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Abstract
The ocean absorbs a significant amount of carbon dioxide (CO2) from the atmosphere, helping regulate Earth’s climate. However, our 
knowledge of ocean CO2 sink levels remains limited. This research focused on assessing daily changes in ocean CO2 sink levels and 
air–sea CO2 exchange, using a new technique. We used LiDAR technology, which provides continuous measurements during day and 
night, to estimate global ocean CO2 absorption over 23 years. Our model successfully reproduced sea surface partial pressure of CO2 

data. The results suggest the total amount of CO2 absorbed by oceans is higher at night than during the day. This difference arises 
from a combination of factors like temperatures, winds, photosynthesis, and respiration. Understanding these daily fluctuations can 
improve predictions of ocean CO2 uptake. It may also help explain why current carbon budget calculations are not fully balanced—an 
issue scientists have grappled with. Overall, this pioneering study highlights the value of LiDAR’s unique day–night ocean data 
coverage. The findings advance knowledge of ocean carbon cycles and their role in climate regulation. They underscore the need to 
incorporate day–night variability when assessing the ocean’s carbon sink capacity.

Keywords: diurnal variation, air–sea CO2 flux, CALIPSO, LiDAR, remote sensing

Significance Statement

It is very difficult (probably impossible) to measure ocean surface pCO2 directly from space. The best proxy of pCO2 that can be meas
ured from space is likely ocean biological properties (e.g. primary productivity, Chla, etc.) that are very sensitive to pH level and thus 
dissolved organic carbon (DIC)/pCO2, together with other measurable physical properties (e.g. temperature, ocean dynamics, etc.). 
Training the biological and physical properties of pCO2 from in situ measurements sounds like a very rational approach. Diurnal 
changes in ocean surface pCO2 could affect ocean carbon sinks, which is only beginning to be assessed nowadays. This study helps 
fill this knowledge gap by employing a cutting-edge satellite technology—LiDAR. LiDAR can probe the oceans day and night using laser 
pulses. We have developed a new model based on a feed-forward neural network incorporating LiDAR data as input to estimate global 
ocean CO2 absorption from 1998 to 2020 at a monthly resolution. For the first time, this approach harnesses unique advantages of 
LiDAR’s day–night ocean observations. The results offer new insights into daily CO2 fluctuations and their climate implications. 
Overall, this work demonstrates the value of an emerging technique for improving climate predictions and informing policy decisions.
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Introduction
The global ocean plays a vital role in mitigating climate change by 
absorbing atmospheric carbon dioxide (CO2), a heat-trapping 
greenhouse gas. Scientists estimate that oceans currently absorb 
about 25% of human-generated CO2 emissions (1). However, gaps 
remain in understanding the ocean carbon cycle. Comprehensive 
global measurements of the surface partial pressure of CO2 (pCO2) 

are lacking. This hampers efforts to predict ocean CO2 uptake, 

model climate change impacts, and inform policymaking.
Comprehending the onset and progression of ocean acidifica

tion necessitates a thorough understanding of the entire cycle of 

CO2 variability (2). Since 1850, the ocean carbon sink has increased 

in tandem with the exponential rise in anthropogenic emissions, 

resulting in the marine CO2 sink reaching 3.0 ± 0.4 GtC year−1 in 
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2020 (3). However, the carbon budget imbalance, which represents 
the disparity between the estimated total emissions and the esti
mated changes in the atmosphere, ocean, and terrestrial bio
sphere, is approximately 0.1–0.3 GtC year−1 (3–5). This imbalance 
serves as an indicator of incomplete data and our current under
standing of the contemporary carbon cycle (4). The long-term var
iations in the ocean surface pCO2 act as the principal driving 
force governing CO2 exchange across the air–sea interface (6). 
Consequently, sea surface pCO2 observations assume a pivotal 
role in constraining the global air–sea carbon sink. Regrettably, 
such knowledge remains limited due to the scarcity of comprehen
sive global sea surface pCO2 observations. Recent global estimates 
still obscure noteworthy interannual and regional fluctuations (7), 
underscoring the necessity for rigorous quantitative research to 
meticulously trace the precise evolution of the Earth’s carbon 
budget (8).

Benefiting from the growing abundance of global ocean biogeo
chemical remote sensing data and the continuous advancements 
in remote sensing retrieval methods, the estimation of long-term 
series of sea surface pCO2 is progressively achieving higher levels 
of accuracy. A variety of data-interpolation approaches provide 
estimates of the surface ocean pCO2 field (7) such as statistical 
interpolation, linear and nonlinear regression, or model-based re
gressions or tuning (9). Artificial neural networks have succeeded 
in filling the spatial and temporal gaps. Different artificial neural 
networks have been widely used to reconstruct sea surface pCO2 

in the global ocean (10–18). In contrast, the existing products usu
ally present monthly fields with a 1° × 1° spatial resolution, with 
large errors occurring in Antarctica and the Arctic due to the prob
lem with input remote sensing data (18).

While average states and seasonal variations in ocean CO2 sys
tem variables have received relatively comprehensive character
ization, the assessment of diurnal changes is only in its infant 
stages (19, 20). Previous observation-based studies have explored 
the diurnal variability of surface ocean pCO2 and reported extreme 
diurnal amplitudes of 187 ± 85 μatm in the open ocean (20), 5–25 
μatm in the open-ocean Sargasso Sea (21), 8 and 15 μatm in the 
tropics and <5 μatm in the subtropics (22). Higher diurnal ampli
tudes for pCO2 (100–500 μatm) have been recorded near benthic 
ecosystems such as coral reefs (20, 23, 24), kelp forests (25), and 
seagrasses (26), particularly in shallow waters, where the percent
age of benthic biomass is enhanced (27, 28). Diel pCO2 variations 
provide essential insights into the dynamic processes of the carbon 
cycle and affect ocean acidification (29). Diurnal pCO2 variations 
also influence marine biological productivity, which, in turn, can 
impact the entire marine food web (30). Moreover, changes in 
ocean temperature and circulation can alter CO2 uptake and re
lease processes, potentially leading to positive or negative feed
back loops that either amplify or mitigate climate change (31, 
32). In summary, understanding of oceanic processes and aids in 
the formulation of effective environmental policies and conserva
tion measures. It provides valuable data for policymakers and re
searchers working toward sustainable ocean management and 
mitigating the impacts of climate change. However, there is no 
study on global diurnal ocean surface pCO2 and air–sea CO2 flux 
(C-flux) reconstruction considering both diurnal thermodynamic 
influences and biochemical effects. Moreover, traditional passive 
remote sensing data failed to provide information during night
time, adding an additional challenge to addressing this critical 
knowledge gap.

During the last two decades, the Cloud-Aerosol Lidar with 
Orthogonal Polarization (CALIOP) has been the primary instrument 
on the cloud-aerosol LiDAR flown aboard the Cloud-Aerosol Lidar 

and Infrared Pathfinder Satellite Observations (CALIPSO) platform, 
providing day-and-night measurements comparable with those of 
mature passive remote sensing radiometry since June 2006 (33–38). 
CALIOP is a polar orbiting sensor that conducts daytime and night
time (approximately 13:40 and 01:40 local time, respectively) near- 
nadir backscattering measurements along its orbit track at a 
sampling frequency that is equivalent to every 330 m on the 
ground. Recent studies have demonstrated that CALIOP also col
lects information about the ocean at both the global scale and in 
specific regions: Hu et al. (39) estimated wind speed and wave 
slope variance on a global scale; Hu et al. (40) suggested that the 
higher spatial resolution (70 m) wind from CALIOP could help re
duce uncertainties in air–sea exchange; Behrenfeld et al. (34) pro
vided global maps of particulate backscattering observed from 
CALIOP; Lu et al. (35) showed the global sea surface chlorophyll-a 
concentration (Chla) and particulate organic carbon concentra
tions estimated from CALIOP; and Behrenfeld et al. (37, 41) meas
ured the annual cycles of phytoplankton biomass in polar regions 
and studied global satellite-observed daily vertical migrations of 
ocean animals. Compared with traditional satellite ocean color 
remote sensing, CALIOP measurements could provide new obser
vations of seawater phytoplankton properties for both day and 
night, globally and in polar regions, to improve the understanding 
of global phytoplankton primary productivity and carbon stocks/ 
fluxes (42–45). Despite the likely importance of these changes, 
the consequences of increased diel chemistry variation for marine 
organisms and ecosystem processes remain almost entirely 
unexplored.

Overall, satellites have enabled remote sensing of key ocean 
properties related to CO2 absorption like temperature, plankton 
levels, and wind speeds. However, traditional satellites only pro
vide data during daylight hours. Nighttime changes in CO2 linked 
to winds, temperatures, and biology remain poorly characterized. 
This study helps fill this knowledge gap by employing a 
cutting-edge satellite technology—LiDAR. LiDAR can probe the 
oceans day and night using laser pulses. Within this frame, our 
objectives were 2-fold: firstly, to explore the potential application 
of CALIOP diurnal Chla and wind speed products in studying the 
global air–sea carbon cycle and secondly, to examine the long- 
term diurnal pCO2 and air–sea C-flux using multisource satellite 
products, which include LiDAR products. To achieve this, we 
have proposed a novel feed-forward neural network model with 
LiDAR data inputs (FNN-LID) to estimate global long-term diurnal 
pCO2 and C-flux. The best proxy for pCO2 that can be measured 
from space is likely ocean biological properties (e.g. primary prod
uctivity, Chla, etc.) that are very sensitive to pH level and thus 
DIC/pCO2, together with other measurable physical properties 
(e.g. temperature, ocean dynamics, etc.). By employing this model, 
we were able to establish a nonlinear and continuous relationship 
between climatology pCO2 and various independent environmen
tal predictors, such as Chla, sea surface temperature (SST), and 
others, derived from remote sensing data. The study period cov
ered from January 1998 to December 2020 at a monthly 1°× 1° 
resolution. Notably, this research represents the pioneering effort 
to incorporate spaceborne LiDAR diurnal data in constructing glo
bal diurnal ocean surface pCO2 and C-flux. To assess the perform
ance and accuracy of our model, we conducted a comprehensive 
comparison with eight other estimates based on the fugacity 
of CO2 (fCO2) from Global Carbon Budget 2020 (GCP2020). In par
ticular, we compared the CALIOP-retrieved Chla against consist
ent observations obtained from biogeochemical Argo profiling 
floats (46). Similarly, we validated the wind speed data from 
buoys located across the equatorial and subequatorial oceans. 
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Subsequently, we were able to estimate the long-term series of 
global ocean surface pCO2 and C-flux. In addition, we summarize 
the developed approach and the main results and provide recom
mendations for future biogeochemical studies using LiDAR active 
remote sensing measurements. These findings shed light on cru
cial aspects of the air–sea carbon cycle and contribute to our 
understanding of the Earth’s carbon dynamics on a global scale. 
In Materials and methods section, we describe the CALIOP data, 
in situ observation data and other used remote sensing environ
mental data. Then, we introduce the adopted and refined proce
dures to retrieve the diurnal Chla and wind speed from CALIOP 
and the ocean surface pCO2 and air–sea C-flux estimated based 
on the FNN-LID method.

Results
FNN-LID validation
In this study, we validated the global estimates of FNN-LID pCO2 

data against both observed data and widely used reconstructed 
datasets. The observed data utilized in the validation process con
sisted of unmodeled gridded data from the SOCATv2022 Gridded 
Dataset (47). The results revealed exceptional long-term agree
ment with a remarkable r2 value of 0.79, a low root mean square er
ror (RMSE) of 17.74 μatm, and an almost negligible overall bias of 
0.05 μatm considering 250,100 matched gridded observations 
(Fig. 1A). For statistics, please refer to the SI Appendix. This strong 
global fit, encompassing both open ocean and coastal regions, was 
consistently observed for each individual year, demonstrating 
high levels of consistency, with r2 values ranging from 0.73 to 
0.90, RMSE ranging from 15 to 21 μatm and annual bias remaining 
within a narrow range of ±2 μatm (SI Appendix, Table S1). The re
analysis datasets included pCO2 data reconstructed using FNN 
from the Copernicus Marine Environment Monitoring Service 
(CMEMS) and pCO2 data reconstructed using SOM-FNN from 
Biogeochemistry and Pollutant Dynamics (IBP) (16, 17, 48). The 
RMSE for the CMEMS global estimates ranged from 17 to 26 
μatm, while the IBP estimates exhibited an RMSE ranging from 9 
to 13 μatm over the open ocean and 4 to 32.9 µatm over coastal 
seas. Globally, the FNN-LID model demonstrated an excellent fit 
with the gridded pCO2 data from SOCATv2022, showcasing accur
acy levels similar to those of other recent models in the mean 
monthly result. These findings further support the reliability and 
effectiveness of the FNN-LID approach for global pCO2 estimation.

The right panel of Fig. 1B presents the temporal mean residuals 
when comparing them to the SOCAT map in each pixel. Overall, 
the bias was minimal and exhibited a random distribution in space 
in most midlatitude open oceans (e.g. North Pacific and North 
Atlantic). However, it tended to increase in regions sparse or lim
ited observation data (e.g. Indian Ocean and Southern Ocean) as 
well as in areas characterized by extremely high or low pCO2 (e.g. 
East Equatorial Pacific and Labrador Sea). Regions with high spatial 
variability exhibited relatively poorer model fits, whereas the 
FNN-LID model demonstrated notably good performance in cap
turing the dynamics of most less variable open-ocean regions.

To validate the surface ocean pCO2 across different regional 
oceans and distinguish the coastal from the open ocean, we uti
lized the global ocean masks from the World Ocean Database, 
NOAA (available at https://www.nodc.noaa.gov/OC5/WOD/wod_ 
masks.html). Further details regarding the regional (open and 
coastal) division are provided in Fig. 1C. The North Pacific stands 
out as a region with high data coverage and a rapid increase in 
data availability since 2003 was observed. The corresponding 

RMSEs for the North Pacific, the Equatorial Pacific, and the 
South Pacific were below 18 µatm, and r2 values ranged between 
0.76 and 0.84. Although the RMSEs were generally low across the 
Pacific, skillful data reconstruction over the coastal North Pacific 
regions posed challenges. RMSEs were generally below 20 µatm, 
with a larger RMSE of 39.52 µatm obtained for the Coastal North 
Pacific. The large model–data mismatch along the Pacific contin
ental shelves reflects the poor reconstruction of pCO2 over regions 
under the influence of upwelling systems (e.g. Kuroshio Current), 
large river discharges (e.g. Bering Sea shelf), and the bottlenecks of 
gulfs or bays (e.g. South China Sea). As discussed in Hales et al. 
(49), the carbon cycling in the Coastal Pacific is subject to complex 
dynamics, exhibiting high spatial and temporal variability driven 
by multiple physical and biogeochemical drivers. These intricate 
spatial and temporal changes occur within the 1°×1° grid contrib
ute to the large RMSE for the reconstructed product. On the other 
hand, a comparison between the gridded observed data and 
evaluation data across the six subregions of the Atlantic reveals 
small mean model–data differences, leading to high reconstruc
tion skill in the Atlantic basin (SI Appendix, Table S2). The coastal 
Atlantic regions performed particularly well in terms of recon
struction, accounting for over 29% of the total coastal data. 
Mean RMSE is below 25 µatm, and, with the exception of the coast
al (r2 = 0.71). Corresponding RMSDs are 14.33 (North Atlantic), 
15.09 (Equatorial Atlantic), and 13.73 µatm (South Atlantic), with 
r2 values ranging approximately between 0.66 and 0.77.

In polar regions, FNN-LID pCO2 exhibits high quality in the 
Arctic (RMSE of 25.3 µatm), which is comparable with the recent 
SOCAT-based global pCO2 fields (RMSEs of 26.7–32 µatm) and pro
vides a more accurate estimate of the polar continental shelf in 
winter (50). This advantage stems from the fact that FNN-LID 
uses CALIPSO which has advantages over traditional passive re
mote sensing (the Sea-viewing Wide Field-of-view Sensor 
[SeaWiFS] or Moderate Resolution Imaging Spectroradiometer 
[MODIS]) in distinguishing clouds and sea ice (51). Therefore, ac
tive satellite LiDAR input enables continuous observation of the 
winter polar nighttime period, obtaining high-coverage polar in
puts (52). Thus, we constructed a LiDAR-based pCO2 with far 
greater coverage than previous products.

In conclusion, the residual analysis demonstrates that the glo
bal FNN-LID method successfully meets most criteria for a robust 
fit, with no significant evidence of hidden biases. Notably, the es
timates do not show any substantial degradation concerning data 
density, be it in temporal or spatial dimensions. Regions with pro
nounced spatial or temporal variability exhibit relatively weaker 
fits, whereas the method excels in accurately estimating pCO2 

for most open-ocean regions characterized by lower variability.

Interannual pCO2 and air–sea flux
Utilizing the FNN-LID methodology, we successfully obtained the 
climatological surface ocean pCO2 during 1998–2020 (Fig. 2A). The 
highest long-term mean sea surface pCO2 climatology values 
identified by our FNN-LID method occurred in the equatorial 
Pacific, which was associated with the strong upwelling of deep 
water with naturally rich dissolved inorganic carbon. Similarly, 
elevated pCO2 levels were also identified in the northeastern 
Indian Ocean, the low-latitude South Atlantic and the western ba
sin of the Bering Sea (Fig. 2A). Conversely, regions with the lowest 
sea surface pCO2 values were detected in the high latitudes (>70°) 
of the Atlantic, along the strong western boundary current (Gulf 
Stream and Kuroshio Current), and in the subtropical bands of 
the Southern Hemisphere, a combination of both the drawdown 
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of DIC by biological activity and the low-temperature effect on 
solubility (12). Furthermore, we conducted an analysis of the in
terannual increasing rate for each 1°×1° pixel, as illustrated in 
Fig. 2B. The results indicate a significant upward trend, with an 
average increasing rate of approximately 1.8 (±0.7 µatm year−1), 
among which the Ross Sea, East Siberian Sea, and Beaufort Sea 
growth was set to be sharply over 4 µatm year−1. These findings 
were corroborated by multiple models, and to validate our ap
proach, we compared the global monthly average pCO2 data 
with CMEMS and the Institute of IBP over the period from 1998 
to 2020, as presented in Fig. 2C. The comparison of sea surface 
pCO2 from the three mapping approaches displayed minor varia
tions within the range of ±3 µatm. On a global scale, the three 
products gave extremely similar results for a long time series. 
However, it is worth noting that the IBP method exhibited a slight 
overestimation of observed pCO2, particularly during the period 
1998–2003, with deviations of up to 3 µatm. On the other hand, 
the discrepancy between the CMEMS output and our approach 
fluctuated within the range of ±2 µatm, with an increase in amp
litude of up to −4 µatm from November 2020.

Figure 2D displays the long-term mean C-flux density in mol 
C m−2 year−1, providing insights into the average annual net at
mosphere–ocean C-flux. The results indicated CO2 release pre
dominantly at low latitudes and uptake at high latitudes, with 
the exception of the Bering Sea, which acts as a source of CO2 to 
the atmosphere. The detailed calculation steps for the C-flux are 
available in SI Appendix. Remarkably, we identified significant 
sink areas in the transition zone between the subtropical gyre 
and subpolar waters (i.e. 30°–50° latitudes). This phenomenon pri
marily arises due to the cooling of subtropical warm waters and 
secondarily to the biological drawdown of pCO2 in nutrient-rich 

subpolar waters. Moreover, areas with high wind speeds were 
found to enhance the CO2 sink capability of ocean waters. The 
eastern equatorial Pacific, northwestern Arabian Sea and western 
Bering Sea were the most intense CO2 source areas (red regions in 
Fig. 2D). The equatorial Pacific, particularly in the eastern upwell
ing area, was highly supersaturated with regard to atmospheric 
pCO2 and constituted a strong source region for air. Additionally, 
the tropical Atlantic, Pacific, and Indian Oceans and the subarctic 
region, also exhibited significant source characteristics for CO2.

The regional distribution of C-flux in the world’s oceans has 
been a subject of scientific interest, and recent research highlights 
the significance of previously overlooked areas, such as the Arctic. 
In the past, limited data coverage of input data in previous studies 
has taken up approximately 15+% of the global ocean CO2 uptake 
flux (SI Appendix, Table S3). Similarly, the Atlantic Ocean covers 
roughly 23% of the ocean area and accounts for approximately 
31+% of the global ocean CO2 uptake. In contrast, the Pacific 
Ocean accounts for only 25% of the global ocean CO2 uptake, 
whereas it occupies 47% of the global ocean area. The lower CO2 

sink is formed by the juxtaposition of the intense CO2 source in 
the equatorial Pacific with a strong seasonal source in the Bering 
Sea. The dynamics of this region are further influenced by El 
Niño events, involving decreased upwelling of carbon in the equa
torial Pacific due to a weakening of the trade winds. This region 
will become a weaker sink of CO2 or will become near neutral if 
the El Niño event is strong (53). The total CO2 flux was scaled by 
the ratio of the total ocean area covered by the respective product 
to the total ocean area (361.9 × 106 km2) (54, 55). Furthermore, it 
should be noted that the ocean sink we discussed here does not 
contain carbon from river inputs to the ocean, which are approxi
mately 0.61 GtC year−1 (the average of 0.45 ± 0.18 GtC year−1 by 

Fig. 1. A) Observation of global surface ocean pCO2 (μatm) and FNN-LID estimates. The color code represents the density of occurrences. The line is the 
1:1 line. B) Map of the mean of the differences between FNN-LID pCO2 and SOCAT gridded dataset (47). The surface ocean pCO2 is colocalized with 
observations and the bias is calculated. Then, this bias is summed in time and the average. C) The masks of 26 global oceans from World Ocean Database, 
NOAA to validate the surface ocean pCO2 in different regional oceans (available at https://www.nodc.noaa.gov/OC5/WOD/wod_masks.html).
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(56) and 0.78 ± 0.41 GtC year−1 by (57)). Figure 2E illustrates the re
sult that our FNN-LID-based global contemporary air–sea C-flux 
exhibited a modest level of year-to-year variability from 2001 to 
2020, with a minimum carbon uptake of −1.10 ± 0.32 PgC year−1 

in 2001 and reached a maximum uptake of −2.7 ± 0.47 PgC 
year−1 in 2020 and with a standard deviation of the de- 
seasonalized and detrended (to separate the effect of short-term 
trends) monthly fluxes of (±0.09 PgC year−1). We showed a similar 
result in both annual estimation and interannual variation to the 
eight results mentioned in GCP2020 (3).

The global diurnal ocean surface pCO2 and flux
The above sections have substantiated the availability of 
LiDAR products for their potential application in pCO2 studies. 
Furthermore, we have demonstrated diurnal pCO2 based on 
CALIPSO satellite products and multisource diurnal products. 
We used the diurnal SST and Chla to reconstruct the diurnal 
pCO2 fields (henceforth referred to as the FNN-LID) by applying 
the FNN-LID, and the climatological diurnal differences in SST 
and Chla are shown in Fig. 3A and B. Fields of diurnal and noctur
nal transfer velocity were computed using wind speed observa
tions from CALIPSO. These fields were then used to compute the 
monthly mean fields of the daytime and nighttime air–sea CO2 

fluxes. Due to the resolution of the 1°×1° grid and the lack of diur
nal temperature data at high latitudes, our credible diurnal pCO2 

data would cover open oceans between latitudes of 60°S-60°N, as 
shown in Fig. 3C. Next, we specifically describe the influencing 
factors and potential causes of diurnal variation in seawater pCO2.

Temperature is a pivotal parameter in carbonate systems be
cause it affects pCO2 in isochemical conditions (∂ln pCO2/∂T ) 
with a rate of +4.23% °C−1 (58). The acute daily cycle is influenced 
by solar radiation, wind speed, the optical attenuation coefficient 
of the water, and mixing from the wave motions (59). This diurnal
ly varying SST rather than daily averaged SST affects air–sea fluxes 
(60). Figure 3A indicates that the mean amplitude in Δ SST for the 
entire ocean is 0.47°C (±0.26°C), with the largest ΔSSTs exceeding 
1.7°C in Indonesia and affecting 0.01% of the surface.

However, the thermodynamic effect was dampened by primary 
production during the day, as shown in Fig. 3B. Light affects phyto
plankton activity, leading to diel periodicity in cell division and 
cellular properties (61–66). The Chla difference ratio (Eq. 1) yields 
a negative value in almost the entire open sea (Fig. 3B):

ΔChla =
Chladay − Chlanight

Chladay
× 100% (1) 

In contrast, the marginal sea Chla concentrations were higher dur
ing the day, such as in the northwestern Arabian Sea, Gulf of 

Fig. 2. The distribution of A) climatological annual mean pCO2 in µatm and B) mean growth rate in µatm year−1. C) Temporal evolution of the global pCO2 

(in µatm) from blue FNN-LID, IBP, CMEMS, and estimates during 1998–2020. D) Map of the long-term mean annual net air–sea flux for CO2 (mol C m−2 

year−1) for 1998–2020. Red–yellow areas indicate that the ocean is a source for atmospheric CO2, and blue–indigo areas indicate that the ocean is a CO2 

sink. E) Comparison of the global carbon budget in this study (black line) with the 8 fCO2-based estimates from GCP2020 from 2001 through 2020. All 
values are in GtC year−1, and positive flux densities indicate CO2 uptake by the ocean.
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California, and the Arafura Sea. The same pattern was found in 
equatorial regions, especially the eastern equatorial Pacific. The 
global annual mean diurnal variation pattern of ΔChla agreed 
well with the study by Behrenfeld et al. (41). Synchronized cell div
ision during nighttime has been confirmed for many phytoplank
ton groups, resulting in a decrease in cell size during this period 
of the day, which may cause diel changes (41, 61, 63, 65, 66). 
Regardless of the ecological reasons behind the existence of diel 
rhythms in Chla, their consequences in day and night are different. 
In addition, these diel variations have been neglected in all previ
ous research regarding the dependence of passive remote sensing 
upon solar radiation.

The annual mean diurnal variations in pCO2 (dpCO2 = day– 
night) are displayed in Fig. 3C. The variations are a comprehensive 
consequence of diurnal SST variations, leading to an increase (due 
to deep-water upwelling and sea–air CO2 exchange) or decrease 
(due to photosynthesis and sea–air CO2 exchange) in the total 
CO2 concentration. The spatial distribution of these variations is 
unique, showing positive dpCO2 in the subequatorial and midlati
tude regions (higher diurnal pCO2), while it was negative in the 
equatorial Pacific and Southeast Pacific (higher nocturnal pCO2). 
The lowest dpCO2 (>10 μatm) was exhibited in Patagonia. Diurnal 
variations were small in the tropics and typically <5 μatm. The 
strongest diurnal variations occurred in the northern subtropics 
and midlatitudes, where we estimated that pCO2 was typically 
lowered by between 3 and 7 μatm during nighttime compared 
with daytime. In the Southern Hemisphere, diurnal variations 

were lower, between 3 and 6 μatm. Negative dpCO2 appeared in up
welling regions, such as in the western Arabian Sea. Many previous 
studies have shown that an increase in seawater temperature will 
cause changes in the carbonate composition of seawater, resulting 
in a larger pCO2. In summary, diurnal pCO2 change is not a simple 
change due to temperature or Chla but is rather caused by a com
bination of seawater inorganic carbonate systems and a series of 
complex organic biochemical processes.

As for diurnal flux, there are differences in the magnitude of 
the fluxes between day and night (Fig. 3D). The diurnal flux var
iations are mostly positive, indicating that the evasion in source 
regions is increased during the day, whereas the invasion in sink 
regions is decreased. Diurnal flux variations are strongest in the 
southern midlatitudes where the day—night flux difference is 
∼1 mol m−2 year−1. However, in the tropics and West Arabian 
Sea diurnal variations are negative and sometimes even 
<0.5 mol m−2 year−1 (e.g. at 100°W). Combined with the climat
ology air–sea C-flux, the regions that be deemed as carbon sour
ces are more likely to release more CO2 at night than during the 
day. Figure 3E shows the long-term series global flux, revealing 
that the nocturnal sink is higher than the diurnal one. 
Furthermore, if we keep using the diurnal uptake as the whole 
daily sinks, it will cause underestimation by between −0.005 
and 0.052 GtC year−1 (0.026 GtC year−1 on average). This may 
be helpful to answer the question of where part (approximately 
10–30%) of the total carbon budget imbalance (about 0.1–0.3 
GtC year−1) comes from, over the last decade.

Fig. 3. The annual mean difference of day and night A) SST, B) ΔChla, and C) pCO2, among ΔChla is shown as the normalized difference ratio. C) The map 
of global diurnal air–sea C-flux difference (day minus night) in mol m−2 year−1; D) comparison of the CO2 flux showing the budget values of ocean at 
nighttime and at daytime in GtC year−1.

6 | PNAS Nexus, 2024, Vol. 3, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/1/pgad432/7473350 by IFR

EM
ER

 user on 10 M
arch 2025



Diurnal pCO2 plays a crucial role in unraveling the complexities 
of the carbon cycle, ocean acidification, biological productivity, 
climate change feedbacks, and environmental health. Jury et al. 
(29) showed that under global change diel seawater chemistry 
variation increases (dramatically in some cases) and that various 
ecosystem feedbacks can substantially modify changes in both 
the average chemistry and diel chemistry variation. Delille et al. 
(67) studied diel fluctuations of pCO2 and DIC inside and outside 
a giant kelp bed and suggested that understanding the physical 
and biological processes regulating pCO2 dynamics facilitates 
tracking the seasonal evolution of primary production. A work
shop on the potential impacts of ocean acidification on marine 
ecosystems and fisheries indicated the precise control of diel 
CO2 cycling was considered highly valuable in studying the impact 
of ocean acidification (30). However, diurnal change in ocean sur
face pCO2 could affect ocean sink, which is only beginning to be 
assessed nowadays. This study on diurnal variation may be help
ful in answering the question where some of the global carbon 
budget imbalance over the past decade comes from. Its import
ance extends to various scientific disciplines, helping shape our 
understanding of the Earth’s interconnected systems and inform
ing strategies to safeguard marine ecosystems and global environ
mental stability.

Discussion
Global seasonal amplitude
The seasonal variations in sea surface pCO2, as observed at the 
Hawaiian Ocean time-series station (68) (1.5 ± 1.8 and 0.2 ± 1.8   
μatm per decade) and at the Hydrostation “S”/Bermuda Atlantic 
time-series study site (69–71) (1.5 ± 1.1  μatm per decade) showed 
a significantly increased in recent decades. Meanwhile, model- 
based projections supported this result, especially in the 
Southern, Pacific, and North Atlantic Oceans (2, 72, 73).

Based on the FNN-LID methods, we reconstructed changes in 
global ocean pCO2 on a monthly basis with a spatial resolution of 
1° × 1° for the period 2001 to 2020. To assess seasonal differences, 
we calculated winter averages in the Northern Hemisphere as the 
mean of December, January, and February and the summer aver
ages as the mean of June, July, and August; and the reverse was ap
plied for the Southern Hemisphere. The seasonal differences in 
pCO2 were computed here as summer averages minus winter aver
ages. This approximation slightly underestimated seasonal oscil
lations in the equatorial region, where the highest value may not 
occur in the summer due to seasonal changes in solar radiation.

Analyzing the mean result over 5-year intervals, we observed 
that the seasonal differences in surface pCO2 increased in the 
Northern Hemisphere, with the winter-to-summer differences be
coming more positive in low latitudes (equatorward of ∼40°) and 
more negative in high latitudes (poleward of ∼40°) (SI Appendix, 
Fig. S1A–D). Similar spatial patterns were noted in the Southern 
Hemisphere with a slightly increasing summer-minus-winter dif
ference, except in the South Pacific (SI Appendix, Fig. S1E and F). 
The change in sign over 40° latitude corresponded to a 6-month 
phase shift in the seasonal peak of pCO2 being 6 months out of 
phase between these two bands. In high latitudes, the seasonal 
cycle had a maximum in summer, resulting in a negative seasonal 
difference. In contrast, the seasonal cycle in low latitudes exhib
ited a peak in winter, leading to a positive summer-minus-winter 
difference in pCO2.

Although some residual interannual variability persisted in the 
strength of the seasonal pCO2 difference, it is essential to 

emphasize the explicit positive trend in northern extratropical re
gions, with an average rate of 2.1 ± 0.6  μatm per decade.

Accuracy of diurnal air–sea C-flux
Errors in the reconstruction of the global diurnal pCO2 arise from 
both the FNN-LID methods and the input data. Unlike the monthly 
average product, here, our input data were newly added, including 
diurnal SST, sea surface Chla, wind speeds, and atmospheric pCO2.

The daily and monthly night SSTs were handled from longwave 
infrared (LWIR) SST products, a 30+ year record of space-based 
measurements of LWIR SST from polar orbiting satellites. The cur
rent LWIR algorithm is applicable for both daytime and nighttime 
observations and is based on a modified version of the nonlinear 
SST algorithm developed by Walton et al. (74), most recently de
scribed in Kilpatrick et al. (75). The SST measured by MODIS and 
VIIRS infrared radiometers is commonly referred to as the skin tem
perature of the ocean and not the body of water below, as measured 
by in situ thermometers (76). The thermal skin layer of the ocean is 
<1 mm thick and cooler than the underlying water (77, 78). For the 
uncertainty validation for the ESA analysis dataset, the spread of un
certainties in the products ranged from 0.05 to 1.5 K, and the agree
ment between the theoretical and measured RMSE values was 
excellent across the full range of uncertainties (79).

For Chla, the global distribution of ocean subsurface backscat
ter was estimated from the CALIOP level-1 data product, retriev
ing a diurnal Chla concentration with an accuracy that is (at 
least as good as) comparable with that obtained from MODIS 
(35), which can help us better understand the different optical 
properties of various water masses and facilitate the quantifica
tion of global ocean carbon stocks (80). In our analysis, we used 
MODIS Chla rather than GlobColour Chla, due to the merged prod
uct is merging different errors (such as seasonal bias) and uncer
tainties and the result is not as robust as using one satellite with 
the same time period as CALIOP (81). The comparison between 
the independent validation MODIS dataset and the daytime 
Chla-LID used in this study is shown in SI Appendix, Fig. S2A
with an RMSE of 0.85 μg/L and an r2 value of 0.75. To estimate 
the accuracy of the nocturnal data, we also compared our prod
ucts with BIO-Argo within 1° × 1° and 6 h. Although there is a dif
ference between the Chla-LID and BIO-Argo Chla, the bias is 
insensitive to whether the measurement is taken during the day
time or nighttime, as shown in SI Appendix, Fig. S2B. Although the 
comparison statistics results for the BIO-Argo measurement were 
lower than the former, our day and night data maintained a simi
lar estimation ability, providing high-quality nighttime data that 
could not be retrieved from MODIS. Roesler et al. (82) found that 
Argo-Chla can be biased by a factor of 2. Additionally, other bio
logical impacts, such as zooplankton diurnal changes, may ex
plain the bias between Argo and CALIOP.

The diurnal wind speed utilized in our study was retrieved from 
CALIPSO. To validate the neural network approach, we applied 
CALIPSO measurements for the entire dataset from 2008. The re
trieval results were unbiased, with an average wind speed differ
ence between CALIPSO and AMSR-E of approximately −0.32 m/s 
(SI Appendix, Fig. S2C). Meanwhile, we selected measured buoy 
data from the National Data Buoy Center, PIPATA, RAMA, and 
TAO/TRITON as the standards to verify the wind speed. The com
parison indicated that the CALIPSO wind speeds may be underes
timated (by 1–2 m/s) when the wind speed is <8 m/s in tropical 
regions (SI Appendix, Fig. S2D); Nevertheless, the CALIPSO data re
mains globally applicable, particularly for capturing instantan
eous wind speeds. Due to the gradient of wind speed with 
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latitude, although the wind speed model we have established has 
a good inversion capability on a global scale, but some errors may 
occur in specific regions (e.g. underestimation of low wind speeds 
in low latitudes). The relationship between mean square wave 
slope (LiDAR “wind speed”) and air–sea turbulence exchange 
speed is independent of stability, but the relation between the 
true wind speed (and thus microwave-based wind measurements, 
which is a simple empirical fit of buoy-measured wind) and turbu
lence exchange speed is stability dependent. LiDAR is actually 
measuring mean square slopes (or turbulence exchange speed) 
directly and thus its “wind speed” is the correct wind speed for 
neutral stability. It is a little bit trickier for microwave (radar or 
radiometer) measurements, since the microwave wavelength 
(cm) is too close to the wavelength of capillary-gravity waves 
(cm too). Nighttime mean square slopes (which LiDAR measures 
directly) might be larger than the daytime ones even if the wind 
speeds of day and night are the same. So, LiDAR is actually meas
uring the diurnal change of the turbulence exchange speed. And 
the diurnal change in turbulence exchange may be underesti
mated if we use wind derived from microwave measurements.

Effect of the diurnal air–sea C-flux variation
We used the diurnal pCO2 fields of the FNN-LID and the fields of 
diurnal xCO2 and wind speed to estimate the monthly mean fields 
of daytime and nighttime air–sea C-flux. The calculation of air– 
sea C-flux appeared in the form of multiplication in this study. 
Therefore, we will discuss the impact of different mechanisms 
on C-flux in terms of day–night ratios below:

fluxday

fluxnight
=

solday

solnight
×

kwday

kwnight
×

Δpday

Δpnight
= ksol × kkw × kΔp (2) 

ksol =
solday

solnight
(3) 

kkw =
kwday

kwnight
(4) 

kΔp =
Δpday

Δpnight
(5) 

where fluxday, solday, kwday, and Δpday represent the air–sea CO2 

flux, the solubility of CO2 in seawater, the gas transfer velocity, 
and the difference in CO2 partial pressure between the ocean sur
face and the atmosphere during the day; while fluxnight, solnight, 

kwnight, and Δpnight for the night. Furthermore, ksol, kkw, and kΔp 

characterize the ratios of the different components in the day 
and night, respectively (Fig. 4A–C). When this ratio is <1, it means 
that the parameter is lower during the day, and the opposite 
means that the larger value occurs during the day.

In previous studies, the combined effect of ksol was found to be 
negligible, as it typically remains relatively stable (22). During the 
analysis, we calculated the ksol for solubility, which was approxi
mately 0.9903 (±0.0091) during 2007–2020 (Fig. 4A). This result in
dicates that solubility rarely exhibited lower values during the day 
compared with nighttime; however, the difference was so min
imal that it could be safely disregarded.

Following that, we examined the impacts of both the gas trans
port rate and the air–sea partial pressure difference on the diurnal 
flux variation, quantified by kΔp and kkw, respectively. The diurnal 
partial pressure difference is the only parameter that can yield 

negative values in the flux estimation. However, only 7% of 
them were negative, which indicated that diurnal variation did 
not change the source‒sink properties of the oceans in most cases. 
However, the absolute average value of kΔp was approximately 
0.98, ranging from 0.76 to 1.10. The distribution of kΔp demon
strated that the partial pressure difference influenced the magni
tude of the flux, but this effect was relatively neutral and did not 
drive the flux to be higher at night than during the day.

The air–sea gas transfer velocity and the square of wind speed 
were positively correlated with diurnal wind speed. As shown in 
Fig. 4B, the value of kkw was approximately 0.86 (±0.61), meaning 
that the larger nighttime wind speed caused a larger gas transfer 
rate at night. The ratio of kkw/|kΔp| ranged from 0.8 to 5, implying 
that the contribution of wind speed and partial pressure difference 
to the effect of diurnal flux difference was approximately 7:1. In con
clusion, the difference in diurnal air–sea C-flux was mainly controlled 
by the gas exchange rate affected by the wind speed, while the partial 
pressure difference determined the diffusion direction of air–sea CO2.

Figure 3 reveals that the nocturnal C-flux is larger than during 
the daytime, influenced by a combination of diffusion, and bio
logical factors, including photosynthesis and respiration. The 
powerful thermodynamic influence on seawater pCO2 is evident, 
as higher daytime temperatures causing an impact on the carbon
ate balance and solubility, increasing more in the daytime. 
However, the biological effect is precisely the opposite, indicating 
higher nocturnal pCO2 due to the respiration. These two effects 
determine the direction of diurnal pCO2 changes. When thermo
dynamic photosynthesis is powerful, high biomass usually causes 
obvious respiration at night, resulting in the pCO2 is larger during 
the night (Fig. 3A), and vice versa (Fig. 3B). The spatial distribution 
map of diurnal pCO2 is shown in Fig. 3C, where both higher night
time pCO2 and diurnal pCO2 are present. Despite the differences in 
diurnal pCO2, ocean pCO2 is lower than atmospheric pCO2 global
ly, resulting in seawater being a sink for the atmosphere regard
less of day and night. Additionally, the C-flux is affected by 
diffusion, which makes the wind speed determine the gas ex
change rate. As a result, higher wind speeds at night accelerate 
the absorption of atmospheric CO2 at night (Fig. 4A and B). The 
air–sea flux represents a dynamic steady state that depends on 
both pCO2 and the air–sea turbulence exchange velocity. Colder 
surface water at night over a clear sky due to long wave radiation 
can help push more CO2 into water in two ways: (i) colder water 
allows more gases in the water than warmer water; and (ii) mixed 
layer is more unstable at night and thus helps increase turbulence 
exchange velocity, when the drop in surface water temperature 
leads to heavier water at the surface. Furthermore, in the com
bined of all effects, the gas transfer rate flux has the greatest im
pact as mentioned in Fig. 4B. Hence, the global annual average 
C-flux is larger than at daytime under the multieffects.

In this study, we constructed a new FNN-LID method including 
CALIOP data for global pCO2 and formed a dataset of long 
time-series variations in pCO2 and air–sea CO2 fluxes during 
1998–2020, as well as diurnal products from 2007 to 2020. 
Instead of normal passive remote sensing products, we added 
CALIOP diurnal Chla and wind speed as the input data to build 
the FNN-LID approach. This is the first time LiDAR has been 
used in research on the air–sea carbon cycle. CALIOP can provide 
not only a larger coverage, including the polar regions, but also a 
clearer understanding of the global diurnal pCO2 variations.

Globally, our FNN-LID demonstrated excellent fitting capabil
ities with the gridded pCO2 data from in situ SOCATv2022, achiev
ing an r2 value of 0.79 and a negligible overall bias of 0.05 μatm over 
the entire time period from 1998 to 2020. These results showcased 
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a similar spatiotemporal distribution and accuracy to those of oth
er recent models in the mean monthly result. In addition, we found 
that pCO2 exhibited different spatial characteristics during the day 
and at night by analyzing the FNN-LID results. It exhibited a unique 
spatial distribution, showing positive dpCO2 in the subequatorial 
and midlatitude regions (higher diurnal pCO2), while it was nega
tive in the equatorial Pacific and southeast Pacific (higher noctur
nal pCO2), and the lowest dpCO2 (more than 10 μatm) was 
exhibited in Patagonia. The nocturnal CO2 sink was higher than 
the diurnal sink, leasing to a potential underestimation between 
−0.005 and 0.052 GtC year−1 if the diurnal uptake was used as the 
whole daily sink. This may be helpful in answering the question 
of where part of the carbon budget imbalance (approximately 0.1 
GtC year−1) came from over the last decade. Meanwhile, the contri
bution of wind speed and partial pressure difference to the effect of 
diurnal flux difference is approximately 7:1. The partial pressure 
difference played a crucial role in determining the diffusion direc
tion of air–sea CO2 exchange.

This model’s application has extended the use of satellite re
mote sensing data in polar research and diurnal variation studies. 
Moving forward, with the accumulation of remote sensing data, 
we will further extend the study of medium time scale carbonate 

systems. Additionally, we will explore the utilization of higher 
spatial and temporal resolution data to analyze carbonate sys
tems in coastal and nearshore ecosystems, further enhancing 
our understanding of these vital marine environments.

Materials and methods
Observation data
The gridded monthly pCO2 data were sourced from the gridded 
SOCATv2022 observational database (available at https://www. 
socat.info/) (83). SOCATv2022 provides comprehensive global sea 
surface fugacity of CO2 (fCO2) data from moorings, ships, and 
drifters spanning the period from 1970 to 2020. Furthermore, 
wind speed data from the tropical moored buoys, along with bbp 

and Chla products from an array of Bio-Argo floats, were utilized 
to validate the accuracy of CALIOP Chla, and the wind speed. 
Refer to SI Appendix for preprocessing of observation measure
ments in this study.

CALIOP measurements
The active remote sensing data came from CALIOP, developed by 
NASA (available at http://orca.science.oregonstate.edu/lidar. 

Fig. 4. Histograms of diurnal ratios for each parameter: A) ksol, B) kkw, and C) kΔp involved in CO2 flux calculations. Schematic representation of the 
comprehensive effects on diurnal C-fluxes in two different situations: D) biological effect larger than thermodynamic effect and E) biological effect lower 
than thermodynamic effect. Colorful arrows represent the effect of different influences on pCO2, and black ones for the results of synthetic effects. The 
area of the cylinder represents the amount of CO2 flux, and the height of the lines represents the value of pCO2.

Zhang et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/1/pgad432/7473350 by IFR
EM

ER
 user on 10 M

arch 2025

https://www.socat.info/
https://www.socat.info/
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad432#supplementary-data
http://orca.science.oregonstate.edu/lidar.data.php


data.php), including CALIPSO level 1B V4.10 data products, LiDAR 
level 2 Cloud, Aerosol, and Merged Layer V4.20 products. The 
measured signal is corrected for after-pulse and polarization 
crosstalk effects (84) before further processed. Following these 
corrections, bbp can be calculated from the vertical–parallel 
ratio (34, 85). Finally, Chla can be estimated based on the rela
tional formula of bbp and chlorophyll-a concentration C.

Ocean surface roughness increases with higher wind speeds, 
resulting in fewer photons reaching the LiDAR receiver. Thus, 
the LiDAR backscatter signal is proportionally related to the prob
ability that the surface of the capillary-gravity waves is perpen
dicular to the line-of-sight of the laser beam (86). In this study, 
wind speed data were retrieved from LiDAR data from Version 4 
CALIPSO level 1 data in combination with collocated ocean sur
face wind speed data from AMSR-E measurements (87). Refer to 
SI Appendix for further information on the method and the fitting 
neural network (SI Appendix, Table S4).

Satellite and reanalyzed environmental datasets
As shown in SI Appendix, Table S5, our predictors included bio
logical, chemical, and physical variables commonly associated 
with variations in pCO2 (13, 17, 88). These predictors comprised 
SST, sea surface salinity, sea surface height, mixed-layer depth, 
Chla, and atmospheric CO2 mole fraction (xCO2). It is noteworthy 
to mention that the Chla used in this study is based on optical 
measurements rather than analyzed Chla data. In addition to 
the predictors listed in this table, pCO2 climatology (89), normal
ized latitude, and longitude were also utilized as predictors for 
the reconstruction. Furthermore, the calculation of the C-flux re
quires additional datasets, including atmospheric pressure, and 
10 m wind speed at the sea surface. The original data were distrib
uted after interpolation on 1° latitude by 1° longitude cells. For re
constructing the diurnal pCO2 field and calculating the air–sea 
flux, we used all data capable of diurnal spatiotemporal resolution, 
which encompassed Chla, wind speed, temperature, barometric 
pressure, and atmospheric CO2 concentration. In diurnal research, 
these data were considered to have the same spatial resolution 
and began in 2007. See SI Appendix for information on the satellite 
and reanalyzed environmental datasets used in this study.

Reconstruction datasets
In the validation of the results, we also employed several widely 
used pCO2 reconstruction datasets to corroborate our findings, in
cluding pCO2 data reconstructed using FNN from CMEMS and 
pCO2 data reconstructed using SOM-FNN from IBP. These datasets 
share the same global monthly long-term time series (from 1998 
to 2020) at a resolution of 1°×1°.

FNN-LID model
It is very difficult (probably impossible, or hopeless) to measure 
ocean surface pCO2 directly from space. Ocean surface pCO2 is 
often constructed based on global ocean biogeochemical models 
and data reconstruction methods with satellite remote sensing 
environmental data, SI Appendix, Fig. S3D. In this study, we 
adopted a novel feed-forward neural network methods including 
CALIOP data to reconstruct the diurnal pCO2 for the period from 
January 1998 to December 2020 at a monthly resolution of 1° ×  
1°. The two-part method utilized here established nonlinear rela
tionships between pCO2 and a set of independent environmental 
predictors. In the first part, we derived a nonlinear and continuous 
relationship between climatology pCO2, and the independent en
vironmental predictors based on an FNN method. For the second 

part, we used the gridded SOCATv2022 observational database as 
the target.

On this basis, we updated the input data for the diurnal 
CALIPSO surface sea Chla, diurnal xCO2 from ECMWF and the di
urnal SST product from MODIS during 2007–2020. Hence, we re
constructed the day and night sea surface partial pressure of 
CO2 for the period from January 2007 to December 2021 at a 
monthly resolution of 1°×1°. For further details on the FNN-LID 
model, refer to SI Appendix.
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