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Supplementary Methods 29 

Section 1 Description of the projection method 30 

The relationship derived from Figure 1 as follows:  31 

                       (1) 32 

 33 

In this study, we established the methodology (Equation S2-S5) for using the pCO2 and DMS relationship to 34 

refine the sea-surface DMS concentrations from CMIP6 ESMs for 2015-2099 under SSP5-8.5 scenario:  35 

 36 

                           (2) 37 

DeltaX=  ( )-  ( )                                                            (3) 38 

 DeltaY=  ( )-  ( )                                                        (4) 39 

Slope=DeltaY DeltaX                                                                               (5) 40 

 41 

Where PRD is the refined sea surface DMS concentrations for 2020-2099,  and  are the CMIP6 42 

models estimated pCO2 and sea surface DMS concentrations for 2020-2099,  and t represent the latitude of 43 

simulation grid and simulation time, i and j represent row and column of simulation grid, respectively. To 44 

account for the contrasting monthly variations of DMS between the Northern and Southern hemispheres, we 45 

calculate the PRD using different multiplicative factors  obtained from Equation S1, which represents the 46 

gradient of the linear fit for each dataset in the Northern and Southern hemispheres. If the ratio (Slope) of change 47 

in Log10(DMS) (DeltaY) to change in Log10(pCO2) (DeltaX) in a particular grid cell exceeded the regression 48 

slope (   specified in Equation S1 (-0.727 for the Northern hemisphere and -2.689 for the Southern hemisphere), 49 

we recomputed DeltaY using  multiplied by DeltaX. The refined model-predicted sea-surface DMS 50 

concentration (PRD) was then determined by adding the refined DeltaY to the DMS concentration from the 51 

previous simulation time ( ). Otherwise, the DMS estimates obtained from the ESMs were 52 

used. DMS flux was calculated using the empirical formula (F =Cw kw× (1-γ)) as introduced in Lana et al.1. 53 

Where, Cw  is the seawater DMS concentrations and kw  is the water side gas transfer velocity and γ  is the 54 

atmospheric gradient fraction. In this study, we selected the Nightingale et al.2 parameterization for kw  to 55 

represent the DMS emissions over the global ocean. 56 

 57 
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Section 2 Parameterization scheme for ocean acidification used in ESMs 58 

Regarding the four ESMs employed in this study, all considered the impact of ocean acidification on marine 59 

chemistry3. However, only CNRM-ESM2-14 and NorESM2-LM5 integrated the effect of pH changes on DMS 60 

production based on the straightforward parameterization scheme proposed by Six et al.6 can be expressed as 61 

follow : 62 

F=1 + (pHact - pHpre) × γ                                                           (5)  63 

In online ESM simulations, the DMS production rate is adjusted by a constraint factor (F). This factor is 64 

influenced by the simulated local pH (pHact) compared to the monthly mean climatological surface pH (pHpre) 65 

from pre-industrial control data. The multiplicative factor (γ), representing the gradient from various mesocosm 66 

experiments (0.25, 0.58, and 0.87), affects this adjustment. As anthropogenic CO2 accumulates in the ocean under 67 

the SSP5-8.5 scenario, annual mean pHact decreases, causing oceanic pH to decline over time. Consequently, the 68 

constraint factor (F) decreases, ultimately leading to a reduction in DMS concentration. It's important to note that 69 

while this pH-dependent constraint parameterization is part of NorESM2-LM, it remains inactive in CMIP6 70 

runs5,7. Thus, in this study, among the simulated oceanic DMS concentrations, only those from CNRM-ESM2-1 71 

incorporate the response of DMS production to ocean acidity. 72 
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Supplementary Table 1. List of CMIP6 ESMs in this analysis of sea-surface DMS concentration. 89 

Namesource Grid resolution Biogeochem model Description 

CNRM-ESM2-14 
362 × 294 
longitude/latitude; 
75 levels 

Pisces 2.s 
Prognostic scheme (Model simulate key processes involved in DMS 
production, including zooplankton grazing, phytoplankton exudation, 
and cell lysis) 

NorESM2-LM8 360 × 384; 70 
levels 

HAMOCC Prognostic scheme (Model simulate DMS release in the water based 
on temperature and simulated detritus export production) 

MIROC-ES2L9 360 × 256 
longitude/latitude; 
63 levels 

OECO ver.2.0 
Diagnostic scheme (Model use empirical parameterisation to link sea 
surface DMS concentration with MLD and sea surface chlorophyll 
concentration) 

UKESM-1-0-LL10 360 × 330 
longitude/latitude; 
75 levels 

MEDUSA2 Diagnostic scheme (Model use empirical parameterisation to link 
DMS concentration with a composite variable comprising the 
logarithm of the product of Chl concentration, light, and a nutrient 
term dependent on nitrate concentration) 

 90 
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Supplementary Table 2. Description of simulation 109 

Simulation Description 

REF DMS emissions on with surface ocean DMS concentration for 

average of four CMIP6 models. 

PROJ DMS emissions on with surface ocean DMS concentration for 

average of four CMIP6 models refined by the relationship between 

pCO2 and DMS. 

ND DMS emissions turned off. 
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 122 

Supplementary Figure 1. Spatial distributions of the match result between pCO2 and DMS measurements. 123 
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 131 

Supplementary Figure 2. Scatter plots depicting the relationships between pCO2 and DMS (a, b), as well as 132 

DMS and Chl (c, d) concentrations in both the Northern and Southern Hemisphere. The red dashed lines indicate 133 

the linear regressions between pCO2 and DMS, as well as DMS and Chl. Significant trends are marked by 134 

asterisks (∗ for p < 0.05 and ∗∗ for p < 0.01). The values of trends are evaluated using the Mann-Kendall test. R2 135 

and Slope represent Pearson's correlation coefficient and the slope of the regression line. 136 
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 139 

Supplementary Figure 3. Percent changes among Historical, BASE, and PROJ sea-surface DMS concentrations. 140 

Historical represent averaged oceanic DMS concentrations from CMIP6 historical experiments of the four 141 

models from the year 1960 to 2014. Average represents the mean value of estimated results from four models. 142 
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 146 

Supplementary Figure 4. The spatial distributions of sea-surface DMS concentrations (first column) and fluxes 147 

(second column) from Historical, BASE, and PROJ results. 148 
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 153 

Supplementary Figure 5. The spatial distributions of annual mean absolute in changes surface SO4
2-and percent 154 

changes N80 (averaged from surface to 100hPa layer) from REF-ND (first row) and PRD-ND (second row) 155 

simulation. 156 
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 162 

Supplementary Figure 6. The scatter plot of pCO2 and DMS measurements across various latitudinal zones 163 

globally. The red dashed lines indicate the linear regressions between pCO2 and DMS, as well as pCO2 and NPP, 164 

as estimated by the ESMs. Significant trends are denoted by asterisks (∗ for p < 0.05 and ∗∗ for p < 0.01), while the 165 

absence of an asterisk indicates a lack of significant trend. The values of trends are evaluated using the Mann-166 

Kendall test. 167 
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 174 

Supplementary Figure 7. Differences between projected sea-surface DMS concentrations using two ratios 175 

(Supplementary Figure 2(a,b)) and those using four ratios (Supplementary Figure 6(f-i)) (a). Percent changes 176 

between Historical and projected sea-surface DMS concentrations using four ratios (Supplementary Figure 6(f-i)) 177 

sea-surface DMS concentrations (b). Historical represent averaged oceanic DMS concentrations from CMIP6 178 

historical experiments of the four models from the year 1960 to 2014. Average represents the mean value of 179 

estimated results from four models.  180 
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