework of RECCAP2. Therefore, we here
approximate the magnitude of this underestimation by running two simulations, one starting in 1765 (here
assumed to represent the time before the anthropogenically caused increase in atmospheric CO2 began) and one in
1850 (the year where the GOBM simulations with the latest starting time began). The year 1765 has been chosen
as it is defined to be the year where atmospheric CO2 levels started to increase due to changes in land use
(Khatiwala et al., 2009) and as this year has been established in many studies about Cant and Fant (e.g., Khatiwala
et al., 2009, 2013; Matsumoto & Gruber, 2005; Mikaloff Fletcher et al., 2006). Moreover, the usage of the year
1765 allows a comparison to a study by Bronselaer et al. (2017).

We perform these simulations with different starting dates with an Earth System Model of Intermediate
Complexity (EMIC), Bern3D‐LPX (Lienert & Joos, 2018; Roth et al., 2014). The model was used with three
different ocean mixing parameters and hence AMOC‐strengths to cover the wide range of ocean carbon sink
strength across the GOBM ensemble (see Terhaar et al. (2023) for details). We compare this Bern3D‐LPX es-
timate of the underestimation of the carbon uptake due to a later starting date to an estimate of Bronselaer
et al. (2017) based on two “offline” approaches: the transport matrix method (Khatiwala et al., 2005) that sim-
ulates biogeochemical tracer propagation, and an impulse response function (Joos et al., 2013), which assumes
each year's emission as an impulse and quantifies the uptake of ESMs of such an impulse over time. Both ap-
proaches consider related changes of the oceanic buffer capacity.

3. Results
For the period 1985 to 2018, the ensemble of eight GOBMs simulates a mean annual globally integrated Fnet

(− 1.41 ± 0.24 Pg C year− 1; here excluding uncertainties of Fobs
riv‐bur) that is statistically indistinguishable from

that estimated by the pCO2‐products (− 1.61 ± 0.21 Pg C year− 1) (Table 1, Figure 1). In addition, the overall

Table 1
Ensemble Mean Estimate of Global and Regional Net Sea‐Air CO2‐Fluxes (Pg C Year

− 1) of Global Ocean Biogeochemistry
Models and pCO2 Products

Global Atlantic Pacific Indian Arctic Southern

GOBMs − 1.41 ± 0.24 − 0.23 ± 0.15 − 0.34 ± 0.12 − 0.10 ± 0.06 − 0.06 ± 0.03 − 0.73 ± 0.31

pCO2 products − 1.61 ± 0.21 − 0.36 ± 0.06 − 0.36 ± 0.11 − 0.11 ± 0.02 − 0.09 ± 0.05 − 0.73 ± 0.06

Note. The GOBM uncertainty excludes the uncertainty of Fobs
riv‐bur.
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increasing trend is similarly represented by the two classes of estimates. Still, the difference of the long‐term
means of 0.20 ± 0.32 Pg C year− 1 (12 ± 20% of the mean pCO2‐product estimate) is non‐negligible. More-
over, the difference of annual mean fluxes between GOBMs and pCO2‐products varies with time, with the
GOBMs exceeding 20% of the average value of the pCO2‐products from 1985 to 1990, in 2009 and 2010, and
from 2016 to 2018 (Figure 1a). Furthermore, the individual GOBM estimates within the model ensemble also
differ substantially with an inter‐model range of all GOBMs of 0.24 Pg C year− 1 representing ∼17% of their
average CO2‐flux. Even larger differences are found on the regional scale (Figures 1b–1f).

Regionally, the time‐averaged Fnet from 1985 to 2018 based on GOBMs and pCO2‐products agree well in the
Pacific Ocean, the Indian, the Arctic Ocean, and the Southern Ocean (Table 1, Figure 1). However, in the Atlantic
Ocean the GOBMs indicate a substantially smaller uptake than the pCO2 products (Table 1, Figure 1b). The
difference in the Atlantic Ocean starts to increase around the year 2000, the same time when the Fnet estimates in
the Arctic Ocean also start to diverge (Figure 1e). Furthermore, the GOBMs and the pCO2 products do not show

Figure 1. Time series of global and regional net sea‐air CO2 fluxes from 1980 to 2018 based on global ocean biogeochemistry models (GOBMs) and pCO2 products. The
average sea‐air CO2 flux from the GOBMs adjusted for the riverine‐burial induced sea‐air CO2 flux (green) and from the pCO2 products estimates (blue) for (a) the
global ocean, and regionally for (b) the Atlantic Ocean, (c) the Pacific Ocean, (d) the Indian Ocean, (e) the Arctic Ocean, and (f) the Southern Ocean are shown. The
shading indicates the uncertainty estimated as the respective standard deviation across all GOBMs and pCO2 products. The uncertainty of the GOBM‐estimate does not
include the uncertainty of the riverine adjustment.
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the same decadal variability of Fnet in the Southern Ocean (Figure 1f). The inter‐model ensemble spread of
simulated Fnet is in absolute numbers largest in the Southern Ocean (∼42% of the average CO2‐flux for 1985 to
2018), directly followed by the Atlantic Ocean (∼67% of the average CO2‐flux for 1985 to 2018). A separation of
Fnet into its different flux components (see Section 2.2.3) allows us to identify the fluxes that are causing the inter‐
model differences. Globally, the largest contribution to the model spread in Fnet in GOBMs stems from Fant

ss

(Figure 2a, Table S1 in Supporting Information S1). Regionally, the model spread in Fnet is dominated by the
model spread in the sum of Fnat

ss, Fnat
riv‐bur, and Fdrift+bias in all basins but the Arctic Ocean (Figures 2b–2f, Table

S1 in Supporting Information S1). The second largest contributions to the model spread are Fant
ss and Fnat

ns. In the
Arctic Ocean, the model spread of the sum of Fnat

ss, Fnat
riv‐bur, and Fdrift+bias and the model spread in Fnat

ns are of
similar size (Figure 2e, Table S1 in Supporting Information S1). The relatively large importance of Fnat

ns in the
Arctic Ocean is mostly caused by sea ice decline, which is well represented in GOBMs and hence does not explain
the model spread in Fnat

ns. Instead, the model spread in Fnat
ns is caused by the inter‐model differences in simulated

pCO2 under the melting sea ice (Yasunaka et al., 2023).

Figure 2. Time series of sea‐air CO2 flux components globally and regionally from 1980 to 2018 based on global ocean biogeochemistry models (GOBMs). The net sea‐
air CO2 flux (Fnet) integrated over each basin (green) and adjusted for Fobs

riv‐bur (pink), and the individual flux components from the GOBMs (Fant
ss in red, Fant

ns in
orange, Fnat

ns in purple, and the sum of Fnat
ss, Fnat

riv‐bur, and Fdrift+bias in brown) are shown for (a) the global ocean and regionally for (b) the Atlantic Ocean, (c) the
Pacific Ocean, (d) the Indian Ocean, (e) the Arctic Ocean, and (f) the Southern Ocean. The shading indicates the respective standard deviation across all GOBMs. The
uncertainty of Fnet does not include the uncertainty of the riverine adjustment. The uncertainty of Fobs

riv‐bur is only quantified for the global ocean such that no
uncertainties of the regional Fobs

riv‐bur can be shown.
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In the following sections, we will present and discuss the different flux components one by one across the GOBMs
ensemble, assess how well they can be quantified by each of the hindcast simulations, identify reasons for
mismatches between individual models and between GOBMs and pCO2 products estimates, and propose rec-
ommendations for the set‐up of GOBMs in future studies. A special focus will lie on the Atlantic Ocean, where the
long‐term mean difference between GOBMs and pCO2 products estimates is largest, and on the Southern Ocean,
where the various GOBM estimates differ the most and where the decadal variability of the difference between
GOBMs and pCO2 products is largest.

3.1. Sea‐Air CO2 Fluxes in the Steady State Control Simulation

3.1.1. Carbon Fluxes From Rivers and Into Sediments

The input of riverine carbon Fnat
riv and the sedimentation of carbon Fnat

bur is treated in various ways across the
ensemble of GOBMs and varies from 0.00 to 0.61 Pg C year− 1 and from 0.00 to 0.74 Pg C year− 1, respectively
(Table 2). The difference between Fnat

riv and Fnat
bur varies between +0.14 and − 0.54 Pg C year− 1 and is

− 0.10 ± 0.23 Pg C year− 1 when averaged over the eight GOBMs that provide all four simulations.

Here, we estimate Fnat
riv‐bur in each model to get a first‐order estimate of the magnitude of these fluxes in the here

considered GOBMs. For this estimation, we use the first‐order assumption that Fnat
riv‐bur = Fnat

riv − Fnat
bur for all

GOBMs except NorESM‐OC1.2 (Table 2). This assumption ignores the potential influence of riverine and
sediment fluxes of alkalinity, which change ocean pCO2 and in consequence the uptake of carbon from the at-
mosphere, and nutrients, which change pCO2 via primary production and remineralization (Gao et al., 2023;
Terhaar, Orr, Ethé, et al., 2019). Additional information fromNorESM‐OC1.2 can be used here to demonstrate, as
an example, the effect of alkalinity fluxes on Fnat

riv‐bur. In NorESM‐OC1.2, a larger carbon burial flux than carbon
riverine flux does not lead to an uptake of carbon from the atmosphere because the burial of carbon is accom-
panied by a burial of alkalinity of similar size. The burial of alkalinity reduces the DIC storage capacity of the
ocean. Overall, the alkalinity and carbon burial fluxes in NorESM‐OC1.2 influence the sea‐air CO2 flux in similar
magnitude but with opposite signs so that Fnat

riv‐bur is almost zero (Table 2). Similar information was not available
for the other GOBMs. With the adjusted Fnat

riv‐bur for NorESM‐OC1.2, the multi‐model mean Fnat
riv‐bur is

− 0.03 ± 0.15 Pg C year− 1. In comparison, the model spread associated with Fnet is 0.24 Pg C year− 1.

According to our approximation, none of the GOBMs simulates a resulting riverine and sediment flux‐driven
Fnat

riv‐bur comparable to the observation‐based Fobs
riv‐bur of − 0.65 ± 0.15 Pg C year− 1 (Regnier et al., 2022).

This mismatch is due to low land‐sea riverine carbon fluxes in the GOBMs (0.27± 0.30 Pg C year− 1) compared to
the observation‐based estimates (0.85 ± 0.10 Pg C year− 1 (Regnier et al., 2022)) and an on average high carbon
burial in sediments by the GOBMs (0.37± 0.27 Pg C year− 1, yet this includes two GOBMs with no carbon burial

Table 2
Global Ocean Carbon Fluxes (Pg C Year− 1) Averaged From 1980 to 2018

Land‐sea river carbon flux Burial in sediments Fnat
riv‐bur FSimB Fdrift+bias

CESM‐ETHZ 0.33 0.25 0.08 0.00 − 0.08

CNRM‐ESM2‐1 0.61 0.74 − 0.13 − 0.14 − 0.01

EC‐Earth3 0.61 0.47 0.14 0.25 0.11

FESOM‐REcoM‐LR 0.00 0.00 0.00 − 0.35 − 0.35

MOM6‐Princeton 0.18 0.10 0.08 − 0.23 − 0.31

MRI‐ESM2‐0 0.00 0.00 0.00 0.17 0.17

NorESM‐OC1.2 0.00 0.54 0.00 0.00 0.00

ORCA025‐GEOMAR 0.00 0.34 − 0.34 − 0.36 − 0.02

ORCA1‐LIM3‐PISCES 0.61 0.59 0.02 − 0.26 − 0.28

GOBM‐ensemble 0.27 ± 0.30 0.37 ± 0.27 − 0.03 ± 0.15 − 0.09 ± 0.23 − 0.06 ± 0.18

Note. Positive fluxes indicate fluxes out of the ocean, except for the land‐sea river carbon fluxes. Fnat
riv‐bur was estimated as

the difference between the land‐sea river carbon flux and the burial in sediments, except for NorESM‐OC1.2. Fdrift+bias was
derived as the difference between FSimB and Fnat

riv‐bur. The GOBM‐ensemble values exclude MOM6‐Princeton (see
Section 2.1).
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as seen in Table 2) compared to the observation‐based estimate of
0.15 ± 0.03 Pg C year− 1 (Regnier et al., 2022). Global GOBM‐estimates of
Fnet in this study are however unaffected by Fnat

riv‐bur (see Equation 9) as the
simulated Fnat

riv‐bur is removed when subtracting FSimB from FSimA and
replaced by the observation‐based estimate of riverine and sediment fluxes.
Yet, the regional Fnat

riv‐bur has to be accepted as an inherent uncertainty of
each model as the regional Fnat

riv‐bur cannot be quantified across the GOBMs
within RECCAP2. Fnat

riv‐bur may substantially affect the regional estimates of
Fnet and Fnat

ss, especially given the large relative size of Fobs
riv‐bur compared

to the other flux components (see Figure 2).

3.1.2. Bias and Drift in the Sea‐Air CO2 Flux Due To Incomplete
Spin‐Up

Across the ensemble of GOBMs, the approximated global Fdrift+bias, quan-
tified as the difference between FSimB and our estimation of Fnat

riv‐bur

(Equation 3, Table 2), varies from − 0.35 to 0.17 Pg C year− 1, with an
ensemble mean of − 0.06 ± 0.18 Pg C year− 1. The model spread around
Fdrift+bias is of similar order as the model spread associated with the global
Fnet (0.24 Pg C year− 1). We assume that this is mostly a consequence of a too
short spin‐up and hence of models not being in a steady state. Here, the drift
component in the sea‐air CO2 flux from 1980 to 2018 (calculated as the trend
of the global air‐sea CO2 flux in simulation B) is less than±0.002 Pg C year− 1

for all GOBMs (Hauck et al., 2020). Although our estimation of Fdrift+bias is uncertain due to several approxi-
mations in our methodology, it gives a first indication of the importance of the non‐steady state for the model
spread. A comparison between the number of simulated years before the start of the analysis period of each
GOBM and the Fdrift+bias (Figure 3) suggests that a short spin‐up is often insufficient to reduce Fdrift+bias. A
sufficiently long spin‐up in each model to reach steady state may thus narrow down inter‐model differences of
regional Fnat

ss and Fnet.

While Fdrift+bias does not directly affect our estimate of the global Fnet (based on Equation 9), a GOBM not being
in steady‐state owing to an insufficient spin‐up also affects temperature, salinity, DIC, alkalinity, and the cir-
culation or chemical uptake capacity and may still affect global Fnet. Yet it is unclear if these variables would have
a larger or smaller bias due to an insufficient spin‐up as a model's steady state may have large biases (Seferian
et al., 2016). Regionally, Fdrift+bias directly affects Fnet (see Section 2.2.3 and Equation 10).

3.1.3. Steady State Natural Sea‐Air CO2 Flux

The mean FSimB estimates of the GOBMs from 1980 to 2018 (Figure 2) are − 0.11 ± 0.14 Pg C year− 1 for the
Atlantic Ocean, 0.21 ± 0.13 Pg C year− 1 for the Pacific Ocean, − 0.06 ± 0.06 Pg C year− 1 for the Indian Ocean,
and − 0.06 ± 0.01 Pg C year− 1 for the Arctic Ocean. In the Southern Ocean, the FSimB estimate of
− 0.04 ± 0.27 Pg C year− 1 of the GOBMs is twice as uncertain as in the other basins (Table S1 in Supporting
Information S1). The relatively large uncertainty in the Southern Ocean may partly be the result of large inter‐
model differences in the simulated Fnat

ss fluxes, as dynamically complex regions like the Southern Ocean are
difficult to simulate (Hauck, Gregor, et al., 2023; Sallée et al., 2013). Inter‐model differences in Fdrift+bias likely
also play a role for the uncertain FSimB estimate as the Southern Ocean is the region where most of the oldest water
masses are upwelled to the ocean surface (Caldeira & Duffy, 2000), which have not been in contact with the
atmosphere during the spin up and would hence presumably cause a larger disequilibrium and a larger Fdrift+bias

than in other ocean basins with less upwelling. The Southern hemisphere and especially the Southern Ocean are
also the locations where the Fdrift+bias tends to be largest in ESMs (Séférian et al., 2016).

The GOBM‐based estimates of Fnat
ss can be compared to inverse estimates of Fnat

ss (Mikaloff Fletcher et al., 2007)
(see also Section 2.3). These inverse estimates of Fnat

ss show larger uptake in the Atlantic
(− 0.24 ± 0.08 Pg C year− 1) and Pacific Ocean (− 0.07 ± 0.14 Pg C year− 1), more outgassing in the Southern
Ocean (0.44 ± 0.11 Pg C year− 1), and similar uptake in the Arctic (− 0.02 ± 0.01 Pg C year− 1) and Indian Ocean
(− 0.12 ± 0.04 Pg C year− 1). The differences between our estimates and that of Mikaloff Fletcher et al. (2007) are

Figure 3. Estimated bias and drift of global sea‐air CO2 fluxes related to the
models not being in steady‐state for nine global ocean biogeochemistry
models against the length of their spin‐up. The length of the spin‐up is
defined as the number of simulated years at that resolution before the start of
the analyzed period in 1980, while the bias and drift of the CO2 flux
(Fdrift+bias) is determined as specified in Section 3.1.2, Table 2. As
ORCA025‐GEOMAR was branched from a previous spin‐up from the same
model but with a coarser resolution, the number of years shown here for
ORCA025 is the sum of both spin‐ups.
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partly due to different basin‐definitions. Most prominently, the inverse estimate considers all areas south of 44°S
as the Southern Ocean, which is different from our definition of the Southern Ocean (Figure S1 in Supporting
Information S1). When changing the northern boundary of the Southern Ocean to 44°S, the regional Fnat

ss of the
GOBMs changes to 0.27 ± 0.19 Pg C year− 1, which is in better accordance but still 0.18 Pg C year− 1 smaller than
the mean inverse‐based estimate of 0.44 ± 0.11 Pg C year− 1 and both estimates do not overlap within their
uncertainties.

Partly, the large differences between the GOBM‐based estimate and the inverse estimates of Fnat
ss might be due to

Fdrift+bias. Although Fdrift+bias cannot be quantified directly, previous studies suggest that drift and bias related
fluxes in ESMs are mainly located in the Southern Ocean (e.g., Séférian et al., 2016). In the here presented
ensemble of GOBMs, we also find a significant relationship (r2 = 0.58, p = 0.02) with a slope of 1.03 between
FSimB in the Southern Ocean and FSimB globally (Figure S2a in Supporting Information S1). A similar relationship
occurs in no other ocean basin (Figures S2b–S2e in Supporting Information S1). However, the relationships be-
tween global and regional FSimB are not only influenced by Fdrift+bias but also influenced by global and regional
Fnat

riv‐bur, which may disguise a relationship between regional and global FSimB in basins where differences in
riverine influx of carbon are large across the GOBM ensemble. As we are not able to regionally estimate Fnat

riv‐bur,
we hence can not be certain thatFdrift+bias is indeed stemming from the SouthernOcean.Nevertheless, if we assume
that it is and adjusted the GOBM‐based estimate of Fnat

ss in the Southern Ocean for this Fdrift+bias, then the GOBM‐
based estimate of Fnat

ss would get closer to the inverse estimate of Fnat
ss.

3.2. Non‐Steady State Natural Sea‐Air CO2 Flux

Averaged between 1980 and 2018, the GOBMs simulate a global Fnat
ns of 0.05 ± 0.05 Pg C year− 1. We further

separated the inter‐annual and decadal variability from the long‐term signal by removing its linear trend (see e.g.,
DeVries, 2022). The simulated long‐term signal shows a global Fnat

ns increase from 1980 to 2018 at a rate of
0.07 ± 0.02 Pg C year− 1 decade− 1 (Figures 2 and 4a). The tropical Pacific and the Indian section of the Southern
Ocean are the main contributors to the trend toward stronger Fnat

ns carbon outgassing (Figures 2 and 4a). The
average trend toward stronger outgassing of Fnat

ns is to a small part compensated by a trend toward non‐steady
uptake of natural CO2 in the Northern Pacific and the Arctic Ocean (Figures 2e and 4a; Yasunaka
et al., 2023). Across the model ensemble, large inter‐model differences in the mean Fnat

ns flux exist in the tropical
Southern Ocean, the sea ice edge in the North Atlantic and Arctic Ocean, and the eastern coastal upwelling
systems (Figure 4b).

The globally simulated inter‐annual and decadal variability in Fnat
ns of 0.16 ± 0.03 Pg C year− 1 is similar across

the GOBMs (Figure 2a), likely because many models use the same atmospheric reanalysis products for their
forcing. Most of the inter‐annual variability in Fnat

ns occurs in the tropical Pacific Ocean and the high‐latitude
oceans (Figure 4c). Though the pattern of variability is similar across the GOBMs, relatively large inter‐model
differences are found in the Southern Ocean, north‐western Pacific Ocean, the North Atlantic subpolar gyre,
and the Peruvian upwelling system (Figure 4d). The inter‐annual and decadal variability in Fnat

ns is the dominant
contributor to the inter‐annual and decadal variability of Fnet in GOBMs and is globally six times larger than the
variability in the climate‐driven variability in the anthropogenic sea‐air CO2 fluxes (Fant

ns) and regionally two to
six times larger (Figure 2). The simulated temporal variability of Fnet in the Pacific Ocean is driven by Fnat

ns

(Figure 2c) and resembles the variability of Fnet in the pCO2 products (Figure 1). This good agreement indicates
that the GOBMs represent the dominant source of Pacific sea‐air CO2 flux variability, El‐Niño and La‐Niña
(Feely et al., 1999), well.

3.3. Anthropogenic Carbon Fluxes and Storage

3.3.1. Interior Ocean Anthropogenic Carbon Storage

The spatial distribution of the interior ocean Cant‐storage since the beginning of the industrial period simulated by
the here analyzed GOBM ensemble resembles that of the TTD‐ and ΔC*‐estimate (Figure 5, Figure S3 in
Supporting Information S1) and that of other observation‐ and model‐based studies (e.g., Davila et al., 2022;
Khatiwala et al., 2013). The salinity biases of PlankTOM12 led to an anthropogenic carbon storage pattern that
does not resemble any of the observation‐based estimates and led to its exclusion from all GOBM results in terms
of multi‐model mean and standard deviation (Text S1 in Supporting Information S1). While the TTD‐ and ΔC*‐
based estimates and the here analyzed eight GOBMs agree that the largest accumulation of Cant per surface area is
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located in the North Atlantic and at the northern limit of the Southern Ocean around 45°S, the inter‐model spread
is high in these regions.

When only integrating over cells where estimates from associated observation‐based products exist (see Sec-
tion 2.3), the GOBM ensemble underestimates the integrated interior Cant from surface to 3,000 m depth that
accumulated since preindustrial times. The simulated multi‐model mean interior ocean Cant is 83 ± 15 Pg C in
1994, 22% (23 Pg C) lower than the ΔC*‐estimate, and 102 ± 12 Pg C in 2002, 30% (44 Pg C) lower than the
TTD‐estimate. Most prominent differences are in the North Atlantic and Southern Ocean (Figure 5). These
differences may be caused by the starting dates of the GOBM simulations that vary between 1765 and 1870 (see
Section 3.3.2) and biases in GOBM dynamics and biogeochemistry (see Sections 3.3.3.1 and 3.3.3.2). In addition,
the TTD‐estimate might be biased high in the Southern Ocean and the North Atlantic due to its methodology
(DeVries, 2014; Matear et al., 2003; Terhaar, Tanhua, et al., 2020; Waugh et al., 2006) and the ΔC*‐methodology
might lead to an overestimation of Cant in the upper water column and a negative bias in deeper waters (Mat-
sumoto & Gruber, 2005).

As for the Cant‐storage since 1800, the spatial pattern of the simulated interior ocean Cant‐storage changes from
1994 to 2007 of the GOBMs resembles that of the eMLR(C*)‐estimate (Figure 5, Figure S4 in Supporting In-
formation S1). Over this recent period, the global model mean Cant‐storage change of 25 ± 3 Pg C (only inte-
grating over cells where Cant estimates from the eMLR(C*) method exist) is also smaller than the eMLR(C*)‐

Figure 4. Non‐steady state natural sea‐air CO2 fluxes for eight global ocean biogeochemistry models. Maps of the multi‐model (a) mean trend and (b) standard deviation
of the trend of the natural non‐steady state sea‐air CO2 flux from 1980 to 2018, as well as maps of the multi model (c) mean inter‐annual variability and (d) standard
deviation of the inter‐annual variability of the natural non‐steady state sea‐air CO2 flux (linear trend is removed).
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estimate, but only by approximately 20% (6 Pg C). The underestimation of the contemporary Cant‐storage change
by GOBMs is likely smaller than the underestimation ofCant‐storage changes since 1800 because the later starting
date of several GOBMs (Section 3.3.2) has a smaller effect on contemporary Cant‐storage changes. Regionally,
differences between the GOBM mean and the eMLR(C*)‐estimate (Figure 5) are most prominent in the Atlantic
and Southern Ocean (Hauck, Gregor, et al., 2023; Hauck, Nissen, et al., 2023). The eMLR(C*)‐estimate indicates
an anomalously high rate of Cant‐change in the South Atlantic for the period from 1994 to 2007 and an anom-
alously low rate of Cant‐change in the subpolar North Atlantic and the Indian and Pacific sectors of the Southern
Ocean (Gruber, Clement, et al., 2019), which was attributed to a temporary slow‐down and reorganization of the
North Atlantic overturning circulation (Fröb et al., 2016; Pérez et al., 2013; Steinfeldt et al., 2009) and changes in
the Southern Ocean meridional overturning circulation and ventilation of water masses (Tanhua et al., 2017;
Waugh et al., 2013). The GOBMs do not exhibit the regionally anomalous accumulation of Cant that is apparent in
the eMLR(C*)‐estimate so that the GOBM ensemble mean is smaller than the eMLR(C*)‐estimate in the South
Atlantic and subtropical North Atlantic and larger than the eMLR(C*)‐estimate in the subpolar North Atlantic and
the Indian and Pacific sectors of the Southern Ocean (Hauck, Gregor, et al., 2023; Hauck, Nissen, et al., 2023).

Figure 5. Column inventories of historic and contemporary anthropogenic carbon storage changes, integrated from surface to 3,000 m depth. Visualized are (a, e, i)
observation‐based estimates and related model‐estimates based on eight global ocean biogeochemistry models (GOBMs), shown as (b, f, j) model mean, (c, g, k)
difference between model‐mean and observation‐based estimates and (d, h, l) multi‐model standard deviation. Panels (a–d) show results for Cant

ns+ss from the ΔC*‐
estimate for the period 1800–1994 and GOBM estimates from start date of each simulation to 1994, (e–h) show results for Cant

ss from the TTD‐estimate for the period
1800–2002 and GOBM estimates from start date of each simulation to 2002, while panels (i–l) show results for Cant

ns+ss from 1994 to 2007, contrasting the eMLR(C*)‐
estimate with the GOBM estimates. Individual results for each of the considered GOBMs and PlankTOM12 are presented in Figures S3 and S4 in Supporting
Information S1.
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However, the eMLR(C*)‐estimate might also overestimate the strength of these anomalies, due to structural
biases in the reconstructed changes of Cant (Clement & Gruber, 2018; Gruber, Clement, et al., 2019).

Overall, the comparison of simulated and observation‐based Cant confirms that the GOBMs underestimate the
oceanic storage of anthropogenic carbon and hence Fant

ss by 20%–30% as suggested by the Global Carbon Budget
(Friedlingstein et al., 2022). Moreover, across the GOBM ensemble there exists a strong relationship between the
simulatedCant storage in 1994 since the beginning of the industrialization and the simulated change inCant storage
from 1994 to 2007 across the model ensemble (Figure S5 in Supporting Information S1) suggesting a bias in the
model mean state that persists over centuries. In the following sections, we will analyze the model setups, and
simulated circulation and biogeochemistry to identify reasons for the underestimation of Fant

ss by the GOBM
ensemble.

3.3.2. Influence of Pre‐Industrial Atmospheric CO2 Mixing Ratio and Simulation Starting Date on
Anthropogenic Carbon Uptake

The difference in the simulated sea‐air CO2 flux from 1980 to 2018 between simulations starting in 1765 and
those starting in 1850 is simulated by the EMIC Bern3D‐LPX to be 0.04–0.06 Pg C year− 1 (Figure 6d), depending
on the ocean mixing strength (Figure 6c) (see Section 2.6 for details of this setup). From 1765 to 1995, the
difference in the simulated cumulative sea‐air CO2 flux due to the late starting date is 18.2–22.7 Pg C, around
15%–19% of the cumulative anthropogenic carbon uptake from 1765 to 1995 (Sabine et al., 2004). Slightly less
than half of this difference (8.4–9.0 Pg C) occurs before 1850 and slightly more than half of this difference (9.8–
13.7 Pg C) occurs after 1850. The difference after 1850 is caused by the difference in atmospheric pCO2 in the
respective spin‐up and pre‐industrial control simulations, which is equal to the atmospheric starting year of the
simulation. As the atmospheric pCO2 in 1765 was lower than in 1850, all water masses in the simulation that
started in 1765 also have a lower pCO2 at the beginning of the simulation than the water masses in the simulations
that started in 1850. When water masses upwell for the first time over the simulation period, they take up carbon
and the water masses with a lower pCO2 in the simulation starting in 1765 take up more carbon. For the REC-
CAP2 time period (1980–2018), it is thus mostly the difference in atmospheric pCO2 in the respective spin‐up and
pre‐industrial control simulations that causes an underestimation of the carbon sink over that period. Therefore,
most differences in the air‐sea CO2 flux from 1980 to 2018 occur in regions of strong upwelling, such as the
Southern Ocean (Figure 6b).

In comparison, the two offline approaches by Bronselaer et al. (2017) estimate an underestimation of the ocean
carbon sink of 28.7± 4.6 Pg C for the period from 1765 to 1995 when starting simulations in 1850 instead of 1765
and using the respective atmospheric pCO2 concentrations from the starting years during the spin‐up. Also in
these offline estimates, more than 50% of this underestimation (∼17 Pg C) is estimated to occur after 1850. Hence,
Bronselaer et al. (2017) suggest a similar division of the adjustment before and after 1850, but their estimate for
the entire period is around 40% larger than the estimate by Bern3D‐LPX. A possible reason for the lower
adjustment estimates by Bern3D‐LPX may be the coarse resolution (40 × 41 horizontal cells and only three cells
in the upper 126 m) leading likely to a more diffusive transport than in models with a higher horizontal resolution.
A more diffusivity‐driven tracer transport reduces the transport contribution from upwelling of older water
masses to the surface and hence reduces the impact of these water masses, for example, in coastal upwelling
systems where no difference in air‐sea CO2 flux is simulated in Bern3D‐LPX between simulations starting in
1765 and 1850.

Thus, the adjustment simulated by Bern3D‐LPX for the air‐sea CO2 flux from 1980 to 2018 of 0.04–
0.06 Pg C year− 1 might be underestimated by around 40%. Eventually, only GOBM simulations starting in 1765
allow quantifying the underestimation with certainty.

3.3.3. Steady‐State Anthropogenic Sea‐Air CO2 Fluxes

The large‐scale pattern of the steady‐state anthropogenic sea‐air CO2 flux (Fant
ss) averaged from 1980 to 2018 is

similar across all GOBMs with the largest regional uptake rates in the high latitude North Atlantic and the
Southern Ocean (Figure 7). The various numerical representations of the ocean circulation in the GOBMs result in
a large model spread of Fant

ss andCant in both North Atlantic and Southern Ocean (Figure 5, Section 3.3.1), similar
to previous results from GOBMs (Orr et al., 2001) and ESMs (Frölicher et al., 2015; Goris et al., 2018; Terhaar,
Frölicher, & Joos, 2021).
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3.3.3.1. Role of Ocean Circulation on Steady State Anthropogenic Sea‐Air CO2‐Fluxes in the Atlantic and the
Southern Ocean

In the Atlantic Ocean, the AMOC is the underlying driver of the uptake and storage of Cant. It transports surface
waters with high Cant (Pérez et al., 2013) and subsurface waters with low Cant (Ridge & McKinley, 2020)
northwards. The subsurface waters outcrop in the subpolar gyre and are hence a sink of Cant (Ridge &
McKinley, 2020). Both water masses are eventually transformed into deep water and transported southward. The
AMOC is also the main driver of Fant

ss differences in the Atlantic across ensembles of ESMs from CMIP5 and

Figure 6. Difference in anthropogenic sea‐air CO2 fluxes due to different starting dates in Bern3D‐LPX. Maps of (a) the anthropogenic sea‐air CO2 flux (steady‐state
and non‐steady state) averaged from 1980 to 2018 and averaged over 3 Bern3D‐LPX simulations with varying ocean mixing that start in 1850 and (b) the difference of
the same flux between the simulations that start in 1765 and those that start in 1850. Time series of (c) the anthropogenic sea‐air CO2 flux from simulations starting in
1850 with weak (blue), medium (orange), and strong (green) ocean mixing, and time series of (d) the difference in the anthropogenic sea‐air CO2 flux between
simulations starting in 1850 and those that start in 1765 for the same ocean mixing strengths.

Figure 7. Simulated model mean and model spread of the steady‐state anthropogenic CO2 flux. Maps of (a) the multi‐model mean and (b) multi‐model standard
deviation of the steady state anthropogenic sea‐air CO2 flux averaged from 1980 to 2018 for eight global ocean biogeochemistry models (GOBMs).
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CMIP6 (Goris et al., 2023; Terhaar et al., 2022), linking Fant
ss and the amount of Cant that was transported below

1,000 m across these model ensembles (Goris et al., 2018, 2023).

Correlations between Fant
ss and (a) the AMOC at 26.5°N or (b) the storage of Cant between 1,000 and 3,000 m in

the high latitude North Atlantic also occur across this ensemble of GOBMs and can be used to identify emergent
constraints (Figures 8a and 8b). In combination with the respective observation‐based estimates, the average
annual Atlantic Fant

ss from 1980 to 2018 can be constrained from − 0.39± 0.05 to − 0.43± 0.06 Pg C year− 1 when
using the deep ocean Cant

ss storage and to − 0.42 ± 0.05 Pg C year− 1 when using the AMOC. The constraints
identify a common bias in the GOBMs toward too small AMOC strengths (mean underestimation of 18%) and
Cant

ss storage below 1,000 m (mean underestimation of 22%), and hence Atlantic Fant
ss (mean underestimation of

8%–10%, depending on the used constraint). In comparison, the CMIP6 ESMs also simulate a wide range of
AMOCs but their multi‐model mean is close to the observed values (Terhaar et al., 2022). Among the RECCAP2
GOBMs, a notable exception is the original version of CESM‐ETHZ, as its AMOC is very small (<5 Sv). This
was improved upon significantly in the new version, where an adjustment of the restoring timescale for salinity in
the Southern Ocean increased the simulated AMOC to near 15 Sv. This highlights the high sensitivity of the
AMOC to uncertainties in the buoyancy forcing, and especially the freshwater fluxes.

While the emergent constraints are able to correct for the underestimation of the AMOC across our GOBM
ensemble, they cannot reduce the uncertainties around the Atlantic Fant

ss estimate due to the relatively large
uncertainty of the observation‐based estimate in case of the Cant

ss storage as well as the relatively weak but
significant correlation between the AMOC and the Atlantic Fant

ss (r2= 0.54, p= 0.04). This weak correlation may
partly be driven by the varying starting dates as GOBMs with a later or earlier starting date tend to have smaller or
higher Fant

ss than expected from the fit, respectively (Figure 8b). The correlation of the Cant
ss storage and Fant

ss is
stronger (r2 = 0.84, p = 0.001) because both variables are more directly related to each other and coherently
affected by diverse starting dates. The relationships between Atlantic Fant

ss and (a) AMOC and (b) Cant
ss storage

Figure 8. Constrained steady‐state anthropogenic carbon uptake in the Atlantic and Southern Ocean. Steady‐state anthropogenic carbon uptake averaged from 1980 to
2018 of (a, b) the Atlantic and (c, d) the Southern Ocean, plotted against (a) the Atlantic steady‐state anthropogenic carbon storage between 1,000 and 3,000 m depth for
the year 2002, (b) the Atlantic Meridional Overturning Circulation at 26°N averaged from 2005 to 2018, (c) the inter‐frontal sea surface salinity and (d) the volume of
ventilated waters in the Southern Ocean. Linear fits (green dashed line) with 68% projection intervals (green shaded area) are shown across global ocean
biogeochemistry models (GOBMs) (colored dots with a green outline). The colors of the dots indicate the pre‐industrial atmospheric pCO2 for each GOBM.
Observation‐based estimates and their uncertainties are marked with dashed black lines and black shaded areas (see Section 2.3 for a description of utilized observation‐
based estimates and their uncertainties). The cross in (b) indicates an additional simulation with CESM‐ETHZ (see Section 2.1).
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between 1,000 and 3,000 m in the high latitude North Atlantic stem from the North Atlantic, where the associated
correlations are higher (r2 = 0.69 for AMOC and r2 = 0.88 for Cant

ss storage).

In the Southern Ocean, the magnitude of Fant
ss also depends sensitively on the overturning circulation (Caldeira &

Duffy, 2000; Mignone et al., 2006; Sarmiento et al., 1992), consisting here of the upwelling of circumpolar deep
water close to the polar front, which is mainly transported northward, transferred to mode and intermediate
waters, and eventually subducted at the subtropical front below the light subtropical surface waters into the ocean
interior (Marshall & Speer, 2012; Talley, 2013). Across two ensembles of ESMs, it could be demonstrated that the
volume of ventilated mode and intermediate waters in the Southern Ocean is highly correlated with the sea surface
density between the polar front and the subtropical front, that is, a higher sea surface density in the region of mode
and intermediate water formation allows for more and deeper penetration of these water masses into the ocean
interior and hence more Fant

ss uptake (Terhaar, Frölicher, & Joos, 2021). As the density in the region of interest is
almost entirely driven by the salinity (Supplement of Terhaar, Frölicher, and Joos (2021)), the sea surface salinity
can be used as a proxy for sea surface density.

Our ensemble of GOBMs contains a similar range of inter‐frontal sea surface salinities (∼0.4) as the ESM
ensemble and confirms the Southern Ocean relationships between Fant

ss and (a) the inter‐frontal sea surface
salinity, that is, the mean surface salinity in the subtropical‐polar frontal zone (r2 = 0.57, p = 0.03), and (b) the
volume of ventilated waters (r2 = 0.63, p = 0.03) (Figures 8c and 8d). The constraint with the sea surface salinity
as predictor reduces the magnitude of Fant

ss in the Southern Ocean slightly from − 0.74 ± 0.09 Pg C year− 1 to
− 0.72 ± 0.08 Pg C year− 1 (less uptake, 11% smaller uncertainty, Figure 8c). The relatively weak but significant
correlation (compared to a correlation of r2= 0.74 for ESMs when considering the oceanic CO2‐uptake until 2005
(Terhaar, Frölicher, & Joos, 2021)) between the sea surface salinity and Fant

ss can partly be explained by different
starting dates as GOBMs with a late or early starting date have a smaller or larger absolute Fant

ss than expected
from the linear fit between the mean surface salinity in the subtropical‐polar frontal zone, respectively (Figure 8c).
A common starting date for all GOBMs, would likely have tightened the relationship of the emergent constraints
using the AMOC and the interfrontal salinity, and decreased the uncertainty of the constrained estimate. We do
not use the volume of ventilated waters to constrain Fant

ss because the scarcity of subsurface observations would
have resulted in large uncertainties of the observational constraint. As all GOBMs are forced with historical
reanalysis data, the location of the fronts does not vary as much across the GOBM ensemble as it does for the ESM
ensembles (Terhaar, Frölicher, & Joos, 2021). As the biomes are partly defined based on the location of these
fronts, the biome‐averaged sea surface salinity in the two Southern Ocean biomes north of the sea ice edge can
also be used as a constraint for GOBMs (Hauck, Gregor, et al., 2023; Hauck, Nissen, et al., 2023). Some of the
GOBMs also restore the salinity at the ocean surface toward observed salinities. Despite this restoring, some
GOBMs still overestimate the inter‐frontal salinity substantially (Figures 8c and 8d).

While the here considered emergent constraints change the average annual Fant
ss from 1980 to 2018 in Atlantic

and Southern Ocean only slightly, the associated relationships also allow to identify larger biases in Fant
ss in

individual models caused by circulation biases. Furthermore, the influence of circulation biases on Fant
ss increases

in magnitude with increasing atmospheric Fant
ss. Therefore, the difference between constrained and unconstrained

Fant
ss increases over time (Figure S6 in Supporting Information S1) and a GOBM ensemble with circulation biases

will have smaller trends in Fant
ss and deviate from the true Fant

ss with time.

3.3.3.2. Surface Ocean Carbonate Chemistry

The pCO2/alkalinity products suggest that the largest chemical surface ocean uptake capacity (defined here as
∂DIC/∂[pCO2], see Section 2.3) is found in the subtropical gyres, while the smallest chemical uptake capacities
are in the polar oceans and the eastern tropical Pacific (Figure 9a). The GOBMs reproduce this pattern on average
(Figure 9b) but show larger chemical uptake capacities in the tropical and subtropical oceans, and smaller
chemical uptake capacities in the subpolar gyres, most of the Southern Ocean, the Labrador Sea, and the Arctic
Ocean (Figure 9c). The inter‐model variability is small in most places apart from sea ice regions in the Arctic
Ocean and in eastern upwelling systems west of South America and Africa (Figure 9d), suggesting common
biases in the chemical uptake capacities across the GOBM ensemble.

Globally, the chemical uptake capacity of the eight GOBMs is similar to that of the pCO2/alkalinity products and
of GLODAPv2 (Figure 9e). This capacity is directly linked to the surface alkalinity (Figure 9h) as GOBMs with a
high buffer capacity have also high surface ocean CO3

2− concentrations (Figure 9f), a high difference in surface
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Figure 9. Surface ocean chemical uptake capacity and its relationship to the steady‐state anthropogenic sea‐air CO2 flux. Maps of the increase in dissolved inorganic
carbon (DIC) per increase in pCO2 averaged from 1986 to 2018 based on (a) 3 pCO2/alkalinity products (average of OceanSODA‐ETHZ, CMEMS‐LSCE‐FFNN, and
JMA‐MLR) and (b) eight global ocean biogeochemistry models (GOBMs) (multi‐model mean), as well as of (c) the difference between the pCO2/alkalinity products
mean and the GOBM multi‐model mean and (d) the multi‐model standard deviation. Scatterplots of temporal averages (1982–2018) of the accumulated global
anthropogenic sea‐air CO2 flux against the global mean area‐weighted (e) increase in DIC per increase in pCO2, (f) surface ocean CO3

2− concentration, (g) difference
between surface ocean alkalinity and DIC, and (h) the global surface ocean alkalinity. The colors of each dot that represents a GOBM indicate the number of simulated
years before the start of the analyzed period in 1980, and the dashed lines indicate each pCO2/alkalinity product and GLODAPv2 (GLODAPv2‐values are not used in
panels (a) and (c) as they only represent the year 2002) for the variables on the respective x‐axis.
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ocean alkalinity and DIC (Sarmiento &Gruber, 2006) (Figure 9g) and high surface ocean alkalinity (Figure 9h). A
similar relationship was also found across an ensemble of ESMs (Terhaar et al., 2022) and underlines the
importance of alkalinity (Middelburg et al., 2020; Planchat et al., 2023).

We find that GOBMs represent surface ocean alkalinity better (range of ∼2,300–2,425 mmol m− 3) than ESMs
(range of 2,225–2,415 mmol m− 3, Terhaar et al. (2022)), potentially due to their atmospheric forcing from
historical reanalysis and the use of salinity restoring toward observations, and hence a more realistic upwelling
of circumpolar deep water with high alkalinity (Millero et al., 1998; Takahashi et al., 1981). Indeed, the
GOBMs with the highest ventilation of surface waters in the Southern Ocean and hence also with the strongest
upwelling of circumpolar deep waters with high alkalinity (MRI‐ESM‐2.0 and NorESM‐OC1.2), are the
GOBMs that show the highest chemical uptake capacity in the Southern Ocean (Figures S7 and S8 in
Supporting Information S1).

For the GOBMs, their globally different chemical uptake capacities do not explain their global differences in Fant
ss

(Figure 9e), although studies with ESMs found such a relationship (Terhaar et al., 2022). Possible reasons for no
emerging relationship between Fant

ss and the chemical uptake capacity, CO3
2− , or the alkalinity across the GOBM

ensemble are differences in Fant
ss due to ongoing Fdrift+bias or different starting dates of the simulations and

corresponding differences in the atmospheric pCO2 during the spin‐up and pre‐industrial control simulations
(Section 3.3.2). If a GOBM has a large negative or positive Fdrift+bias, its upwelling waters have too low or high
DIC, too high or low CO3

2− , and hence a chemical uptake capacity that is too high or low, respectively. With time,
the additional surface ocean DIC from Fdrift+bias reduces the chemical uptake capacity so that it is effectively
smaller than the one expected from the theoretical chemical uptake capacity. Thus, Fdrift+bias adds considerable
noise so that a potential relationship between the chemical uptake capacity and Fant

ss may not be identifiable.
When considering only the four GOBMs with a longer spin‐up than 1,000 years, a relationship indeed emerges
(Figures 9e–9h).

3.4. Non‐Steady State Anthropogenic Sea‐Air CO2 Flux

Globally, the GOBMs show an average Fant
ns from 1980 to 2018 of − 0.03 ± 0.04 Pg C year− 1 (Figure 10). As for

Fnat
ns, we separate Fant

ns into an interannual and decadal variability component and a long‐term linear trend
component. On average, the GOBMs simulate that the long‐term trend increases the uptake ofCant in the Southern
Ocean and decreases the uptake in the North Atlantic (Figure 10a). In both regions, inter‐model differences are
large (Figure 10b) and underline the uncertainty of Fant

ns. The long‐term trends in Fant
ns are superimposed by an

interannual and decadal variability that is mainly located in the subpolar North Atlantic and in the Southern Ocean
(Figure 10c) and not in the Pacific Ocean as for Fnat

ns (Figures 4b and 4d). The interannual and decadal variability
is similar across the entire model ensemble (Figure 10d).

Regionally, Fant
ns is substantially smaller than Fnat

ns underlining the relatively minor importance of anthropogenic
non‐steady state fluxes compared to natural non‐steady state fluxes. In the Southern Ocean, a strong negative
trend in Fant

ns co‐occurs in regions with strong positive trends in Fnat
ns (Figure 4a). This suggests that both signals

are related to stronger upwelling of circumpolar deep waters in most of the Southern Ocean due to recent trends in
climate as also discussed by Hauck, Gregor, et al. (2023), Hauck, Nissen, et al. (2023), and Lovenduski
et al. (2008). This increased upwelling brings more old waters containing higher concentrations of Cnat to the
surface, enhancing the outgassing of Cnat. At the same time this exposes more waters to the surface with low
concentrations of Cant, causing an increase in Fant

ns. In the subpolar North Atlantic, the strong positive Fant
ns has a

large model uncertainty associated with it, with some GOBMs showing a negative trend in Fant
ns, while others

show no significant trend. An independent model‐study with one ESM (Goris et al., 2015) showed that the climate
signal in the North Atlantic subpolar gyre is driven by counteracting processes (the influence of reduced biology
and reduced circulation strength on DIC) and that relatively small differences in these contributions can shift this
signal from a reduced pCO2 to an increased pCO2. Yet, their study considered an ESM with a large climate‐
induced AMOC decline and hence less warming in the subpolar gyre region, whereas the influence of warm-
ing can be of first order for models with a small AMOC decline (Bellomo et al., 2021). For RECCAP2, the
timescale with climate change is not yet long‐enough to separate the climate change signal from the strong
decadal variability in the subpolar gyre and hence to attribute causes.
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4. Discussion
4.1. Riverine and Sediment Fluxes

The inadequate or non‐existing representation of the riverine and sediment fluxes in the GOBMs results in large
uncertainties when quantifying Fnet from these GOBMs. These uncertainties are partly caused by an inaccurate
Fnat

riv‐bur caused by the inadequate boundary conditions (Section 3.1.1) and partly due to uncertainties of the
observation‐based Fobs

riv‐bur that were used instead of Fnat
riv‐bur when deriving Fnet from the GOBM simulations

(Section 2.2.4). While the here‐considered global GOBM‐estimates of Fnet are unaffected by their simulated
Fnat

riv‐bur, the uncertainty of the observation‐based estimate Fobs
riv‐bur affects global ocean Fnet (Section 2.2.4).

Regionally, however, both the simulated estimate of Fnat
riv‐bur and the observation‐based estimate of Fobs

riv‐bur

affect Fnet.

Thus, an accurate observation‐based estimate of the global Fobs
riv‐bur is necessary to estimate global Fnet from

GOBMs while the simulated Fnat
riv‐bur is still inaccurately low or non‐existing. In addition, an accurate Fobs

riv‐bur

also allows evaluation of simulated Fnat
riv‐bur by those GOBMs that aim at accurately representing Fnet

riv‐bur.
Despite large efforts over the last years (Lacroix et al., 2020; Regnier et al., 2022; Resplandy et al., 2018), the
most recent observation‐based estimate of the global Fobs

riv‐bur of − 0.65± 0.15 Pg C year− 1 (Regnier et al., 2022)
still has large uncertainties (1‐sigma uncertainty of ∼23%). These uncertainties are of similar magnitude as the
simulated inter‐model standard deviation of global Fnet before accounting for Fobs

riv‐bur (1‐sigma uncertainty of

Figure 10. Non‐steady state anthropogenic sea‐air CO2 fluxes for eight global ocean biogeochemistry models. Maps of the multi‐model (a) mean of the linear trend and
(b) standard deviation of the linear trend in anthropogenic non‐steady state sea‐air CO2 flux averaged from 1980 to 2018, as well as maps of the multi‐model (c) mean
deviation of the inter‐annual variability and (d) standard deviation of the inter‐annual variability (linear trend is removed).
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±0.24 Pg C year− 1) and thus represent most likely a major uncertainty for estimating Fnet from GOBMs at the
moment.

Regionally, the uncertainties in Fnet caused by riverine and sediment fluxes are even larger than globally as
Fnat

riv‐bur cannot be removed and no purely observation‐based estimates for regional Fobs
riv‐bur exist. To

remove uncertainties from the simulated Fnat
riv‐bur, a better representation of riverine and sediment fluxes

must be implemented. To derive a regional Fobs
riv‐bur for the RECCAP2 project, a spatially resolved

simulated pattern of Friv‐bur from a GOBM by Lacroix et al. (2020) was scaled up by a factor of 2.83 to
match the global estimate of Fobs

riv‐bur by Regnier et al. (2022) (see Section 2.2.3). This upscaling in-
troduces uncertainties as the pattern might change if the global flux is substantially larger. However, the
upscaling was necessary because the globally integrated estimate of Fnat

riv‐bur by Lacroix et al. (2020) is
around 3 times smaller than the global estimate of Fobs

riv‐bur by Regnier et al. (2022) and smaller than other
previous estimates of global Fnat

riv‐bur (Aumont et al., 2001; Resplandy et al., 2018). One reason for the
relatively small global estimate of Fobs

riv‐bur might be that Lacroix et al. (2020) quantify Fobs
riv‐bur as the

difference between a simulation with observation‐based riverine fluxes of carbon, alkalinity, and nutrients
and a reference simulation in which carbon and nutrients were artificially added to each surface ocean grid
cell, at the coast and in the open ocean, to equilibrate carbon and nutrient losses to the sediments. As a
result, the signal of the subtraction of the artificial surface ocean carbon and nutrients input may override
the riverine signal, especially in regions far away from river deltas such as the Southern Ocean and cause
the globally too small Fobs

riv‐bur. While this upscaling of a regional pattern is the only available estimate of
regional Fobs

riv‐bur, it remains hence highly uncertain.

Another uncertainty of regional Fobs
riv‐bur is stemming from the lability of the organic carbon that enters the

ocean. Lacroix et al. (2020) assume relatively labile organic carbon from rivers, which results in a strong riverine‐
burial‐induced carbon outgassing in ocean basins close to river deltas, such as in the Atlantic Ocean
(0.27 Pg C year− 1), and a relatively weak riverine‐burial‐induced carbon outgassing in basins that are further
away from river deltas, such as the Southern Ocean (0.04 Pg C year− 1). Contrarily, an older estimate by Aumont
et al. (2001) assumes organic carbon to be more refractory and their results suggest a smaller Fobs

riv‐bur in the
Atlantic Ocean and a larger Fobs

riv‐bur in the Southern Ocean. Less labile riverine organic matter can be transported
far away from the river mouths in the Atlantic Ocean before it is remineralized and outgassed to the atmosphere. If
only around a third of the estimated riverine‐induced outgassing in the Atlantic Ocean by Lacroix et al. (2020)
would instead occur in the Southern Ocean, Fnet in the Atlantic Ocean would double. Hence, more refined es-
timates of the lability of organic matter and its effect on Fobs

riv‐bur are crucial to better constrain the net sea‐air CO2

flux and regional anthropogenic carbon sink estimates.

Additional uncertainties arise from fluxes of nutrients in rivers and into sediments, and changes of carbon, alka-
linity, and nutrient fluxes over time.While riverine carbon and alkalinity fluxes directly affect surface ocean pCO2

and hence Fnet, riverine nutrient fluxes also affect surface ocean pCO2 and F
net indirectly via changes in primary

production and carbon export (Gao et al., 2023; Lacroix et al., 2020, 2021), especially in coastal oceans (Louchard
et al., 2021) or the Arctic Ocean (Terhaar, Lauerwald, et al., 2021; Terhaar, Orr, Ethé, et al., 2019). In addition, the
change in Fnet over time due to changing riverine nutrient fluxes are neither simulated by the GOBMs nor rep-
resented in Fobs

riv‐bur from Regnier et al. (2022). The impact of changing riverine inputs on the ocean carbon sink
depends in size and location on the prescribed riverine input and the model, as seen for CNRM‐ESM2‐1 (Séférian
et al., 2019; Terhaar et al., 2022) andNorESM1‐ME (Gao et al., 2023). The size and importance of both effects still
remain relatively unknown and necessitate further research.

Overall, riverine‐burial induced air‐sea fluxes hence represent a major uncertainty when quantifying Fnet from
GOBMs and large efforts are needed to reduce this uncertainty. However, when quantifying the anthropogenic
perturbation of the pre‐industrial air‐sea CO2 flux (S

OCEAN) as in the Global Carbon Budget, this uncertainty does
not affect the GOBM estimates (assuming Friv‐bur is constant over time) but the estimate of SOCEAN from pCO2

products. As pCO2 products directly estimate Fnet, Fobs
riv‐bur has to be subtracted from Fnet to estimate SOCEAN.

4.2. Gap Between Trends in Observation‐Based Estimates and GOBMs

Previous studies (Friedlingstein et al., 2022; Hauck et al., 2020) and our results here indicate that trends in the
ocean sink since 2000 differ globally and regionally between GOBM estimates and pCO2 products. Although
these different trends suggest a divergence between GOBM estimates and pCO2 products in recent years
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(Figure 1a), this might be a misinterpretation. An overall increase in Fnet by around ∼20%, as suggested based on
the here identified underestimation of the anthropogenic steady‐state flux, would change this perception. The
difference in Fnet would not appear as a divergence of both estimates since 2000 but as a change from an un-
derestimation of Fnet by the pCO2 products to an overestimation. Also, the observation‐based estimate of Friv‐bur is
highly uncertain, and a more accurate estimate could lead to a shift in the baseline of the GOBMs as well.
Nevertheless, the growth rates of Fnet are different between GOBMs and pCO2 products and uncertainties remain
of how the ocean sink evolves.

In the Southern Ocean, the pCO2 product estimate of the Southern Ocean carbon sink suggested that the vari-
ability before 2000 is mainly due to decadal variations (Gruber, Landschützer, & Lovenduski, 2019; Keppler &
Landschützer, 2019; Landschützer et al., 2015; McKinley et al., 2017). Since 2000, the estimate of the pCO2

products of the Southern Ocean carbon flux has been moving toward more uptake. While this ongoing increase in
uptake based on the pCO2 products of the Southern Ocean may just be a longer variability cycle, it could also
indicate a disagreement on the trend of the ocean carbon sink between pCO2‐based and GOBM‐based estimates
for unknown reasons. Moreover, research (Gloege et al., 2021; Hauck, Nissen, et al., 2023) suggests that pCO2

products of the Southern Ocean might overestimate the trend by 50%–130% and the amplitude of the decadal
variability by 31% due to extrapolation of sparse observations with temporal aliasing.

The increasing gap in the Atlantic after 2000, appears to result from a smaller Fnet trend in GOBMs than in
pCO2 products. Here, the observation‐based estimate of Friv‐bur is highly uncertain (see Section 4.1), and a
different Friv‐bur estimate could change the increasing gap to converging estimates. Nevertheless, there appears
to be a smaller trend in GOBMs than in pCO2 products, which can partly be explained by the negatively biased
chemical uptake capacity of the GOBMs (Section 3.3.3.2). Related to this, Lebehot et al. (2019) showed for a
suite of ESMs that the North Atlantic surface ocean fugacity of CO2 increased at a significantly faster rate than
observed and related this to substantial biases in alkalinity and its impact on the buffer capacity. The GOBMs
also simulate a rather weak AMOC, whose influence on Fant

ss increases with increasing atmospheric CO2

(Section 3.3.3.1; Figure S6 in Supporting Information S1). Concurrently, the disagreement in Atlantic Fnet

trends between GOBMs and pCO2 products is especially large in the subpolar North Atlantic (not shown, Pérez
et al., 2023). The location of this disagreement is likely related to the here identified AMOC‐biases as the
influence of AMOC‐biases on Fant

ss is potentially highest in the subpolar gyre where subsurface waters low in
Cant outcrop. Furthermore, a study with ESMs has shown that AMOC‐biases are strongly correlated to sea
surface temperature biases in the North Atlantic (Wang et al., 2014). While we did not analyze sea surface
temperature biases in the North Atlantic, Rodgers et al. (2023) found that the seasonal cycle of pCO2 in the
subpolar Atlantic is thermally driven in the GOBMs while that of the pCO2‐products is non‐thermally driven.
This might lead to the Fnet of the GOBMs being more sensitive to warming than that based on pCO2 products
(Goris et al., 2018), which may contribute to the increasing gap between GOBMs and pCO2‐products with time.
However, the magnitude of these contributions is unclear and remains to be identified.

4.3. Inter‐Annual and Decadal Variability of the Sea‐Air CO2 Flux

The here‐used GOBM simulations suggest that, for the time‐period 1980–2018, the largest share of the inter‐
annual and decadal variability of Fnet results from Fnat

ns, that is, the sea‐air CO2 flux of natural carbon due to
climate variability and climate change. Globally, Fnat

ns is also an important flux component as it allows comparing
the estimated ocean carbon sink from surface ocean pCO2 products, which quantify Fant

ss, Fant
ns, Fnat

ns, and Fobs
riv‐

bur (Friedlingstein et al., 2022) to observation‐based estimates of the interior ocean change of Cant (Gruber,
Clement, et al., 2019), which quantifies only changes in Fant

ss, and Fant
ns.

Previous cumulative estimates of the global Fnat
ns from 1994 to 2007 are 5 ± 3 Pg C (Gruber, Clement,

et al. (2019); based on inverse estimates of anthropogenic carbon fluxes, net surface air‐sea CO2 fluxes and river‐
derived CO2‐outgassing), 1.3 Pg C (Friedlingstein et al., 2022, based on GOBMs) and 1.6 ± 0.8 Pg C (Terhaar
et al. (2022), based on ESM simulations). The GOBMs here estimate a cumulative Fnat

ns of 1.6± 0.8 Pg C over the
same period, which is similar to both previous model‐based estimates, although the ESM‐based estimate accounts
only for the effect of climate change and externally forced variability (volcanoes, variability in atmospheric CO2)
and not for the unforced variability of the climate system (e.g., winds, atmospheric temperature etc.).

Regionally, the variability of the sea‐air CO2 flux is similar between GOBMs and pCO2 products in the Pacific
Ocean, where most of the inter‐annual variability is located, and differs in the Southern Ocean, where pCO2
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products suggest a strong decadal variability before 2000 and a quasi‐linear trend after 2000 (Gloege et al., 2021;
Gruber, Landschützer, & Lovenduski, 2019; Landschützer et al., 2015). However, the sparse observations in the
Southern Ocean pose a challenge for the observation‐based estimates, especially in the sea ice area (Hauck,
Gregor, et al., 2023; Hauck, Nissen, et al., 2023). For example, Gloege et al. (2021) showed that the MPI‐SOM‐
FFNmethod used by one of these methods (Landschützer et al., 2015) may overestimate the decadal variability in
the Southern Ocean by 30%. Potential reasons for biases in the GOBMs might be uncertainties in the atmospheric
reanalysis data, non‐representation of freshwater fluxes, or a too low internal ocean variability in the GOBMs,
causing too little variability in the upwelling of circumpolar deep water or variability in the extent of Antarctic sea
ice. It remains an open question how strong the decadal variability of the ocean carbon sink in the Southern Ocean
is and how it is driven.

In comparison to Fnat
ns, the largest Fant

ns are simulated in the subpolar North Atlantic with yet unidentified drivers
and in the Southern Ocean where sea ice retreats with global warming and westerly winds strengthen and shift
southwards (Purich et al., 2016). The strengthening of Fant

ns in the Southern Ocean could be explained by more
upwelling of old water with low Cant content (Le Quéré et al., 2007) allowing for more Cant uptake or additional
free ocean surface due to climate change, which can take up more Cant. Both processes would lead to partial
compensation by Fnat

ns fluxes (Hauck, Gregor, et al., 2023; Hauck, Nissen, et al., 2023; Lovenduski et al., 2008),
with either more natural carbon being upwelled to the surface or more Cnat being released with reduced ice cover.

4.4. Comparison to Previous Evaluations of GOBMs

Previous studies have assessed GOBMs and their fidelity to simulate the ocean carbon sink globally and
regionally when forced with atmospheric reanalysis (e.g., Fay & McKinley, 2021; Hauck et al., 2020). Hauck
et al. (2020) found that GOBMs on average overestimate the observed pCO2 from SOCAT (Bakker et al., 2016),
which suggests an underestimation of the ocean carbon uptake by GOBMs. This is consistent with our assessment
that suggests an underestimation of the simulated ocean carbon by GOBMs sink primarily because of circulation
biases. The partially late‐starting date and biases in the chemical uptake capacity in models also tend to enhance
this underestimation. Fay and McKinley (2021) tested how well GOBMs resemble the pCO2 products flux es-
timates regionally, thereby repeating an analysis from the RECCAP1 project by Séférian et al. (2014). By
selecting the GOBMs that perform best, they suggest that the simulated global ocean carbon sink is smaller than
previously estimated, opposite to what this study and Hauck et al. (2020) suggest. Several assumptions are made
by Fay and McKinley (2021), such as the application of the local riverine adjustment by Lacroix et al. (2020), not
accounting for each model's simulated regional Fnat

riv‐bur, and that an area‐weighted repartitioning Fdrift+bias over
the entire ocean surface is valid. However, the local riverine adjustments come with large uncertainties (Sec-
tion 4.1) and our analysis suggests that Fdrift+bias and Fnat

riv‐bur are not evenly distributed. These adjustments affect
the regional Fnet and don't allow for robust simulated estimates of the regional Fnet. Therefore, constraining the
global Fnet with regional Fnet appears to be prone to large uncertainties and we recommend rather using un-
derlying physical and biogeochemical processes for such constraints.

5. Conclusions and Recommendations
Our analysis of GOBMs helps to explain inter‐model differences and differences between estimates of the ocean
carbon sink from pCO2‐products and ocean biogeochemistry models (DeVries et al., 2023; Friedlingstein
et al., 2022). These differences can be divided into (a) differences in the simulation setups, that is, starting year
and model spin‐up, (b) dynamical differences, that is, model physics and biogeochemistry, and (c) differences in
boundary fluxes across the land‐sea and sea‐sediment interfaces.

The differences in the simulation setups can be resolved relatively easily by (a) pre‐defining a commonly used
pre‐industrial state before the increase of anthropogenic CO2 (year and associated CO2 mixing ratio) that is used
by all participating GOBMs and (b) increasing the spin‐up period to reduce the uncertainty of the simulated Fnet in
relation to model drift. This also allows to pinpoint weaknesses of the GOBMs and relationships across the
GOBMs which are more apparent in steady‐state.

For the preindustrial state, our recommendation to start all simulations at a common date before the industrial-
ization and the associated atmospheric CO2 increase would for most GOBMs require additional simulation years.
For example, starting the simulations in 1765 where atmospheric CO2 levels started to increase due to changes in
land use (Khatiwala et al., 2009; see also Section 2.6) would necessitates to perform up to 85 more years per
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simulation. Yet, the cost of running GOBMs in hindcast mode is much smaller than the cost of fully‐coupled
ESMs and computational constraints should thus not represent a major bottleneck. The additional simulation
years may remove a global bias that is at least 0.04–0.06 Pg C year− 1 in simulations that only started in 1850
(underestimation of the sink) but possibly 40% larger.

In model estimates of the global ocean carbon sink, the bias due to a too short spin‐up is often already accounted
for through subtraction of the air‐sea carbon flux of the control simulation with constant atmospheric CO2 and
climatological forcing (Fnat

ss) and hence does not affect the global estimate of the Global Carbon Budget
(Friedlingstein et al., 2022; Hauck et al., 2020). However, a too short spin‐up does impact regional flux estimates,
particularly in the Southern Ocean and there is no easy option to account for these regional spin‐up related biases.
Moreover, these biases also influence the surface ocean carbonate chemistry. Such spin‐up related biases in the
surface ocean carbonate chemistry can influence sea‐air CO2 fluxes directly and also limit the identification of
ensemble wide biases via emergent constraints. A long spin‐up may, however, lead to the emergence of new
biases, if the models' own steady state differs strongly from the real ocean (Séférian et al., 2016). While a longer
spin‐up increases the computational costs, it provides a relatively simple way to reduce the uncertainty of the
simulated Fnet in relation to model drift and allows to pinpoint weaknesses of the GOBMs which are more
apparent in steady‐state. This paves the way for more complex adjustments related to the models' physics,
biology, and carbonate chemistry.

Improving the dynamical representation of the ocean circulation and biogeochemistry is more difficult.
However, two ESM‐derived relationships between the anthropogenic carbon flux into the ocean and key pa-
rameters of associated model dynamics (AMOC, Southern Ocean inter‐frontal sea surface salinity) provide
robust relationships to adjust simulated anthropogenic carbon fluxes for these two key processes until the
representation of these processes is improved in the models. Our results show that the considered GOBMs have
especially large offsets in the AMOC (3.1 ± 5.2 Sv) and slightly overestimate the inter‐frontal sea surface
salinity in the Southern Ocean (0.03 ± 0.13), yet the constraint changed the original estimate of Fant

ss in the
Atlantic and Southern Oceans by less than 10% here. Both emerging relationships would likely have been
stronger and helped to reduce uncertainties more if all simulations had used the same starting dates and pre‐
industrial pCO2. As opposed to biases in the ocean circulation, biases in the ocean biogeochemistry could
not be directly linked to sea‐air CO2 fluxes. Our recommendations for model setup will likely improve the
robustness of these relationships and allow us to infer the influence of ocean circulation and biogeochemistry
biases on anthropogenic carbon fluxes more clearly. In the short term, these constraints can be applied to
account for model biases in circulation when estimating the ocean carbon sink from model ensembles, such as
in the Global Carbon Budget (Friedlingstein et al., 2022). Though the emergent constraints have changed the
original estimate only slightly here, other model ensembles might have larger biases and changes in Fant

ss might
hence be larger. In the long‐term, we recommend more complex adjustments within the setups of the GOBMs
to reduce these circulation biases.

The relatively poor representation of riverine and burial fluxes introduces another uncertainty to the simulated
sea‐air CO2 fluxes. Simulated sea‐air CO2 fluxes caused by riverine and burial fluxes do not or poorly represent
the observation‐based estimate of this flux (Regnier et al., 2022), such that it remains challenging to compare
the modeled estimates to the observation‐based estimates of the ocean carbon sink. Although the representation
of these fluxes and the resulting sea‐air CO2 fluxes do not directly influence the GOBM‐based global ocean
carbon sink estimated in the Global Carbon Budget (Friedlingstein et al., 2022), they affect the quantification of
Fnet and make a model quantification of natural sea‐air CO2 fluxes almost impossible due to their regionally
large size and introduce large uncertainties for the estimation of regional net sea‐air CO2 fluxes. Until these sea‐
air CO2 fluxes caused by riverine and burial fluxes are better simulated, an observation‐based estimate of the
pre‐industrial sea‐air CO2 flux from riverine carbon, alkalinity, and nutrient input and its large uncertainty has
to be added to the simulated flux by GOBMs to estimate Fnet or has to be subtracted from the pCO2 products to
be able to compare these estimates the global carbon sink. While improvements in the global estimate of these
pre‐industrial sea‐air CO2 fluxes from riverine carbon and nutrient input have been recently made (e.g., Gao
et al., 2023; Lacroix et al., 2020), the regional distribution and temporal variability of these fluxes remains
highly uncertain and renders a comparison between simulated and observation‐based estimates of the ocean
carbon sink complicated. Improving the representation of these fluxes and their underlying processes in
GOBMs and observation‐based estimates is thus of importance to better understand the regional ocean carbon
sinks.
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The work here contributes to understanding the apparent gap between the growth rates of the carbon sink in
model‐based and pCO2 product estimates. A number of different factors (a late starting date, circulation
biases, biogeochemical biases, biases in Cant storage) suggest that the GOBMs underestimate the ocean
carbon sink on average and that this underestimation explains the apparent difference between long‐term
averaged carbon sink estimates of GOBMs and pCO2 products. If the global ocean carbon sink estimate
from GOBMs was on average higher, the different trends since 2000 in the GOBM estimate and pCO2

products would not lead to a divergence of both estimates, but to a crossing from a weaker estimate from
pCO2 products to a stronger estimate from pCO2 products. While the extrapolation of sparse observations
might lead to an overestimation of trends in the pCO2 products (especially in the Southern Ocean), the
differences in the long‐term mean carbon sink and in growth rates between GOBMs and pCO2 products still
need further research.

Overall, this model evaluation has helped to give recommendations for the setup not only of RECCAP2‐
simulations but also of other simulations and provides possible explanations for the offset between esti-
mates of the mean ocean carbon sink. In the short term, the most important steps would be to start
simulations at a common date before the industrialization and the associated atmospheric CO2 increase and
increase the spin‐up time to bring the pre‐industrial simulations as close as possible to a steady state and to
make key output metrics relating to ocean circulation, biogeochemistry and the land‐ocean interface
available. In the long‐term, a better representation of simulated riverine and burial boundary fluxes and of
ocean circulation and biogeochemistry is of importance. Possible avenues to achieve a better representation
of ocean dynamics are, for example, simulations with different atmospheric reanalysis sets to quantify the
influence of the prescribed atmospheric boundary conditions as well as testing the influence of higher
resolution for the GOBMs.
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